
Redundant Modeling in Weighted Constraint

Satisfaction

Y.C. Law J.H.M. Lee M.H.C. Woo

Department of Computer Science and Engineering,

The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

{yclaw,jlee,hcwoo}@cse.cuhk.edu.hk

Abstract

In classical constraint satisfaction, redundant modeling has been shown
effective in increasing constraint propagation and reducing search space for
many problem instances. In this paper, we investigate, for the first time,
how to benefit the same from redundant modeling in weighted constraint

satisfaction problems (WCSPs), a common soft constraint framework for
modeling optimization and over-constrained problems. First, we show
how to automatically generate a redundant WCSP model from an existing
WCSP using generalized model induction. We then uncover why naively
combining mutually redundant WCSPs by posting channeling constraints
as hard constraints and relying on the standard node consistency (NC*)
and arc consistency (AC*) algorithms would miss pruning opportunities,
which are available even in a single model. Based on these observations,
we suggest two approaches to handle the combined WCSP models. In our
first approach, we propose m-NC∗

c and m-AC∗

c and their associated algo-
rithms for effectively enforcing node and arc consistencies in a combined
model with m sub-models. The two notions are strictly stronger than
NC* and AC* respectively. While the first approach specifically refines
NC* and AC* so as to apply to combined models, in our second approach,
we propose a parameterized local consistency LB(m,Φ). The consistency
can be instantiated with any local consistency Φ for single models and
applied to a combined model with m sub-models. We also provide a sim-
ple algorithm to enforce LB(m,Φ). With the two suggested approaches,
we demonstrate their applicabilities on a special kind of WCSP problems,
called permutation WCSP problems. In the experiments, we also used
several permutation problems as our benchmarks. Prototype implemen-
tations of our proposed algorithms confirm that applying 2-NC∗

c , 2-AC∗

c ,
and LB(2,Φ) on combined models allow far more constraint propagation
than applying the state-of-the-art AC*, FDAC*, and EDAC* algorithms
on single models of hard benchmark problems.

1

1 Introduction

Many decision problems can be modeled as constraint satisfaction problems
(CSPs) [35]. Some examples are map coloring, job-shop scheduling [17, 16],
resource allocation [41, 9], and machine vision [50]. However, the classical
framework of CSPs is not designed to model optimization problems and over-
constrained problems, where there are costs, preferences, or no solutions. Thus,
soft constraint frameworks are proposed to model these problems by allowing
a degree of constraint violation. Weighted CSPs (WCSPs) [43, 26, 27, 28, 11]
form a common soft constraint framework which extends the CSP framework
by associating costs to variable assignments [44]. We can then give preferences
to variable assignments by specifying their costs.

Given a problem, there are usually more than one way to model the prob-
lem as a CSP. We can connect two different CSP models of a problem using
channeling constraints , which are constraints relating the variable assignments
of the two constituent models. This modeling technique is known as redundant
modeling [5]. Redundant modeling has been shown effective in increasing con-
straint propagation and hence reducing search efforts for solving CSPs. While
the technique has been applied successfully to classical CSPs, in this paper we
investigate, for the first time, how to benefit the same for weighted CSPs .

In order to apply the redundant modeling technique, we first need to obtain
two mutually redundant models of the same problem. With classical CSPs, this
can be done relatively easily by human modelers: we simply need to ensure
that each problem requirement is represented in both models. In the WCSP
framework, however, each problem solution is associated with a cost. Therefore,
obtaining mutually redundant models is more difficult in general, since besides
the problem requirements, we also need to ensure the same cost distribution on
the solutions of the two models. We resolve this problem by generalizing model
induction [29, 30], a method which can automatically generate a redundant CSP
from a given one, so that a redundant WCSP can also be obtained from a given
one.

Two mutually redundant models can be combined using channeling con-
straints. For classical CSPs, we can rely on the standard propagation algo-
rithms of the channeling constraints to transmit pruning information between
sub-models to achieve stronger propagation. We can also do the same to combine
WCSPs by posting the channeling constraints as hard constraints. However, we
discover that applying the standard star node consistency (NC*) and star arc
consistency (AC*) algorithms [26] to a combined model does not increase con-
straint propagation. In fact, some prunings that are available when propagating
a single model alone would even be missed in a combined model, resulting in
worse performance. Based on these observations, we suggest two approaches to
handle the combined WCSP models. With the methods of combining redundant
WCSP models, we demonstrate the feasibility of our approaches on a special
kind of WCSP problems, the permutation problems. We also use several per-
mutation problems as our benchmarks to show the efficiency and effectiveness
of our approaches.

2

In our first approach, we generalize the notions of node and arc consistencies
and propose m-NC∗

c and m-AC∗
c for a combined model with m sub-models. The

m-NC∗
c (resp. m-AC∗

c) notion is strictly stronger than NC* (resp. AC*), and
degenerates to NC* (resp. AC*) when m = 1. This approach is limited to NC*
and AC*, which is not applicable if one wants to use other local consistencies to
solve a problem. Thus, we have our second approach, which does not require any
modification of a particular local consistency. In our second approach, we pro-
posed a parameterized local consistency LB(m,Φ) and its associated enforcement
algorithm. The advantages of this approach is three-fold. First, the LB(m,Φ)
consistency can be instantiated with any local consistency Φ for single models
and can be applied to a combined model with m sub-models. Second, the lo-
cal consistency Φ used for instantiation needs not be refined. Third, enforcing
LB(m,Φ) on a combined WCSP model P achieves stronger constraint propaga-
tion than enforcing Φ on any individual sub-model of P alone. Both approaches
can be applied to combined models to restore the missed prunings and even
discover new possible prunings to enhance constraint propagation. We test our
implementations using both classical and soft benchmark problems. The soft
problems are obtained from the classical ones using two common problem soft-
ening schemes. Experimental results confirm that the proposed algorithms are
particularly useful to solve hard problem instances, and significantly reduce the
search space and runtime over enforcing the state-of-the-art soft local consis-
tencies AC* [26], FDAC* [27], and EDAC* [11] on single models. Although we
show that m-AC∗

c is strictly stronger than LB(m,Φ) and achieves more prunings
in problem solving, LB(m,Φ) is competitive with m-AC∗

c due to its flexibility of
choosing any local consistency and less overhead.

This paper, a revised and extended version of the work by Law, Lee, and
Woo [31, 32], gives a comprehensive report on using redundant modeling in WC-
SPs . The paper is organized as follows. Section 2 provides the background to
the paper. We formally define the concepts of WCSPs and present how com-
mon consistency techniques can be incorporated into branch and bound search
to improve solving efficiency. Section 3 introduces permutation WCSP and de-
scribes how we can generate a redundant WCSP model based on the idea of
model induction [29, 30]. In Section 4, we first show how two redundant models
can be combined using channeling constraints. We then explain why applying
NC* and AC* to a combined model can result in weaker propagation than that
to a single model, and propose m-NC∗

c and m-AC∗
c , which adapt the existing

NC* and AC* algorithm, to resolve the problem (first approach). Algorithms
for enforcing m-NC∗

c and m-AC∗
c are also presented. Section 5 describes another

method to combine two redundant models and gives the notion of a parame-
terized local consistency LB(m,Φ) (second approach). A simple algorithm to
enforce LB(m,Φ) is also provided. Theoretical comparisons between the consis-
tencies used in the first and the second approaches, and the semantics between
the combined models and their sub-models are discussed. Section 6 presents our
experimental results on both classical and soft benchmark problems to evaluate
the performance of 2-AC∗

c , LB(2,AC*), LB(2,FDAC*), and LB(2,EDAC*) on
combined models against various consistencies on single models. Section 7 gives

3

an overview of the related work on soft constraints, local consistencies in WCSP,
and redundant modeling. Section 8 concludes this paper by summarizing our
contributions and giving possible directions for future research.

2 Background

In this section, we provide the definitions of some terminologies relating to
WCSPs and briefly describe redundant modeling.

2.1 Weighted Constraint Satisfaction Problems

Weighted CSPs (WCSPs) [43, 26, 27, 28, 11] associate costs to tuples [44]. The
costs are specified by a valuation structure S(k). A valuation structure S(k) is a
triple ([0, . . . , k],⊕,≥) where k ∈ {1, . . . ,∞} is either a strictly positive natural
number or infinity, ⊕ is defined as a⊕ b = min{k, a + b}, and ≥ is the standard
order among natural numbers. The minimum and maximum costs are denoted
by the bottom ⊥ = 0 and top ⊤ = k respectively.

A binary WCSP is a quadrupletP = (k,X ,D, C) with the valuation structure
S(k). X = {x1, . . . , xn} is a finite set of variables and D = {Dx1

, . . . , Dxn
} is

a set of finite domains for each xi ∈ X . Following Law and Lee [30], we define
a pair (X ,D) as a viewpoint of the WCSP. An assignment xi 7→ a in P is a
mapping from variable xi to value a ∈ Dxi

. A tuple is a set of assignments in P .
It is complete if it contains assignments of all variables in P . C is a set of unary
and binary constraints and a zero-arity constraint. A unary constraint involving
variable xi in P is a cost function Cxi

: Dxi
→ {0, . . . , k} which assigns costs

to assignments of xi. A binary constraint involving variables xi and xj in P is
a cost function Cxi,xj

: Dxi
× Dxj

→ {0, . . . , k} which assigns costs to tuples
of xi and xj . Following Freduder and Wallace [18], we also assume a zero-arity
constraint C∅ [26, 27, 28] in P which is a constant and is set to ⊥. As we shall
see, C∅ can be increased during WCSP solving to denote the global lower bound
of costs in P . We also assume without loss of generality that there is a binary
constraint for each variable pair and a unary constraint for each variable.

We denote the set of variables in a tuple θ as var(θ). The projection of a tuple
θ over a variable subset U ⊆ var(θ) is defined as θ↓U

= {(xi 7→ a) ∈ θ |xi ∈ U},
which is a subset of assignments of θ whose variables are in U . The cost V(θ)
of a tuple θ in P is the sum of all applicable costs, i.e.,

V(θ) = C∅ ⊕
∑

xi∈var(θ)

Cxi
(θ ↓{xi})⊕

∑

xi,xj∈var(θ)

Cxi,xj
(θ ↓{xi,xj}).

A tuple θ is consistent if V(θ) < ⊤. A solution of P is a consistent complete
tuple. Solving a WCSP P is to find an optimal solution of P , which is a
solution θ of P with minimum V(θ). WCSP solving is NP-hard. Two WCSPs
are equivalent if they have the same variables and for every complete tuple θ,
V(θ) is the same for both WCSPs.

4

1

2

3

11

2

3

3

1
21

1 2

1

2

3

3

3

1
21

1 2

x1 x1 x1x2 x2 x2x3 x3 x3

C∅ = 1, ⊤ = 4 C∅ = 1, ⊤ = 4 C∅ = 2, ⊤ = 4

(a) P (b) P after NC* (c) P after AC*

Figure 1: Three equivalent WCSPs

Example 2.1 Figure 1(a) shows a WCSP with variables {x1, x2, x3} and do-
mains {1, 2, 3}. We depict the unary costs as labeled nodes and binary costs as
labeled edges connecting two assignments. Unlabeled edges have ⊤ cost; ⊥ costs
are not shown for clarity. The WCSP has a minimum cost 3 with the solution
{x1 7→ 2, x2 7→ 1, x3 7→ 3} (C∅ ⊕ Cx1

(2) ⊕ Cx2
(1) ⊕ Cx3

(3) ⊕ Cx1,x2
(2, 1) ⊕

Cx1,x3
(2, 3)⊕ Cx2,x3

(1, 3) = 1⊕ 0⊕ 1⊕ 0⊕ 1⊕ 0⊕ 0 = 3). �

2.2 Local Consistencies

WCSPs can be solved by backtracking branch and bound (B&B) search [25] that
maintains some form of local consistency at each search node. A local consis-
tency is simply some properties of a WCSP. Enforcing a local consistency Φ on
a WCSP P means transforming P to an equivalent WCSP P ′ that satisfies the
properties specified by Φ. P ′ is usually simplified in the sense that either some
domain values of the variables are pruned or the lower bound C∅ is increased.
In the following, we give the definitions of two common local consistencies NC*
[26, 28] and AC* [43, 26, 28] for WCSPs. They degenerate to their standard
counterparts in CSPs.

Definition 2.1 Let P = (k,X ,DX , CX) be a binary WCSP.

Node consistency An assignment x 7→ a in P is star node consistent (NC*)
if C∅⊕Cx(a) < ⊤. A variable x in P is NC* if (1) all assignments of x are
NC* and (2) there exists an assignment x 7→ a of x such that Cx(a) = ⊥.
Value a is a support for x. P is NC* if every variable in P is NC*.

Arc consistency An assignment xi 7→ a in P is arc consistent (AC) with
respect to a constraint Cxi,xj

if there exists an assignment xj 7→ b of xj

such that Cxi,xj
(a, b) = ⊥. Value b is a support for xi 7→ a. A variable

xi in P is AC if all assignments of xi are AC with respect to all binary
constraints involving xi. P is star arc consistent (AC*) if every variable
in P is NC* and AC.

NC* can be enforced by projections of unary constraints over C∅ and pruning
node inconsistent values [43, 26, 28]. Let 0 ≤ b ≤ a ≤ k be two costs. Subtraction
of b from a is defined as:

a⊖ b =

{

a− b if a 6= k
k otherwise.

5

Consider a variable xi in a WCSP P , let α = mina∈Dxi
{Cxi

(a)} be the
minimum cost incurred by Cxi

. Freuder and Wallace [18] suggested that α is a
necessary cost for any complete tuple of P . Using this idea, (unary) projection of
Cxi

over C∅ [26, 28] is defined as a flow of α cost units such that (1) C∅ := C∅⊕α,
and (2) for each a ∈ Dxi

, Cxi
(a) := Cxi

(a) ⊖ α. The updated C∅ becomes the
new global lower bound of the cost of the problem P . After forcing supports
for all variables, all assignments xi 7→ a with C∅ ⊕Cxi

(a) = ⊤ can be removed.
NC* can be enforced in O(nd) time, where n is the number of variables and d
is the maximum domain size, using the NC* algorithm [26, 28].

Similarly, AC* can be enforced by projections of binary constraints over
unary constraints, and then relying on NC* to further move the costs to C∅ or
prune any values [43, 26, 28]. Given variables xi and xj , for each a ∈ Dxi

, let
αa = minb∈Dxj

{Cxi,xj
(a, b)} be the minimum cost of xi 7→ a incurred by the

binary constraint Cxi,xj
. (Binary) projection of Cxi,xj

over Cxi
[43, 26, 28] is

defined such that (1) for each a ∈ Dxi
, Cxi

(a) := Cxi
(a)⊕ αa, and (2) for each

a ∈ Dxi
and b ∈ Dxj

, Cxi,xj
(a, b) := Cxi,xj

(a, b) ⊖ αa. It thus transforms a
WCSP P into an equivalent WCSP P ′ [43]. AC* can be enforced in O(n2d3)
time using the AC* algorithm [26, 28], which is basically repeated applications
of unary and binary projections until the WCSP becomes quiescent.

Example 2.2 The WCSP in Figure 1(a) is not NC* since C∅⊕Cx1
(1) = 1⊕3 =

4 = ⊤. Removing value 1 from Dx1
makes it NC* and equivalent to the one in

Figure 1(a). However, it is still not AC*. Consider the assignment x1 7→ 2 and
the constraint Cx1,x2

in Figure 1(b), all the costs Cx1,x2
(2, 1), Cx1,x2

(2, 2), and
Cx1,x2

(2, 3) are non-⊥. We can subtract 1 from each of these costs and add 1
to Cx1

(2) to force a support for x1 7→ 2. The WCSP in Figure 1(c) is AC* and
equivalent to the one in Figure 1(b). �

In backtracking B&B search, whenever C∅ is increased to ⊤, we cannot
continue to extend a tuple to obtain a solution, and hence a backtrack (or
sometimes called a fail) is triggered. Also, whenever a solution θ is found, the ⊤
value will be set to V(θ) to continue the search, ensuring that the next solution
found must have a better cost than θ. At the end of the search, the last found
solution is optimal.

3 Generating Redundant WCSP Models

Deriving multiple classical CSP models for the same problem is common, al-
though not trivial. Law and Lee [29, 30] proposed model induction which auto-
matically generates a redundant CSP from a given one. However, it is even more
difficult to obtain an alternative model in WCSP since each problem solution is
associated with a cost and we have to ensure the same cost distribution on the
solutions of the redundant WCSP models. Two WCSPs P1 and P2 are mutually
redundant if (1) there is a bijection g between the two sets of all solutions of
P1 and P2, and (2) for every solution θ of P1, the associated costs of solution
θ of P1 and solution g(θ) of P2 are the same, i.e., V(θ) = V(g(θ)). Though the

6

operation is a general one, we propose a slight generalization of model induction
that generates mutually redundant permutation WCSPs from a given one. We
focus on permutation WCSPs because their redundant models can be naturally
and easily obtained.

3.1 Permutation WCSPs

A permutation WCSP is a WCSP P = (k,X ,DX , CX) in which each variable
takes a unique value and |X | is the same as the size of the variable domains.
Any solution of P assigns a permutation of the domain values to the variables.
In addition, the all-different constraints in the permutation WCSP must be hard
constraints which means that tuples having assignments of the same value to
different variables have a ⊤ cost, i.e., Cxi,xj

(a, a) = ⊤ for all variables xi, xj

and a ∈ Dxi
= Dxj

. For other constraints, they can have a cost between ⊥ and
⊤. Given a permutation WCSP P = (k,X ,DX , CX) with X = {x1, . . . , xn},
we can always interchange the roles of its variables and values to give a dual
permutation WCSP P ′ = (k,Y,DY , CY) with Y = {y1, . . . , yn}. The variables
in X and Y can be related using the channeling constraints xi 7→ j ⇔ yj 7→ i
for 1 ≤ i, j ≤ n.

