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Abstract

Set and multiset variables in constraint programming have
typically been represented using subset bounds. However,
this is a weak representation that neglects potentially use-
ful information about a set such as its cardinality. For set
variables, the length-lex (LL) representation successfully pro-
vides information about the length (cardinality) and position
in the lexicographic ordering. For multiset variables, where
elements can be repeated, we consider richer representa-
tions that take into account additional information. We study
eight different representations in which we maintain bounds
according to one of the eight different orderings: length-
(co)lex (LL/LC), variety-(co)lex (VL/VC), length-variety-
(co)lex (LVL/LVC), and variety-length-(co)lex (VLL/VLC)
orderings. These representations integrate together informa-
tion about the cardinality, variety (number of distinct ele-
ments in the multiset), and position in some total order-
ing. Theoretical and empirical comparisons of expressiveness
and compactness of the eight representations suggest that
length-variety-(co)lex (LVL/LVC) and variety-length-(co)lex
(VLL/VLC) usually give tighter bounds after constraint prop-
agation. We implement the eight representations and evaluate
them against the subset bounds representation with cardinal-
ity and variety reasoning. Results demonstrate that they offer
significantly better pruning and runtime.

Introduction
In constraint programming, we often need to model multi-
sets (or bags) of objects. For example, in the template design
problem (prob002 in CSPLib (Gent and Walsh 1999)), we
need to construct printing templates, which are multisets of
different designs. Multisets, unlike sets, can contain repeti-
tion of elements. For popular designs, we may have multiple
copies on the same template. Surprisingly, whilst there has
been significant progress on developing representations for
sets, relatively little research has been done on how best to
represent multisets.

Sadler and Gervet (2004) proposed representing set vari-
ables with subset, lexicographic, and cardinality bounds.In-
deed, they suggested that such a representation could also be
used for multisets (2008). However, little detail is provided
about how to do this exactly. To compare two multisets, they
lexicographically compare their occurrence vectors written
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in decreasing order. For instance,{3, 3, 2, 1, 1} � {4} �
{4, 4}. Gervet and Van Hentenryck (2006) proposed repre-
senting set variables using length-lex bounds, arguing that it
provides comparable pruning to the aforementioned hybrid
domains at a fraction of the computational cost. It is there-
fore promising to consider length-lex and related bounds for
multiset variables. However, as a number of different order-
ings are possible, we have undertaken a theoretical and em-
pirical comparison of the most promising options.

As multisets permit repeated elements, we can incorpo-
rate information about the variety (number of distinct ele-
ments) (Law, Lee, and Woo 2009) in addition to the cardinal-
ity and position in the lexicographic ordering. As a result,we
introduce eight different representations for multiset vari-
ables in which we maintain bounds according to one of eight
different orderings: length-(co)lex (LL/LC), variety-(co)lex
(VL/VC), length-variety-(co)lex (LVL/LVC), and variety-
length-(co)lex (VLL/VLC) orderings. These bounds provide
information about the possible cardinality, variety, and po-
sition in the (co)lexicographic ordering of a multiset. We
evaluate the expressiveness (whether the set of multisets can
be exactly represented) and compactness (whether the in-
terval is minimal) of the eight representations both theoret-
ically and empirically. Our results suggest that LVL/LVC
and VLL/VLC representations are usually more expressive
and more compact than LL/LC and VL/VC respectively.
The eight representations give total orderings on multisets,
which make enforcing bounds consistency on multiset vari-
ables possible. However, when we attempt to enforce bounds
consistency on the bounds of the proposed representations,
this operation can be NP-hard even on unary constraints. To
test out these representations, we implement the eight repre-
sentations and evaluate them against the subset bounds rep-
resentation with cardinality and variety reasoning. Results
confirm that these new representations achieve significantly
better pruning and runtime.

Background
Set Variables

A set is an unordered list of elementswithout repetition.
The cardinality of a setS is the number of elements inS,
denoted as|S|. Gervet (1997) proposed to represent the do-
main of a set variableS with an interval[glb(S), lub(S)]



such thatDS = {m | glb(S) ⊆ m ⊆ lub(S)}. Thegreatest
lower boundglb(S) contains all the elements whichmust
exist in the set, while theleast upper boundlub(S) con-
tains any element whichcan existin the set.S is said to
beboundwhen its lower bound equals its upper bound (i.e.,
glb(S) = lub(S)). In this subset bounds representation, the
set domain is ordered partially under⊆. It also neglects the
cardinality and the position in lexicographic ordering which
can be important in many problems. Thus, Gervet and Van
Hentenryck (2006) proposed tototally order a set domain
with a length-lex ordering. This representation incorporates
the cardinality and the position in lexicographic orderingdi-
rectly, giving tighter bounds when enforcing bounds consis-
tency.

