Breaking Symmetry of I nterchangeable
Variables and Values*

Y.C. Law!, J.H.M. Leé, Toby Walsi, and J.Y.K. Yig

! Deparment of Computer Science and Engineering, The Chldesersity of Hong Kong,
Shatin, N.T., Hong Kong
{yclaw, j | ee, ykyi p}@se. cuhk. edu. hk
2 National ICT Australia and School of CSE, University of Neaugh Wales, Sydney, Australia
tw@se. unsw. edu. au

Abstract. A common type of symmetry is when both variables and values pa
tition into interchangeable sets. Polynomial methods Haeen introduced to
eliminate all symmetric solutions introduced by such icba@ngeability. Unfor-
tunately, whilst eliminating all symmetric solutions iattable in this case, prun-
ing all symmetric values is NP-hard. We introduce a new dlobastraint called
SIGLEX and its GAC propagator for pruning some (but not necessalijiysym-
metric values. We also investigate how different postinfjthe SGLEX con-
straints affect the pruning performance during constrsohting. Finally, we test
these static symmetry breaking constraints experimegriadithe first time.

1 Introduction

When solving complex real-life problems like staff rosteyi symmetry may dramati-
cally increase the size of the search space. A simple andtiefenechanism to deal
with symmetry is to add static symmetry breaking constsaiateliminate symmetric
solutions [1-4]. Alternatively, we can modify the searcbgedure so that symmetric
branches are not explored [5-7]. Unfortunately, elimimgill symmetric solutions is
NP-hard in general. In addition, even when all symmetricisohs can be eliminated
in polynomial time, pruning all symmetric values may be Nd#eh[8]. One way around
this problem is to develop polynomial methods for speciassés of symmetries.

One common type of symmetry is when variables and/or valiesimterchangeable.
For instance, in a graph colouring problem, if we assignuwadvalues) to nodes (vari-
ables), then the colours (values) are fully interchangediiat is, we can permute the
colours throughout a solution and still have a proper catauiSimilarly, variables may
be interchangeable. For example, if two nodes (variablagg ithe same set of neigh-
bours, we can permute them and keep a proper colouring. Wehcalvariable and
value interchangeabilityit has also been callquiecewise symmetf] andstructural
symmetny{10]. Recent results show that we can eliminate all symmawlutions due

* We thank the anonymous referees for their constructive cemsn The work described in this
paper was substantially supported by grants (Project né1kK4131/05 and CUHK4219/04E)
from the Research Grants Council of the Hong Kong SAR. NIC§Aunded by DCITA and
ARC through Backing Australia’s Ability and the ICT Centrekxcellence program.

to variable and value interchangeability in polynomialdirSellmann and Van Henten-
tryck gave a polynomial time dominance detection algorifemdynamically break-
ing such symmetry [10]. Subsequently, Flener, Pearsoim8eh and Van Hentenryck
identified a set of static symmetry breaking constraintditnieate all symmetric solu-
tions [9]. In this paper, we propose using a linear numbehehew $GL EX constraint

for breaking such symmetry. AISLEX constraint orders the interchangeable variables
as well as the interchangeable values. Its propagator edb@sa decomposition using
REGULAR constraints [11].

2 Background

A constraint satisfaction probleffCSP) consists of a set af variables each with a
finite domainof possible values, and a set odnstraintsspecifying allowed combi-
nations of values for given subsets of variables. A constrastricts values taken by
some subset of variables to a subset of the Cartesian protitiet variable domains.
Without loss of generality, we assume that variables ilhtishare the same domain
of m possible values]; to d,,. Each finite domain variable takes one value from this
domain. We also assume an ordering on values in wijch d; iff ¢ < j. A solution

is an assignment of values to variables satisfying the cainss.

A global constraint has a parameterised number of variatifeswill use four com-
mon global constraints. The first, MONG([X71, .., X,,],v, M), holds iff |{i | X, €
v} = M. That is, M of the variables fromX; to X,, take values among the set
Combining together multiple MONG constraints gives the global cardinality constraint
[12]. Gee([Xq, ... Xu], [d1, -y dim], [O1, .., On]) holds iff [{i | X; = d,}| = O; for
1 < j < m. Thatis,O; of the variables fromX; to X,, take the valuel;. If O; < 1
for all j then no value occurs more than once and we have an all diffeogrstraint.
ALLDIFF([X1, ..., X,]) holds iff X; # X for 1 < ¢ < j < n. Finally, a global con-
straint that we will use to encode other global constrainthé REGULAR constraint
[11]. LetM = (Q, X, 4, qo, F') denote aeterministic finite automataidFA) where@
is a finite set of states, an alphabety : Q x X' — @Q a partial transition functiorny
the initial state and” C @ the set of final states. BRGULAR([X, . .., X,,], M) holds
iff the string[X7, . . ., X,,] belongs to the regular language recognisedy Quimper
and Walsh encode a linear time GAC propagator for tiEes&®_AR constraint using
ternary constraints [13]. They introduce variables for skete of the DFA after each
character, and post ternary constraints ensuring thatalbe shanges according to the
transition relation. One advantage of this encoding is Weahave easy access to the
states of the DFA. In fact, we will need here to link the finatstto a finite domain
variable.

Systematic search constraint solvers typically explongigdaassignments using
backtracking search, enforcing a local consistency at saahch node to prune val-
ues for variables which cannot be in any solution. We comsidevell known local
consistency called generalized arc consistency. Givemati@ntC' on finite domain
variables, aupportis an assignment to each variable of a value in its domaintwdat-
isfiesC'. A constraintC' on finite domain variables igeneralized arc consiste(GAC)
iff for each variable, every value in its domain belongs tapgort.

