
23

Removing Propagation Redundant
Constraints in Redundant Modeling

C.W. CHOI and J.H.M. LEE

The Chinese University of Hong Kong

and

P. J. STUCKEY

NICTA Victoria Laboratory and the University of Melbourne

A widely adopted approach to solving constraint satisfaction problems combines systematic tree

search with various degrees of constraint propagation for pruning the search space. One common

technique to improve the execution efficiency is to add redundant constraints, which are constraints

logically implied by others in the problem model. However, some redundant constraints are propa-
gation redundant and hence do not contribute additional propagation information to the constraint

solver. Redundant constraints arise naturally in the process of redundant modeling where two mod-

els of the same problem are connected and combined through channeling constraints. In this paper,

we give general theorems for proving propagation redundancy of one constraint with respect to

channeling constraints and constraints in the other model. We illustrate, on problems from CSPlib

(http://www.csplib.org), how detecting and removing propagation redundant constraints in re-

dundant modeling can speed up search by several order of magnitudes.

Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language Constructs

and Features—Constraints; F.4.1 [Mathematical Logic and Formal Languages]: Mathematical

Logic—Logic and constraint programming

General Terms: Performance, Theory

Additional Key Words and Phrases: Constraint propagation, redundant constraints, redundant

modeling

ACM Reference Format:
Choi, C., Lee, J., and Stuckey, P. 2007. Removing propagation redundant constraints in redun-

dant modeling. ACM Trans. Comput. Logic 8, 4, Article 23 (August 2007), 38 pages. DOI =
10.1145/1276920.1276925 http://doi.acm.org/10.1145/1276920.1276925

The work described in this article was substantially supported by grants from the Research

Grants Council of the Jong Kong Special Administrative Region (Project nos. CUHK4219/04E and

CUHK4183/00E).

Author’s address: C. W. Choi and J. H. M. Lee, Department of Computer Science and En-

gineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; email: {cwchoi,

jlee}@cse.cuhk.edu.hk; P. J. Stuckey, NICTA Victoria Laboratory, Department of Computer Science

& Software Engineering, University of Melbourne, 3010, Australia; email: pjs@cs.mu.oz.au.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 1529-3785/2007/08-ART23 $5.00 DOI 10.1145/1276920.1276925 http://doi.acm.org/

10.1145/1276920.1276925

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 23, Publication date: August 2007.

Article 23 / 2 • C. Choi et al.

1. INTRODUCTION

Finite domain constraint programming combines backtracking tree search
with constraint propagation to solve constraint satisfaction problems (CSPs)
[Mackworth 1977]. Constraint propagation removes infeasible values from the
domains of variables to reduce the search space. This propagation-based con-
straint solving framework is realized in modern constraint programming sys-
tems such as ECLiPSe [Cheadle et al. 2003], ILOG Solver [1999], and SICStus
Prolog [2003], which have been successfully applied to many real-life industrial
applications.

There is usually more than one way of modeling a problem as a CSP. By
modeling a problem as a CSP, we mean the process of determining the variables,
the associated domains of the variables, and the expressions of the constraints.
Finding a good model of a CSP is a challenging task. A modeler must specify
a set of constraints that capture the definitions of the problem, but this is not
enough. The model should also have strong propagation: that is, it should be
able to quickly reduce the domains of the variables of the problem. Moreover,
the implementation of propagators to perform constraint propagation should be
efficient. Last but not least, the choice of variables and the associated domains
should lead to a smaller search space than others.1

A common technique to increase propagation strength is to add redundant
constraints,2 which are logically implied by the constraints of the model. An
early and significant use of redundant constraints appears in Carlier and
Pinson [1989] for solving job-shop scheduling problems. Adding redundant con-
straints can be beneficial since the constraint solver may extract more infor-
mation from these redundant constraints. However, some logically redundant
constraints are propagation redundant, and hence do not contribute additional
propagation information to the constraint solver. Generally, we only want to add
redundant constraints that are not propagation redundant in order to reduce
the search space.

Example 1. Consider the following constraints,

x1 ≥ x2, x2 ≥ x3, x1 ≥ x3.

Suppose the domain for x1 is {−2, −1, 0, 1}, and the domains for x2 and x3

are both {−2, −1, 0, 1, 2}. During constraint propagation, the constraint solver
checks each constraint in turn and removes infeasible values from the domains.
This process is repeatedly applied until there are no further changes in the
resulting domains.

(1) We check x1 ≥ x2 and remove 2 from the domain of x2 since it is infeasible to
form a solution of x1 ≥ x2 with x2 = 2. Now, the domain of x2 is {−2, −1, 0, 1}.

(2) We check x2 ≥ x3 and remove 2 from the domain of x3 since it is infeasible to
form a solution of x2 ≥ x3 with x3 = 2. Now, the domain of x3 is {−2, −1, 0, 1}.

1For example, the search space of a problem model using integer variables is usually smaller than

that using Boolean variables.
2Redundant constraints are also known as implied constraints in some CSP literature [Smith et al.