Notation Given a universeU of integers{1, . . . , n}, set
variables, denoted asSi, takes their values fromU . Sets are
denoted by letterss, t, x, andy. A subsets of U of cardinal-
ity c is denoted by{s1, s2, . . . , sc} wheres1 < s2 < · · · <
sc.

Length-lex Ordering The length-lex ordering� totally
orders sets first by cardinality and then lexicographically.

Definition 1. A length-lex ordering� is defined by:
s � t iff s = ∅ ∨ |s| < |t| ∨ (|s| = |t| ∧ (s1 < t1 ∨ s1 =
t1 ∧ s \ {s1} � t \ {t1})).

Definition 2. Given a universeU , a length-lex interval is a
pair of sets〈m,M〉 which represents the sets betweenm and
M in the length-lex ordering (i.e.,{s ⊆ U |m � s � M}).

Given a universeU = {1, . . . , 4}, the sets are or-
dered as follows:∅ � {1} � {2} � {3} � {4}
� {1, 2} � {1, 3} � {1, 4} � {2, 3} � {2, 4} �
{3, 4} � {1, 2, 3} � {1, 2, 4} � {1, 3, 4} � {2, 3, 4}
� {1, 2, 3, 4}. The length-lex interval〈{1, 2}, {3, 4}〉 de-
notes the set{{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}.

Multiset Variables
A multiset is a generalization of set that allows elements
to repeat. Without loss of generality, we assume that mul-
tiset elements are positive integers from1 to n. We shall
use∅ to denote both the empty set and the empty multi-
set. The universe of a multiset is a multiset itself, which
defines the maximum possible occurrences of each ele-
ment. Given a universeU , we denote a multisetS asS =
{{m1,m2, · · · ,mc}} wheremi ≤ mj for 1 ≤ i ≤ j ≤ c,
its cardinality (total number of elements) as|S|, and its
variety (total number of distinct elements) (Law, Lee, and
Woo 2009) as‖S‖. For example, ifS = {{1, 1, 2, 2, 3}},
then |S| = 5 and ‖S‖ = 3. Since an element in a mul-
tiset variable can occur multiple times, we letocc(i, S) be
the number of occurrences of an elementi in the mul-
tiset S. Walsh (2003) proposed using an occurrence vec-
tor 〈occ(1, S), . . . , occ(n, S)〉 to represent a multiset vari-
able with n elements. For example, the occurrence rep-
resentation for the value{{1, 1, 2, 2, 3}} with the universe
U = {{1, 1, 2, 2, 3, 3}} is 〈occ(1, S), occ(2, S), occ(3, S)〉 =
〈2, 2, 1〉.

Note that a set value can also be represented using the oc-
currence representation in which the number of occurrence

is either0 or 1 to denote the existence of the corresponding
element. Thus, we adopt the occurrence representation for
multiset variables and order the occurrence vector to give
various orderings in multisets.

Lex-induced Orderings in Multisets
The length-lex representation for sets incorporates informa-
tion about the length (cardinality) and position in the lexi-
cographic ordering. Such a representation can be extended
to include the variety information since multisets allow re-
peated elements. This gives a total of eight different ways
to order multisets. In the following, we formally define the
eight orderings, in which four of them order the position lex-
icographically and the other four colexicographically.

Lex Orderings
The lex ordering�l totally orders multisetslexicograph-
ically. Here, we assume the multisets are represented by
the occurrence representation (i.e., the number of oc-
currences of each element are stored in an occurrence
vector). Thus, given two multisetsx and y, we com-
pare their occurrence vectors〈occ(1, x), . . . , occ(n, x)〉 and
〈occ(1, y), . . . , occ(n, y)〉 from thefirst position to thelast.

Definition 3. A lex ordering�l is defined by:
x �l y iff (x = y) ∨ (∃i, occ(i, x) < occ(i, y) ∧ ∀j <
i, occ(j, x) = occ(j, y)).

For example, consider two multisetsx = {{1, 2, 2}}
and y = {{1, 3, 3}}. Their occurrence vectors are〈1, 2, 0〉
and 〈1, 0, 2〉 respectively.{{1, 3, 3}} �l {{1, 2, 2}} because
occ(1, y) = occ(1, x) andocc(2, y) < occ(2, x).

Colex Orderings
Contrary to the lex ordering, thecolex ordering�c com-
pares the occurrence vectors of two multisets from thelast
position to thefirst.