3 Variable and valueinterchangeability

We suppose that there is a partition of théinite domain variables of our CSP into
disjoint sets, and the variables within each set are ingarghable. That is, if we have
a solution{X; = dy,;) | 1 <4 < n} and any bijections on the variable indices
which permutes indices within each partition, theki, ;) = dsi) | 1 < i < n}is
also a solution. We also suppose that there is a partitioheait domain values intd
disjoint sets, and the values within each set are interakeglnlg. That is, if we have a
solution{X; = d,u ;) | 1 < i < n} and any bijectiorr on the value indices which
permutes indices within each partition, theN; = d,) | 1 < @ < n}is also a
solution. Ifn = a we have just interchangeable values, whilstif= b we have just
interchangeable variables. We will order variable indigeshatX, ;) to X,,;41)—1 is
the ith variable partition, and value indices so thgt;) to d,(;41)—1 is the jth value
partition wherel < i < a,1 < j < b. In other wordsp(i) andq(j) give the starting
indices of theith variable partition and thgh value partition respectively.

Example1 Consider a CSP problem representing 3-colouring the falhaygraph:

X3
Xy

Xy
X5

X5

Nodes are labelled with the variablé§, to X5. Values correspond to colour&’;
and X, are interchangeable as the corresponding nodes have the satnof neigh-
bours. If we have a proper colouring, we can permute the \&assigned toX; and
X5 and still have a proper colouring. Similarlyy's, X4 and X5 are interchangeable.
The variables thus partition into two disjoint se{sXy, X»} and{ X3, X4, X5}. In ad-
dition, we can uniformly permute the colours throughout &uson and still have a
proper colouring. Thus, the values partition into a singét:§d;, ds, ds}. In graph
colouring, variable partitions can be identified by checkiwhether two nodes have
the same set of neighbours, while in general problems, tdenlying symmetry can be
discovered automatically [14].

Fleneret al.[9] show that we can eliminate all solutions which are syminetue
to variable and value interchangeability by posting théofeing constraints:

Xp(’b) S .. S Xp(i+1)71 Vie [1,@] (1)
GCC([Xp(i)a--vXp(i-‘rl)—l]v[dlw-adm]a[ZlvaO:n]) Vie [1,&] (2)
(Oq(sy: ++ Ofi) Ztex -+ Ztex (Oggny—15+ Oggny—1) Vi€ LU (3)

1

q(j)
(O}, ..,0f) is called thesignatureof the valuedy,, which gives the number of occur-
rences of the valué;, in each variable partition. Note that the signature is iiargrto
the permutation of variables within each equivalence cBg®rdering variables within
each equivalence class using (1), we rule out permutinginéageable variables. Sim-
ilarly, by lexicographically ordering the signatures ofues within each equivalence
class using (3), we rule out permuting interchangeableaglu

Example 2 Consider again the 3-colouring problem in Example 1. Thees3® proper
colourings of this graph. When we post the above symmetgkhbrg constraints, the
number of proper colourings reduces from 30 to just 3:

ds do ds
dy dy dy
(a) do (b) do (c) ds
dy dy ds

do ds ds

Each colouring is representative of a different equivakenkass. In fact, it is the lexi-
cographically least member of its equivalence class. Orother hand, the following
colourings are eliminated by the above symmetry breakimgiraints:

ds ds3 ds
do dy dy
(d) ds (e) ds () ds3
dy dy dy

ds ds3 ds3

For instance, the proper colouring given in (e) is symmeithat in (a) since if we
permuteds with ds in (e), we get (a). The proper colouring given in (e) is eliated by
the symmetry breaking constraif®}, 03) >.x (O3, 03) sinceO} = O} = 0 (neither
d nor ds occur in the first equivalence class of variables) B3t= 0 and0?% = 3 (d.
does not occur in the second equivalence class of variahieg;occurs three times).

Suppose BEAKINTERCHANGEABILITY (p, q, [X1,.., Xy]) IS @ global constraint
that eliminates all symmetric solutions introduced by licbengeable variables and
values. Thatis, BEAKINTERCHANGEABILITY orders the variables within each equiv-
alence class, as well as lexicographically orders the tiges of values within each
equivalence class. It can be seen as the conjunction of thering, Gcc and lex-
icographic ordering constraints given in Equations (1),d8d (3). Enforcing GAC
on such a global constraint will prune all symmetric valuas tb variable and value
interchangeability. Not surprisingly, decomposing thisbgl constraint into separate
ordering, Gc and lexicographic ordering constraints may hinder propaga

Example 3 Consider again the 3-colouring problem in Example 1. Supp¥s to
X5 have domains{d,ds,ds}, the signature variable${, Oi, O} have domains
{0,1,2}, whilst OF,0%,03 have domains{0,1,2,3}. Flener et al.'s decomposi-
tion and the binary not-equals constraints between vadabiepresenting neighbour-
ing nodes are GAC. However, by considering (a), (b) and (&),see that GAC on
BREAKINTERCHANGEABILITY and the binary not-equals constraints ensufés =
di, Xo 7é ds, X3 7& di, X4 7& dy and X5 7& dy.

As decomposing BEAKINTERCHANGEABILITY hinders propagation, we might
consider a specialised algorithm for achieving GAC thahpsiall possible symmetric
values. Unfortunately enforcing GAC on such a global caistis NP-hard [8].

4 A new decomposition

We propose an alternative decomposition ®EBKINTERCHANGEABILITY. This de-
composition does not need global cardinality constraiftiekvare expensive to propa-
gate. In fact, Flenest al’s decomposition requires a propagator faz@which prunes
the bounds on the number of occurrence of values. The decgitigpoproposed here
uses just RGULAR constraints which are available in many solvers or can biyeas
added using simple ternary transition constraints [13]s Tlew decomposition can be
efficiently and incrementally propagated.