2000; Frisch et al. 2004].

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 23, Publication date: August 2007.

Removing Propagation Redundant Constraints • Article 23 / 3

(3) We check x1 ≥ x3 and do nothing. This checking is redundant since anything
that can be removed by this constraint will be removed by the other two.
The constraint is propagation redundant.

Clearly, the constraint x1 ≥ x3 is logically implied by the constraints x1 ≥ x2

and x2 ≥ x3. Note that if x1 ≥ x3 were the first constraint checked, it would
indeed remove the value 2 from the domain of x3. However, it is easy to verify
that by removing x1 ≥ x3 from the model, we still obtain exactly the same re-
sulting domains. Hence, x1 ≥ x3 does not (really) contribute additional domain
reduction to the model.

Note that logical redundancy does not imply propagation redundancy.

Example 2. Consider the following constraints,

x1 − x2 ≥ 0, x1 + x2 ≥ 0, x1 ≥ 0

Suppose the domain of x1 and x2 is {−2, −1, 0, 1, 2}. During constraint propa-
gation, the constraint solver checks each constraint in turn as follows:

(1) Checking x1 − x2 ≥ 0 removes no values from any domain.

(2) Checking x1 + x2 ≥ 0 again removes no values from any domain.

(3) Checking x1 ≥ 0 removes the values −2 and −1 from the domain of x1.

Note that x1 ≥ 0 is logically redundant with respect to x1 − x2 ≥ 0∧ x1 + x2 ≥ 0.
Clearly it is not propagation redundant.

Depending on the order in which constraints are checked, propagation redun-
dant constraints may or may not remove values from the domain (as illustrated
earlier). Hence there certainly is a runtime cost associated with propagation re-
dundant constraints. Removing propagation redundant constraints leads us to
exactly the same domains after constraint propagation, but with significantly
less cost for the propagation, as we shall see later in the experiments.

An important source of logically redundant constraints is in redundant
modeling [Cheng et al. 1999]. A problem can be modeled differently from two
viewpoints using two different sets of variables. By connecting the two different
models with channeling constraints, which relate valuations in the two different
models, stronger propagation behavior can be achieved in the combined model.
However, the additional variables and constraints impose extra computation
overhead. Given that each model is complete and only admits the solutions of
the problem, then each model is logically redundant with respect to the other
model plus the channeling constraints. In many cases, some of the constraints
are also propagation redundant with respect to the other constraints in the
combined model. By reasoning about propagation redundancy, we can improve
redundant modeling by just keeping the constraints which give beneficial new
propagation.

In this paper, we introduce the notion of restrictive and unrestrictive chan-
nel functions to characterize channeling constraints. We study the propagation
behavior of constraints based on the notion of propagation rules, which cap-
ture each possible propagation by a constraint. This allows us to systematically

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 23, Publication date: August 2007.

Article 23 / 4 • C. Choi et al.

determine if a propagator is redundant with respect to the propagators of a set
of constraints through simple implication tests. We give general theorems for
proving propagation redundancy of constraints involved in redundant models.

We focus on propagators that perform (the combination of) two popular
propagation techniques, namely domain propagation [Van Hentenryck et al.
1998] and set bounds propagation [Gervet 1997], including global constraints
that implement these approaches (see Example 26). The underlying machinery
we use can express any propagators that only deal with integer domains and
set bounds, and some of our results are directly applicable to such propaga-
tors. Although we do not consider stronger set-based propagators that reason
more about cardinalities [Azevedo and Barahona 2000; Müller 2001]), we can
understand stronger cardinality reasoning as additional constraints using im-
plicit cardinality variables. Hence, we can model common cardinality reasoning
using additional propagators.

We illustrate, on problems from CSPLib (http://www.csplib.org/), how
detecting and removing propagation redundant constraints can significantly
speed up solving behavior. This article is a revised and extended version of our
earlier work [Choi et al. 2003a, 2003b].

The remainder of the article is organized as follows. In Section 2, we in-
troduce propagation-based constraint solving and propagation rules, a way of
enumerating the different propagation behaviors of a propagator. In Section 3,
we give theorems that are useful in determining propagation redundant con-
straints. In Section 4, we define a broad form of channeling constraints that are
covered by our approach. In Section 5, we give theorems that allow us to show
which constraints in a redundant model are not causing extra propagation and
can be removed. In Section 6, we give experimental results showing the benefits
of detecting and removing propagation redundant constraints. In Section 7, we
discuss related work. In Section 8, we summarize our contributions and shed
light on future directions of research.

2. BACKGROUND

In this article, we consider integer and set constraint solving with constraint
propagation and tree search. In an abuse of notation, we refer to arithmetic
constraints over Boolean variables as Boolean constraints, they are often called
pseudo-Boolean constraints. Hence, Boolean constraint solving is considered
as a special case of integer constraint solving. Our notations, although differ-
ent from the conventional CSP literatures, allow us to express the theoretical
framework in a simpler manner.