Example 3.1 Recall the WCSP in Figure 9(a). It is a permutation WCSP
which has three variables and each variable has domain values {1, 2, 3}. The
all-different constraints xi 6= xj, where 1 ≤ i < j ≤ 3, have cost functions
Cxi,xj

(a, a) = ⊤, where a ∈ {1, 2, 3}. There are other constraints in which the
binary costs are between ⊥ and ⊤. �

3.2 Generalized Model Induction for WCSPs

Given a classical CSP, we can always model it as a WCSP in which the compati-
ble assignments are of cost ⊥ and the incompatible ones are of cost ⊤. However,
constraints in WCSPs are soft: they can have costs between ⊥ and ⊤. For two
mutually redundant WCSP models, there must exist a bijective mapping be-
tween the two sets of all solutions. Besides, we have to ensure the same cost
between every pair of equivalent solutions in the two WCSP models.

Based on these two requirements, we proposed generalized model induction
that generates mutually redundant permutation WCSPs from a given one, using
another viewpoint and channeling constraints. In a permutation WCSP, the
variables in a solution must take all-different values. Given a WCSP P =
(k,X ,DX , CX), a channel function maps assignments in P to those in another
set of variables. If P is a permutation WCSP, without loss of generality, we
always have the bijective channel function f(xi 7→ j) = yj 7→ i. The constraints
CY in the induced model P ′ = (k,Y,DY , CY) are defined such that

Cya
(i) = Cxi

(a) for 1 ≤ a, i ≤ n

Cya,yb
(i, j) =

{

Cxi,xj
(a, b) if i 6= j, for 1 ≤ a, b, i, j ≤ n
⊤ if i = j, for 1 ≤ a, b, i, j ≤ n

.

7

Note that the induced model P ′ must be a permutation WCSP, since
Cya,yb

(i, i) = ⊤ for all 1 ≤ a, b, i ≤ n.

Theorem 3.1 Given a permutation WCSP P = (k,X ,DX , CX) and another
viewpoint (Y,DY) such that (X ,DX) and (Y,DY) can be connected by the chan-
neling constraints xi = j ⇔ yj = i for all 1 ≤ i, j,≤ n, where n = |X | = |Y|. P
and its induced model P ′ are mutually redundant WCSP models.

Proof 3.1 In generalized model induction, an assignment xi 7→ a in P can al-
ways be mapped to an assignment ya 7→ i in P ′ through the bijective function
f(xi 7→ a) = ya 7→ i. Thus, a solution of P, which is a complete tuple θ1, can
also be mapped correspondingly to a solution θ2 in P ′ and there is a bijective
mapping between the two sets of solutions of P and P ′. Given two equivalent
solutions θ = {xv1

7→ 1, . . . , xvn
7→ n} in P and θ′ = {y1 7→ v1, . . . , yn 7→ vn} in

P ′ through the bijection, according to generalized model induction, each assign-
ment (xvi

7→ i) ∈ θ has the same unary cost as the corresponding assignment
(yi 7→ vi) ∈ θ′ (i.e., Cxvi

(i) = Cyi
(vi)). Similarly, every pair of assignments

{xvi
7→ i, xvj

7→ j} in P has the same binary cost as the corresponding pair of
assignments {yi 7→ vi, yj 7→ vj} in θ (i.e., Cxvi

,xvj
(i, j) = Cyi,yj

(vi, vj)). The

associated cost of the solution θ in P equals that of θ′ in P ′, i.e., V(θ) = V(θ′).
Therefore, we satisfy the two conditions of mutual redundancy, and P and P ′

are mutually redundant WCSP models. �

1 2 3

3

3

1 2

1

1 2

1

2

3

3

3

1
21

1 2

C∅ = 1, ⊤ = 4 C∅ = 1, ⊤ = 4

x1 x2 x3

y1

y2

y3

(a) P1 (b) P2

Figure 2: An example of model induction of a permutation WCSP

Example 3.2 Consider the WCSP P1 = (4,X ,DX , CX) in Figure 2(a). In P1,
the valuation structure is S(4) and we have variables X = {x1, x2, x3}. Each
variable has domain values Dxi

= {1, 2, 3}. In generalized model induction, the
role of variables and values are interchanged to generate an induced model as
shown in Figure 2(b).

In the induced model, the valuation structure remains S(4), but we now
have variables {y1, y2, y3}, each of which has the same set of domain values
Dyi

= {1, 2, 3}. Both P1 and P2 have the same values for C∅ and ⊤. The
unary and binary costs are also transformed from P1 to P2 correspondingly.
For example, the unary cost Cx2

(1) = 1 in P1 becomes a unary cost Cy1
(2) = 1

in P2. For the binary cost Cx1,x2
(2, 3) = 3 in P1, we transform it into the

binary cost Cy2,y3
(1, 2) = 3 in P2. Besides, the all-different constraints, such as

Cy1,y2
(1, 1) = ⊤, are added to P2. �

8

4 Refining Local Consistency

In this section, we introduce our first approach to combine and solve two mu-
tually redundant WCSP models. We give detailed explanations to show the
problems encountered when we simply apply the original notions of NC* and
AC* on a combined model. Based on the investigation, we refine the definitions
of node and arc consistencies to give m-NC∗

c and m-AC∗
c , which are applicable

to a combined model with m sub-models. Their respective enforcing algorithms
are also given.

4.1 Naive Approach

Given two mutually redundant (classical) CSPs P1 = (X ,DX , CX) and P2 =
(Y,DY , CY), a combined model is a CSP Pc = (X ∪ Y,DX ∪ DY , CX ∪ CY ∪ C

c),
where Cc is the set of channeling constraints connecting P1 and P2, the sub-
models of Pc. Channeling constraints define the relationship between the vari-
able assignments in the two sub-models. They are typically of the form xi 7→
a⇔ yj 7→ b where xi 7→ a and yj 7→ b are assignments of P1 and P2 respectively.
The channeling constraints xi 7→ j ⇔ yj 7→ i connecting a permutation CSP
and its dual model are of this form.

We can construct a combined model Pc for two mutually redundant WCSPs
P1 = (k1,X ,DX , CX) and P2 = (k2,Y,DY , CY) similarly. Pc has the valuation
structure S(k1 + k2). The optimum of Pc is twice the optimum of the original
models P1 and P2 (i.e., V(θ) = 2 · V(θ1) = 2 · V(θ2)). The variables, domains,
and constraints are formed like in the classical case. The channeling constraints
are included in Pc as hard constraints, i.e., all costs are either ⊥ or ⊤. For
permutation WCSPs, every channeling constraint xi 7→ j ⇔ yj 7→ i has the cost
function

Cxi,yj
(a, b) =

{

⊥ if a = j ⇔ b = i
⊤ otherwise.

Example 4.1 Recall the WCSP model P1 and its induced WCSP model P2 in
Figure 2. We use those two models to illustrate how they are combined to form
a combined model Pc.

1 2 3

3 1

1

2

3

1

2

3

3
1

1

3

2

1
1

2
2

C∅ = 2, ⊤ = 8
x1 x2 x3

y1

y2

y3

xi 7→ j ⇔ yj 7→ i

for 1 ≤ i, j,≤ 3

Figure 3: An example of a combined permutation WCSP model

In the combined model Pc, the valuation structure is S(4 + 4) = S(8). The
variables and domains are X ∪ Y and DX ∪ DY respectively. The set of con-
straints in Pc is a combination of the constraints in P1 and P2, and the chan-
neling constraints Cc = {xi 7→ j ⇔ yj 7→ i | 1 ≤ i, j ≤ 3}. The costs of the

9

channeling constraints are either ⊥ or ⊤. For example, the channeling con-
straint x2 7→ 1⇔ y1 7→ 2 has the cost function:

Cx2,y1
(1, 1) = ⊤, Cx2,y1

(1, 2) = ⊥, Cx2,y1
(1, 3) = ⊤,

Cx2,y1
(2, 1) = ⊥, Cx2,y1

(2, 2) = ⊤, Cx2,y1
(2, 3) = ⊥,

Cx2,y1
(3, 1) = ⊥, Cx2,y1

(3, 2) = ⊤, Cx2,y1
(3, 3) = ⊥.

Thus, the combined WCSP model is a quadruplet Pc = (8,X ∪Y,DX ∪DY , CX ∪
CY ∪ Cc). Figure 3 shows the combined model Pc for P1 and P2. For clarity,
the edges of the channeling constraints are not shown in the figure. The set of
assignments {x1 7→ 2, x2 7→ 1, x3 7→ 3, y1 7→ 2, y2 7→ 1, y3 7→ 3} is one of the
solutions in Pc. Its cost doubles the costs of the corresponding assignments in
P1 and P2. �

Table 1: Preliminary experimental results on solving soft Langford’s problem
AC* on P AC* on Pc

(m, n) fail time fail time
(3, 11) 77507 43.8 68342 163.16
(3, 12) 275643 178.25 172520 546.96

We perform some preliminary experiments in the WCSP solver ToolBar [4]
using Langford’s problem (prob024 in CSPLib [19]) to evaluate the performance
of the single and combined models. The Langford’s problem, denoted as (m, n)-
Langford’s problem, is to find an m× n digit sequence consisting of digits 1 to
n, each occurring m times, such that any two consecutive occurrences of digit
i’s are separated by i other digits. For example, a solution of the (2, 3) instance
is 312132. The single model P is based on a permutation CSP model suggested
by Hnich, Smith, and Walsh [22]. This problem is over-constrained for many
instances. For example, only (3, 9) and (3, 10) among the (3, n) instances for
3 ≤ n ≤ 16 have solutions. Therefore, we soften the model so that tuples of the
all-different constraints remains hard, and other constraints in the model can
now have random non-⊤ costs. With the aid of generalized model induction,
we obtain an induced model from an original one. The combined model Pc

contains the single model and its induced model as sub-models. We randomly
generate 10 models for each of the (3, 11) and (3, 12) instances and obtain the
average results of the number of fails (i.e., the number of backtracks occurred
in solving a model) and CPU time in seconds in Table 1 for finding the first
optimal solution.

From the result, we find that enforcing AC* on a combined model does
achieve fewer number of fails than enforcing AC* on a single model. However,
execution of the former takes much longer time than that of the latter. This
is mainly due to three reasons. First, there are more variables and constraints
in a combined model than in a single model. It takes longer time to propagate
the constraints at each node in a search tree. Second, there is a large number
of channeling constraints connecting the two mutually redundant models. For
example, in (m, n)-Langford’s problem, we need m2n2 channeling constraints

10

to combine two mutually redundant models. For classical CSPs, efficient global
constraints exist for propagating the channeling constraints, but there are no
such counterparts for WCSPs. Third, by analyzing the propagation behavior
in the combined models, we find that despite achieving fewer number of fails
overall, enforcing AC* on a combined model can miss pruning opportunities
which are available even in a single model. We shall discuss in details why this
can happen, and as a remedy to the second and third drawbacks, we propose
m-NC∗

c and m-AC∗
c and their associated algorithms for effectively improving

propagation in a combined model with m sub-models. We also reveal that the
propagation of pruning information among sub-models can be done by enforc-
ing m-NC∗

c . This means that redundant modeling can be done without the
channeling constraints.

4.2 Node Consistency Revisited

1

2

3

3

1
21

1 2

1

2

3

3

3

1
21

1 2

1 2 3

1

1

1

1 2 3

3

3

1 2

1

1 2

1 2 3

3

3

1 2

1
1

2

3

3

3

1
21

1 1 22

1 2 3

3

3

1 2

1
1

2

3

3

3

1
21

1 1 22

1 2 3

2

3

1

1
1

2

3

3

3

1
21

1 1 22

1 2 3

1

1
1

2

3

1
1

1 1

P
S
fra

g

⇒

⇒

⇒

⇒

C∅ = 1,⊤ = 4

C∅ = 1,⊤ = 4C∅ = 1,⊤ = 4

C∅ = 2,⊤ = 4 C∅ = 2,⊤ = 8

C∅ = 2,⊤ = 8 C∅ = 3,⊤ = 8

C∅ = 4,⊤ = 8

x1

x1x1

x1

x1 x1

x2

x2x2

x2

x2 x2

x3

x3x3

x3

x3 x3

y1

y1y1

y1y1 y1

y2

y2y2

y2y2 y2

y3

y3y3

y3y3 y3

(a) P1 before NC* (b) P1 after NC*

(c) P2 before NC* (d) P2 after NC*

(e) P
c before NC* (f) P

c after NC*

(g) P
c before 2-NC∗

c (h) P
c after 2-NC∗

c

Figure 4: Enforcing node consistencies on P1, P2 and Pc

We first investigate the problems encountered when enforcing NC* in the
combined models. Figures 4(a) and 4(c) show two mutually redundant WCSPs
P1 and P2 respectively, as given in Figures 2(a) and 2(b). Figure 4(e) gives the
combined model Pc, which is the same as the one shown in Figure 3.

Consider enforcing NC* on P1 and P2 individually. The assignment x1 7→ 1
in P1 is not NC*, since C∅⊕Cx1

(1) = 1⊕3 = ⊤. Value 1 can hence be removed
from Dx1

, as shown in Figure 4(b). Similarly, value 1 can be also removed
from Dy1

. Furthermore, neither of the remaining domain values {2, 3} of y1

has a ⊥ unary cost. Therefore, Cy1
is projected over C∅ such that Cy1

(2) = ⊥,
Cy1

(3) = 1, and C∅ = 2. After increasing C∅, the assignment y2 7→ 2 in P2 is
no longer NC*, since C∅ ⊕ Cy2

(2) = 2 ⊕ 2 = ⊤. Value 2 is thus removed from
Dy2

, resulting an equivalent WCSP in Figure 4(d) which is NC*.
Now consider enforcing NC* on the combined model Pc of P1 and P2. Pc

has a valuation structure S(4 + 4) = S(8). In Pc, however, x1 7→ 1 and y1 7→ 1
are still NC*, since C∅ ⊕ Cx1

(1) = C∅ ⊕ Cy1
(1) = 5 < ⊤ = 8. Therefore, no

values can be removed from the variable domains. Enforcing NC* on Pc can

11

only project Cy1
over C∅ such that Cy1

(1) = 2, Cy1
(2) = ⊥, Cy1

(3) = 1, and
C∅ = 3, as shown in Figure 4(f). This example shows the undesirable behavior
that enforcing NC* on a combined model can miss pruning opportunities that
are available even in single models, resulting in weaker constraint propagation
than on its sub-models individually.

4.2.1 Refining the Node Consistency Definition

From the previous example, we observe that given any solution θ of the combined
model Pc, if an assignment xi 7→ j in sub-model P1 is in θ, then according to
the channeling constraints xi 7→ j ⇔ yj 7→ i, the corresponding assignment
yj 7→ i in sub-model P2 must be also in θ, and vice versa. Therefore, we can
check the consistencies of xi 7→ j and yj 7→ i simultaneously. If the global lower
bound C∅ plus the sum of the unary costs Cxi

(j) and Cyj
(i) equals ⊤, then

both xi 7→ j and yj 7→ i cannot be in any solution of Pc and can be pruned.
For example, consider assignments x1 7→ 1 and y1 7→ 1 in Figure 4(f). Since
C∅ ⊕ Cx1

(1)⊕ Cy1
(1) = 3⊕ 3⊕ 2 = 8 = ⊤, both x1 7→ 1 and y1 7→ 1 should be

pruned, thus restoring the available prunings in the single models.
Furthermore, consider variable y1 in P2, a complete tuple of P2 must contain

exactly one assignment of y1. The set of assignments {y1 7→ 1, y1 7→ 2, y1 7→ 3}
in P2 correspond to θ = {x1 7→ 1, x2 7→ 1, x3 7→ 1} in P1. Therefore, a solution
of Pc must contain exactly one assignment among θ. In Figure 4(f), since
the minimum cost among Cx1

(1), Cx2
(1), and Cx3

(1) is 1 > ⊥, we can use such
information to tighten the global lower bound of Pc in addition to the projection
of Cy1

over C∅.
By capturing the ideas described in the previous two paragraphs, we propose

a new notion of node consistency m-NC∗
c for combined WCSP models with m

sub-models. Note that m-NC∗
c is a general notion; it is not restricted to permu-

tation WCSPs only. In the following, we assume that Ps = (ks,Xs,Ds, Cs) for
1 ≤ s ≤ m are m mutually redundant WCSPs, where Xs = {xs,i | 1 ≤ i ≤ ns}
and Ds = {Dxs,i

| 1 ≤ i ≤ ns} (ns = |Xs|). Cs,t is the set of channeling
constraints connecting Ps and Pt, and Cc =

⋃

1≤s<t≤m Cs,t is the set of all
channeling constraints. Pc = (k,X ,D, C) is a combined model of m sub-
models Ps for 1 ≤ s ≤ m, where k =

∑

1≤s≤m ks, X =
⋃

1≤s≤m Xs, and
C = (

⋃

1≤s≤m Cs)∪C
c. Function fs,t is a bijective channel function from assign-

ments in Ps to those in Pt. By definition, ft,s = f−1
s,t and fs,s is the identity

function. ϑt(xs,i) = {fs,t(xs,i 7→ a) | a ∈ Dxs,i
} is a set of all the corresponding

assignments of xs,i in Pt.

Definition 4.1 Let Pc be a combined model of m sub-models Ps for 1 ≤ s ≤ m.