The results in Table 5 of [15] suggest that propagation islyanindered by de-
composing a chain of lexicographic ordering constraints individual lexicographic
ordering constraints between neighbouring vectors. Resullable 1 of [16] also sug-
gest that propagation is rarely hindered by decomposingrstny breaking constraints
for interchangeable values into symmetry breaking comsrdetween neighbouring
pairs of values in each equivalence class. We thereforeogeog decomposition which
only considers the signatures of neighbouring pairs ofeslo each equivalence class.

This decomposition replacesRBAKINTERCHANGEABILITY by a linear number
of symmetry breaking constraints|j& ex. These lexicographically order the signa-
tures ofneighbouringpairs of values in each equivalence class, as well as order va
ables within each equivalence class. We decompaseABINTERCHANGEABILITY
into SIGLEX(k, p, [X1, .., X,]) for q(j) < k < q(j +1) — 1,1 < j < b. The global
constraint SsLEX(k, p, [X1, .., X,,]) itself holds iff:

Xp(i) < o < Xp(ip1)-1 Vie(l,d (4)
AMONG([X i), -+ Xp(ir1)-1); {di}, 0}) Vi€ [1,4] (5)
AMONG([X,,(5), s Xp(is1)—1), {drs1}, Oh 1) Vi€ [1,d] (6)
(Oliv"aOI%) Zlex (Oli+17"a0;5+1) (7)

SIGLEX orders the variables within each equivalence class anddgraphically or-
ders the signatures of two interchangeable and neighlpuaiues. To propagate each
SIGLEX constraint, we give a decomposition using@&UJLAR constraints which does
not hinder propagation.

Theorem 1 GAC can be enforced dBIGLEX(k, p, [X1, .., X,,]) in O(n?) time.

Proof: We first enforce the ordering constraim§,;; < .. < X,(;41)—1 on each
variable partition. We then channel into a sequence of falwed variables using the
constraintsY;* = (X; > dpy1) + (X > dry1) + (X; > di). Thatis, Y = 3 if
X; > dk+1, Y;-k =2if X; = di+1, Y;-k =1if X; =dy, andY,L.’“ =0if X; < dy.

Within the ith variable partition, we enforce GAC on &RULAR constraint on
ka(i) to Yp’f(i+1)_1 to compute the difference betweél, and O}, ,, and assign this

difference to a new integer variabl& . The automaton associated with this GULAR
constraint has state variabl@g(i) to Q’;(i+1)_1 whose values are tuples containing the
difference between the two counts seen so far as well asshedhue seen (so that we
can ensure that values faf* are increasing). Fron, y), the transition function on

seeingY;* moves to the new staté + (V¥ = 2) — (Y}* = 1), max(y, Y;*)) if and only

if Y* > y. The initial state ig0, 0). We set the difference between the two counts in the
final state variable equal to the new integer variabjg(which is thus constrained to
equalO;, , —O;) Finally, we ensure that the vecto(§);., .., O¢) and(O;. 1, .., Of, ;)
are ordered using a finalERGULAR constraint on the difference variabldg3; to D{.
The associated automaton has 0/1 states, a transitioridanehich moves from state
btobV (Di < 0) providedDj < 0orb = 1, aninitial state) and 0 or 1 as final states.

The constraint graph of all theER&ULAR constraints is Berge-acyclic. Hence en-
forcing GAC on these RGULAR constraints achieves GAC on the variablés [17].
Consider a support for tHg* variables. We can extend this to a support for ¥hevari-
ables simply by picking the smallest value left in their dimsaafter we have enforced
GAC on the channelling constraints between #eandY;* variables. Support for val-
ues leftin the domains of th€; variables can be constructed in a similar way. Enforcing
GAC on this decomposition therefore achieves GAC avlLEX (k, p, [X1, .., X4]).

Assuming bounds can be accessed and updated in constamirithaeconstraint is
awoken only if the domain of a variable in its scope has beedified, enforcing GAC
on the ordering constraints tak€sn) time, on the channelling constraints betweén
andY;* takesO(n) time, on the first set of RGULAR constraints which comput®;,
takesO(n?) time, and on the final RGULAR constraint take®)(na) time. Asa < n,
enforcing GAC on &LEX takesO(n?) time.o

We compare this with the & decomposition in [9]. This requires adg propaga-
tor which prunes the bounds of the occurrence variables.Witlitake O (mn? +n?56)
time [12]. To break the same symmetry, we need to post up(te) SIGLEX con-
straints, which take)(mn?) time in total to propagate. In the best case for this new
decompositionyn grows slower tha®(n-%%) and we are faster. In the worst case,
grows as0(n"5%) or worse and both propagators takémn?) time. The new decom-
position is thus sometimes better but not worse than the oé&d @/e conjecture that
the two decompositions are incomparable. Tlec@ecomposition reasons more glob-
ally about occurrences, whilst thec3. Ex decomposition reasons more globally about
supports of increasing value. Indeed, we can exhibit a prolin which the &LEX
decomposition gives exponential savings. We predict tiatéverse is also true.

Theorem 2 On the pigeonhole problem? H P(n) with n interchangeable variables
andn + 1 interchangeable values, we explatg2™) branches when enforcing GAC
and breaking symmetry using ti&c decomposition irrespective of the variable and
value ordering, but we solve in polynomial time when enfg¢sAC usingSIGLEX.