2.1 Variables and Domains

We consider a typed set of variables V = VI ∪ VS made up of integer variables
VI , for which we use lower-case letters such as x and y , and sets of integers
variables VS , for which we use upper-case letters such as S and T . We use v to
denote variables of either kind.

Each variable is associated with a finite set of possible values, defined by the
domain of the CSP. A domain D is a complete mapping from a fixed (countable)
set of variables V to finite sets of integers (for the integer variables in VI) and to

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 23, Publication date: August 2007.

Removing Propagation Redundant Constraints • Article 23 / 5

finite sets of finite sets of integers (for the set variables in VS). A false domain
D is a domain with D(v) = ∅ for some v. A singleton domain D is such that
|D(v)| = 1 for all v ∈ V. The intersection of two domains D1 and D2, denoted
D1 � D2, is defined by the domain D3(v) = D1(v) ∩ D2(v) for all v. A domain D1

is stronger than a domain D2, written D1
 D2, if D1(v) ⊆ D2(v) for all v. A
domain D1 is equal to a domain D2, denoted D1 = D2, if D1(v) = D2(v) for all
v. We shall be interested in the notion of an initial domain, which we denote
Dinit. The initial domain gives the initial values possible for each variable. In
effect an initial domain allows us to restrict attention to domains D such that
D
 Dinit. We also use range notation whenever possible: [l .. u] denotes the set
{d | l ≤ d ≤ u} when l and u are integers, while [L ..U] denotes the set of sets
of integers {A | L ⊆ A ⊆ U } when L and U are sets of integers.

2.2 Valuations, Infima and Suprema

A valuation θ is a mapping of integer variables (xi ∈ VI) to integer values and
set variables (Si ∈ VS) to sets of integer values, written

{x1
→ d1, . . . , xn
→ dn, S1
→ A1, . . . , Sm
→ Am}
where di ∈ D(xi) and Aj ∈ D(Sj). Let vars be the function that returns the
set of variables appearing in an expression, constraint or valuation. Given an
expression e, θ (e) is obtained by replacing each v ∈ vars(e) by θ (v) and calculat-
ing the value of the resulting variable free expression. In an abuse of notation,
we define a valuation θ to be an element of a domain D, written θ ∈ D, if
θ (vi) ∈ D(vi) for all vi ∈ vars(θ). The projection of a valuation θ onto variables
V , denoted θ |V is the valuation {v
→ θ (x) | v ∈ (V ∩ vars(θ))}.

Define the infimum and supremum of an expression e with respect to a do-
main D as infD e = inf{θ (e) | θ ∈ D} and supD e = sup{θ (e) | θ ∈ D}. The
ordering � used by inf and sup depends on the type of the expression. If e has
integer type then d1 � d2 iff d1 ≤ d2, while if e has set of integer type then
d1 � d2 iff d1 ⊆ d2. Note that these values may not exist for arbitrary domains
and set of integer type expressions. Later we shall restrict ourselves to domains
and expression where infimum and supremum always do exist.

2.3 Constraints and CSPs

A constraint places restrictions on the allowable values for a set of variables
and is usually written in well understood mathematical syntax. More formally,
a constraint c is a relation expressed using the available function and relation
symbols in a specific constraint language. For the purpose of this paper, we as-
sume the usual (integer) interpretation of arithmetic constraints, set operators
such as ∈ and ⊆, and logical operators such as ¬, ∧, ∨, ⇒, and ⇔. We define

solns(c) = {θ | vars(θ) = vars(c) ∧ |=θ c},
that is the set of θ that make the constraint c hold true. We call solns(c) the
solutions of c. In some cases, constraints can also be defined directly by giving
the set (or table) solns(c). We sometimes treat an integer constraint c as an
expression with value 1 if true and 0 if false. We can understand a domain D

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 23, Publication date: August 2007.

Article 23 / 6 • C. Choi et al.

as a constraint in the obvious way,

D ↔
∧
v∈V

∨
d∈D(v)

v = d .

A CSP consists of a set of constraints read as conjunction. A solution to a CSP
is a valuation θ that makes each constraint of a CSP holds true, i.e. θ |vars(c) ∈
solns(c) for all constraint c of a CSP. A constraint c is logically redundant with
respect to a constraint c′ if |= c′ → c, that is c holds whenever c′ holds. Adding
logically redundant constraints to a CSP does not change the solutions of a CSP.

2.4 Propagators and Propagation Solvers

In the context of propagation-based constraint solving, a constraint specifies
a propagator, which gives the basic units of propagation. A propagator f is a
monotonically decreasing function from domains to domains; that is, D1
 D2

implies that f (D1)
 f (D2), and f (D)
 D. A propagator f is correct for
constraint c iff for all domains D

{θ | θ ∈ D} ∩ solns(c) = {θ | θ ∈ f (D)} ∩ solns(c).