• An assignment xs,i 7→ a is m-channeling node consistent (m-NC∗
c) if C∅⊕

∑

t Cxt,j
(bt) < ⊤, where fs,t(xs,i 7→ a) = xt,j 7→ bt for 1 ≤ t ≤ m.

• A variable xs,i ∈ X is m-NC∗
c if (1) all assignments of xs,i are m-NC∗

c and
(2) for 1 ≤ t ≤ m, there exists an assignment (xt,j 7→ b) ∈ ϑt(xs,i) such
that Cxt,j

(b) = ⊥. The assignment xt,j 7→ b is a c-support for ϑt(xs,i).

12

• Pc is m-NC∗
c if every variable in X is m-NC∗

c .

Example 4.2 Consider the combined model Pc in Figure 4(f). It is NC* but
not 2-NC∗

c , since (1) C∅ ⊕ Cx1
(1)⊕ Cy1

(1) = 3 ⊕ 3 ⊕ 2 = ⊤, and (2) there are
no c-supports for the tuple θ = {x1 7→ 1, x2 7→ 1, x3 7→ 1}. Figure 4(h) shows
an equivalent WCSP which is 2-NC∗

c . �

Note that 1-NC∗
c is equivalent to NC*, while m-NC∗

c achieves more prunings
than NC*.

Following Debruyne and Bessiere [12], we define some notions to compare
the strengths of two local consistencies. Suppose Φ1 and Φ2 are two local con-
sistencies. Φ1 is stronger [12] than Φ2 if in any (W)CSP in which Φ1 holds, Φ2

holds too. Φ1 is strictly stronger [12] than Φ2 if Φ1 is (1) stronger than Φ2 and
(2) there is at least one (W)CSP in which Φ2 holds but Φ1 does not hold.

Theorem 4.1 Let Pc be a combined model of m sub-models Ps for 1 ≤ s ≤ m.
m-NC∗

c is strictly stronger than NC* on Pc.

Proof 4.1 Without loss of generality, we give the proof for the case m = 2 and
permutation WCSPs. The proof can be generalized to other classes of WCSPs.

Let Pc be a combined model consisting of two sub-models, P1 = (k1,X ,DX , CX)
and P2 = (k2,Y,DY , CY). First, we prove m-NC∗

c is as strong as NC*. Suppose
Pc is 2-NC∗

c but not NC*. In particular, we assume xi 7→ j and yj 7→ i are
not NC*. We have to consider two cases. Then, either one of the following two
cases must be true.

1. ∃xi 7→ j in P1 such that C∅⊕Cxi
(j) = ⊤ = k1⊕k2 or ∃yj 7→ i in P2 such

that C∅ ⊕ Cyj
(i) = ⊤ = k1 ⊕ k2.

By the definition of 2-NC∗
c , the assignments xi 7→ j and yj 7→ i cannot be

removed if C∅ ⊕ Cxi
(j) ⊕ Cyj

(i) < k1 + k2. Thus, C∅ ⊕ Cxi
(j) < k1 + k2

and C∅⊕Cyj
(i) < k1 + k2. However, the assumption states that Pc is not

NC* and there exists xi 7→ j such that C∅ ⊕ Cxi
(j) = k1 + k2. This leads

to a contradiction and this case cannot be true.

2. ∀a ∈ Dxi
, Cxi

(a) > ⊥ or ∀b ∈ Dyj
, Cyj

(b) > ⊥ .

By the definition of 2-NC∗
c, variable xi in Pc and thus P1 has an assign-

ment xi 7→ a such that Cxi
(a) = ⊥. This contradicts the assumption that

the unary costs of the assignments of variable xi are all greater than ⊥.
Thus, this case cannot be true also.

Since both cases can never be true, m-NC∗
c is as strong as NC*.

Second, to show strictness, the WCSP in Figure 4(f) is NC* but not 2-NC∗
c .

Hence the result. �

13

4.2.2 Enforcing m-NC∗
c

To enforce m-NC∗
c on a combined model, we propose a new form of projection

which can force c-supports for tuples.

Definition 4.2 Given a tuple θ, let α = min(x 7→a)∈θ{Cx(a)}. (Unary) c-
projection of a tuple θ over C∅ is a flow of α cost units such that C∅ := C∅ ⊕ α
and for each (x 7→ a) ∈ θ, Cx(a) := Cx(a)⊖ α.

C-projection is a generalization of ordinary projection. The former allows
the assignments in θ to be from different variables, while the latter is equivalent
to c-projection of all assignments of a single variable. Clearly, after c-projection
of a tuple θ, there must exist an assignment (x 7→ a) ∈ θ such that Cx(a) = ⊥.
Note that in a combined model, if θ corresponds to the set of all assignments of
one variable in another sub-model, then c-projection of θ maintains the same
cost distribution on complete tuples.

Theorem 4.2 Let xs,i be a variable in a combined model Pc. C-projection of
ϑt(xs,i) over C∅ transforms Pc into an equivalent WCSP.

Proof 4.2 Let xs,i be a variable with domain Dxs,i
in a combined model

Pc with m sub-models. A solution of Pc must contain exactly one as-
signment among ϑt(xs,i). Therefore, there must be a necessary cost α =
min(xt,j 7→b)∈ϑt(xs,i){Cxt,j

(b)} incurred to any solution of Pc. Also, only one of
the unary costs among ϑt(xs,i) will be incurred in a solution of Pc. Therefore,
subtracting α from each of the unary costs among ϑt(xs,i) would only reduce the
overall solution cost by α. By adding α to C∅, we compensate this reduction to
the solution cost. Thus, c-projection of ϑt(xs,i) over C∅ transforms Pc into an
equivalent WCSP. �

1 2 3

3

2
1

2

3

3
2

1

3

2
21

3

1 2 3

2
1

2

3

2

3

1
1

3

2
2

1
1

1
1 2

2
2

2

⇒

C∅ = 2, ⊤ = 8 C∅ = 4, ⊤ = 8

x1x1 x2x2 x3x3

y1y1

y2y2

y3y3

(a) Pc before c-projection (b) Pc after c-projection

Figure 5: An example showing c-projection of ϑt(xs,i) over C∅

Example 4.3 Consider the combined model Pc in Figure 5(a). None of the
domain values of y1 has a ⊥ unary cost. Therefore, the minimum cost 1 among
the set of assignments {y1 7→ 1, y1 7→ 2, y1 7→ 3} is projected over C∅. In the
other sub-model, θ = {x1 7→ 1, x2 7→ 1, x3 7→ 1} corresponds to the set of all
assignments of y1. Hence, by Theorem 4.2, c-projection of θ over C∅ maintains
the same cost distribution on complete tuples. In Figure 5(a), Cx1

(1) = 3,
Cx2

(1) = 1, and Cx3
(1) = 2, c-projection of θ deducts 1 from each of these costs

14

and increases C∅ by 1, forcing a c-support x2 7→ 1 for θ. Figure 5(b) gives an
equivalent WCSP after c-projection. �

Algorithm 4.1: Algorithm for enforcing m-NC∗
c

Function NC∗
c
(C∅, k,X ,D, C)1

foreach (xs,i ∈ X) do2

foreach (1 ≤ t ≤ m) do3

α := min(xt,j 7→b)∈ϑt(xs,i){Cxt,j
(b)};4

C∅ := C∅ ⊕ α;5

foreach ((xt,j 7→ b) ∈ ϑt(xs,i)) do6

Cxt,j
(b) := Cxt,j

(b)⊖ α;7

foreach (xs,i ∈ X) do8

PruneVarc(xs,i);9

Function PruneVarc(xs,i)10

changed := false;11

foreach (a ∈ Dxs,i
) do12

let (xt,j 7→ bt) = fs,t(xs,i 7→ a) for 1 ≤ t ≤ m;13

if (C∅ ⊕
∑

t Cxt,j
(bt) = ⊤) then14

foreach (1 ≤ t ≤ m) do15

Dxt,j
:= Dxt,j

\ {bt};16

changed := true;17

return changed;18

Algorithm 4.1 shows how to enforce m-NC∗
c on a combined model Pc. The

algorithm first forces a c-support for each (xt,j 7→ b) ∈ ϑt(xs,i) by c-projecting
each ϑt(xs,i) over C∅. Next, for each xs,i ∈ X , PruneVarc is called to prune
any non-m-NC∗

c assignments. By using table lookup, a channel function can be
implemented in O(1) time. Therefore, PruneVarc and NC∗

c
runs in O(md) and

O(mnd) time respectively, where d is the maximum domain size and n = |X |.

Theorem 4.3 Given a combined WCSP Pc with m sub-models, the NC∗
c

algo-
rithm enforces m-channeling node consistency (m-NC∗

c) on Pc and preserves all
solutions of Pc.

Proof 4.3 The proof makes use of the definition of m-NC∗
c . In each sub-model

Pt, where 1 ≤ t ≤ m, of the combined model Pc, the NC∗
c

algorithm first forces
c-supports for each (xt,j 7→ b) ∈ ϑt(xs,i) by projecting each ϑt(xs,i) over C∅

(lines 2–7). This ensures there must exist an assignment (xt,j 7→ b) ∈ ϑt(xs,i)
that Cxt,j

(b) = ⊥. Besides, PruneVarc checks if C∅ ⊕
∑

t Cxt,j
(bt) < ⊤, where

fs,t(xs,i 7→ a) = xt,j 7→ bt for 1 ≤ t ≤ m. It removes all values from domains of
variables that cannot be extended to solutions. Thus, the NC∗

c
algorithm enforces

15

m-channeling node consistency (m-NC∗
c) on Pc and preserves all solutions of

Pc. �

When enforcing m-NC∗
c on a combined model Pc, whenever an assignment

xs,i 7→ a is detected not m-NC∗
c , all the corresponding assignments fs,t(xs,i 7→ a)

for 1 ≤ t ≤ m are also not m-NC∗
c and can be pruned. Therefore, enforcing

m-NC∗
c on Pc has already entailed all the channeling constraints in Cc, and for

efficiency, we can skip the postings of the channeling constraints in Pc to save
propagation overhead. In subsequent discussions, we assume that there will be
no channeling constraints in a combined model if m-NC∗

c is enforced .

4.3 Arc Consistency Revisited

Besides NC*, we also investigate the adverse behavior encountered when enforc-
ing AC* in combined models. We continue with the WCSPs in Figure 4.

1

2

3

11

2

3

3

1
21

1 2

1 2 3

1

1

1

1 2 3

1

1

1

1 2 3

1

1
1

2

3

1
1

1 1

1 2 3

1

1
1

2

3

3

1
21

1 12

1 2 3

1

1
1

2

3

21

1

1 2 3

1

2

3

⇒

⇒

⇒

⇒

C∅ = 1,⊤ = 4

C∅ = 2,⊤ = 4C∅ = 2,⊤ = 4

C∅ = 2,⊤ = 4 C∅ = 3,⊤ = 8

C∅ = 4,⊤ = 8

C∅ = 4,⊤ = 8

C∅ = 6,⊤ = 8

x1

x1x1

x1

x1 x1

x2

x2x2

x2

x2 x2

x3

x3x3

x3

x3 x3

y1

y1y1

y1y1 y1

y2

y2y2

y2y2 y2

y3

y3y3

y3y3 y3

(a) P1 before AC* (b) P1 after AC*

(c) P2 before AC* (d) P2 after AC*

(e) P
c before AC* (f) P

c after AC*

(g) P
c before 2-AC∗

c (h) P
c after 2-AC∗

c

Figure 6: Enforcing arc consistencies on P1, P2 and Pc

Consider enforcing AC* on the WCSPs P1 and P2 in Figures 6(a) and 6(c)
individually. In the former model, there are no supports for x1 7→ 2 in Cx1,x2

.
Projection of Cx1,x2

over Cx1
makes Cx1

(2) = 1, Cx1,x2
(2, 1) = ⊥, Cx1,x2

(2, 2) =
⊤, and Cx1,x2

(2, 3) = 2. Cx1
loses its support and subsequently, Cx1

is projected
over C∅ such that C∅ is increased to 2, Cx1

(2) = ⊥, and Cx1
(3) = ⊥. This leads

to further removal of values 3 ∈ Dx2
and 1 ∈ Dx3

since C∅ ⊕ Cx2
(3) = ⊤ and

C∅ ⊕ Cx3
(1) = ⊤, resulting in the WCSP in Figure 6(b). The latter model in

Figure 6(c) is already AC*. Therefore, it remains the same after enforcing AC*.
Figure 6(e) shows the combined model Pc of those in Figures 6(a) and 6(c),

and Figure 6(f) shows the result after enforcing AC* on Pc. Figure 6(f) is
obtained by (1) removing value 3 ∈ Dx2

due to the channeling constraints, (2)
projection of Cx1,x2

over Cx1
, and (3) projection of Cx1

over C∅.

4.3.1 Refining the Arc Consistency Definition

Consider variable x2 in P1, the set of assignments {x2 7→ 1, x2 7→ 2, x2 7→ 3}
in P1 corresponds to θ = {y1 7→ 2, y2 7→ 2, y3 7→ 2} in P2. We have discussed

16

in section 4.2.1 that a complete tuple of the combined model Pc must contain
exactly one assignment among θ. Given an assignment yi 7→ a in P2 but not in
θ, there is a binary cost Cyi,yj

(a, 2) incurred between yi 7→ a and (yj 7→ 2) ∈ θ.
(When i = j, there are actually no such binary costs, but we assume without
loss of generality that the cost between two assignments of the same variable is
⊤.) Let yi 7→ a be y2 7→ 1 as an example. In Figure 6(f), since the minimum
binary cost among Cy2,y1

(1, 2) = 1 and “Cy2,y2
(1, 2)” = ⊤ is 1 > ⊥, we can use

such information to tighten the bound on the unary cost Cy2
(1).

We capture this idea to propose a new arc consistency notion m-AC∗
c for

combined models with m sub-models. The notion again is not restricted to
permutation WCSPs only.

Definition 4.3 Let Pc be a combined model of m sub-models Ps for 1 ≤ s ≤ m.

• An assignment xs,i 7→ a in Pc is m-channeling arc consistent (m-AC∗
c)

with respect to constraint Cxs,i,xs,j
if for 1 ≤ t ≤ m, there exists an

assignment (xt,j′ 7→ b′) ∈ ϑt(xs,j) such that Cxt,i′ ,xt,j′
(a′, b′) = ⊥, where

xt,i′ 7→ a′ = fs,t(xs,i 7→ a). The assignment xt,j′ 7→ b′ is a c-support for
xt,i′ 7→ a′.

• A variable xs,i ∈ X is m-AC∗
c if all assignments of xs,i are m-AC∗

c with
respect to all constraints involving xs,i.

• Pc is m-AC∗
c if each xs,i ∈ X is m-NC∗

c and m-AC∗
c .

Example 4.4 Consider the combined model Pc in Figure 6(f). The WCSP is
AC* but not 2-AC∗

c, since there are no c-supports among {y1 7→ 2, y2 7→ 2} for
y2 7→ 1. Figure 6(h) shows an equivalent 2-AC∗

c WCSP. An optimal solution,
{x1 7→ 2, x2 7→ 1, x3 7→ 3, y1 7→ 2, y2 7→ 1, y3 7→ 3}, has aggregate cost 6. �

Again, 1-AC∗
c is equivalent to AC*, while m-AC∗

c is a stronger notion of
consistency than AC*.

Theorem 4.4 Let Pc be a combined model of m sub-models Ps for 1 ≤ s ≤ m.
m-AC∗

c is strictly stronger than AC* on Pc.

Proof 4.4 Without loss of generality, we prove the case m = 2 and permutation
WCSPs. The proof can be generalized to other classes of WCSPs.

Let Pc be a combined model consisting of two sub-models, P1 = (k1,X ,DX , CX)
and P2 = (k2,Y,DY , CY). Suppose Pc is 2-AC∗

c but not AC*. This means that
there exists a ∈ Dxi

such that for all the assignments xj 7→ b, Cxi,xj
(a, b) > ⊥.

However, by the definition of 2-AC∗
c , there exists an assignment xj 7→ b such

that Cxi,xj
(a, b) = ⊥. This leads to a contradiction and 2-AC∗

c is as strong as
AC*.

To show strictness, the combined model Pc in Figure 6(f) is AC* but not
2-AC∗

c. Hence the result. �

17

4.3.2 Enforcing m-AC∗
c

To enforce m-AC∗
c on a combined model, we extend the definition of c-projections

which can force c-supports for assignments.

Definition 4.4 Given an assignment x 7→ a and a tuple θ where (x 7→ a) /∈ θ,
let α = min(y 7→b)∈θ{Cx,y(a, b)}. (Binary) c-projection of a tuple θ over x 7→ a
is a flow of α cost units such that Cx(a) := Cx(a)⊕α and for each (y 7→ b) ∈ θ,
Cx,y(a, b) := Cx,y(a, b)⊖ α.

Binary c-projection of a tuple θ is equivalent to ordinary binary projection
if θ is the set of all assignments of a single variable. In a combined model, if
θ corresponds to the set of all assignments of a single variable in another sub-
model, then c-projection of θ over an assignment not in θ yields an equivalent
WCSP.

Theorem 4.5 Let xs,i be a variable in a combined model Pc. C-projection of
ϑt(xs,i) over an assignment xt,j 7→ a /∈ ϑt(xs,i) transforms Pc into an equivalent
WCSP.