Proof: The problem has+1 constraints of the forny!_, X; = d; for1 < j <n+1,
with X; € {di,..,dn+1} for 1 < i < n. The problem is unsatisfiable by a simple
pigeonhole argument. Enforcing GAC oncR EX(i, [X7, ..., X,]) fori > 0 prunes
di+1 from X;. Hence X, is set tod; . Enforcing GAC on 8LEX (7, p, [X1,. .., X4])
for i > 1 now prunesi; ;1 from X,. The domain ofX; is thus reduced tdd;, ds }.

By a similar argument, the domain of ea&h is reduced tddy, .. .d;}. The SGLEX
constraints are now GAC. Enforcing GAC on the constrafiit, X; = d,, 41 then
proves unsatisfiability. Thus, we prove that the problemrmisatisfiable in polynomial
time. On the other hand, using thecG decomposition, irrespective of the variable
and value ordering, we will only terminate each branch whenl variables have been

assigned (and the last variable is forced). A simple calmrahows that the size of the
search tree as least doubles as we incredasel. Hence we will visitD(2™) branches
before declaring the problem unsatisfiakle.

5 Some special cases

Variablesare not interchangeable

Suppose we have interchangeable values but no variablesymaa(i.ea = n andb <
m). To eliminate all symmetric solutions in such a situatibaw and Lee introduced
value precedence [4]. This breaks symmetry by constrainimgn a value is first used.
More precisely, RECEDENCEFE, [X1, .., X,,]) holds iffmin{i | X; = dyVi = n+1} <
min{i | X; = dg+1 Vi = n+2}. Thatis, the first time we usg, is before the first time
we used 1. This prevents the two values being interchanged. It is aod o show
that the $SGLEX constraint is equivalent to value precedence in this sgoat

Theorem 3 PRECEDENCEE, [X1, .., X,,]) is equivalent taSIGLEX(k, p, [X1, .., Xy])
whenn = a (i.e.,p(i) = i fori € [1, n]).

Proof: If n = a then the vectors computed withinc&ex, namely(O}, .., O¢) and
(O,Lrl, -, Op,,), aren-ary 0/1 vectors representing the indices at whighrandd
appear. Lexicographically ordering these vectors enghaseitherd,, is used before
dr+1 or neither are used. This is equivalent to value precedence.

In this case, the propagator forcd Ex mirrors the work done by the propagator for
PRECEDENCEgiven in [16]. Although both propagators have the same asytigrost,
we might prefer the one forfECEDENCEas it introduces fewer intermediate variables.

All variablesand values are interchangeable

Another special case is when all variables and values ale iterchangeable (i.e.
a = b = 1). To eliminate all symmetric solutions in such a situatidfa)sh introduced a
global constraint which ensures that the sequence of vairesreasing but the number
of their occurrences is decreasing [16]. More preciselgc8eQ([X1, .., X,,]) holds
iff X1 = di, X; = XiJrl or (Xz = dj andXiH = dj+1) forl < i < nand
{i| X; =dp}| > {i| Xi = dis1}| for 1 < k < m. Not surprisingly, the &LEX
constraint ensures such an ordering of values.

Theorem 4 DECSEQ([X1, .., X,]) is equivalent tBIGLEX (k, p, [X1, .., X,,]) for 1 <
k<mwhena=0b=1(.e,p: {1} — {1}).

Proof: Suppose &LEX(k,p,[X1,.., X,]) holds forl < k < m. ThenO; > O},
for1 <k <m.NowO; = |{i | X; = di}|. Hence|{i | X; = dx}| > |{i | Xi =
d+1}| for 1 < k < m. Suppos®; = 0. ThenO; = 0 for 1 < k < m and no values
can be used. This is impossible. Her@g > 0 andd; is used. AsX; < .. < X,,,
X1 = dy. Suppose thaiy, is the first value not used. Thew, = 0. Hencerl. = (for
all j > k. Thatis, all values up td,, are used and all values including and atigrare
not used. Sinc&; < XiJrl, it follows thatX; = Xi+1 or (Xz = d]' andXiH =]'Jrl)
for 1 <4 < n. Thus, DECSEQ(| X1, .., X,,]) holds. The proof reverses easkiy.

6 Variable partition ordering

Suppose there are two variable partitiqis, , X} and{ X3, X4, X5}, and all domain
valuesd, ..., ds are interchangeable. Section 4 suggests that we can breaytn
metry using $6LEX(k,p, X) for 1 < k < 5, whereX = [X1,..., X5],p(1) = 1 and
p(2) = 3. Infact, the symmetry can be also broken by posting tiet 8x constraints in
another way: &LEx(k,p’, X') for 1 <k < 5, whereX' = [X1{, X}, X}, X}, X{] =
(X35, X4, X5, X1, Xo], /(1) = 1 andp’(2) = 4. The former posting places the parti-
tion {X1, X} in front of { X3, X4, X5} in SIGLEX, and vice versa for the latter. The
two postings eliminate different symmetric solutions,,itee solutions of the two post-
ings are different. We observe that in the presence of INFF constraints, the order
of the variable partitions placed in thecG Ex constraints affects propagation. In the
following, we study the issue of variable partition ordeyin details.

In the above example, suppose that we also hawe DAFF([X, X>]) and
ALLDIFF([X3, X4, X5]), and we enforce GAC on these constraints. GAC on the for-
mer set of $6LEX constraints alone removés, . . ., ds from the domain ofX; (due
to the lexicographic ordering on the signatures), makihggrounded. This triggers
propagation on ALDIFF([X1, X5]) that removesl; from the domain ofX,. Further
propagation on the constraints resultsXh € {di}, X2 € {d2}, X3 € {d1,ds},
Xy € {di1,ds,ds,ds} and X5 € {dy,d2,ds, ds, ds}. Note that all variables in the par-
tition { X5, X»} are grounded.