This is a weak restriction since, for example, the identity propagator is correct
for all constraints c. We assume that a propagator f for a constraint c is
checking, that is, if D is a singleton domain, then f (D) = D iff there exists θ ∈ D
and θ ∈ solns(c). A checking propagator correctly determines the satisfiability
of the constraint c for singleton domains.

A propagation solver for a set of propagators F and current domain D,
solv(F, D), repeatedly applies all the propagators in F starting from domain D
until there is no further change in resulting domain. solv(F, D) is the largest
domain D′
 D which is a fixpoint (i.e., f (D′) = D′) for all f ∈ F . In other
words, solv(F, D) returns a new domain defined by

iter(F, D) = �
f ∈F

f (D),

solv(F, D) = gfp(λd .iter(F, d))(D).

where gfp denotes the greatest fixpoint w.r.t
 lifted to functions.

2.5 Domain and Set Bounds Propagators

Propagators are often (but not always) linked to implementing some notion
of local consistency. The most well studied consistency notion is arc consis-
tency [Mackworth 1977], which ensures that for each binary constraint, every
value in the domain of the first variable, has a supporting value in the domain
of the second variable which satisfied the constraint. Arc consistency can be
naturally extended to constraints of more than two variables. This extension
has been called generalized arc consistency [Mohr and Masini 1988], as well as
domain consistency [Van Hentenryck et al. 1998] (which is the terminology we
will use), and hyper-arc consistency [Marriott and Stuckey 1998].

A domain D is domain consistent for a constraint c if D is the least domain
containing all solutions θ ∈ D of c, that is, there does not exist D′
 D such
that θ ∈ D ∧ θ ∈ solns(c) → θ ∈ D′.

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 23, Publication date: August 2007.

Removing Propagation Redundant Constraints • Article 23 / 7

Definition 1. Define the domain propagator for a constraint c as

dom(c)(D)(v) =
{ {θ (v) | θ ∈ D ∧ θ ∈ solns(c)} where v ∈ vars(c)

D(v) otherwise.

Note that dom(c)(D) makes D domain consistent for c.

Example 3. Consider the constraint c ≡ x1 = 3x2 + 5x3. Suppose domain
D(x1) = {2, 3, 4, 5, 6, 7}, D(x2) = {0, 1, 2}, and D(x3) = {−1, 0, 1, 2}. The solu-
tions of c are:

{x1
→ 3, x2
→ 1, x3
→ 0}, {x1
→ 5, x2
→ 0, x3
→ 1}, {x1
→ 6, x2
→ 2, x3
→ 0}.
Hence, dom(c)(D) = D′ where D′(x1) = {3, 5, 6}, D′(x2) = {0, 1, 2}, and D′(x3) =
{0, 1}. Clearly, D′ is domain consistent with respect to c.

Set bounds propagation [Gervet 1997] is typically used where a domain maps
a set variable to a lower bound set of integers and an upper bound set of integers.
We shall enforce this by restricting our attention to domains where the D(S) is
a range, that is D(S) = {A | infD(S) ⊆ A ⊆ supD(S)}. This is managed by using
only set bounds propagators, which maintain this property. The set bounds
propagator returns the smallest set range which includes the result returned
by the domain propagator.

Definition 2. Define the set bounds propagator for a constraint c where
vars(c) ⊆ VS as

sb(c)(D)(v) =
{

[∩(dom(c)(D)(v)) .. ∪ (dom(c)(D)(v))] where v ∈ vars(c)
D(v) otherwise.

Example 4. Consider the constraint c ≡ S1 ⊆ S2. Suppose the domain D
where D(S1) = [{1} .. {1, 2, 3, 4}], D(S2) = [∅ .. {1, 2, 3}]. Then, D′ = sb(c)(D)
where D′(S1) = D′(S2) = [{1} .. {1, 2, 3}].

A constraint can involve both integer and set variables. In such case, we use
domain propagation for the integer variables and set bounds propagation for
the set variables.

Definition 3. Define the domain and set bounds propagator dsb(c) for a
constraint c as:

dsb(c)(D)(v) =
{

sb(c)(D)(v) where v ∈ vars(c) ∩ VS

dom(c)(D)(v) otherwise.

Note that as defined dsb(c) = dom(c) when vars(c) ⊆ VI . From now on we
shall restrict attention to dsb propagators.

Example 5. Consider the constraint c ≡ |S| = x. Suppose D(x) = {2} and
D(S) = [∅ .. {1, 5, 8}]. The solutions of c are:

{x
→ 2, S
→ {1, 5}}, {x
→ 2, S
→ {1, 8}}, {x
→ 2, S
→ {5, 8}}.
Hence, applying the domain propagator, D′ = dom(|S| = x)(D), gives D′(S) =
{{1, 5}, {1, 8}, {5, 8}}. The domain and set bounds propagator instead determines
dsb(c)(D) = D since ∩{{1, 5}, {1, 8}, {5, 8}} = ∅ and ∪{{1, 5}, {1, 8}, {5, 8}} =
{1, 5, 8}.