Proof 4.5 Let xs,i be a variable in a combined model Pc with m sub-models.
Any solution of Pc must contain exactly one assignment among ϑt(ss,i). Sup-
pose there is another assignment xt,j 7→ a /∈ ϑ(xs,i), there must be a necessary
binary cost β = min(xt,j′ 7→b)∈ϑt(xs,i){Cxt,j ,xt,j′

(a, b)} incurred between xt,j 7→ a

and all assignments in ϑt(xs,i). In c-projection, the minimum cost β is sub-
tracted from each of the binary costs, but is compensated by adding β to the unary
cost Cxt,j

(a). Thus, the solution cost remains unchanged and c-projections of
ϑt(xs,i) over the assignment xt,j 7→ a /∈ ϑ(xs,i) transformed Pc into an equiva-
lent WCSP. �

1 2 3

1
1

2

3

1
1

1 2 3

1

2

3

1
1

1

1

1

⇒

C∅ = 6, ⊤ = 8C∅ = 4, ⊤ = 8

x1x1 x2x2 x3x3

y1y1

y2y2

y3y3

(a) Pc before enforcing 2-AC∗
c (b) Intermediate step of 2-AC∗

c on Pc

Figure 7: An example showing c-projection ϑt(xs,i) over xt,j 7→ a /∈ ϑt(xs,i)

Example 4.5 Figure 7(a) repeats the combined model Pc in Figure 6(g). The
assignment y2 7→ 1 has no c-supports in θ = {y1 7→ 2, y2 7→ 2}, which is the set of
assignments in P2 corresponding to the set of all assignments of x2 in P1. Thus,
c-projections of θ over y2 7→ 1 yields Cy2,y1

(1, 2) = ⊥ and Cy2
(1) = 1. Two sets

of assignments {x1 7→ 2, x1 7→ 3} and {y2 7→ 1, y3 7→ 1} lose their c-supports and
the minimum cost 1 from each set of assignments is projected over C∅, increasing

18

C∅ from 4 to 6, as shown in Figure 7(b). The assignments x3 7→ 1 and y1 7→ 3
are consequently not 2-NC∗

c , since C∅ ⊕ Cx3
(1) ⊕ Cy1

(3) = 6 ⊕ 1 ⊕ 1 = ⊤, and
are thus pruned. Variable y1 is now bound and further propagation yields the
final 2-AC∗

c WCSP in Figure 6(h). �

Algorithm 4.2: Algorithm for enforcing m-AC∗
c

Function AC∗
c
(C∅, k,X ,D, C)1

Q := X ;2

while (Q 6= ∅) do3

xs,i := Pop(Q);4

foreach (Cxs,i,xs,j
∈ C) do5

FindCSupport(xs,i, xs,j);6

foreach (xs,i ∈ X) do7

if (PruneVarc(xs,i)) then8

Q := Q ∪ {xs,i};9

Function FindCSupport(xs,i, xs,j)10

foreach (1 ≤ t ≤ m) do11

supported := true;12

foreach ((xt,i′ 7→ a′) ∈ ϑt(xs,i)) do13

if (S(xt,i′ 7→ a′, xs,j , t) /∈ ϑt(xs,j)) then14

let (xt,j∗ 7→ b∗) = argmin(xt,j′ 7→b′)∈ϑt(xs,j){Cxt,i′ ,xt,j′
(a′, b′)};15

S(xt,i′ 7→ a′, xs,j , t) := (xt,j∗ 7→ b∗);16

α := Cxt,i′ ,xt,j∗
(a′, b∗);17

Cxt,i′
(a′) := Cxt,i′

(a′)⊕ α;18

foreach ((xt,j′ 7→ b′) ∈ ϑt(xt,j)) do19

Cxt,i′ ,xt,j′
(a′, b′) := Cxt,i′ ,xt,j′

(a′, b′)⊖ α;20

if (Cxt,i′
(a′) = ⊥ and α > ⊥) then21

supported := false;22

if (¬supported) then23

ProjectUnary(xs,i);24

Function ProjectUnary(xs,i)25

let (xt,i∗ 7→ a∗) = argmin(xt,i′ 7→a′)∈ϑt(xs,i){Cxt,i′
(a′)};26

S(xs,i, t) := (xt,i∗ 7→ a∗);27

α := Cxt,i∗
(a∗);28

C∅ := C∅ ⊕ α;29

foreach ((xt,i′ 7→ a′) ∈ ϑt(xs,i)) do30

Cxt,i′
(a′) := Cxt,i′

(a′)⊖ α;31

19

Algorithm 4.2 shows how to enforce m-AC∗
c on a combined model Pc. It uses

two data structures for storing c-supports. S(xt,i′ 7→ a′, xs,j , t) stores the current
c-support for the assignment xt,i′ 7→ a′ among ϑt(xs,j), while S(xs,i, t) stores
the current c-support for ϑt(xs,i). FindCSupport generalizes FindSupport in
the algorithm for enforcing AC* [26, 28] so that for each sub-model Pt, it forces
a c-support among ϑt(xs,j) for each assignment (xt,i′ 7→ a′) ∈ ϑt(xs,i). C-
projections over C∅ is done by ProjectUnary when necessary. After finding
c-supports, any assignments that are not m-NC∗

c are pruned using PruneVarc in
Algorithm 4.1. FindCSupport algorithm runs in O(md2) time, hence the overall
m-AC∗

c algorithm runs in O(mn2d3) time. Note that in practice, redundant
modeling is usually done on combining two models, i.e., m = 2. Thus, the 2-AC∗

c

algorithm is only a constant factor worse than the traditional AC* algorithm.

Theorem 4.6 Given a combined WCSP Pc with m sub-models, the m-AC∗
c

algorithm enforces m-channeling arc consistency (m-AC∗
c) on Pc and preserves

all solutions of Pc.

Proof 4.6 In each sub-model Pt, where 1 ≤ t ≤ m, of the combined model Pc,
the m-AC∗

c algorithm first forces c-supports for each assignment (xt,i′ 7→ a′) ∈
ϑt(xs,i) by projecting each ϑt(xs,i) over Cxt,i′

(a′). This ensures there must exist
an assignment (xt,j′ 7→ b′) ∈ ϑt(xs,i) that Cxt,i′ ,xt,j′

(a′, b′) = ⊥. ProjectUnary

enforces m-channeling node consistency m-NC∗
c on Pc if the variables lose its

consistencies when forcing supports for m-AC∗
c . Besides, PruneVarc checks if

C∅ ⊕
∑

t Cxt,j
(bt) < ⊤, where fs,t(xs,i 7→ a) = xt,j 7→ bt for 1 ≤ t ≤ m. It

removes all values from domains of variables that cannot be extended to solu-
tions. Besides, the m-AC∗

c algorithm has a queue Q for storing the variables
whose domains have been changed. Q is initialized to contain all the variables
in X because every variable has to obtain an initial support for its values with
respect to every binary constraints. The algorithm stops when Q becomes empty,
indicating every variables in Pc is m-AC∗

c. Thus, the m-AC∗
c algorithm enforces

m-channeling node consistency (m-AC∗
c) on Pc and preserves all solutions of

Pc. �

5 A Parameterized Local Consistency

In previous section, we proposed to refine the definitions of NC* and AC* for
combined models. Sometimes, one may want to use other local consistencies
to solve a problem, making this approach inapplicable. Thus, in this section,
we describe our second approach, which is applicable to any local consistency
Φ. A parameterized local consistency LB(m,Φ), which maintains the same local
consistency Φ on each sub-model, and its enforcement algorithm are proposed for
the suggested combined model. Theoretical comparisons are then made between
the proposed consistency and an existing approach for redundant modeling. The
semantics of the three approaches and the relation between the combined models
and their sub-models are also discussed.

20

5.1 Combining Mutually Redundant Models

Consider m mutually redundant models Pi = (k,Xi,Di, Ci) for 1 ≤ i ≤ m of
the same problem. Here, we proposed another approach to connect them. This
combined model has two major differences to the one used in Section 4.

First, the value k remains unchanged for each sub-model Pi in the combined
model Pc, instead of summing the values k of all Pi as the value k of Pc. Second,
we associate each sub-model Pi with a local zero-arity constraint Ci

∅ to denote
the local lower bound of costs in Pi. Now, enforcing NC* sends the costs of the
unary constraints in Pi to Ci

∅ as each Pi has its own Ci
∅. Thus, the global lower

bound of costs C∅ of the combined model Pc takes the maximum value of all
local lower bounds Ci

∅ of Pi (i.e., C∅ = maxi{Ci
∅}).

Based on the combined model, we denote a complete tuple in a sub-model
Pi as a semi-complete tuple θi. The cost of every semi-complete tuple θi in Pi

is the same and equals the cost of the complete tuple θ in Pc. (i.e., V(θi) =
V(θj) = V(θ), for 1 ≤ i, j ≤ m and i 6= j).

1 2 3

3 1

1

2

3

1

2

3

3
1

1

3

2

1
1

2
2

C1
∅

= 1, C2
∅

= 1, C∅ = 1, ⊤ = 4

x1 x2 x3

y1

y2

y3

xi 7→ j ⇔ yj 7→ i

for 1 ≤ i, j, ≤ 3

Figure 8: An example of a combined permutation WCSP model using second
approach

Example 5.1 Figure 8 shows the combined model Pc of P1 and P2 in Figure 2
using our second approach. In Pc, the valuation structure remains S(4) which is
the same as that of P1 and P2, and there are six variables {x1, x2, x3, y1, y2, y3}.
Each sub-model has its own local zero-arity constraints C1

∅ and C2
∅ . C∅ of Pc

takes the maximum of C1
∅ and C2

∅ (i.e., C∅ = max{C1
∅ , C2

∅} = max{1, 1} = 1).
�

5.2 Enforcing Consistency on Combined Models

Given a combined model Pc with m mutually redundant sub-models Pi. We can
enforce local consistency Φ on each sub-model Pi of Pc and use the bijective
channel function f(x 7→ a) = (y 7→ b), defined in Section 3.2, to transmit
instantiation and pruning information between Pi to ensure that the bijective
mapping between assignments of any two sub-models Pi and Pj for 1 ≤ i <
j ≤ m is maintained. Based on these ideas, we proposed a parameterized local
consistency LB(m,Φ) for combined models Pc with m mutually redundant sub-
models Pi. Note that Φ can be any local consistency that can be applied to a
single WCSP model.

21

Definition 5.1 Let Pc be a combined model of m mutually redundant sub-
models Ps for 1 ≤ s ≤ m, Φ be a local consistency, and fs,t be a bijective channel
function from assignments of Ps to assignments of Pt for all 1 ≤ s < t ≤ m.
Pc is said to be LB(m,Φ) if:

1. all sub-models Ps are Φ, and

2. for all assignments xs,i 7→ a of Ps, a ∈ Dxs,i
⇔ b ∈ Dxt,j

, where
fs,t(xs,i 7→ a) = xt,j 7→ b.

1 2 3

3

3

1 2

1
1

2

3

3

3

1
21

1 1 22

1 2 3

1

1
1

2

3

1
21

1 1

1 2 3

1

2

3 1

1→ →

x1x1x1 x2x2x2 x3x3x3
y1y1y1

y2y2y2

y3y3y3

C1
∅ = 1, ⊤ = 4C1

∅ = 1, ⊤ = 4 C1
∅ = 3, ⊤ = 4C2

∅ = 1, ⊤ = 4 C2
∅ = 2, ⊤ = 4 C2

∅ = 2, ⊤ = 4

(a) P
c (b) P

c after LB(2,NC*) (c) P
c after LB(2,AC*)

Figure 9: Enforcing node and arc consistencies on WCSPs P1, P2, and Pc

Example 5.2 Consider the combined WCSP model Pc in Figure 9(a). It is not
LB(2,NC*) since both sub-models P1 and P2 are not NC* (i.e., C1

∅ ⊕ Cx1
(1) =

1⊕ 3 = ⊤, C2
∅ ⊕Cy1

(1) = 1⊕ 3 = ⊤.) After enforcing NC* on each sub-model,
1 ∈ x1, 1 ∈ y1, and 2 ∈ y3 are pruned. By sharing the pruning information
between sub-models, 3 ∈ x2 is also pruned. Figure 9(b) gives an equivalent
combined WCSP model Pc, which is now LB(2,NC*). However, it is still not
LB(2,AC*) since sub-models P1 is not AC*. Enforcing AC* on each sub-model
and sharing the pruning information between sub-models yield an equivalent
combined WCSP model Pc in Figure 9(c), which is now LB(2,AC*). �

Algorithm 5.1: Algorithms for enforcing LB(m,Φ)

Function LB(m, Φ,Pc)1

repeat2

foreach sub-model Ps of Pc do3

enforce Φ on Ps;4

foreach pair of sub-models Ps,Pt of Pc (s 6= t) do5

foreach xs,i ∈ Xs do6

foreach a ∈ Dxs,i
do7

if b /∈ Dxt,j
where xt,j 7→ b = fs,t(xs,i 7→ a) then8

remove a from Dxs,i
;9

until Pc remains unchanged ;10

LB(m,Φ) can be enforced using a simple algorithm shown in Algorithm 5.1.
We first enforce Φ on each sub-model (lines 3–4). This ensures that all sub-
models Ps satisfy the Φ property (condition 1). For condition 2, if there is a

22

value a ∈ Dxs,i
being pruned in one sub-model Ps, the corresponding value

b ∈ Dxt,j
obtained via the channel function will also be pruned in other sub-

models Pt for 1 ≤ t ≤ m and s 6= t (lines 5–9). The process repeats until there
are no more changes in any sub-models, and Pc is then LB(m,Φ). Since each
sub-model Ps has its local lower bound Cs

∅ , unary constraints are projected
towards its own Cs

∅ when enforcing NC*. For example, unary constraints in
P1 are projected to C1

∅ and those in P2 are projected to C2
∅ . During constraint

propagation, when the global lower bound C∅ of the combined model Pc reaches
the global upper bound ⊤ (i.e., C∅ = maxs{Cs

∅} = ⊤), this means that there
exists at least one sub-model Ps in which its local lower bound Cs

∅ is increased to
⊤, and we cannot extend a tuple of this sub-model to obtain a solution. Since all
the sub-models are mutually redundant to each other, the other sub-models will
eventually lead to failure. Therefore, a backtrack is triggered in the search. The
following theorem states that the algorithm in Algorithm 5.1 enforces LB(m,Φ).

Theorem 5.1 Let Pc be a combined model of m WCSP sub-models Ps for 1 ≤
s ≤ m, and Φ be any local consistency. The LB(m, Φ,Pc) algorithm transforms
Pc into an equivalent combined model Pc′.

Proof 5.1 When a combined model Pc is passed to the LB(m, Φ,Pc) algorithm,
enforcing Φ on each sub-model Pi transforms Pi to an equivalent sub-model P ′

i.
Furthermore, the mutual redundancy of two sub-models Ps and Pt guarantees
that if value b is not in Dxt,j

, then value a must not be in the domain of xs,i,
where xt,j 7→ b = fs,t(xs,i 7→ a). Thus, removing value a from Dxs,i

in line
9 will not remove any values that belong to a solution of the combined model
Pc. Hence, upon termination of the algorithm, the transformed model Pc′ is
equivalent to the input model Pc. �

Furthermore, LB(m,Φ) is a stronger notion of consistency than Φ.

Theorem 5.2 Let Pc be a combined model of m sub-models Ps for 1 ≤ s ≤ m.
Enforcing LB(m,Φ) on Pc is strictly stronger than enforcing Φ on any Ps.

Proof 5.2 By definition 5.1, Pc is LB(m,Φ) if all sub-models Ps for 1 ≤ s ≤ m
are Φ. This means that LB(m,Φ) is stronger than Φ. To show strictness,
consider the models P1 and P2 in Figures 4(a) and 4(c). The equivalent models
in Figures 4(b) and 4(d) are NC*, but the combined model of these two sub-
models is not LB(2,NC*) because 2 /∈ Dy3

and 3 ∈ Dx2
. Similarly, the models

P1 and P2 in Figures 6(b) and 6(d) are AC*, but the combined model of these
two sub-models is not LB(2,AC*) because 1 /∈ Dx3

and 3 ∈ Dy1
The same result

can be applied to other local consistencies Φ. �

Note that unlike classical CSPs, enforcing AC* on a WCSP can result in
more than one possible outcome, depending on the order of the domain values
to be pruned and the constraints to be handled in an algorithm [28]. Therefore,
although we have the “strictly stronger” notion, when comparing a LB(m,AC*)
combined model and a AC* sub-model, we cannot guarantee that the domain

23

of a variable in the combined model must be a subset of that in the single sub-
model. Nonetheless, such theoretical comparison is still worthwhile as it shows
that enforcing one local consistency can generally prune more domain values
than enforcing another.

5.3 Theoretical Comparison Between the Two Approaches

Given m mutually redundant WCSPs Ps = (ks,Xs,DX s, Cs) for 1 ≤ s ≤ m. In
our first approach, the combined model Pc takes the sum of all values ks of its
sub-models Ps and has a top value which is the sum of those in Ps. However,
in our second approach, the combined model Pc′ takes the same top value as
each sub-model has. For example, Figure 4(g) gives a combined model Pc of
two mutually redundant models P1 and P2 in Figures 4(a) and 4(c) respectively,
with C∅ = 1⊕ 1 = 2 and ⊤ = 4⊕ 4 = 8. Besides, Pc has only one lower bound
C∅; there are no individual lower bound for sub-models. Any cost that is sent
from the unary constraints in any sub-model all goes to C∅. Since C∅ and ⊤
are shared among sub-models in Pc, the local consistency has to be refined for
combined models. Based on the combined model, we proposed new notions of
node consistency m-NC∗

c and arc consistency m-AC∗
c to transmit pruning and

cost movement information between sub-models. In our second approach, sub-
models have their own local lower bounds; pruning information are transmitted
via the channel function. Thus, modifications of local consistencies are not
required.