Definition 4. A colex ordering�c is defined by:
x �c y iff (x = y) ∨ (∃i, occ(i, x) < occ(i, y) ∧ ∀j >
i, occ(j, x) = occ(j, y)).

For example, let two multisetsx = {{1, 3, 3}} andy =
{{2, 3, 3}} with occurrence vectors〈1, 0, 2〉 and〈0, 1, 2〉 re-
spectively. They are ordered as{{1, 3, 3}} �c {{2, 3, 3}} be-
causeocc(3, x) = occ(3, y) andocc(2, x) < occ(2, y).

Induced Orderings
Given a total order�β on a set of multisets, we can have
four different�β-induced orderings when we integrate�β

with cardinality and/or variety of multisets.

Length-β Ordering Thelength-β ordering�lβ totally or-
ders multisets first by their cardinality, and then by theβ
ordering:x �lβ y iff |x| < |y| ∨ (|x| = |y| ∧ x �β y).

Variety-β Ordering The variety-β ordering �vβ totally
orders multisets first by their variety, and then by theβ or-
dering:x �vβ y iff ‖x‖ < ‖y‖ ∨ (‖x‖ = ‖y‖ ∧ x �β y).

Length-β and variety-β prefer cardinality and variety over
theβ ordering respectively. In fact, both cardinality and va-
riety can be considered together, giving two more orderings.



Length-variety-β Ordering The length-variety-β order-
ing �lvβ totally orders multisets first by their cardinality,
then by their variety, and then by theβ ordering:x �lvβ y
iff |x| < |y| ∨ (|x| = |y| ∧ x �vβ y).

Variety-length-β Ordering The variety-length-β order-
ing �vlβ totally orders multisets first by their variety, then
by their cardinality, and then by theβ ordering:x �vlβ y iff
‖x‖ < ‖y‖ ∨ (‖x‖ = ‖y‖ ∧ x �lβ y).

Since lex and colex orderings are total orders, we can
have eight different orderings by substitutingβ by the lex
and colex orderings. For example, substitutingβ by the
lex ordering in the length-β ordering gives the length-
lex ordering LL (�ll). Similarly, we can have variety-lex
VL (�vl), length-variety-lex LVL (�lvl), variety-length-lex
VLL (�vll), length-colex LC (�lc), variety-colex VC (�vc),
length-variety-colex LVC (�lvc), and variety-length-colex
VLC (�vlc) orderings.

The above eight orderings are applicable to multisets. All
the four colex orderings on multisets reduce to the LL or-
dering on sets introduced by Gervet and Van Hentenryck
(2006). Note that, when we consider a fixed length, the colex
(resp. lex) ordering for set values is equivalent to order-
ing the occurrence vector lexicographically (resp.colexico-
graphically).

The domain of a multiset variable is simply a set of mul-
tisets. We can thus totally order the domain values of a vari-
able according to the eight orderings. To illustrate the differ-
ences, Table 1 lists the domain of a multiset variableS with
universeU = {{1, 2, 2, 3, 3}} in the four lex orderings. Take
the LVL ordering as an example. We first order the multi-
sets by their cardinality. Thus,∅ has cardinality0 and is the
first multiset, followed by the multisets with cardinalities 1,
2, and so on. For multisets of the same cardinality, we then
compare their variety. Consider the segment with cardinal-
ity 2, i.e., from{{3, 3}} to {{1, 2}}. The multisets{{3, 3}} and
{{2, 2}} are ordered before{{2, 3}}, {{1, 3}}, and{{1, 2}} be-
cause the former two have variety1 and the latter ones have
variety 2. Lastly, we order the multisets lexicographically.
The occurrence vectors of{{3, 3}} and{{2, 2}} are 〈0, 0, 2〉
and〈0, 2, 0〉 respectively. Thus,{{3, 3}} �lvl {{2, 2}} because
occ(1, {{3, 3}}) = occ(1, {{2, 2}}) = 0 andocc(2, {{3, 3}}) <
occ(2, {{2, 2}}).

Given a multiset variable, we can approximate its domain,
which is a setS of multisets, with anα-interval, where
α refers to one of the above eight orderings. The interval
〈m,M〉α must contain all the multisets inS such thatm
andM are the lower and upper bounds ofS respectively.
We also define theα-closureof S which is the minimal pos-
sibleα-interval containingS.

Definition 5. Given anα ordering, anα-interval〈m,M〉α
is a set of multisets defined by〈m,M〉α = {x |m �α x �α

M}. Theα-closureof S is defined byclα(S) = 〈m,M〉α,
whereS ⊆ 〈m,M〉α and there does not existm ≺α m′

andM ′ ≺α M such that (m 6= m′ or M 6= M ′) andS ⊆
〈m′,M ′〉α.