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 23, Publication date: August 2007.

Article 23 / 8 • C. Choi et al.

2.6 Atomic Constraints and Propagation Rules

An atomic constraint represents the basic changes in domain that occur during
propagation. For integer variables, the atomic constraints represent the elimi-
nation of values from an integer domain, that is, xi �= d or xi = d where xi ∈ VI

and d is an integer.3 For set variables, the atomic constraints represent the
addition of a value to a lower bound set of integer or the removal of a value
from an upper bound set of integer, i.e. d ∈ Si or d �∈ Si where d is an integer
and Si ∈ VS .

Definition 4. Define a propagation rule as C � c where C is a conjunction
of atomic constraints, and c is a single atomic constraint such that �|= C → c.

For notational convenience we shall write extended rules C � C′ where C′

is a conjunction of atomic constraints as a shorthand for a set of rules {C �
c | c ∈ C′}. A propagation rule C � c defines a propagator (for which we use the
same notation) in the obvious way.

(C � c)(D)(v) =
{ {θ (v) | θ ∈ D ∧ θ ∈ solns(c)} if vars(c) = {v} and |= D → C

D(v) otherwise.

In another word, C � c defines a propagator that removes values from D
based on c only when D implies C. We can characterize an arbitrary propagator
f in terms of the propagation rules that it implements.

Definition 5. A propagator f implements a propagation rule C � c iff

|= D → C implies |= f (D) → c

for all D
 Dinit.

Example 6. The propagator f ≡ dsb(x1 �= x2) for Dinit(x1) = Dinit(x2) =
{1, 2, 3} implements the rules

x1 = 1 � x2 �= 1 x1 = 2 � x2 �= 2 x1 = 3 � x2 �= 3
x2 = 1 � x1 �= 1 x2 = 2 � x1 �= 2 x2 = 3 � x1 �= 3

Example 7. The propagator f ≡ dsb(S ⊆ T) for Dinit(S) = Dinit(T) =
{∅ . . . {1, 2}}. implements rules

1 ∈ S � 1 ∈ T 2 ∈ S � 2 ∈ T
1 �∈ T � 1 �∈ S 2 �∈ T � 2 �∈ S

Let � f be the set of all possible rules implemented by f . This definition of f is
often unreasonably large. In order to reason more effectively about propagation
rules for a given propagator, we need to have a minimal representation.4

3Atomic constraints of the form xi = d are not strictly necessary for propagation rules. They are

equivalent to removing all other values from the domain. However, they would become useful in

the later parts of the article.
4Both Brand [2003] and Abdennadher and Rigotti [2002] give effective methods for creating

minimal representations of any constraints in terms of propagation rules.

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 23, Publication date: August 2007.

Removing Propagation Redundant Constraints • Article 23 / 9

Definition 6. A set of propagation rules implemented by f , � f ⊆ � f , is
minimal iff

– solv(� f , D) = solv(� f , D), and

– there does not exist a �′
f ⊂ � f such that solv(�′

f , D) = solv(� f , D) for all
D
 Dinit.

That is, all propagation caused by f is also caused by the � f . Notice that � f

is not unique.

Example 8. Consider the Boolean constraint c ≡ z1 = z2 = z3 where
Dinit(z1) = Dinit(z2) = Dinit(z3) = [

0 .. 1
]
. A minimal set of propagation rules

implemented by dsb(c) consists of the rules:

(r1) z1 = 1 � z2 = 1 (r2) z1 = 0 � z2 = 0
(r3) z2 = 1 � z3 = 1 (r4) z2 = 0 � z3 = 0
(r5) z3 = 1 � z1 = 1 (r6) z3 = 0 � z1 = 0

Another minimal set of propagation rules implemented by dsb(c) consists of the
rules:

(r7) z1 = 1 � z3 = 1 (r8) z1 = 0 � z3 = 0
(r9) z2 = 1 � z1 = 1 (r10) z2 = 0 � z1 = 0

(r11) z3 = 1 � z2 = 1 (r12) z3 = 0 � z2 = 0

Note that propagation rules for constraints with Boolean domain {0, 1} can be
represented using only atomic constraints involving equations since |= Dinit →
((z = b) ↔ (z �= (1 − b))) for b ∈ {0, 1}.

3. PROPAGATION REDUNDANT CONSTRAINTS

We shall be interested in reasoning about redundancy with respect to sets of
propagators. We say a set of propagators F1 is stronger than a set of propagators
F2, written F1 � F2, if solv(F1, D)
 solv(F2, D) for all domains D
 Dinit. We
say a set of propagators F1 is equivalent to a set of propagators F2, written
F1 ≈ F2, if solv(F1, D) = solv(F2, D) for all domains D
 Dinit. A propagator
f is made propagation redundant by a set of propagators F if F � { f }. Our
main aim is to discover and eliminate propagation redundant constraints and/or
propagators. Before we can determine propagation redundant constraints, we
need to establish some theorems.