When enforcing m-NC∗
c and m-AC∗

c , not only the instantiation and pruning
information but also the cost projection information is transmitted between
sub-models in the combined model. Transmitting cost projection information
can further discover and remove more node inconsistent values or increase the
global lower bound. Thus, enforcing 2-NC∗

c and 2-AC∗
c achieves more constraint

propagation than enforcing LB(2,NC*) and LB(2,AC*) respectively.

Theorem 5.3 Let Pc and Pc′ be combined models of m mutually redundant
sub-models Ps for 1 ≤ s ≤ m formed using our first and second approaches
respectively. Enforcing m-NC∗

c (resp. m-AC∗
c) on Pc is strictly stronger than

enforcing LB(m,NC*) (resp. LB(m,AC*)) on Pc′ .

Proof 5.3 Without loss of generality, we prove the case m = 2. The proof can
be generalized to different numbers of sub-models.

Let Pc and Pc′ be the combined models, formed by our first and second
approach respectively, consisting of two sub-models, P1 = (k,X ,DX , CX) and
P2 = (k,Y,DY , CY). Suppose Pc is 2-NC∗

c but Pc′ is not LB(2,NC*). In par-
ticular, we assume xi 7→ j and yj 7→ i are not LB(2,NC*). First, we prove
2-NC∗

c is as strong as LB(2,NC*). We have to consider two cases: (1) By the
definition of 2-NC∗

c , the assignments xi 7→ j and yj 7→ i cannot be removed

if C∅ ⊕ Cxi
(j) ⊕ Cyj

(i) < 2k. However, the assumption states that Pc′ is not
LB(2,NC*) and there exists xi 7→ j and yj 7→ i such that C1

∅ ⊕ Cxi
(j) = k or

C2
∅ ⊕Cyj

(i) = k (i.e., C1
∅ ⊕Cxi

(j)⊕Cyj
(i) = 2k). This leads to a contradiction.

24

(2) By the definition of 2-NC∗
c, a variable xi has an assignment xi 7→ a such

that Cxi
(a) = ⊥. This contradicts the assumption that the unary costs of the

assignments of variable xi are all greater than ⊥.
To show strictness, consider the problem in Figure 9. Figure 9(b) gives the

combined WCSP Pc′ which is LB(2,NC*). However, its corresponding combined
WCSP Pc is not 2-NC∗

c because the global lower bound can be further increased
from 3 (i.e., C1

∅ ⊕ C2
∅ = 1 ⊕ 2 = 3) to 4 by subtracting unary cost 1 from both

Cx2
(1) and Cx3

(1). Similarly, Figure 9(c) gives the combined WCSP Pc′ which
is LB(2,AC*). However, its corresponding combined WCSP Pc is not 2-AC∗

c

because the global lower bound can be further increased from 5 (i.e., C1
∅ ⊕C2

∅ =
3⊕ 2 = 5) to 6 by subtracting unary cost 1 from both Cy2

(1) and Cy3
(1). �

NC*

m-NC∗

c

AC*

m-AC∗

c

DAC*FDAC*

EAC*

EDAC*

LB(m,NC*)LB(m,AC*)LB(m,DAC*)LB(m,FDAC*)LB(m,EDAC*)

Figure 10: Relation between different local consistencies for WCSP

The relationship between different local consistencies for WCSP, including
the proposed ones (placed inside the dashed rectangle) for combined WCSP
models, is shown in Figure 10. An arrow Φ1 ← Φ2 indicates that Φ1 is strictly
stronger than Φ2. There is no path from one local consistency to another if
they are incomparable in terms of propagation strength. For the relationships
between m-NC∗

c (resp. m-AC∗
c) and other consistencies like FDAC* and EDAC*,

further studies are needed on their propagation behaviors.

5.4 On Semantics of the Approaches

In this section, we explain the semantics of the naive, the first, and the second
approaches and the relation between the combined models and their sub-models.

In the naive and the first approaches, a combined model is formed by con-
necting the sub-models using channeling constraints with a new k value and
global lower bound C∅. We can always find a bijective mapping between the
solutions in the original sub-models and the combined model.

Theorem 5.4 Let Pc be a combined model of m WCSP sub-models Pi for
1 ≤ i ≤ m using the naive approach (resp. the first approach). For each complete
assignment θi of the original Pi and a corresponding complete assignment θ of
Pc, θi is a solution in Pi if and only if θ is a solution in Pc. The assignment
θi equals the projection of θ over var(θi), and V(θ) = m · V(θi).

25

Proof 5.4 Without loss of generality, we give the proof for the case m = 2 and
permutation WCSPs. The proof can be generalized to other classes of WCSPs.
Let Pc be a combined model consisting of two sub-models P1 = (k1,X ,DX , CX)
and P2 = (k2,Y,DY , CY).

(⇒) Suppose θ1 is a solution in P1, θ2 is a solution in P2 via the channeling
constraints, and the corresponding θ is not a solution in Pc. According to the
naive approach (resp. the first approach), the variables in Pc are the union of
those in P1 and P2 (i.e., X∪Y). Thus, θ = θ1∪θ2. This leads to a contradiction.

(⇐) Suppose θ is a solution in Pc and the corresponding θ1 is not a solution
P1. According to the naive approach (resp. the first approach), the variables in
Pc are the union of those in P1 and P2 (i.e., X ∪Y). Thus, θ1 ∈ θ. This leads
to a contradiction.

Since both cases cannot be true, hence θi is a solution in Pi if and only if θ
is a solution in Pc.

According to the naive approach (resp. the first approach), the variables in
Pc are the union of those in P1 and P2 (i.e., X ∪ Y) and θ1, θ2 ∈ θ. Thus, we
can obtain θ1 and θ2 simply by the projection of θ over X and Y respectively.
P1 and P2 are redundant models, they have the same cost distribution be-

tween every pair of equivalent solutions (i.e., V(θ1) = V(θ2)). In Pc, all the
unary costs are projected over the same C∅ of Pc, the cost of the solution V(θ)
of Pc is thus 2 times the costs of solutions V(θi) of any Pi.

Hence the results. �

In the second approach, each sub-model Pi has their own Ci
∅ to receive the

projection of its unary costs. Thus, the combined model Pc is a new kind of
WCSP. It has m local lower bounds Ci

∅ of Pi, and one global lower bound
of costs C∅ of Pc which takes the maximum value of all Ci

∅. Each sub-model
Pi maintains its own local consistencies but share the assignment and pruning
information among Pi.

Theorem 5.5 In the second approach, Pc is a new kind of combined WCSP
model of m sub-models Pi for 1 ≤ i ≤ m in which every sub-model has its own
local lower bound Ci

∅ and the global lower bound of Pc, C∅ = maxi{Ci
∅}. For

each complete assignment θi of the original Pi and a corresponding complete
assignment θ of Pc, θi is a solution in Pi if and only if θ is a solution in Pc,
and V(θ) = V(θi).

Proof 5.5 Unlike the naive and first approach, the unary costs of Pi are pro-
jected over their own local lower bound Ci

∅ and the global lower bound is de-
termined by maximizing all Ci

∅ (i.e., C∅ = maxi{Ci
∅}). Thus, the cost of the

corresponding solution V(θi) for every sub-models Pi are the same.
Similar to the proof of Theorem 5.4, there is a bijective mapping between the

solutions of the original sub-model Pi and the combined model Pc.
By the definition of the combined model Pc using the second approach, the

cost of every θi in Pi is the same and equals the cost of θ in Pc (i.e., V(θ) =
V(θi)).

Hence the results. �

26

6 Experiments

To evaluate the effectiveness and efficiency of the combined models, we imple-
ment our two proposed approaches in ToolBar [4], a branch and bound WCSP
solver maintaining local consistencies at each search tree node. To strike a bal-
ance between the amount of information exchange and the overhead of extra
models, we use only two sub-models in a combined model. Four benchmarks,
knight’s tour problem, Langford’s problem, Latin square problem, and n-queens
problem, which contain mainly binary constraints, are modeled as WCSPs to
test our approaches. Since naively enforcing AC* on combined models is not
efficient (as shown in Table 1), comparisons are made directly among AC* [26],
FDAC* [27], and EDAC* [11] on a single model P , 2-AC∗

c on a combined model
Pc proposed in Section 4, and LB(2,AC*), LB(2,FDAC*), and LB(2,EDAC*)
on a combined model Pc proposed in Section 5. All combined models Pc con-
tain a single model P and its induced model P ′, generated automatically using
generalized model induction described in Section 3, as sub-models.

The experiments are run on a Sun Blade 2500 (2 × 1.6GHz US-IIIi) work-
station with 2GB memory. We use the dom/deg variable ordering heuristic
which chooses the variable with the smallest ratio of domain size to future de-
gree. Values are chosen using the smallest-cost-first heuristic on P and the
smallest-cost-first and the dual-smallest-domain-first [5] heuristics on Pc. The
dual-smallest-domain-first value ordering heuristic chooses the value whose cor-
responding variable in the other sub-model has the smallest domain size. The
initial ⊤ value provided to the solver is n2, where n is the number of variables
in a model. Ten random models are generated for each soft instance and we
report the average number of fails (i.e., the number of backtracks occurred in
solving a model) and CPU time in seconds to find the first optimal solution
for each instance. In the tables, the first column shows the problem instances;
those marked with “*” are satisfiable and have a ⊥ optimal cost. When solving
these instances, once such solution is found, we need not prove its optimality
and can terminate immediately. This is different from the case where the op-
timal solution has a non-⊥ cost, in which we still need to continue search to
prove optimality. The subsequent columns show the results of enforcing various
local consistencies on either P or Pc. The best number of fails and CPU time
among the results for each instance are highlighted in bold. A cell labeled with
“-” denotes a timeout after two hours.

In the following, we briefly describe the four benchmark problems. Exper-
imental results are given and compared between using existing algorithms and
our two proposed approaches. Since WCSPs can degenerate to classical CSPs
when the cost is either 0 or 1, we want to verify if our work on redundant mod-
eling can benefit the same as shown by Cheng et al. [5] on classical CSPs. Thus,
we report the results on classical instances as well for each benchmark.

27

Table 2: Experimental results on solving classical knight’s tour problem using
smallest-cost-first value ordering heuristic on Pc

AC* FDAC* EDAC* 2-AC∗
c LB(2,AC*) LB(2,FDAC*) LB(2,EDAC*)

(m, n) fail time fail time fail time fail time fail time fail time fail time
(3,5) 672 0.07 672 0.07 672 0.10 210 0.09 210 0.08 210 0.06 210 0.07
(3,6) 4416 0.45 4416 0.53 4416 0.70 816 0.36 816 0.35 816 0.29 816 0.32
(3,7)* 545 0.06 545 0.07 545 0.10 158 0.08 158 0.08 158 0.08 158 0.08
(3,8)* 2657 0.33 2657 0.38 2657 0.50 732 0.34 732 0.33 732 0.29 732 0.33
(3,9)* 11535 1.66 11535 1.94 11535 2.61 2005 1.27 2005 1.21 2005 1.06 2005 1.20
(3,10)* 72183 11.79 72183 13.74 72183 18.72 10628 8.38 10628 7.85 10628 6.79 10628 7.59
(3,11)* 13225 2.17 13225 2.46 13225 3.39 1878 1.78 1878 1.70 1878 1.32 1878 1.54
(3,12)* 2349445 467.80 2349445 550.14 2349445 743.09 212657 268.81 212657 242.45 212657 203.28 212657 236.25
(3,13)* 766731 172.10 766731 202.52 766731 274.80 49684 96.56 49684 81.07 49684 70.56 49684 73.12
(3,14)* - - - - - - - - 3679309 7056.15 3679309 5739.15 3679309 6456.26
(3,15)* 1498214 367.45 1498214 426.99 1498214 588.97 58889 143.55 58889 136.88 58889 109.21 58889 111.14
(4,5)* 336 0.03 336 0.03 336 0.04 77 0.04 77 0.04 77 0.03 77 0.04
(4,6)* 7914 0.68 7914 0.76 7914 1.04 1415 0.55 1415 0.54 1415 0.46 1415 0.50
(4,7)* 40344 4.19 40344 4.62 40344 6.55 5526 2.67 5526 2.53 5526 2.05 5526 2.29
(4,8)* 1183823 145.18 1183823 161.48 1183823 228.35 76661 52.06 76661 49.32 76661 39.91 76661 43.68
(4,9)* 462506 67.28 462506 74.85 462506 105.82 33575 30.90 33575 27.64 33575 22.99 33575 25.21
(4,10)* 29317520 5166.23 29317520 5769.60 - - 971162 1455.19 971162 1266.22 971162 1026.10 971162 1095.14

6.1 Knight’s Tour Problem

The knight’s tour problem is to find a sequence of moves by a knight on an m×n
chessboard so that each square on the chessboard is traversed exactly once. We
model this problem into a WCSP P using mn variables X = {x1, . . . , xmn}.
Each variable xi denotes a square on the chessboard and the domains of the
variables {1, . . . , mn} denote the order of a move sequence. There are con-
straints to ensure that the knight takes a valid move (i.e., moves either one
square horizontally and two squares vertically, or two squares horizontally and
one square vertically). Figure 11 gives a solution of the (3,4) instance of the
knight’s tour problem. The number in each square on the chessboard refers to
the sequence of moves. Since the knight’s tour problem has many solutions, we
soften the problem by assigning a random cost to each allowed binary tuple for
soft instances. The random cost is assigned from ⊥ to mn inclusively. In this
problem, the induced model P ′ is a better model than P . Therefore, we use P ′

as a basic model instead of P .

1

2

3

4

5

6

7

8

9

10

11

12

m
n

Figure 11: A solution of the (3,4) instance of the knight’s tour problem

Tables 2, 3, 4, and 5 show the results of classical and soft knight’s tour
problem using different value ordering heuristics. For both classical and soft in-
stances, enforcing local consistencies on Pc (columns 5–8) achieves smaller num-
ber of fails and shorter runtime than those on P (colums 2–4). For the instance
(3, 14), using AC*, FDAC*, EDAC*, and even 2-AC∗

c cannot solve the prob-
lem before timeout, but using LB(2,AC*), LB(2,FDAC*), and LB(2,EDAC*)
can. In all four tables, LB(2,FDAC*) always achieves the fastest runtime among
the local consistencies on Pc. In classical cases (Tables 2 and 4), LB(2,AC*),

28

Table 3: Experimental results on solving soft knight’s tour problem using
smallest-cost-first value ordering heuristic on P

AC* FDAC* EDAC* 2-AC∗
c LB(2,AC*) LB(2,FDAC*) LB(2,EDAC*)

(m, n) fail time fail time fail time fail time fail time fail time fail time
(3,5) 685 0.08 672 0.11 683 0.19 210 0.09 210 0.09 210 0.09 210 0.12
(3,6) 4482 0.52 4418 0.81 4463 1.46 816 0.39 816 0.37 816 0.43 816 0.62
(3,7) 21005 2.94 13629 3.85 13785 5.74 4530 2.11 4716 2.09 3551 2.41 3512 3.47
(3,8) 112979 19.93 61182 24.30 60967 34.70 21120 11.41 22715 11.40 14118 12.45 13821 17.78
(3,9) 679347 140.38 341322 166.53 339664 238.65 112080 72.27 121708 72.39 73618 79.93 72429 118.45
(3,10) 3822955 952.94 1720858 1061.83 1697349 1505.17 507308 433.16 554289 424.66 298148 436.09 293289 651.64
(3,11) - - - - - - 2310423 2587.76 2586888 2580.80 1234370 2458.09 1214243 3607.97
(4,5) 45516 4.86 27468 5.85 27374 8.72 5522 1.97 5701 1.94 4174 2.14 4116 3.06
(4,6) 863270 116.09 415083 129.63 407198 187.90 97222 42.15 103934 42.59 61639 43.26 60354 63.13
(4,7) 12899196 2335.48 5005880 2339.55 4831495 3248.17 1339779 811.10 1464866 813.16 719474 745.64 702176 1089.04

Table 4: Experimental results on solving classical knight’s tour problem using
dual-smallest-domain-first value ordering heuristic on Pc

AC* FDAC* EDAC* 2-AC∗
c LB(2,AC*) LB(2,FDAC*) LB(2,EDAC*)

(m, n) fail time fail time fail time fail time fail time fail time fail time
(3,5) 672 0.07 672 0.07 672 0.10 210 0.08 210 0.08 210 0.06 210 0.08
(3,6) 4416 0.45 4416 0.53 4416 0.70 816 0.36 816 0.34 816 0.29 816 0.33
(3,7)* 545 0.06 545 0.07 545 0.10 158 0.08 158 0.08 158 0.08 158 0.08
(3,8)* 2657 0.33 2657 0.38 2657 0.50 732 0.35 732 0.33 732 0.29 732 0.33
(3,9)* 11535 1.66 11535 1.94 11535 2.61 2005 1.29 2005 1.21 2005 1.07 2005 1.20
(3,10)* 72183 11.79 72183 13.74 72183 18.72 10628 8.25 10628 7.71 10628 6.72 10628 7.49
(3,11)* 13225 2.17 13225 2.46 13225 3.39 1878 1.79 1878 1.60 1878 1.31 1878 1.48
(3,12)* 2349445 467.80 2349445 550.14 2349445 743.09 212657 269.15 212657 240.85 212657 201.84 212657 228.67
(3,13)* 766731 172.10 766731 202.52 766731 274.80 49684 94.08 49684 83.70 49684 68.33 49684 74.73
(3,14)* - - - - - - - - 3679309 6816.84 3679309 5550.03 3679309 6249.42
(3,15)* 1498214 367.45 1498214 426.99 1498214 588.97 58889 147.85 58889 134.74 58889 107.39 58889 118.52
(4,5)* 336 0.03 336 0.03 336 0.04 77 0.04 77 0.03 77 0.04 77 0.04
(4,6)* 7914 0.68 7914 0.76 7914 1.04 1415 0.56 1415 0.53 1415 0.46 1415 0.51
(4,7)* 40344 4.19 40344 4.62 40344 6.55 5526 2.70 5526 2.51 5526 2.07 5526 2.30
(4,8)* 1183823 145.18 1183823 161.48 1183823 228.35 76661 53.58 76661 49.00 76661 39.74 76661 43.63
(4,9)* 462506 67.28 462506 74.85 462506 105.82 33575 31.86 33575 28.07 33575 23.35 33575 25.66
(4,10)* 29317520 5166.23 29317520 5769.60 - - 971162 1469.12 971162 1316.55 971162 1034.83 971162 1144.33