On the other hand, if we use the constraints S=x(k, p’, X') for 1 < k < 5,
then enforcing GAC on these constraints and the twa BIFF constraints results in
X € {dl,d4}, Xy € {dl,dg,d4,d5}, X3 € {dl}, X4 € {dg} and X5 € {dd} This
time, all variables in the partitiofiXs, X4, X5} are grounded.

In general, not every variable partition would contain anL®IFF constraint. If,
however, all domain values are interchangeable anfirsterariable partition placed in
the SGLEX constraints contains antA DIFF, GAC on the $GLEX and ALL DIFF con-
straints will either cause a domain wipe-out or groafidvariables in the first partition.

Theorem 5 Enforcing GAC orALLDIFF([X (1), ..., Xp(2)—1]) and the set 0BIGLEX
constraints decomposed froBREAKINTERCHANGEABILITY causes either domain
wipe-out orX; = d; for p(1) <i <min(p(2) —1,m)if b = 1.

Proof: Consider two cases < p(2)—1orm > p(2)—1. The former causes a domain
wipe-out, as there are fewer domain values than variablgeeidLL DIFF constraint.
For the latter case, we first prove by induction that¢ {d;y1,...,dm}Vp(1) <
i <p(2) — 1. Wheni = p(1) = 1, suppose conversely; = dj foranyl < k < m.
As SIGLEX impliesX; < ... < X,5)_1, we getO; > 1 andO; = 0. ButO;, > O1
violates the lexicographic order on the signatures. HeAGe# dy for 1 < k < m,
i.e., X1 = di. Assume the cases are trdé < i’ < i. Suppose conversely; = dy,
foranyi < k < m. SinceVi’ < i, Xy & {dy_1,dx}, we getO;, > 1 andO}_, = 0,
which contradicts with the lexicographic order. This coatpé the induction.
We can now prove that far(1) < ¢ < p(2), eitherX; = d; or X; has empty do-
main. SinceX; ¢ {do,...,d,,}, obviously eithetX; = d; or X; has empty domain.
SupposeX; = di, enforcing GAC on ALDIFF([X 1), ..., Xp(2)—1]) will remove

d, from the domains ofXs, ..., X,9)—1. Now, Xo # d; and Xy ¢ {d3,...,d}.
Then we haveX, = dy or X5 has empty domain. We can repeat the process of enforc-
ing GAC on ALLDIFF([X (1), - - ., Xp(2)—1]) to consequently make eithéf; = d; or
domain wipe-out fop(1) <i < p(2).¢

Therefore, if more than one variable partition contains an BiFFconstraint, then
placing the largest variable partition at the front in the&ISEx constraints ensures
the most variables are grounded, and therefore the mostiaaton of the problem.
This can be seen from the above example, in which the firstgpgtounds only two
variables, while the second posting grounds three. Furtbes, in the AL DIFF con-
straints, a grounded variable in a larger partition triggmore prunings than one in a
smaller partition, and enforcing GAC on&_EX tends to prunes values from variables
earlier in the variable sequence, due to thg, ordering on the signatures. Therefore,
itis a good idea to place larger variable partitions at tbatfin the $GLEX constraints
to increase the chance of more prunings due to a groundeablariThis gives us a
heuristic to rearrange the variables in theSEx constraints so thdil) variable par-
titions with ALL DIFF constraints are ordered before those with@utL DiFr, and (2)
among those variable partitions withLL DIFF constraints, order them in decreasing
partition size.

Theorem 5 applies to problems where all domain values agecinangeable. When
there is more than one value partitidh ¥ 1), enforcing GAC on the &LEX con-
straints does not necessarily ground the first variablegritht partition, since the first
valued,; in every partitionj can remain in its domain, making no subsequent ground-
ings of the other variables in the partition by thesBex and ALL DIFF constraints.
Nonetheless, propagation by other problem constraintarae instantiations during
search can eventually ground variables and trigger theipgsrby the AL DIFF con-
straints. Therefore, in the casetof> 1, it is still worthwhile to reorder the variables
using this heuristic. Note that this variable partition enidg heuristic helps improve
the amount of pruning for theiSL EX decomposition. Although it can be applied also
to the Gcc decomposition, the heuristic may not help here.

The discussion brings out an interesting question abouingpsymmetry breaking
constraints. Ideally, symmetry breaking constraints neenall but one solution from
each equivalence class of solutions. Different postingb@fsymmetry breaking con-
straints can leave a different solution. This is true faslSEx and also other symmetry
breaking constraints. In terms of eliminating symmetritugons, it does not matter
which solution we leave. However, in terms of propagatigrpaaently the different
postings give different behaviour. This is one of the firstds it has been shown that
breaking symmetry to leave a particular distinguished el@mf a symmetry class can
reduce search. It would be interesting to study this sydtieaily and formally in the
future.

7 Implementation notes

The proof of Theorem 1 already gives an overview of the imgletation of the &L EX
global constraint, which involves enforcing theordering of theX; variables, the chan-
nelling between theX; andY;* variables, and + 1 REGULAR constraints, where is

the number of variable partitions. The filsREGULAR constraints are used to do the
counting, while the last one enforces the, ordering using the final state information
associated with the automata in the filSREGULAR constraints. The maintenance of
the < ordering and the channeling is straightforward. TresRLAR constraint, how-
ever, has to be slightly modified to fit the requirement of ouplementation. In partic-
ular, we introduce an extra finite domain variableto the REGULAR constraint so that
REGULAR([X1, ..., X,], Fs, M) meansF is the final state of the strind(y, ..., X,,]
admissible by the DFAV = (Q, X, 0, qo, F'), whereQ is the set of all states; is the
alphabety is the state transitiomny, is the initial state, and’ is the set of final states.