The interest in characterizing a propagator in terms of the propagation rules
is revealed by the following lemma. The propagation rules implemented by
dsb(c) of constraint c are exactly those C � c′ where c implies C → c′.

LEMMA 1. Given a constraint c, dsb(c) implements C � c′ iff

|= (Dinit ∧ c) → (C → c′).

PROOF. See the appendix.

Lemma 1 enables us to relate logical redundancy of constraints with propaga-
tion redundancy of the propagators. A constraint c2 that is logically redundant
with respect to constraint c1, is also propagation redundant with respect to c1.

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 23, Publication date: August 2007.

Article 23 / 10 • C. Choi et al.

THEOREM 2. Given constraints c1 and c2,

if |= (Dinit ∧ c1) → c2 then {dsb(c1)} � {dsb(c2)}
PROOF. Follows immediately from Lemma 1.

Example 9. Consider the constraints c1 ≡ x2 = x1 + 2 and c2 ≡ x1 �= x2

for Dinit(x1) = Dinit(x2) = {0, . . . , 5}. Clearly, |= Dinit ∧ c1 → c2, the condi-
tion of Theorem 2 holds and we know that dsb(c2) is propagation redundant
w.r.t. dsb(c1). For example, for D ⊆ Dinit where D(x1) = {2} and D(x2) =
{2, . . . , 5}, we have dsb(c1)(D)
 dsb(c2)(D) where dsb(c1)(D)(x2) = {4} and
dsb(c2)(D)(x2) = {3, . . . , 5}.

Typically though a logically redundant constraint is made logically redun-
dant by a conjunction of other constraints. However, it is well known that
in general the domain (and set bounds) propagation of a conjunction of con-
straints is not equivalent to applying the domain (and set bounds) propagators
individually.

LEMMA 3. Given constraints c1 and c2, {dsb(c1 ∧ c2)} � {dsb(c1), dsb(c2)}.
PROOF. Suppose to the contrary that there exists a variable y ∈ vars(c1 ∧c2)

such that

solv({dsb(c1 ∧ c2)}, D)(y) �⊆ solv({dsb(c1), dsb(c2)}, D)(y)

for certain D
 Dinit. Assume y ∈ VI . then there exists an integer d ∈ D(y)
such that d ∈ dsb(c1 ∧ c2)(D)(y) and {dsb(c1), dsb(c2)} eliminates d from y .
By definition of propagation solver, there can be no solutions θ which satisfies
c1 ∧c2 in D where θ (y) = d . By the definition, {dsb(c1 ∧c2)} must also eliminate
d from y . Hence, d �∈ dsb(c1 ∧ c2)(D)(y), contrary to the hypothesis. Similar
arguments apply for the case y ∈ VS .

If a constraint c is logically redundant w.r.t. a conjunction of constraints
c1 and c2, then {dsb(c)} is propagation redundant w.r.t. {dsb(c1 ∧ c2)} using
Theorem 2. However, constraint programming system normally implements
a separate propagator for each individual constraint. Because of Lemma 3,
{dsb(c)} is not necessarily propagation redundant w.r.t. the propagators of the
individual constraints collectively, i.e.{dsb(c1), dsb(c2)}. Hence, it is difficult (in
general) to determine whether a constraint that is logically redundant with
respect to a conjunction of constraints, is propagation redundant or not. Inter-
estingly, there is a case where propagation of a conjunction of constraints is
equivalent to propagation on the individual conjuncts.

THEOREM 4. If c1 and c2 are two constraints sharing at most one integer
variable, x ∈ VI , then {dsb(c1), dsb(c2)} ≈ {dsb(c1 ∧ c2)}.

PROOF. See the appendix.

Example 10. Consider again the integer constraints of Example 1, c1 ≡
x1 ≥ x2, c2 ≡ x2 ≥ x3, and c3 ≡ x1 ≥ x3, where Dinit(x1) = [−2 .. 1

]
and Dinit(x2) =

Dinit(x3) = [−2 .. 2
]
. It is clear that |= Dinit ∧c1 ∧c2 → c3. By Theorem 2, we have

{dsb(c1 ∧c2)} � {dsb(c3)}. Note that c1 and c2 share only one integer variable x2.

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 23, Publication date: August 2007.

Removing Propagation Redundant Constraints • Article 23 / 11

By Theorem 4, we have {dsb(c1), dsb(c2)} ≈ {dsb(c1 ∧ c2)}. Hence, we show that
{dsb(c3)} is propagation redundant w.r.t. {dsb(c1), dsb(c2)} as demonstrated in
Example 1.

Note that for Example 2 the constraints x1 − x2 ≥ 0 and x1 + x2 ≥ 0 share
more than one variable, hence {dsb(x1 − x2 ≥ 0 ∧ x1 + x2 ≥ 0)} �≈ {dsb(x1 − x2 ≥
0), dsb(x1 + x2 ≥ 0)}. Thus, while x1 ≥ 0 is logically redundant w.r.t x1 − x2 ≥
0 ∧ x1 + x2 ≥ 0, it is not propagation redundant.