Table 5: Experimental results on solving soft knight’s tour problem dual-
smallest-domain-first value ordering heuristic on Pc

AC* FDAC* EDAC* 2-AC∗
c LB(2,AC*) LB(2,FDAC*) LB(2,EDAC*)

(m, n) fail time fail time fail time fail time fail time fail time fail time
(3,5) 685 0.08 672 0.11 683 0.19 210 0.10 210 0.09 210 0.09 210 0.12
(3,6) 4482 0.52 4418 0.81 4463 1.46 816 0.39 816 0.37 816 0.43 816 0.62
(3,7) 21005 2.94 13629 3.85 13785 5.74 4576 2.13 4750 2.09 3571 2.42 3536 3.49
(3,8) 112979 19.93 61182 24.30 60967 34.70 21452 11.46 22971 11.48 14320 12.57 14022 17.96
(3,9) 679347 140.38 341322 166.53 339664 238.65 113032 72.89 121562 72.20 73220 79.67 71996 118.24
(3,10) 3822955 952.94 1720858 1061.83 1697349 1505.17 511042 431.53 557168 423.39 299257 440.19 294434 651.79
(3,11) - - - - - - 2319839 2587.78 2590939 2579.96 1236203 2432.43 1216082 3579.21
(4,5) 45516 4.86 27468 5.85 27374 8.72 5515 1.96 5719 1.94 4165 2.14 4111 3.05
(4,6) 863270 116.09 415083 129.63 407198 187.90 98151 42.53 104256 42.71 61805 43.33 60522 63.25
(4,7) 12899196 2335.48 5005880 2339.55 4831495 3248.17 1344421 815.54 1468226 814.30 719927 742.79 702569 1085.02

LB(2,FDAC*), LB(2,EDAC*), and 2-AC∗
c on Pc have the same number of fails

because EDAC* and FDAC* both degenerate to AC* in classical cases. In
soft cases (Tables 3 and 5), LB(2,AC*) and 2-AC∗

c have similar runtime but
2-AC∗

c has a slightly smaller number of fails because of its stronger propagation
strength by Theorem 5.3. LB(2,EDAC*) achieves the smallest number of fails
in most instances, while LB(2,FDAC*) has the shortest runtime in large and
difficult instances.

6.2 Langford’s Problem

Recall the Langford’s problem (prob024 in CSPLib [19]), denoted as (m, n)-
Langford’s problem, which is to find an m×n digit sequence consisting of digits
1 to n, each occurring m times, such that any two consecutive occurrences

29

Table 6: Experimental results on solving classical Langford’s problem using
smallest-cost-first value ordering heuristic on Pc

AC* FDAC* EDAC* 2-AC∗
c LB(2,AC*) LB(2,FDAC*) LB(2,EDAC*)

(m, n) fail time fail time fail time fail time fail time fail time fail time
(2,5) 22 0.01 22 0.01 22 0.00 13 0.00 13 0.01 13 0.01 13 0.01
(2,6) 80 0.01 80 0.01 80 0.01 57 0.01 57 0.02 57 0.01 57 0.02
(2,7)* 1 0.01 1 0.01 1 0.00 2 0.01 2 0.00 2 0.00 2 0.01
(2,8)* 24 0.01 24 0.00 24 0.01 0 0.01 0 0.01 0 0.01 0 0.01
(2,9) 8576 0.85 8576 0.81 8576 1.00 4147 0.91 4147 0.93 4147 1.06 4147 1.20
(2,10) 48048 5.05 48048 4.81 48048 5.98 21910 5.16 21910 5.30 21910 6.00 21910 6.79
(2,11)* 11 0.01 11 0.01 11 0.01 3 0.02 3 0.01 3 0.02 3 0.03
(2,12)* 6 0.02 6 0.01 6 0.01 0 0.02 0 0.02 0 0.03 0 0.03
(2,13) 14730844 1768.02 14730844 1689.34 14730844 2153.56 5605943 1536.87 5605943 1584.62 5605943 1785.55 5605943 2032.75
(3,5) 6 0.00 6 0.01 6 0.00 3 0.00 3 0.00 3 0.01 3 0.00

(3,6) 20 0.01 20 0.01 20 0.01 12 0.02 12 0.02 12 0.02 12 0.02
(3,7) 62 0.05 62 0.03 62 0.04 29 0.05 29 0.04 29 0.04 29 0.05
(3,8) 238 0.13 238 0.10 238 0.13 89 0.15 89 0.13 89 0.14 89 0.17
(3,9)* 192 0.12 192 0.09 192 0.12 41 0.10 41 0.09 41 0.11 41 0.13
(3,10)* 569 0.40 569 0.30 569 0.39 114 0.27 114 0.25 114 0.30 114 0.34
(3,11) 14512 10.08 14512 7.59 14512 10.00 2866 7.15 2866 5.98 2866 6.88 2866 7.78
(3,12) 62016 45.72 62016 34.87 62016 47.56 11729 29.91 11729 26.89 11729 30.50 11729 34.30
(3,13) 300800 247.89 300800 190.08 300800 256.89 43268 133.15 43268 115.67 43268 134.06 43268 149.87
(3,14) 1368322 1203.69 1368322 926.63 1368322 1231.83 182304 628.63 182304 542.30 182304 621.15 182304 706.85
(3,15) 7515260 6932.18 7515260 5318.65 - - 814604 3311.54 814604 2770.87 814604 3208.12 814604 3604.11

Table 7: Experimental results on solving soft Langford’s problem using smallest-
cost-first value ordering heuristic on Pc

AC* FDAC* EDAC* 2-AC∗
c LB(2,AC*) LB(2,FDAC*) LB(2,EDAC*)

(m, n) fail time fail time fail time fail time fail time fail time fail time
(2,5) 75 0.00 73 0.01 72 0.00 56 0.01 57 0.01 53 0.01 53 0.01
(2,6) 181 0.01 178 0.01 177 0.01 130 0.02 132 0.02 125 0.02 125 0.02
(2,7)* 95 0.01 84 0.01 85 0.01 89 0.01 99 0.02 88 0.02 86 0.02
(2,8)* 164 0.01 149 0.02 151 0.02 137 0.03 146 0.03 134 0.03 133 0.04
(2,9) 10850 1.09 10822 1.06 10823 1.06 4970 1.14 4979 1.17 4962 1.32 4962 1.34
(2,10) 59683 6.43 59659 6.17 59660 6.17 25165 6.26 25205 6.42 25195 7.26 25191 7.27
(2,11)* 608 0.07 557 0.07 557 0.09 384 0.11 412 0.11 381 0.13 374 0.14
(2,12)* 783 0.10 702 0.10 700 0.12 557 0.18 611 0.19 573 0.22 566 0.25
(2,13) 18155977 2226.49 18155834 2139.47 18155832 2158.92 6325529 1798.40 6325636 1850.45 6325559 2085.56 6325540 2084.30
(3,5) 368 0.04 286 0.04 279 0.05 265 0.07 327 0.08 258 0.09 257 0.11
(3,6) 900 0.14 683 0.12 670 0.15 563 0.20 672 0.22 539 0.26 526 0.30
(3,7) 2242 0.51 1658 0.42 1647 0.52 1455 0.73 1743 0.81 1384 0.91 1355 1.05
(3,8) 2744 0.82 1985 0.62 1975 0.76 2275 1.33 3013 1.59 2141 1.68 2107 1.93
(3,9)* 2603 0.52 1163 0.31 1360 0.44 3680 2.13 6173 3.37 4259 3.66 4180 4.11
(3,10)* 6834 1.79 4074 1.35 3964 1.62 8279 5.85 10317 7.15 7319 7.75 7183 8.59
(3,11) 76579 44.00 69117 34.23 68996 42.54 27916 39.69 33633 44.11 30053 50.58 29671 54.67
(3,12) 274564 180.14 253984 138.45 253471 173.40 80282 141.02 89105 140.19 75818 159.09 75354 171.50
(3,13) 946260 734.88 920950 576.89 920173 728.34 173636 420.16 220283 451.17 190016 508.92 189261 547.18
(3,14) 4388875 3703.48 4317762 2891.87 4317129 3639.71 568250 1724.69 690449 1768.77 648979 2060.19 646147 2238.74

of digit i’s are separated by i other digits. In the classical Langford’s prob-
lem, many instances are over-constrained. For example, only the (2, 7), (2, 8),
(2, 11), (2, 12), (3, 9), and (3, 10) instances are satisfiable among (2, n), where
5 ≤ n ≤ 13, and (3, n), where 5 ≤ n ≤ 15. Therefore, we soften the prob-
lem, as described in Section 4.1, by allowing violation of constraints (except
the all-different constraint) at random costs uniformly from 1 to ⊤ inclusively.
After softening the constraints, there can be more solutions for a model and an
unsatisfiable model can become satisfiable.

Tables 6, 7, 8, and 9 show the results on various (m, n) instances of classical
and soft Langford’s problem using different value ordering heuristics. Among
all local consistencies, solving a combined model Pc achieves smaller number
of fails in most instances, not to mention the preliminary results in Table 1.
This shows that 2-AC∗

c , LB(2,AC*), LB(2,FDAC*), and LB(2,EDAC*) do far
more prunings than AC*, FDAC*, and EDAC*. Thus, more search space can
be reduced, especially for the larger and more difficult instances, which require
larger amount of search efforts to either prove unsatisfiability or find an optimal
solution. We improve the number of fails and runtime of, say, (3, 14) instance

30

Table 8: Experimental results on solving classical Langford’s problem using
dual-smallest-domain-first value ordering heuristic on Pc

AC* FDAC* EDAC* 2-AC∗
c LB(2,AC*) LB(2,FDAC*) LB(2,EDAC*)

(m, n) fail time fail time fail time fail time fail time fail time fail time
(2,5) 22 0.01 22 0.01 22 0.00 13 0.00 13 0.01 13 0.01 13 0.01
(2,6) 80 0.01 80 0.01 80 0.01 57 0.01 57 0.01 57 0.01 57 0.02
(2,7)* 1 0.01 1 0.01 1 0.00 4 0.01 4 0.01 4 0.01 4 0.01
(2,8)* 24 0.01 24 0.00 24 0.01 6 0.01 6 0.01 6 0.01 6 0.01
(2,9) 8576 0.85 8576 0.81 8576 1.00 4147 0.90 4147 0.92 4147 1.06 4147 1.20
(2,10) 48048 5.05 48048 4.81 48048 5.98 21910 5.16 21910 5.26 21910 5.95 21910 6.76
(2,11)* 11 0.01 11 0.01 11 0.01 1 0.02 1 0.01 1 0.03 1 0.02
(2,12)* 6 0.02 6 0.01 6 0.01 15 0.03 15 0.03 15 0.04 15 0.04
(2,13) 14730844 1768.02 14730844 1689.34 14730844 2153.56 5605943 1527.87 5605943 1578.14 5605943 1779.36 5605943 2024.38
(3,5) 6 0.00 6 0.01 6 0.00 3 0.00 3 0.01 3 0.01 3 0.01
(3,6) 20 0.01 20 0.01 20 0.01 12 0.02 12 0.02 12 0.02 12 0.02
(3,7) 62 0.05 62 0.03 62 0.04 29 0.05 29 0.04 29 0.05 29 0.05
(3,8) 238 0.13 238 0.10 238 0.13 89 0.14 89 0.13 89 0.15 89 0.16
(3,9)* 192 0.12 192 0.09 192 0.12 47 0.12 47 0.11 47 0.12 47 0.13
(3,10)* 569 0.40 569 0.30 569 0.39 90 0.25 90 0.22 90 0.25 90 0.29
(3,11) 14512 10.08 14512 7.59 14512 10.00 2866 7.14 2866 6.24 2866 7.09 2866 7.85
(3,12) 62016 45.72 62016 34.87 62016 47.56 11729 29.85 11729 27.33 11729 30.84 11729 34.92
(3,13) 300800 247.89 300800 190.08 300800 256.89 43268 141.13 43268 116.60 43268 133.51 43268 150.52
(3,14) 1368322 1203.69 1368322 926.63 1368322 1231.83 182304 641.70 182304 548.96 182304 621.25 182304 709.33
(3,15) 7515260 6932.18 7515260 5318.65 - - 814604 3452.07 814604 2772.46 814604 3186.62 814604 3668.44

Table 9: Experimental results on solving soft Langford’s problem using dual-
smallest-domain-first value ordering heuristic on Pc

AC* FDAC* EDAC* 2-AC∗
c LB(2,AC*) LB(2,FDAC*) LB(2,EDAC*)

(m, n) fail time fail time fail time fail time fail time fail time fail time
(2,5) 75 0.00 73 0.01 72 0.00 63 0.01 64 0.01 58 0.01 59 0.01
(2,6) 181 0.01 178 0.01 177 0.01 151 0.02 151 0.02 145 0.03 144 0.03
(2,7)* 95 0.01 84 0.01 85 0.01 186 0.03 194 0.03 173 0.04 172 0.04
(2,8)* 164 0.01 149 0.02 151 0.02 428 0.08 435 0.09 407 0.09 404 0.10
(2,9) 10850 1.09 10822 1.06 10823 1.06 5234 1.19 5248 1.22 5179 1.37 5176 1.41
(2,10) 59683 6.43 59659 6.17 59660 6.17 26045 6.46 26063 6.62 25946 7.48 25943 7.50
(2,11)* 608 0.07 557 0.07 557 0.09 20148 5.20 20175 5.28 19955 5.93 19978 5.97
(2,12)* 783 0.10 702 0.10 700 0.12 107242 29.17 107281 30.01 108521 34.56 108389 34.93
(2,13) 18155977 2226.49 18155834 2139.47 18155832 2158.92 6375033 1832.26 6375074 1864.47 6371007 2110.17 6372172 2099.90
(3,5) 368 0.04 286 0.04 279 0.05 416 0.10 444 0.10 336 0.11 330 0.14
(3,6) 900 0.14 683 0.12 670 0.15 1011 0.34 1069 0.34 800 0.38 786 0.44
(3,7) 2242 0.51 1658 0.42 1647 0.52 3052 1.42 3244 1.37 2301 1.48 2262 1.68
(3,8) 2744 0.82 1985 0.62 1975 0.76 5917 3.32 6298 3.21 4356 3.39 4298 3.84
(3,9)* 2603 0.52 1163 0.31 1360 0.44 14251 9.36 15211 9.01 10445 9.36 10316 10.53
(3,10)* 6834 1.79 4074 1.35 3964 1.62 29169 24.20 30773 22.86 24219 26.16 23868 29.32
(3,11) 76579 44.00 69117 34.23 68996 42.54 80521 101.38 83418 93.25 67176 103.07 66492 113.18
(3,12) 274564 180.14 253984 138.45 253471 173.40 218142 343.92 225727 312.39 178717 336.07 176423 360.53
(3,13) 946260 734.88 920950 576.89 920173 728.34 439224 901.46 451479 799.07 367232 856.07 364754 948.65
(3,14) 4388875 3703.48 4317762 2891.87 4317129 3639.71 1346922 3535.94 1365833 3039.68 1201030 3377.41 1194703 3658.62

in Table 6, by factors of 7.5 and 1.9 respectively on average. There are even
instances, the (3, 15) instances in Tables 6 and 8, which cannot be solved by
enforcing EDAC* on a single model within the time limit, but enforcing 2-
AC∗

c , LB(2,AC*), LB(2,FDAC*), and LB(2,EDAC*) on the combined model
can solve. The reduction ratios of number of fails and runtime of combined
models to single models increase with the problem size on average. Exceptions
are those marked with “*,” which can terminate when a zero cost solution is
found. Such instances require relatively fewer search efforts, and the overhead of
an extra model may not be compensated in these cases. In addition, we observe
that using LB(2,Φ) is not always faster than using 2-AC∗

c , although both are
much better than using single models. In (3, n) classical and soft instances,
LB(2,AC*) and LB(2,FDAC*) have faster runtime than 2-AC∗

c , but they are
slightly slower than 2-AC∗

c in the (2, n) classical and soft instances.