Pesant [11] proposes a GAC propagator for the origireb®_AR constraint by
maintaining an associated layered directed multigi@gh ..., N+ A), wheren is
the number of variables in the constraint. Lét= {vq,...,v,}. Each layerN’ =
{g, ..., q|iQ|—1} contains a node; for each state; € @ and directed arcs id appear
only between two consecutive layers. The graph is acycliodmgtruction. There exists
an arc fromy}, to qf“ iff there exists some; in the domain ofX; such that (g, v,;) =
qi- The arc is labelled with the valug allowing the transition between the two states.

The multigraph iconsistenif each node has a non-zero in-degree and a non-zero
out-degree. Suppose a multigraph is inconsistent, i.ergtbxists a node with either
in-degree or out-degree being zero. We can make the muydtigtansistent again by
removing the node together with all its incoming or outgaangs from the graph. When
the arc fromy;, to q}“ is removed, we check if the out-degreeggfbecome zeros and
if the in-degree ofll“rl becomes zero to ensure consistency of the multigraph. Pesan
[11] gives a theorem stating thaERULAR([X1, ..., X,,], M) is GAC iff the domain
of X, is equal to the set of all labels from the outgoing arcs o&tiitg from nodes in
layer N? of a consistent multigraph associated wi.

In the original constraint RGULAR([X1, ..., X,], M), propagation is triggered
when some values are deleted from the domain of some varighlerhis corre-
sponds to removing arcs from the associated multigrapMofin the new constraint
REGULAR([X1, ..., X,], Fs, M), we have to allowalso triggerings caused by value
deletions from the domain df;. This corresponds to removing a node in lay&t*!
of the associated multigraph @ft. If such a removal causes inconsistency in the multi-
graph, Pesant’s procedure is still able to restore comsigt&\e can easily verify that
REGULAR is GAC iff the domain ofX; is equal to the set of all labels from the outgoing
arcs originating from nodes in lay&F of a consistent multigraph associated wi,
and the domain of, is the set of nodes (states) in laygr+1.

We show in the proof of Theorem 1 that a8 Ex constraint can be decomposed
into several RGULAR constraints without hindering propagation, since the trairg
graph of the decomposition is Berge-acyclic. However, wevijole a global constraint
implementation for 8L EX as it provides opportunities for efficiencies. In our imple-
mentation, we achieved GAC on@_EX using a two-pass iteration. In the first pass, we
enforce GAC on the decomposed constraints in a forward niginom the< ordering
constraints on th&; variables to the final RGULAR constraint for the> ., ordering.

In the second pass, the constraints are propagated agaim that reverse order. This
two-pass iteration guarantees that each constraint ingberdposition is propagated at
most twice but GAC is still enforced on onecl EX constraint as a whole.

8 Experiments

To test the efficiency and effectiveness of thelSex constraints, we perform exper-
iments on the graph colouring and concert hall schedulingplpms. We compare the
SIGLEX constraints against (1) thed@ decompositionGCC) and (2) RRECEDENCE
constraints with< ordering constraintsMalPrec). All three methods break both the
variable and value interchangeability. When usinglSEx constraints, we consider
two variable partition orderings: the data file orderigiglex) and the decreasing par-
tition size ordering $igLex-dec) introduced in Section 6. The experiments are run on
a Sun Blade 2500 (2 1.6GHz US-Illi, 2GB RAM) using ILOG Solver 4.4. The time
limit is 1 hour. The variable ordering heuristic is to chodisst a variable with the
smallest domain. Both benchmark problems are optimisgtioblems, and we report
the number of fails and CPU time to find and prove the optimuthéresults.

8.1 Graph colouring

In graph colouring, nodes having the same set of neighbouns & partition and are
interchangeable. We generate random graphs using foumpéees(n, r, p, ¢), where
n is the number of nodes amds the maximum node partition size. We start from an in-
dependent graph (graph with no arcs) withhodes and ensure node interchangeability
while adding arcs to the graph in two steps. First, the syiigcantaining nodes of two
partitions must be either a complete bipartite or indepahdeph. In Example 1, the
graph between partitiongX;, Xo} and{Xs, X4, X5} is complete bipartite. The pa-
rameterp is the proportion of complete bipartite subgraphs betwesrs pf partitions.
Second, the subgraph in one partition must also be eitheplatenor independent. In
Example 1, both subgraphs of the two partitions are independ he parameter is
the proportion of complete subgraphs among the partitidromplete subgraph in a
partition is modelled using anlA DIFF constraint on the variable partition.

With the four parameters, we generate two types of randophgrasing different
distributions on the variable partition size. In the firspey the number of nodes;
in the ith partition isuniformly distributed in[1,r]. Sincen is initially fixed, if the
generated value of a particulay makes the total number of nodes exceedhen the
ith partition will be the final partition and its size will be chosen such that the total
number of nodes is exactly. The second type hadsaseddistribution. The size of the
first | 4] partitions are preset to 1, i.e.3 | of the nodes are not interchangeable at all.
The remaining nodes are then partitioned using a uniforitnildigion like in the first
type. The latter type of graphs models a common scenaricaifife problems where
variable interchangeability occurs in only a subset of hgables. We test with various
values ofn, r = 8, p = 0.5 andq € {0.5,1}, and 20 instances are generated for each
set of parameters. Fig. 1(a) and (b) show the experimergaltssfor the uniform and
biased distributions respectively. A data point is plotaty when at least 90% of the
instances are solved within the time limit. All graphs arettgd in the log-scale.