Definition 6. Anα representationof a setS of multisets is
clα(S). Anα representation ofS is exactif S = clα(S).

For example, let the universeU = {{1, 2, 2, 3, 3}} and
S = {{{1}}, {{2, 2}}, {{2, 3}}}. Thelvl-closure ofS is thelvl-
interval 〈{{1}}, {{2, 3}}〉lvl. This representation isnot exact,
as the interval contains the multiset{{3, 3}} /∈ S.

Expressiveness
An exact representation gives the tightest possible bounds
and contains no undesired values. It is often the case that
a set of multisets can be exactly represented using one rep-
resentation but not using a different representation. In this
section, we compare the eight representations to see which
ordering is better in terms of the notion “expressiveness”.

Definition 7. (Walsh 2003) Given a universeU and two
different multiset representationsA and B. A is said to
be as expressive asB if ∀S ⊆ U, (S = clA(S)) ↔
(S = clB(S)). A is said to bemore expressivethanB if
∀S ⊆ U, (S = clB(S)) → (S = clA(S)) and ∃S ⊆
U, (S = clA(S)) ∧ (S 6= clB(S)). A and B are incom-
parableif neither one of them is more expressive than the
other.

The following propositions compare the expressiveness of
the eight representations under the conditions that the cardi-
nality and/or variety of a set of multisets is fixed.

Proposition 1. When both the cardinality and variety are
fixed, (i) the LVL/LVC representation is as expressive as the
VLL/VLC representation, (ii) the LVL/LVC and VLL/VLC
representations are more expressive than the LL/LC and
VL/VC representations respectively, and (iii) the LVL is as
expressive as the LVC and the VLL is as expressive as the
VLC.

The results in Proposition 1 can be demonstrated using
the example in Table 1. When the cardinality and variety
are2 and1 respectively, the LVL and VLL representations
can exactly represent{{{2, 2}}, {{3, 3}}} by the lvl-interval
〈{{3, 3}}, {{2, 2}}〉lvl and thevll-interval 〈{{3, 3}}, {{2, 2}}〉vll
respectively. However, the LL and VL representations
give the ll-interval 〈{{3, 3}}, {{2, 2}}〉ll and thevl-interval
〈{{3, 3}}, {{2, 2}}〉vl respectively, in which both contain the
additional undesired value{{2, 3}}.

The following two propositions relax the conditions to the
case that either the cardinality or the variety is fixed.

Proposition 2. When the cardinality is fixed, (i) the
LVL/LVC representation is more expressive than the
VLL/VLC, LL/LC, and VL/VC representations, and (ii) the
LL representation is as expressive as the LC representation.

Proposition 3. When the variety is fixed, (i) the VLL/VLC
representation is more expressive than the LVL/LVC, LL/LC,
and VL/VC representations, and (ii) the VL representation is
as expressive as the VC representation.

In Table 1, when the cardinality is3, the LVL represen-
tation can exactly represent the multisets by thelvl-interval
〈{{2, 3, 3}}, {{1, 2, 3}}〉lvl, while the VLL, LL, or VL repre-
sentations cannot. There are additional undesired values in
their corresponding intervals. In fact, when only the variety
is fixed, we obtain similar results. Suppose the variety is2,
the VLL representation can exactly represent the multisets



Table 1: The four lex orderings for the domain of a multiset variableS with universeU = {{1, 2, 2, 3, 3}}

Length-lex (LL) ∅ �ll {{3}} �ll {{2}} �ll {{1}} �ll {{3, 3}} �ll {{2, 3}} �ll {{2, 2}} �ll {{1, 3}}
�ll {{1, 2}} �ll {{2, 3, 3}} �ll {{2, 2, 3}} �ll {{1, 3, 3}} �ll {{1, 2, 3}} �ll {{1, 2, 2}}
�ll {{2, 2, 3, 3}} �ll {{1, 2, 3, 3}} �ll {{1, 2, 2, 3}} �ll {{1, 2, 2, 3, 3}}

Variety-lex (VL) ∅ �vl {{3}} �vl {{3, 3}} �vl {{2}} �vl {{2, 2}} �vl {{1}} �vl {{2, 3}} �vl {{2, 3, 3}}
�vl {{2, 2, 3}} �vl {{2, 2, 3, 3}} �vl {{1, 3}} �vl {{1, 3, 3}} �vl {{1, 2}} �vl {{1, 2, 2}}
�vl {{1, 2, 3}} �vl {{1, 2, 3, 3}} �vl {{1, 2, 2, 3}} �vl {{1, 2, 2, 3, 3}}