31

Table 10: Experimental results on solving classical Latin square problem using
smallest-cost-first value ordering heuristic on Pc

AC* FDAC* EDAC* 2-AC∗
c LB(2,AC*) LB(2,FDAC*) LB(2,EDAC*)

n fail time fail time fail time fail time fail time fail time fail time
5* 0 0.00 0 0.01 0 0.01 0 0.01 0 0.01 0 0.01 0 0.01
10* 1 0.12 1 0.12 1 0.15 0 0.31 0 0.29 0 0.31 0 0.35
15* 14 1.56 14 1.59 14 2.04 0 3.72 0 3.16 0 3.27 0 4.05
20* 645 9.48 645 13.75 645 17.23 0 21.58 0 17.55 0 17.38 0 22.18

Table 11: Experimental results on solving soft Latin square problem using
smallest-cost-first value ordering heuristic on Pc

AC* FDAC* EDAC* 2-AC∗
c LB(2,AC*) LB(2,FDAC*) LB(2,EDAC*)

n fail time fail time fail time fail time fail time fail time fail time
5 25023 2.64 10039 2.87 7319 5.08 8397 2.21 21866 5.60 8942 6.87 6757 12.26
6 751412 154.56 111545 106.44 76353 144.16 93109 58.22 646190 304.12 104810 256.24 71865 359.24
7 - - 1866490 3602.15 950480 3648.19 1392309 1384.49 - - - - - -

6.3 Latin Square Problem

The Latin square problem (prob003 in CSPLib [19]) is to fill an n×n matrix with
n numbers such that each column and each row must form a permutation. We
use a standard model [13] as the single model P1 which uses the set of variables
X = {xij | 1 ≤ i, j ≤ n} for the cells of the matrix. Each variable xij represents
the cell in the i-th row and j-th column and has a domain Dxij

= {1, . . . , n}
denoting the possible numbers to be filled in a cell. There are O(n3) disequality
constraints xij 6= xil for 1 ≤ i ≤ n and 1 ≤ j < l ≤ n to ensure that no two cells
in the same row take the same number. Similarly, there are O(n3) disequality
constraints xij 6= xlj for 1 ≤ j ≤ n and 1 ≤ i < l ≤ n to ensure that no two
cells in the same column take the same number. We initialize each binary cost
which violates a disequality constraint to ⊤ and all other costs to ⊥. Although
P1 is not a permutation WCSP, it is a vector of n permutation WCSPs such
that each row and column is a permutation.

Similar to the Langford’s problem, there are different ways to model the
Latin square problem [13]. We can use the set of variables Y = {yik | 1 ≤ i, k ≤
n}, where each variable yik represents the number k in the i-th row. The domain
of each variable is Dyik

= {1, . . . , n} denoting the possible column positions
for the number k in the i-th row. Based on this viewpoint (Y,DY) and the
bijective function f(xij 7→ k) = yik 7→ j for all i, j, k ∈ {1, . . . , n}, the induced
model can be generated automatically by generalized model induction. Contrary
to the Langford’s problem, the Latin square problem has many solutions for
each instance. In many situations, we may want to have preferences among
solutions. Therefore, to model such situation, we change each binary ⊥ cost in
the constraints of the model to a random cost from ⊥ to n inclusively. In this
soft Latin square problem, the problem is tightened and the number of solutions
is smaller.

Tables 10, 11, 12, and 13 show the experimental results of the classical and
soft Latin square problems using different value ordering heuristics. We can
see from Tables 10 and 12 that classical Latin square problems are easy to
solve up to n = 20. The amount of search is small even using a single model.

32

Table 12: Experimental results on solving classical Latin square problem using
dual-smallest-domain-first value ordering heuristic on Pc

AC* FDAC* EDAC* 2-AC∗
c LB(2,AC*) LB(2,FDAC*) LB(2,EDAC*)

n fail time fail time fail time fail time fail time fail time fail time
5* 0 0.00 0 0.01 0 0.01 0 0.01 0 0.00 0 0.00 0 0.01
10* 1 0.12 1 0.12 1 0.15 0 0.33 0 0.29 0 0.29 0 0.36
15* 14 1.56 14 1.59 14 2.04 0 3.95 0 3.11 0 3.20 0 4.48
20* 645 9.48 645 13.75 645 17.23 0 22.28 0 18.18 0 18.32 0 25.07

Table 13: Experimental results on solving soft Latin square problem using dual-
smallest-domain-first value ordering heuristic on Pc

AC* FDAC* EDAC* 2-AC∗
c LB(2,AC*) LB(2,FDAC*) LB(2,EDAC*)

n fail time fail time fail time fail time fail time fail time fail time
5 25023 2.64 10039 2.87 7319 5.08 8353 2.19 21853 5.57 8879 6.83 6679 12.15
6 751412 154.56 111545 106.44 76353 144.16 93109 58.23 646190 303.36 104810 256.21 71865 359.09
7 - - 1866490 3602.15 950480 3648.19 1392309 1378.96 - - - - - -

Nonetheless, enforcing 2-AC∗
c , LB(2,AC*), LB(2,FDAC*), and LB(2,EDAC*)

on Pc can still reduce the search space to achieve no backtracks, although their
runtime are larger due to the overhead of an extra model. However, the soft
Latin square problems, as shown in Tables 11 and 13, are much more difficult
than the classical ones, since we are searching for the most preferred solution
Therefore, we can solve only the smaller instances within the time limit of two
hours.

Tables 11 and 13 show that 2-AC∗
c achieves the fastest runtime, while AC*,

LB(2,AC*), LB(2,FDAC*), and LB(2,EDAC*) cannot solve the problem within
two hours. On the other hand, FDAC* and EDAC* have higher time complex-
ities O(n3d3) and O(n2d2 max{nd,⊤}) respectively, which can possibly remove
more domain values and tighten the global lower bound. Thus, the time gained
from fewer number of backtracks cannot compensate that used in performing
EDAC* and FDAC* algorithms. The same reason explains the results of enforc-
ing LB(2,FDAC*) and LB(2,EDAC*). The 2-AC∗

c is striking a good balance in
soft Latin square problems between the amount of pruning and the time spent
on discovering the values for pruning.

6.4 n-Queens Problem

The n-queens problem is to place n queens on an n × n chessboard so that no
two queens are placed on the same row, same column, or same diagonal. To
model the problem into a WCSP P , we use n variables X = {x1, . . . , xn}. Each
variable xi denotes the row position of queen i in column i of the chessboard.
The domains of the variables are thus {1, . . . , n}. Since the n-queens problem
has many solutions, we assert preferences among the solutions by assigning to
each allowed binary tuple a random cost from ⊥ to ⊤ inclusive for soft instances.

Tables 14, 15, 16, and 17 shows the experimental results of classical and soft
n-queens problems using different value ordering heuristics. In classical cases,
the cost can be either 0 or 1 only. The smallest-cost-first value ordering heuristic
is thus the same as the smallest-value-first ordering heuristic, which does not
favour the classical n-queens problem, especially for the combined models. Table

33

Table 14: Experimental results on solving classical n-queens problem using
smallest-cost-first value ordering heuristic on Pc

AC* FDAC* EDAC* 2-AC∗
c LB(2,AC*) LB(2,FDAC*) LB(2,EDAC*)

n fail time fail time fail time fail time fail time fail time fail time
80* 9 2.05 9 1.75 9 2.23 10321 12.15 10321 12.18 10321 11.57 10321 13.34
85* 6 2.21 6 2.26 6 2.37 - - - - - - - -
90* 199 2.76 199 3.45 199 3.59 - - - - - - - -
95* 1345 3.60 1345 3.68 1345 4.70 - - - - - - - -
100* 13 4.28 13 4.35 13 4.55 - - - - - - - -
105* 30564 11.41 30564 12.20 30564 14.68 - - - - - - - -
110* 6693868 1245.09 6693868 1433.44 6693868 1932.29 - - - - - - - -
115* - - - - - - - - - - - - - -
120* 3797818 994.78 3797818 1080.30 3797818 1488.92 - - - - - - - -

Table 15: Experimental results on solving soft n-queens problem using smallest-
cost-first value order heuristic on Pc

AC* FDAC* EDAC* 2-AC∗
c LB(2,AC*) LB(2,FDAC*) LB(2,EDAC*)

n fail time fail time fail time fail time fail time fail time fail time
15* 5608 0.46 5044 0.50 4959 0.63 2695 0.57 2740 0.57 2485 0.64 2432 0.75
16* 10611 0.96 9566 1.03 9382 1.29 5426 1.24 5516 1.23 4939 1.39 4822 1.63
17* 17369 1.65 15139 1.80 14703 2.25 6658 1.68 6778 1.66 6038 1.89 5880 2.23
18* 58375 6.23 51073 6.76 49309 8.29 24126 7.07 24495 6.88 22370 7.78 21796 9.10
19* 81022 9.20 70179 10.05 67341 12.41 32533 9.65 33324 9.43 28783 10.90 27469 12.61
20* 172220 21.65 150939 23.50 145062 28.94 87419 29.31 89193 28.53 79209 32.98 76146 38.55
21* 535145 73.28 463225 79.78 441403 97.35 178652 63.75 183176 61.71 157600 71.57 149083 82.30
22* 1287717 196.07 1130132 211.09 1078297 257.76 459420 189.23 468781 181.04 418087 206.83 400026 239.30
23* 4780028 810.60 4256142 868.88 4076254 1060.10 1286071 610.17 1307948 577.06 1188221 653.88 1143529 757.32
24* 11079154 2042.66 9928478 2182.87 9518203 2637.39 3222029 1675.23 3276754 1571.79 2978541 1777.95 2861661 2041.45

Table 16: Experimental results on solving classical n-queens problem using dual-
smallest-domain-first value order heuristic on Pc

AC* FDAC* EDAC* 2-AC∗
c LB(2,AC*) LB(2,FDAC*) LB(2,EDAC*)

n fail time fail time fail time fail time fail time fail time fail time
80* 9 2.05 9 1.75 9 2.23 0 4.37 0 3.92 0 3.72 0 4.10
85* 6 2.21 6 2.26 6 2.37 0 6.46 0 4.40 0 4.82 0 5.33
90* 199 2.76 199 3.45 199 3.59 0 7.41 0 6.19 0 6.27 0 7.00
95* 1345 3.60 1345 3.68 1345 4.70 - - - - - - - -
100* 13 4.28 13 4.35 13 4.55 1 11.78 1 10.97 1 11.08 1 9.53
105* 30564 11.41 30564 12.20 30564 14.68 0 13.58 0 13.79 0 11.33 0 14.45
110* 6693868 1245.09 6693868 1433.44 6693868 1932.29 0 16.80 0 16.86 0 16.83 0 17.63
115* - - - - - - 0 20.84 0 16.85 0 16.99 0 17.67
120* 3797818 994.78 3797818 1080.30 3797818 1488.92 10 25.15 10 20.45 10 25.23 10 26.31

Table 17: Experimental results on solving soft n-queens problem using dual-
smallest-domain-first value order heuristic on Pc

AC* FDAC* EDAC* 2-AC∗
c LB(2,AC*) LB(2,FDAC*) LB(2,EDAC*)

n fail time fail time fail time fail time fail time fail time fail time
15* 5608 0.46 5044 0.50 4959 0.63 2759 0.58 2803 0.58 2546 0.65 2488 0.77
16* 10611 0.96 9566 1.03 9382 1.29 5340 1.23 5427 1.21 4873 1.37 4769 1.61
17* 17369 1.65 15139 1.80 14703 2.25 7291 1.85 7429 1.81 6668 2.08 6493 2.46
18* 58375 6.23 51073 6.76 49309 8.29 26370 7.73 26762 7.48 24479 8.49 23880 9.95
19* 81022 9.20 70179 10.05 67341 12.41 32921 9.91 33681 9.60 29197 11.07 27919 12.81
20* 172220 21.65 150939 23.50 145062 28.94 94256 32.44 95941 31.16 86345 35.83 83442 42.09
21* 535145 73.28 463225 79.78 441403 97.35 178540 65.39 182731 62.39 159087 72.03 151279 83.29
22* 1287717 196.07 1130132 211.09 1078297 257.76 470117 200.77 478708 188.64 432133 214.43 415874 249.10
23* 4780028 810.60 4256142 868.88 4076254 1060.10 1274332 617.77 1294032 575.07 1183741 650.64 1143417 755.17
24* 11079154 2042.66 9928478 2182.87 9518203 2637.39 3256536 1738.86 3307770 1602.52 3029570 1806.44 2921698 2081.07

14 reproduces the results shown by Cheng et al. [5] in which the dual-smallest-
domain-first is a better value ordering heuristic for n-queens problem and gives
much better results than the smallest-cost-first (smallest-value-first) ordering
heuristic. In soft cases, solving a combined model Pc achieves fewer number
of fails and mostly faster runtime than solving a single model P , which means
that 2-AC∗

c , LB(2,AC*), LB(2,FDAC*), and LB(2,EDAC*) do more prunings

34

than AC*, FDAC*, and EDAC* and reduce more search space. LB(2,AC*) is
the most efficient for the larger instances. Although 2-AC∗

c is stronger than
LB(2,AC*), it gives a longer runtime than LB(2,AC*) even it achieves smaller
number of fails in solving the soft instances. This is mainly due to the overhead
of cost projection transmitting between sub-models in 2-AC∗

c . LB(2,EDAC*)
always has the fewest number of fails since EDAC* is stronger than AC* and
FDAC*. However, the runtime of LB(2,EDAC*) is not the fastest, as the extra
prunings cannot compensate for the overhead of EDAC*.

6.5 Discussions

In the experiments, we have used two different value ordering heuristics: the
smallest-cost-first and the dual-smallest-domain-first. The dual-smallest-domain-
first heuristic is only applicable for redundant modeling and is shown to be
especially suitable for the n-queens problem [5]. From the results, we observe
that using different value ordering heuristics results differently. The smallest-
cost-first heuristic favors our first approach, while the dual-smallest-domain-first
heuristic favors our second approach. This also means that the results are sen-
sitive to the value ordering heuristics.

Our results show that enforcing 2-AC∗
c , LB(2,AC*), LB(2,FDAC*), and

LB(2,EDAC*) on combined models outperform enforcing AC*, FDAC*, and
EDAC* on single models for the larger and more difficult instances, which re-
quire large amount of search efforts to either prove unsatisfiability or find an
optimal solution. Besides, enforcing 2-AC∗

c , LB(2,AC*), LB(2,FDAC*), and
LB(2,EDAC*) on combined models result in a shorter runtime to solve those
problems, with the exception of the classical Latin square problem which re-
quires relatively small amount of search efforts as there are many solutions in
the model. Though enforcing local consistencies on combined models can help
to reduce more search space, this cannot counteract the overhead of an extra
model, resulting in a larger runtime than those of single models.

Enforcing local consistencies on combined models achieves the smallest num-
ber of fails than enforcing consistencies on single models in all cases except in
the soft Latin square problem. It even has no backtracks in the classical Latin
square problem. This shows that redundant modeling helps to increase con-
straint propagation by sharing the pruning and cost projection information be-
tween sub-models of the combined models. In fact, although we have shown that
m-AC∗

c is strictly stronger than AC* and LB(m,AC*), the relative propagation
strength among FDAC*, EDAC*, m-AC∗

c , LB(m,Φ) is still not clear. LB(2,Φ)
does not always perform better than 2-AC∗

c . However, it has the flexibility of
choosing any local consistency for single models to solve a problem. The re-
finements of local consistencies for combined models, other than m-NC∗

c and
m-AC∗

c , are still not yet known. More theoretical and empirical studies have to
be conducted to have a better understanding on their propagation behavior.

35

7 Related Work

In this section, we present the research that is related to our work on soft
constraints, local consistencies in WCSP, and redundant modeling. We briefly
describe various approaches to soft constraint satisfaction problems and give
some other existing local consistency notions in WCSP. Next, we present an
overview of redundant modeling and channeling constraints.

7.1 Soft Constraint Satisfaction Problems

In classical CSP, all constraints are hard. They can either be satisfied or vio-
lated. It is sometimes difficult to use a classical CSP to model real-life problems
where there are preferences and costs. Different types of soft CSPs are therefore
proposed to solve optimization and over-constrained problems. Some examples
are fuzzy constraint satisfaction problems (FCSPs) [40], possibilistic constraint
satisfaction problems (PossCSPs) [42], probabilistic constraint satisfaction prob-
lems (ProbCSPs) [15], partial constraint satisfaction problems (PCSPs) [18] and
weighted constraint satisfaction problems (WCSPs) [45]. The above soft CSPs
can be encapsulated and represented by two meta-frameworks: valued constraint
satisfaction problems (VCSPs) [44] and semiring-based constraint satisfaction
problems (SCSPs) [1, 2, 3]. Since our work is focused on WCSP, which is a
specific subclass of VCSP, we will present VCSP in more detail.

A valued constraint satisfaction problem (VCSP) [44] is a generic soft con-
straint framework which associates each constraint of a classical CSP with a
valuation. The valuations are taken from a totally ordered set of monoid, com-
bined using the monoid operator. They are interpreted as levels of violation
by costs, degrees of preference, probabilities, weights, etc. In order to deal
with the over-constrained problems, it is necessary to be able to express the
fact that a constraint can eventually be violated. This can be done by asso-
ciating each constraint with a valuation. A valuation structure is defined by
a tuple S = (E, �,≻) where E is a set such that its elements are called val-
uations . The valuations are totally ordered by ≻, with a maximum element
denoted by ⊤ and a minimum element denoted by ⊥. The binary opera-
tor � is commutative, associative, and closed under E that satisfies identity,
monotonicity, and has an absorbing element in E. A VCSP [44] is a tuple
P = (X ,DX , CX ,S, ϕ), where X is a set of variables, DX is a set of variable
domains, CX is a set of constraints, S = (E, �,≻) is a valuation structure, and
ϕ is an application from CX to E. The valuation ϕ(C) of C ∈ CX returns an
element in E. A tuple can be evaluated by combining the valuations of all
the violated constraints using �. Given a VCSP P = (X ,DX , CX ,S, ϕ) and a
tuple θ where var(θ) ⊂ X , the valuation of θ is denoted by VP(θ) such that
VP(θ) = �{ϕ(C) |C ∈ CX ∧ var(C) ⊂ var(θ) ∧ θ violates C}. A solution of a
valued CSP is to find a complete tuple θ with a minimum valuation according
to the order ≻.