At the same parameter setting, the instances of biasetdistn are more difficult
to solve than those of uniform distribution, since the forinstances have fewer sym-
metries than the latter and thus fewer symmetry breakingtcaints can be posted to
reduce the search space. Nevertheless, for both disoiig8igLex andSigLex-dec

Average Fails

Average Fails

Average Fails

Average Fails

1e+07

1e+06

100000

10000

1000

1e+07

1e+06 |

100000

10000

1000

100

1e+07

1e+06

100000

10000

1000

100

1e+07

1e+06

100000

10000

1000

100

Graph Colouring Problem, r: 8, q: 0.5

Graph Colouring Problem, r: 8, q: 0.5

T T T T 100 T T T T
ValPrec —— ValPrec —— M
SigLex SigLex -
SigLex-dec - SigLex-dec -
GCC - GCC 8
10
£
E
°
3
2
)
* 2
s
. . . . 01
30 £ 34 36 38 40 30 £ 34 36 38 40
n n
Graph Colouring Problem, r: 8, q: 1 Graph Colouring Problem, r: 8, q: 1
T T T T 1000 T T T
ValPrec —— o ValPrec
SigLex SigLex
SigLex-dec - SigLex-dec -
GCC -8] Gee
i
E
°
3]
2
)
e 2
4 o o
il * * 1k 4
*- >
. . . . 01
30 £ 34 36 38 40 30 £ 34 36 8 40
n n
Graph Colouring Problem(Biased), r: 8, g: 0.5 Graph Colouring Problem(Biased), r: 8, q: 0.5
T T T T T T T T 1000 T T T T T T T
ValPrec —+— 8
o a
SigLexdec - SigLex-dec ---x-
L Gce 4 GCC &
a
a
100 | El
] P
x
.-
E
°
3]
2
)
2
o 1
xee - * e
-
x
.
20 22 24 26 28 20 32 34 36 38 40 28 30 32 34 36 38 40
n n
Graph Colouring Problem(Biased), r: 8, q: 1 Graph Colouring Problem(Biased), r: 8, q: 1
T T T T T 1000 T T T T T T T T T
ValPrec ——
x
] 2
E
°
3]
2
)
2
3 *. * * 3 % 4
* . " -
* * x
F 3 >
o
. 01 I}
20 22 24 26 28 30 32 34 36 38 40 20 2 24 2 28 30 32 34 36 38 40

(b) Biased distributiong = 0.5 (top) or1.0 (bottom)n

Fig. 1. Graph colouring: average number of fails (left) and timglt)

took fewer number of fails tha@CC andValPrec in almost all parameter settings.
The fewer number of fails, however, does not always lead tizbein times, due to the
overhead incurred by the introduction of intermediatealalgs inside the implementa-
tion of the SGLEX constraintValPrec is competitive only for small values of. The
relative performance ddigLex andSigLex-dec over GCC andValPrec increases as
q increases. Among the two variable partition orderingsiaL%x, SigLex-dec has
much better performance th&mgLex in both number of fails and run time, confirming
the effectiveness of our proposed heuristic. The perfoomandvantage digLex-dec
over the other models becomes larger as boéimdq increases.

8.2 Concert hall scheduling

A concert hall director receivesapplications to use thieidentical concert halls. Each
application specifies a period and an offered price to usd foh¢he whole period. The
concert hall scheduling problem [18] is to decide which aatlons to accept in order
to maximise the total income. Each accepted applicationlghme assigned the same
hall during its whole applied period. We use a variable taespnt each application
whose domainig1,...,k+ 1} in two value partitions. Valuesk . . . , k represent thé
interchangeable halls, while the vallie- 1 represents a rejected application. Variables
representing identical applications (same period andedferice) are interchangeable
and form a partition. We generate problem instances withyarman of » = 8 identical
applications, and the size of each partition is generatddnmly. We test withn from
20to 40 in steps o, » = 8 andk € {10, 14}. Experimental results are shown in Fig. 2.
Regarding the number of fail§igLex-dec achieves the best result avalPrec
performs the worst. Regarding the run tingigLex-dec also achieves the best for
almost all casesSigLex has a slower run-time on this problem, despite a better numbe
of fails thanValPrec andGCC. This is again due to the implementation overhead in the
SIGLEX constraint. The decreasing variable partition orderingriséic helps hugely to
improve the pruning performance and hence outweigh theheaerto reduce the run
time. We also generated instances using a biased distniblikie in graph colouring
and obtained similar experimental results. Due to spacégliion, we skip the details.
Note that the concert hall scheduling problem does notyrdwle AL DIFF con-
straints in the variable partitions. However, the problemstraints are very similar to
ALLDIFF: two variablesX; and X ; representing two interchangeable applications can-
not take the same value (halll)the two applications are not rejected. ThatXs,# X
if X; # k4 1andX; # k+ 1. The propagation behaviour of such kind of constraint
is still similar to that of AL DIFF. Thus, the decreasing size variable partition ordering
can still help improve the pruning performance.