Length-variety-lex (LVL) ∅ �lvl {{3}} �lvl {{2}} �lvl {{1}} �lvl {{3, 3}} �lvl {{2, 2}} �lvl {{2, 3}} �lvl {{1, 3}}
�lvl {{1, 2}} �lvl {{2, 3, 3}} �lvl {{2, 2, 3}} �lvl {{1, 3, 3}} �lvl {{1, 2, 2}} �lvl {{1, 2, 3}}
�lvl {{2, 2, 3, 3}} �lvl {{1, 2, 3, 3}} �lvl {{1, 2, 2, 3}} �lvl {{1, 2, 2, 3, 3}}

Variety-length-lex (VLL) ∅ �vll {{3}} �vll {{2}} �vll {{1}} �vll {{3, 3}} �vll {{2, 2}} �vll {{2, 3}} �vll {{1, 3}}
�vll {{1, 2}} �vll {{2, 3, 3}} �vll {{2, 2, 3}} �vll {{1, 3, 3}} �vll {{1, 2, 2}}
�vll {{2, 2, 3, 3}} �vll {{1, 2, 3}} �vll {{1, 2, 3, 3}} �vll {{1, 2, 2, 3}} �vll {{1, 2, 2, 3, 3}}

by thevll-interval 〈{{2, 3}}, {{2, 2, 3, 3}}〉vll, while the LVL,
LL, or VL representations cannot.

Compactness
The notion of expressiveness concerns the exactness of the
representation. However, a domainD of a multiset variable
might not be exactly represented using any of the eight rep-
resentations, i.e.,D ⊂ clα(D). In such cases,clα(D) is an
approximation that contains some undesired values, and our
expressiveness notion does not apply. In this section, we de-
fine a new notion calledcompactnessto compare the eight
representations. This definition is based on a comparison of
the size of the domains, and is different from the notion of
dominance which is based on the size of search tree (Jeffer-
son 2007).

Definition 8. Given a universeU and two different multiset
representationsA and B. A is as compact asB if ∀S ⊆
U, |clA(S)| = |clB(S)|. A is more compactthanB if ∀S ⊆
U, |clA(S)| ≤ |clB(S)| and∃S ⊆ U, |clA(S)| < |clB(S)|.
A andB arecompactly incomparableif neither one of them
is more compact than the other.

The following proposition characterizes the compactness
of the eight orderings.

Proposition 4. (i) The LVL/LVC representation is more
compact than the LL/LC representation and compactly
incomparable to the VLL/VLC representation. (ii) The
VLL/VLC representation is more compact than the VL/VC
representation. (iii) The LL/LC representation is compactly
incomparable to the VL/VC representation.

In Table 1, suppose we want to represent the setS of all
multisets whose variety is2. Both the LVL and LL repre-
sentations cannot exactly representS and give aα-closure
with the same lower and upper bounds (i.e.,{{2, 3}} and
{{2, 2, 3, 3}} respectively). Bothlvl- and ll-intervals con-
tain undesired values. By comparing their compactness,
|cllvl(S)| = 9 < |clll(S)| = 10. The LVL representation
is more compact than LL representation.

Using the VL/VLL representations for multiset variables
would be useful when we have tight constraints on the vari-
eties of the multiset variables. For instance, Law, Lee, and
Woo (2009) demonstrated the value of this on extended
Steiner system problems in which there are tight constraints

over the varieties. On the other hand, the LL/LVL represen-
tations would favour the kind of problems with more cardi-
nality restrictions or with variables having fixed cardinali-
ties.

Empirical Comparisons
Before we apply the eight representations to model and solve
multiset problems, we first empirically evaluate their ex-
pressiveness and compactness. We perform experiments to
compare the size of the eight representations of a setD of
multisets when different cardinality and variety constraints
are imposed. In the experiment, the universeU is a multiset
which contains 10 occurrences of elements 1 to 5. For all in-
stances,D is a randomly generated subset of the power set
of U . The comparison aims at measuring the compactness
of different representations in approximatingD. We record
|clα(D)|, the number of multisets in theα-closure ofD that
satisfies the cardinality and the variety constraints, whereα
refers to the eight representations: LL, LC, VL, VC, LVL,
LVC, VLL, and VLC. Due to space limitation, we summa-
rize the observations as follows.

When both cardinality and variety are fixed, the LVL/LVC
and VLL/VLC representations can always exactly repre-
sent the domain values, giving the corresponding mini-
mal α-interval clα(S). For all instances, the LVL/LVC and
VLL/VLC representations demonstrate a large reduction in
the domain size when compared with the LL/LC and VL/VC
representations.