Note that Theorem 4 does not hold when the single variable shared is a
set variable, because we only apply set bounds propagation. If we did use set
domain propagators the result readily extends to the case where a single shared
variable is a set variable.

Example 11 (Counterexample). Consider the constraints c1 ≡ S ∈
{{1}, {2, 3}} and c2 ≡ S ∈ {{2}, {1, 3}} where D(S) = {∅..{1, 2, 3}}. Now,
dsb(c1)(D) = dsb(c2)(D) = D, but dsb(c1 ∧ c2)(D) is a false domain since c1 ∧ c2

is unsatisfiable. Hence, Theorem 4 does not hold when the shared variable is a
set variable and we use set bounds propagators.

However, if we use set domain propagators, then dom(c1)(D) = D1 where
D1(S) = {{1}, {2, 3}} and dom(c2)(D1)(S) = ∅. Hence, Theorem 4 holds when the
shared variable is a set variable and we use set domain propagators.

4. CHANNELING CONSTRAINTS

Redundant modeling [Cheng et al. 1999] models a problem from more than one
viewpoint. By joining two models using channeling constraints, we can get the
advantage of both sources of propagation.

Assume we have one model of the problem MX using variables X , and an-
other model MY using disjoint variables Y . Channeling constraints can be used
to join these two models together by relating X and Y . There is no real agree-
ment, as yet, as to precisely what channeling constraints are. For the purposes
of our theorems we define a channeling constraint as follows.

Let AX be the atomic constraints for Dinit on variables X , and AY be the
atomic constraints for Dinit on variables Y . A channel function ♦ is a bijec-
tion from atomic constraints AX to AY . We extend channel functions to map
conjunctions of atomic constraints in the obvious way,

♦(c1 ∧ · · · ∧ cn) = ♦(c1) ∧ · · · ∧ ♦(cn)

where c1, . . . , cn are atomic constraints.

Definition 7. A channeling constraint (or simply channel) C♦ is the
constraint ∧

c∈AX

(c ⇔ ♦(c)).

Definition 8. The channel propagator F♦ is the set of propagation rules
inferred from the channel function ♦.

F♦ =
⋃

c∈AX

{c � ♦(c), ♦(c) � c}.

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 23, Publication date: August 2007.

Article 23 / 12 • C. Choi et al.

Note that for channel function ♦, by definition, ♦−1 is also a channel function,
and C♦ and C♦−1 , as well as F♦ and F♦−1 , are identical. We now illustrate how
common channels fit into this framework.

4.1 Permutation Channels

A common form of redundant modeling is when we consider two viewpoints to
a permutation problem [Geelen 1992]. In a permutation problem, the objective
is to find a bipartite matching between two sets of objects A = {a1, . . . , an} and
B = {b1, . . . , bn} satisfying all other problem specific constraints. Generally,
we can model a permutation problem from two different viewpoints. In the
first viewpoint, we assign objects from B to A. We use the set of variables
X = {x1, . . . , xn} to denote objects in A, and the domain D(xi) = {1, . . . , n},
for all 1 ≤ i ≤ n to denote objects in B. The second viewpoint swaps the role
between A and B, i.e. assign objects from A to B. We use the set of variables
Y = { y1, . . . , yn} to denote objects in B, and the domain D(y j) = {1, . . . , n}, for
all 1 ≤ j ≤ n to denote objects in A.

The permutation channel function �� is defined as ��(xi = j) = (y j = i)
and ��(xi �= j) = (y j �= i) for all 1 ≤ i, j ≤ n. The permutation channel C�� is
equivalent to the conjunction of constraints

n∧
i=1

n∧
j=1

(xi = j ⇔ y j = i).

Example 12. Langford’s Problem The problem “prob024” in CSPLib is
an example of permutation problem. The problem is to find an (m × n)-digit
sequence that includes the digits 1 to n, with each digit occurring m times. There
is one digit between any consecutive pair of the digit 1, two digits between any
consecutive pair of the digit 2, . . . , and n digits between any consecutive pair
of the digit n.

Smith [2000] suggests two ways to model the Langford’s problem. We use
the (3 × 9) instance to illustrate the two models. In the first model, MX , we use
27 variables X = {x1, . . . , x27}, which we can think of as 11, 12, 13, 21, . . . , 92, 93.
Here, 11 represents the first digit 1 in the sequence, 12 represents the second
digit 1, and so on. The initial domain of these variables, Dinit(xi) = {1, . . . , 27}
for 1 ≤ i ≤ 27, represents the positions of the digit xi in the sequence. We enlist
the constraints of Smith’s model as follows:

—(LX1) disequality constraints: ∀1 ≤ i < j ≤ 27. xi �= x j

—(LX2.1) separation constraints: ∀1 ≤ i ≤ 9. x3i−1 = x3i−2 + (i + 1)

—(LX2.2) separation constraints: ∀1 ≤ i ≤ 9. x3i = x3i−1 + (i + 1)

In the second model, MY , we again use 27 variables Y = { y1, . . . , y27} to
represent each position in the sequence. The initial domain of these vari-
ables, Dinit(yi) = {1, . . . , 27} for 1 ≤ i ≤ 27, corresponds to the digits
11, 12, 13, 21, . . . , 92, 93 in position yi of the sequence. The constraints are:

—(LY1) disequality constraints: ∀1 ≤ i < j ≤ 27. yi �= y j

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 23, Publication date: August 2007.