9 Redated work

Puget proved that symmetries can always be eliminated bpdhéional of suitable
constraints [1]. Crawforét al. presented the first general method for constructing such
symmetry breaking constraints, which are so-called “Eader” constraints [2]. They
also argued that it is NP-hard to eliminate all symmetriz8ohs in general. The full

Concert Hall Problem, r: 8, k: 10 Concert Hall Problem, r: 8, k: 10
1000

1e+07

ValPrec —— ValPrec ——
igLex ——-x--- iglex —x-—-
SigLex-dec - SigLex-dec -
GCC o GCC -8

1e+06 |
100000 |

10000 | e :

Average Fails
Avgerage Time
s

1000 -

¥ \VX‘m

100

10 |

20 22 24 26 28 30 32 34 36 38 40 20 22 24 26 28 30 32 34 36 38 40
n n

Concert Hall Problem, r: 8, k: 14 Concert Hall Problem, r: 8, k: 14

1000

1e+07

ValPrec ——
e

ValPrec ——
igLex i
SigLex.dec — - SigLexdec -—x-
Je+06 - GCC o] GeC e
100000 |

10000 |

1000 -

Average Fails
Avgerage Time

100 .-

Fig. 2. Concert hall scheduling (uniform distribution): averagember of fails (left) and time
(right), & = 10 (top) or 14 (bottom)

set of lex-leader constraints can often be simplified. Fangxe, when variables are
interchangeable and must take all different values, Pugawved that the lex-leader
constraints simplify to a linear number of binary inequatibnstraints [19]. To break
value symmetry, Puget introduced one variable per valueaalinear number of bi-
nary constraints [20]. Law and Lee formally defined valuecpoeence and proposed
a specialised propagator for breaking the special type loeveymmetry between two
interchangeable values [4]. Walsh extended this to a pratpatpr any number of inter-
changeable values [16]. Finally, an alternative way to bredue symmetry statically
is to convert it into a variable symmetry by channelling iatdual viewpoint and using
lexicographic ordering constraints on this dual view [3, T8fferent postings of sym-
metry breaking constraints can leave a different soluttomfeach equivalence class
of solutions and affect search performance. Fristlal. discussed choosing a good
posting to give the best propagation and allow new impliedst@ints [21]. Smith
presented experiments with different symmetry breakintstaints using the graceful
graph problem, but did not give heuristics for choosing adjpasting [22].

10 Conclusions

We have considered breaking the symmetry introduced bycinéageable variables
and values. Whilst there exist polynomial methods to elatérall symmetric solutions,

pruning all symmetric values is NP-hard. We have introduceeéw propagator called
SIGLEX for pruning some (but not necessarily all) symmetric valié® new propaga-
tor is based on a decomposition using@ULAR constraints. We have also introduced
a heuristic for ordering the variable partitions when pagstBGLEX constraints that
improves pruning. Finally, we have tested these symmetgling constraints experi-
mentally for the first time and shown that they are effectivpriactice.

References

1.

2.

10.
11.
12.

13.
. Puget, J.F.: Automatic detection of variable and vajmarsetries. In: Proc. of CP’05. (2005)

15.
16.
17.
18.
19.
20.
21.

22.

Puget, J.F.: On the satisfiability of symmetrical conistd satisfaction problems. In: Proc.
of ISMIS’93. (1993) 350-361

Crawford, J., Luks, G., Ginsberg, M., Roy, A.: Symmetredking predicates for search
problems. In: Proc. of KR'96. (1996) 148-159

. Flener, P., Frisch, A., Hnich, B., Kiziltan, Z., Miguel, Pearson, J., Walsh, T.: Breaking row

and column symmetry in matrix models. In: Proc. of CP’'02.020462—-476

. Law, Y.C., Lee, J.: Global constraints for integer andwstie precedence. In: Proc. of

CP’04. (2004) 362—-376

. Fahle, T., Schamberger, S., Sellmann, M.: Symmetry lmgakn: Proc. of CP’01. (2001)

93-107

. Gent, ., Smith, B.: Symmetry breaking in constraint pemgming. In: Proc. of ECAI'00.

(2000) 599-603

. Roney-Dougal, C., Gent, |, Kelsey, T., Linton, S.: Teddé symmetry breaking using re-

stricted search trees. In: Proc. of ECAI'04. (2004) 211-215

. Walsh, T.: Breaking value symmetry. In: Proc. of CP’00(?2)
. Flener, P., Pearson, J., Sellmann, M., Van Hentenryck Skatic and dynamic structural

symmetry breaking. In: Proc. of CP’06. (2006) 695—699

Sellmann, M., Van Hentenryck, P.: Structural symmetsaking. In: Proc. of IJCAI'05.
(2005) 298-303

Pesant, G.: A regular language membership constraifinfte sequences of variables. In:
Proc. of CP’04. (2004) 482—295

Quimper, C., van Beek, P., Lopez-Ortiz, A., Golynski, lfaproved algorithms for the global
cardinality constraint. In: Proc. of CP’04. (2004) 542-556

Quimper, C., Walsh, T.: Global grammar constraintsPhwoc. of CP’06. (2006) 751-755

475-489

Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., Walsh, TPropagation algorithms for lexico-
graphic ordering constraints. Artificial Intelligent&0 (2006) 803—-908

Walsh, T.: Symmetry breaking using value precedencePrioc. of ECAI'06. (2006) 168—
172

Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On thsidability of acyclic database
schemes. JACNBO (1983) 479-513

Law, Y.C., Lee, J.: Symmetry breaking constraints fdn@aymmetries in constraint satis-
faction. Constraint41 (2006) 221—-267

Puget, J.F.: Breaking symmetries in all different peofs. In: Proc. of IJCAI'05. (2005)
272-277

Puget, J.F.: Breaking all value symmetries in surjegii@blems. In: Proc. of CP’05. (2005)
490-504

Firsch, A., Jefferson, C., Miguel, |.: Symmetry breakas a prelude to implied constraints:
A constraint modelling pattern. In: Proc. of ECAI'04. (20047 1-175

Smith, B.: Sets of symmetry breaking constraints. locPof SymCon’05. (2005)