When the variety is fixed, the VLL/VLC ordering first
considers the variety of each multiset and narrows down the
bounds to a larger extent by removing the multisets with
unwanted varieties. For each variety, the multisets are then
ordered by their cardinality, which allows further pruning
of the multisets with undesired cardinalities on the domain
bounds. Thus, the VLL/VLC representation can always give
the exact representation and achieve on average one to two
orders of magnitude reduction in the domain size when com-
pared with the LL/LC and VL/VC representations. In con-
trast, the LVL/LVC representation can always give the exact
representation when the cardinality is fixed.

When the cardinality and variety are constrained to cer-
tain ranges, although all eight representations fail to give
the exact representation for all instances, the LVL/LVC
and VLL/VLC representations are more compact than the



LL/LC and VL/VC representations respectively.
To conclude, the LVL/LVC and VLL/VLC representa-

tions are always more compact than the LL/LC and VL/VC
respectively. This means that they will usually give tighter
bounds during constraint propagation. In the following, we
study how the eight representations behave in practice as
bounds propagation in a multiset solver.

Bounds Consistency
Since a multiset domain is totally ordered in the eight repre-
sentations, we can enforce bounds consistency. To be more
precise, we define bounds consistency on ak-ary constraint
on multiset variables (for anyk).

Definition 9. Bounds Consistency (BC)
Let S1, . . . , Sn be multiset variables with interval domains
D(Si) = 〈mSi

,MSi
〉. Given a constraintC overS1, . . . , Sn

and anα ordering, a valuemi for variable Si has anα-
bound support(m1, . . . ,mn) if the support satisfiesC and
∀mi,mSi

�α mi �α MSi
.

The constraintC is bounds consistentiff for eachSi, both
mSi

andMSi
haveα-bound supports.

The eight representations offer greater expressiveness, but
we have to be careful that reasoning remains tractable. In-
deed, even with a single unary constraint, we can get in-
tractability.

Theorem 1. There exists a constraint on one set variable
such that enforcing BC on subset bounds is polynomial but
enforcing BC on LL bounds is NP-hard.

Proof. Reduction from 3-SAT withN variables,X1 to XN

andM clauses. We construct a set variableS with elements
that have the following meaning:2i represents a truth as-
signment in whichXi is true whilst2i− 1 represents a truth
assignment in whichXi is false (1 ≤ i ≤ N ), and each in-
teger above2N represents one of the (polynomial number
of) distinct clauses. We consider an unary constraint on this
set variable which is satisfied only when the set contains in-
tegers representing a proper truth assignment (that is,2i ∈S
iff 2i − 1 6∈ S for 1 ≤ i ≤ N ) and this assignment satis-
fies the clauses represented by the integers in the set greater
than2N , or the set contains integers representing a superset
of a proper truth assignment (that is, either2i or 2i − 1 or
both occur inS for 1 ≤ i ≤ N ). Subset bounds are polyno-
mial to compute since, if the upper bound includes a proper
truth assignment, we leave the upper bound untouched and
adjust the lower bound to include any necessary elements in
linear time and, where needed, check the truth assignment.
On the other hand, if the upper bound does not include a
proper truth assignment, the unary constraint has no support.
By comparison, length-lex bounds are NP-hard to compute.
We consider domains that fix the possible and necessary el-
ements to be the clause that we wish to decide, and make
none of the other integers necessary but all of them possible.
Then, enforcing bound consistency on the length-lex bounds
will allow us to decide the satisfiability of the original for-
mula.

It is worth noting that the opposite does not hold. If LL
bounds are polynomial to compute, then subset bounds are
too.

Theorem 2. Given ann-ary constraint on set and/or multi-
set variables. If enforcing BC on LL bounds is polynomial,
then enforcing BC on subset bounds is also polynomial.

Proof. (sketch) Let the possible values of a set variableS be
{1, . . . , n}. We can convert subset bounds into LL bounds
easily by ordering the sets first by cardinality and then lexi-
cographically. This operation is polynomial. After enforcing
BC on LL bounds, we can then convert LL bounds back to
subset bounds using the inclusion propagator (Gervet and
Van Hentenryck 2006). Such conversion is also polynomial.
Thus, if enforcing BC on LL bounds is polynomial, then en-
forcing BC on subset bounds is also polynomial.

With two unary constraints, Sellmann’s Lemma 1 shows
that finding the fixpoint on the LL representation of a single
set variable is NP-hard (Sellmann 2009). Given the above
theorems, enforcing BC on LL bounds is NP-hard. How-
ever, exponential-time propagation algorithms may still help
reduce runtimes (Yip and Van Hentenryck 2010).