VCSP is an abstract framework which provides general algorithms and prop-
erties [44]. Some other types of CSPs, such as classical CSPs and WCSPs, can

36

be described as an instance of valued CSPs by choosing an appropriate valua-
tion structure. For example, the valuation structure for a classical CSP is given
by the boolean lattice E = {true, false}, where false = ⊤ ≻ true = ⊥, and
� = ∧. For WCSPs, the valuation structure corresponds to E = N ∪ {+∞},
0 = ⊥, +∞ = ⊤, and � = +, using the > ordering for natural numbers as
≻. Schiex [43] extended the notion of local consistency from classical CSPs to
VCSPs and showed that the notion provides stronger constraint propagation
and gives a better lower bound of the problem.

7.2 Redundant Modeling and Channeling Constraints

Handcrafting multiple classical CSP models for the same problem is common,
although not trivial. Nadel [39] took nine models of the n-queens problem to
show that there are usually many different CSP models for a problem. Dif-
ferent models of the same problem can have different execution performances.
However, it is not trivial to distinguish which model is “better” than another
and there is no notion of the “best” model. Cheng et al. [6, 7, 8, 5] proposed
the concept of redundant modeling. Different models of the same problem can
be combined using channeling constraints. The combined model can take the
advantages of each sub-models to increase constraint propagation and efficiency.
Cheng et al. used the n-queens problem and a real-life nurse rostering problem
to illustrate how to combine two redundant models using channeling constraints
to achieve extra constraint propagation and significant speedup. Smith [46, 47]
studied redundant modeling on two permutation problems, the n-queens prob-
lem and the Langford’s problem. She suggested that a dual representation can
be obtained by swapping the roles of variables and values. By linking with chan-
neling constraints and removing some constraints, a minimal combined model,
which has a much smaller search tree and can speed up problem solving process,
can be obtained. Dotú, del Val, and Cebrián [13] also adopted the redundant
modeling technique in solving large instances of the Quasigroup Completion
Problem in the transition phase region. Hnich, Smith, and Walsh [49, 23, 22]
performed an extensive theoretical and empirical study of different models for
permutation and injection problems. They showed a general methodology to
compare various models by defining a measure of constraint tightness by the
level of local consistency being enforced in the models.

Besides redundant modeling, there are some other approaches which can
increase the efficiency of constraint solving. One possible approach is to use dif-
ferent techniques concurrently and exchange useful information during search.
Marti and Rueher [37] proposed a cooperative architecture which combines the
symbolic and numeric solvers based on asynchronous communication between
the heterogeneous solvers. Hooker et al. [24] proposed a modeling framework
in which the constraint programming and linear programming interacted with
each other via the conditional constraints. This framework made use of the
advantages of either techniques to achieve better results in solving combinato-
rial optimization problems. Easton, Nemhauser, and Trick [14] implemented an
algorithm for the travelling tournament problem. The algorithm was a com-

37

bination of integer programming and constraint programming, each of which
was responsible for different parts of the problem. Montoyo et al. [38] com-
bined a knowledge-based method and a corpus-based method to achieve better
results in completing the task of word sense disambiguation. Van Hentenryck
and Michel [20, 21] studied the nondeterministic control structure for hybrid
search procedures and used the job-shop scheduling to illustrate their results.
Cotta et al. [10] suggested several local search-based hybrid algorithms for solv-
ing the Golomb ruler problem. The algorithms are developed using various
stochastic methods and systematic techniques. Wallace [48] gave a detailed
and comprehensive survey on various techniques in handling constraints with
constraint programming. Manisterski, Sarne, and Kraus [36] presented a new
search strategy which based on cooperative search with concurrent interactions.
They showed how the proposed strategy outperforms the current ones.

8 Concluding Remarks

In this section, we summarize our contributions in this paper and give some
possible directions for future research.

8.1 Contributions

We have applied the concept of redundant modeling in WCSPs and proposed
two approaches to handle combined WCSP models that contain m sub-models.
The contribution of our work can be summarized as follows.

First, redundant modeling requires multiple models of the same problem to
be connected by channeling constraints. In classical CSP, though not trivial,
it is relatively easy to handcraft an alternative model of a problem. However,
it is more difficult to do so for WCSPs since the costs are not only ⊥ and ⊤.
Law and Lee [29, 30] introduced model induction which generates a redundant
CSP model using a given one and another viewpoint of the CSP. We have
generalized the notion so that a redundant WCSP model can also be generated.
Aided with examples, we show how to convert different constraints from one
model to another and yield a redundant WCSP model automatically.

Second, we have discovered that naively combining redundant WCSP mod-
els using channeling constraints and relying on the standard propagation algo-
rithms for the channeling constraints to transmit pruning information between
sub-models do not work well. This discovery is supported by our preliminary
experiments done on the combined WCSP models to evaluate the performance
of single and combined models when enforcing NC* and AC*. By analyzing
the propagation behavior in the combined models, we observe the undesirable
behavior that enforcing AC* on a combined WCSP model can miss pruning
opportunities which are available even in a single model.

Third, through the investigation of the adverse behavior encountered when
enforcing NC* and AC* on a combined model, we have generalized NC* and
AC*, and proposed m-NC∗

c and m-AC∗
c respectively for combined models con-

38

taining m sub-models. We have proven that m-NC∗
c and m-AC∗

c are strictly
stronger than NC* and AC* respectively. Experiments on our implementations
of 2-NC∗

c and 2-AC∗
c have shown the benefits of extra prunings, which lead to a

greatly reduced search space and better runtime than the state-of-the-art AC*,
FDAC*, and EDAC* algorithms on both classical and soft benchmark problems,
especially hard instances.

Fourth, while our first approach requires the adaption of some existing local
consistencies in order to apply to combined models, in our second approach,
we proposed a parameterized local consistency LB(m,Φ), which can be used
with any number of sub-models and any existing or future local consistencies
that are targeted for solving single models. This approach makes our proposal
highly flexible. Experimental results confirm that LB(2,Φ) performs well when
instantiated with the state-of-the-art AC*, FDAC*, and EDAC*. The search
space is significantly reduced when compared with using single models. LB(2,Φ)
is also competitive with, if not better than, 2-AC∗

c in the benchmarks.

8.2 Future Work

Our work extends the concept of redundant modeling from classical CSPs to
WCSPs. Since redundant modeling in WCSPs is a new concept, there is plenty
of scope for future work.

First, the proposed generalized model induction is currently applied to gen-
erate a dual model of a permutation WCSP. It is interesting to investigate how
general induced WCSP models can be generated. We can check if the same
techniques of generalized model induction can be applied to non-permutation
WCSPs and what requirements of the channeling constraints for model induc-
tion are needed.

Second, suppose we are able to obtain redundant WCSP models for non-
permutation WCSPs, it is interesting to study how to combine them. Given a
non-permutation WCSP model, its redundant model can have either set vari-
ables [33, 34] or Boolean variables (i.e., variables with domain {0, 1}.) Thus,
the combined model is a combination of different type of variables. Lee and Siu
[33, 34] proposed a framework and defined various consistency notions for WC-
SPs with set variables. It is worthwhile to study how integer and set sub-models
can be connected to enhance constraint propagation.

Third, in our first approach, we have refined node and arc consistencies for
combined models. There are other existing local consistency notions in WCSPs,
such as FDAC* [27] and EDAC* [11]. It would be also interesting to incorporate
c-supports and c-projections to FDAC* and EDAC* to obtain m-FDAC∗

c and
m-EDAC∗

c respectively.

9 Acknowledgements

We would like to thank Javier Larrosa, Irwin King, and Evangeline Young, and
the anonymous referees from AI 2006, AI 2007, and the Constraints journal for

39

their constructive comments. The work described in this paper was substan-
tially supported by grants (CUHK413207 and CUHK413808) from the Research
Grants Council of Hong Kong SAR.

References

[1] S. Bistarelli, H. Fargier, U. Montanari, F. Rossi, T. Schiex, and G. Verfail-
lie. Semiring-based CSPs and valued CSPs: Basic properties and compar-
ison. In Over-Constrained Systems, volume 1106, pages 111–150, 1996.

[2] S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint satis-
faction and optimization. Journal of the ACM, 44(2):201–236, 1997.

[3] S. Bistarelli, U. Montanari, F. Rossi, T. Schiex, G. Verfaillie, and
H. Fargier. Semiring-based CSPs and valued CSPs: Frameworks, prop-
erties, and comparison. Constraints, 4(3):199–240, 1999.

[4] S. Bouveret, F. Heras, S. de Givry, J. Larrosa, M. Sanchez, and
T. Schiex. ToolBar: a state-of-the-art platform for WCSP. Technical re-
port, http://www.inra.fr/bia/T/degivry/ToolBar.pdf, 2005.

[5] B.M.W. Cheng, K.M.F. Choi, J.H.M. Lee, and J.C.K. Wu. Increasing con-
straint propagation by redundant modeling: an experience report. Con-
straints, 4(2):167–192, 1999.

[6] B.M.W. Cheng, J.H.M. Lee, and J.C.K. Wu. A constraint-based nurse
rostering system using a redundant modeling approach. In Proceedings of
the 8th International Conference on Tools with Artificial Intelligence, pages
140–148, 1996.

[7] B.M.W. Cheng, J.H.M. Lee, and J.C.K. Wu. Speeding up constraint prop-
agation by redundant modeling. In Proceedings of the 2nd International
Conference on Principles and Practice of Constraint Programming, pages
91–103, 1996.

[8] B.M.W. Cheng, J.H.M. Lee, and J.C.K. Wu. A nurse rostering system using
constraint programming and redundant modeling. IEEE Transactions in
Information Technology in Biomedicine, 1(1):44–54, 1997.

[9] B.Y. Choueiry, B. Faltings, and G. Noubir. Abstraction Methods for Re-
source Allocation. In Proceedings of the Workshop on Theory Reformulation
and Abstraction, pages 2–71/2–90, 1994.

[10] C. Cotta, I. Dotú, A.J. Fernández, and P. Van Hentenryck. Local search-
based hybrid algorithms for finding golomb rulers. Constraints, 12(3):263–
291, 2007.

40

[11] S. de Givry, F. Heras, M. Zytnicki, and J. Larrosa. Existential arc consis-
tency: Getting closer to full arc consistency in weighted CSPs. In Proceed-
ings of the 19th International Joint Conference on Artificial Intelligence,
pages 84–89, 2005.

[12] R. Debruyne and C. Bessière. Some practicable filtering techniques for the
constraint satisfaction problem. In Proceedings of the 15th International
Joint Conference on Artificial Intelligence, pages 412–417, 1997.

[13] I. Dotú, A. del Val, and M. Cebrián. Redundant modeling for the quasi-
group completion problem. In Proceedings of the 9th International Confer-
ence on Principles and Practice of Constraint Programming, pages 288–302,
2003.

[14] K. Easton, G.L. Nemhauser, and M.A. Trick. Solving the travelling tour-
nament problem: A combined integer programming and constraint pro-
gramming approach. In Proceedings of the 4th International Conference on
Practice and Theory of Automated Timetabling IV, pages 100–112, 2002.

[15] H. Fargier and J. Lang. Uncertainty in constraint satisfaction problems:
a probabilistic approach. In Proceedings of the European Conference on
Symbolic and Quantitative Approaches to Reasoning and Uncertainty, pages
97–104, 1993.

[16] M.S. Fox. Constraint-Directed Search: A Case Study of Job-Shop Schedul-
ing. PhD thesis, Robotics Institute, Carnegie Mellon University, Pitts-
burgh, PA, December 1983.

[17] M.S. Fox, B. Allen, and G. Strohm. Job-shop scheduling: An investigation
in constraint-directed reasoning. In Proceedings of the 2nd Conference of
The American Association for Artificial Intelligence, pages 155–158, 1982.

[18] E.C. Freuder and R.J. Wallace. Partial constraint satisfaction. Artificial
Intelligence, 58(1-3):21–70, 1992.

[19] I.P. Gent and T. Walsh. CSPLib: A benchmark library for constraints.
In Proceedings of the 5th International Conference on Principles and
Practice of Constraint Programming, pages 480–481, 1999. Available at
http://www.csplib.org/.

[20] P. Van Hentenryck and L. Michel. Nondeterministic control for hybrid
search. In Proceedings of the 2nd International Conference on Integration
of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems, pages 380–395, 2005.

[21] P. Van Hentenryck and L. Michel. Nondeterministic control for hybrid
search. Constraints, 11(4):353–373, 2006.

41

[22] B. Hnich, B. Smith, and T. Walsh. Dual modelling of permutation and
injection problems. Journal of Artificial Intelligence Research, 21:357–391,
2004.

[23] B. Hnich and T. Walsh. Models of injection problems. In Proceedings of
the 8th International Conference on Principles and Practice of Constraint
Programming, page 781, 2002.

[24] J.N. Hooker, G. Ottosson, E.S. Thorsteinsson, and H.J. Kim. On inte-
grating constraint propagation and linear programming for combinatorial
optimization. In Proceedings of the 16th National Conference on Artificial
Intelligence, pages 136–141, 1999.

[25] A.H. Land and A.G. Doig. An automatic method for solving discrete pro-
gramming problems. Eco nometrica, 28:497–520, 1960.

[26] J. Larrosa. Node and arc consistency in weighted CSP. In Proceedings of
the 18th National Conference on Artificial Intelligence, pages 48–53, 2002.

[27] J. Larrosa and T. Schiex. In the quest of the best form of local consistency
for weighted CSP. In Proceedings of the 18th International Joint Conference
on Artificial Intelligence, pages 239–244, 2003.

[28] J. Larrosa and T. Schiex. Solving weighted CSP by maintaining arc con-
sistency. Artificial Intelligence, 159(1-2):1–26, 2004.

[29] Y.C. Law and J.H.M. Lee. Model induction: a new source of CSP model
redundancy. In Proceedings of the 18th National Conference on Artificial
Intelligence, pages 54–60, 2002.

[30] Y.C. Law, J.H.M. Lee, and B.M. Smith. Automatic generation of redun-
dant models for permutation constraint satisfaction problems. Constraints,
12(4):469–505, 2007.

[31] Y.C. Law, J.H.M. Lee, and M.H.C. Woo. Speeding up weighted constraint
satisfaction using redundant modeling. In Proceedings of the 19th Aus-
tralian Joint Conference on Artificial Intelligence, pages 59–68, 2006.

[32] Y.C. Law, J.H.M. Lee, and M.H.C. Woo. A parameterized local consis-
tency for redundant modeling in weighted csps. In Proceedings of the 20th
Australian Joint Conference on Artificial Intelligence, pages 191–201, 2007.

[33] J.H.M. Lee and C.F.K. Siu. Weighted constraint satisfaction with set vari-
ables. In Proceedings of the 21st National Conference on Artificial Intelli-
gence, pages 80–85, 2006.

[34] J.H.M. Lee and C.F.K. Siu. Stronger consistencies in wcsps with set vari-
ables. In Proceedings of the 20th IEEE International Conference on Tools
with Artificial Intelligence, pages 291–298, 2008.

42

[35] A.K. Mackworth. Consistency in networks of relations. Artificial Intelli-
gence, 8(1):99–118, 1977.

[36] E. Manisterski, D. Sarne, and S. Kraus. Cooperative search with concurrent
interactions. Journal of Artificial Intelligence Research, 32:1–36, 2008.

[37] P. Marti and M. Rueher. A distributed cooperating constraints solving
system. International Journal on Artificial Intelligence Tools, 4:4–1, 1995.

[38] A. Montoyo, A. Suarez, G. Rigau, and M. Palomar. Combining knowledge-
and corpus-based word-sense-disambiguation methods. Journal of Artificial
Intelligence Research, 23:299–330, 2005.

[39] B.A. Nadel. Representation selection for constraint satisfaction: A case
study using n-queens. IEEE Expert: Intelligent Systems and Their Appli-
cations, 5(3):16–23, 1990.

[40] Z. Ruttkay. Fuzzy constraint satisfaction. In Proceedings of the 1st IEEE
Conference on Evolutionary Computing, pages 542–547, 1994.

[41] A. Sathi and M.S. Fox. Constraint-directed negotiation of resource re-
allocations. In Distributed Artificial Intelligence II, pages 163–193. 1989.

[42] T. Schiex. Possibilistic constraint satisfaction problems or ”how to handle
soft constraints?”. In Proceedings of the 8th conference on Uncertainty in
Artificial Intelligence, pages 268–275, 1992.

[43] T. Schiex. Arc consistency for soft constraints. In Proceedings of the 6th
International Conference on Principles and Practice of Constraint Pro-
gramming, pages 411–424, 2000.

[44] T. Schiex, H. Fargier, and G. Verfaillie. Valued constraint satisfaction
problems: hard and easy problems. In Proceedings of the 14th International
Joint Conference on Artificial Intelligence, pages 631–637, 1995.

[45] L.G. Shapiro and R.M. Haralick. Structural descriptions and inexact
matching. IEEE Transactions Pattern Analysis Machine Intelligence,
3:504–519, 1981.

[46] B.M. Smith. Modelling a permutation problem. In Proceedings of
ECAI’2000 Workshop on Modelling and Solving Problems with Constraints,
2000.

[47] B.M. Smith. Dual models of permutation problems. In Proceedings of
the 7th International Conference on Principles and Practice of Constraint
Programming, pages 615–619, 2001.

[48] M. Wallace. Hybrid algorithms in constraint programming. In Proceedings
of the 11th Annual ERCIM International Workshop on Constraint Solving
and Contraint Logic Programming, pages 1–32, 2006.

43

[49] T. Walsh. Permutation Problems and Channelling Constraints. In Pro-
ceedings of the 8th International Conference on Logic for Programming,
Artificial Intelligence and Reasoning, pages 377–391, 2001.

[50] D. Waltz. Understanding line drawings of scenes with shadows. In The
Psychology of Computer Vision, pages 19–91. 1975.

44