Here, we show an example on how BC works on the do-
mains in the LL and LVL representations.

Given the universeU = {{1, 1, 1, 2, 2, 2, 3, 3, 3}} and mul-
tiset variablesX, Y , andZ. The constraints are:|X| =
|Y | = |Z| = 3, ‖Z‖ = 1, and X ∩ Y = Z.
The initial domains areD(X) = D(Y ) = D(Z) =
〈∅, {{1, 1, 1, 2, 2, 2, 3, 3, 3}}〉lvl. In LVL representation, en-
forcing |X| = |Y | = |Z| = 3 tightens the bounds to
have cardinality 3, i.e.,D(X) = D(Y ) = D(Z) =
〈{{3, 3, 3}}, {{1, 2, 3}}〉lvl. The bounds corresponds to the oc-
currence vectors〈0, 0, 3〉 and〈3, 0, 0〉. Since‖{{1, 2, 3}}‖ 6=
1, the upper bound ofZ is updated to{{1, 1, 1}}, resulting
D(Z) = 〈{{3, 3, 3}}, {{1, 1, 1}}〉lvl. This triggers the prop-
agation onX ∩ Y = Z and tightens the upper bounds
of X and Y . After constraint propagation,X = Y =
〈{{3, 3, 3}}, {{1, 1, 1}}〉lvl. Now, the problem is bounds con-
sistent and|D(X)| = |D(Y )| = |D(Z)| = 3. However, in
the LL representation, the problem is bounds consistent after
enforcing the cardinality constraint|X| = |Y | = |Z| = 3.
D(X) = D(Y ) = D(Z) = 〈{{3, 3, 3}}, {{1, 1, 1}}〉ll and
|D(X)| = |D(Y )| = |D(Z)| = 10. Thus, different repre-
sentations result in different domain size after enforcingBC,
and LVL gives a tighter bound than LL in this example.

Experimental Results
To verify the feasibility and efficiency of our proposal, we
adapt and simplify the implementation of the length-lex rep-
resentation for set variables (Van Hentenryck et al. 2008) to
implement the eight representations (LL, LVL, VL, VLL,
LC, LVC, VC, VLC) for multiset variables in ILOG Solver
6.0 (ILOG 2003). We have also developed the ternary inter-
section (X ∩ Y = Z) and unionplus (X ⊎ Y = Z) multiset
constraints, which are not available in the original LL imple-
mentation.

We perform experiments on the extended Steiner sys-
tem and the generalized social golfer problem. They are



Table 2: Experimental results of the extended Steiner system.
SB+CR+VR LL LVL VL VLL

t,k,u,b,v Fail Time Fail Time Fail Time Fail Time Fail Time
2,4,5,4,2 57329 3.59 19187 1.48 2930 0.34 3790 95.37 2945 3.38
2,4,5,5,2 356785 28.71 89768 10.04 19718 3.13 30755 541.13 19991 14.32
3,4,4,4,2 1710 0.1 942 0.08 278 0.03 309 1.77 305 0.58
3,4,4,5,2 30034 2.36 13541 1.39 658 0.11 922 20.33 729 15.13
3,4,5,5,3 312397 22.17 38109 5.84 12195 1.36 - - 12363 7.23
3,4,5,6,3 2108410 190.15 281911 57.83 103163 13.39 - - 106145 63.83
3,4,5,7,3 9813128 1097 1352165 380.42 384145 63.05 - - 398511 285.16

Table 3: Experimental results of the generalized social golfer problem.
SB+CR+VR LL LVL VL VLL

w,m,n,g,p,v Fail Time Fail Time Fail Time Fail Time Fail Time
3,3,3,2,4,2 14934 1.61 15108 0.94 14479 0.87 2171 0.44 2395 0.27
3,3,4,2,4,2 394570 40.29 111102 6.41 103756 5.59 39 0.06 39 0.05
3,3,4,2,5,2 185839 20.32 181801 12.37 172818 11.27 11536 8.61 12428 2.84
4,3,4,2,4,2 - - 14071439 1003.03 12983736 874.96 151132 78.47 151132 41.6
4,3,4,2,5,2 - - 12818684 1103 12496315 1046.14 1035895 437.89 1098395 173.74
3,4,3,2,4,3 2631024 348.04 1889782 129.28 1510939 94.21 21 0.28 21 0.29
3,4,4,2,4,3 - - 4062535 280.02 3339400 210.61 27 3.99 27 3.95

run on a Sun Blade 2500 (2 × 1.6GHz US-IIIi) worksta-
tion with 2GB memory. We report the number of fails (i.e.,
the number of backtracks occurred in solving a model) and
CPU time in seconds to find and prove the optimal solution
for each instance. Comparisons are made among the sub-
set bounds representations with cardinality-variety reason-
ing (SB+CR+VR) (Law, Lee, and Woo 2009) and the eight
representations we have implemented. Since the results of
the four colex representations (LC, LVC, VC, VLC) are sim-
ilar to their corresponding lex counterparts (LL, LVL, VL,
VLL), they are not reported in the tables. In the tables, the
first column shows the problem instances. The subsequent
columns show the results of using various representations.
The best number of fails and CPU time among the results
for each instance are highlighted in bold. A cell labeled with
“-” denotes a timeout after 20 minutes.

The extended Steiner systemES(t, k, u, b), an impor-
tant and practical multiset problem in information retrieval
(Johnson and Mendelsohn 1972; Bennett and Mendelsohn
1980; Park and Blake 2008), is a collection ofb blocks. Each
block is ak-element multiset drawn from au-element set
whose elements can be drawn multiple times. For every two
blocks in the collection, the cardinality of their intersection
must be smaller thant. We adapt the problem to become
an optimization problem which maximizes the sum of the
varieties of the multisets. To further increase difficulty,we
constrain each multiset variable to have variety at leastv.

The generalized social golfer problemSG(w,m, n, g, p)
extends the social golfer problem (prob010 in CSPLib (Gent
and Walsh 1999)) from sets to multiset, in which we sched-
ulem teams ofn members tog groups ofp golfers overw
weeks. Each group contains golfers from different teams and
they play against each other. To maximize the socialization,
the number of times two teams meet with each other again
is minimized. Similar to the extended Steiner system, each
multiset variable is constrained to have variety at leastv.

Tables 2 and 3 show the experimental results of the ex-

tended Steiner system and the generalized social golfer
problem respectively. All the four lex representations
give fewer number of fails and faster runtime than the
SB+CR+VR (Law, Lee, and Woo 2009). This confirms
that the lex representations take advantage of the cardinal-
ity and variety information to give tighter bounds than the
SB+CR+VR.

In the extended Steiner system, the LVL representation al-
ways achieves the fewest number of fails. There is about a
95% reduction in the number of fails when compared to the
SB+CR+VR. The LVL representation achieves fewer num-
ber of fails than the VLL representation because the problem
has tighter constraints on the cardinalities than the varieties
of the multiset variables.

When comparing the results between LL and LVL, the
latter performs better. This is because in the LVL represen-
tation, the multisets are ordered according to their varieties
under the same cardinality. When enforcing BC, the mul-
tisets with the same varieties can be pruned together when
they violate the variety constraints. However, in the LL rep-
resentation, these multisets are scattered over the ordering
and we cannot remove all of them from the domain at the
same time, thus resulting in a larger search tree and number
of fails. Similarly, VLL performs better than VL.

The instances listed in Table 2 are all satisfiable. In our ex-
periments, there are some unsatisfiable instances, in which
the number of fails and runtime of LVL and VLL can be
slightly larger than LL and VL respectively. We also tried
to fix both cardinalities and varieties of the multiset vari-
ables. Since the multisets are ordered lexicographically un-
der a fixed cardinality and variety, LVL and VLL give the
same number of fails.

For the generalized social golfer problem, VL and VLL
perform better than LL and LVL because the problem has
tighter constraints on the varieties than the cardinalities
of the multiset variables. Since there are much more con-
straints in the problem when compared to those in the ex-



tended Steiner system, the generalized social golfer problem
is more complicated. We observe that the VL representation
always achieves the fewest number of fails. However, the
VLL representation has the fastest runtime because the ex-
tra prunings in the VL representation cannot compensate the
overhead in finding new bounds of multiset variables.

Conclusion
We have proposed eight representations for multiset vari-
ables, which integrate together information about the car-
dinality, variety, and position in the (co)lexicographic order-
ing. We have made a detailed comparison of the expressive-
ness and compactness between the eight different represen-
tations. The LVL/LVC and VLL/VLC representations are al-
ways more expressive and more compact than the LL/LC
and VL/VC representations. Compactness is a new notion
which lets us compare inexact representations. We have also
performed experiments on some benchmark problems. Ex-
perimental results confirm that LVL and VLL usually give
tighter bounds during constraint propagation, resulting in
smaller search trees and better runtimes. In some cases, LVL
performs better, and sometimes VLL. It would be interesting
to study if the two representations can be linked together so
that we can take advantage of each representation.
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