Removing Propagation Redundant Constraints • Article 23 / 13

—(LY2.1) separation constraints: ∀1 ≤ i ≤ 9.∀1 ≤ j ≤ 27 − 2(i + 1). y j =
3i − 2 ⇔ y j+(i+1) = 3i − 1

—(LY2.2) separation constraints: ∀1 ≤ i ≤ 9.∀1 ≤ j ≤ 27 − 2(i + 1). y j =
3i − 2 ⇔ y j+2(i+1) = 3i

—(LY3) separation constraints: ∀1 ≤ i ≤ 9.∀(28−2(i+1)) ≤ j ≤ 27. y j �= 3i−2

The permutation channel for the two models is simply xi = j ⇔ y j = i for all
1 ≤ i, j ≤ 27.

Example 13. All Interval Series Problem The problem “prob007” in
CSPLib is from musical composition. The problem is to find a permutation
of n numbers from 1 to n, such that the differences between adjacent numbers
form a permutation from 1 to n − 1. We give two ways to model the problem.
The first model derives from the model suggested by Puget and Régin [2001],
and the the second model slightly modifies the model suggested by Choi and
Lee [2002].

The first model, MX , consists of n variables, X = {x1, . . . , xn}. Each xi denotes
the number in position i, and Dinit(xi) = [

1 .. n
]

for 1 ≤ i ≤ n. We introduce
auxiliary variables, {u1, . . . , un−1} that denote the difference between adjacent
numbers, where Dinit(ui) = [

1 .. n − 1
]

for 1 ≤ i ≤ n − 1. The constraints are:

—(IX1.1) disequality constraints: ∀1 ≤ i < j ≤ n. xi �= x j

—(IX1.2) disequality constraints: ∀1 ≤ i < j ≤ n − 1. ui �= u j

—(IX2) interval constraints: ∀1 ≤ i ≤ n − 1. ui = |xi − xi+1|
The second model, MY , also consists of n variables, Y = { y1, . . . , yn}. Each

yi denotes the position for the number i, and Dinit(yi) = [
1 .. n

]
for 1 ≤ i ≤ n.

The auxiliary variables {v1, . . . , vn−1} denote the position where the difference
value of 1 to n − 1 belongs, and Dinit(vi) = [

1 .. n − 1
]

for 1 ≤ i ≤ n − 1. The
constraints are:

—(IY1.1) disequality constraints: ∀1 ≤ i < j ≤ n. yi �= y j

—(IY1.2) disequality constraints: ∀1 ≤ i < j ≤ n − 1. vi �= vj

—(IY2.1) interval constraints: ∀1 ≤ i < j ≤ n. (yi − y j = 1) ⇒ (vj−i = y j)

—(IY2.2) interval constraints: ∀1 ≤ i < j ≤ n. (y j − yi = 1) ⇒ (vj−i = yi)

The (IY2.1) and (IY2.2) constraints enforce that if yi and y j are adjacent, the
position for their difference must be the smaller of them. In the second model,
observe the fact that only the numbers 1 and n can give us the difference of
n − 1. Therefore, we can add the following redundant constraints:

(IY3): (| y1 − yn| = 1) ∧ (vn−1 = min(y1, yn)),

which requires y1 and yn to be adjacent.
The permutation channels for this problem are more interesting because we

have two distinct kinds of variables in each model, each of which is related by
a permutation channel. The channels are xi = j ⇔ y j = i for all 1 ≤ i, j ≤ n
and ui = j ⇔ vj = i for all 1 ≤ i, j ≤ n − 1.

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 23, Publication date: August 2007.

Article 23 / 14 • C. Choi et al.

4.2 Boolean Channels

Another common form of redundant modeling is when we give both an inte-
ger and Boolean models. Suppose we have an integer model using the integer
variables X = {x1, . . . , xn} and the domain Dinit(xi) = [1 .. k]. We can have a
corresponding Boolean model using the Boolean variables Z = {zi j | 1 ≤ i ≤
n, 1 ≤ j ≤ k}. Each variable zi j encodes the proposition that xi = j .

The Boolean channel function � is defined as �(xi = j) = (zi j = 1) and
�(xi �= j) = (zi j = 0) for all 1 ≤ i ≤ n, 1 ≤ j ≤ k. Note that the atomic
constraints zi j �= 1 and zi j �= 0 are not needed for Boolean variables since they
are equivalent (respectively) to zi j = 0 and zi j = 1. The Boolean channel C� is
equivalent to the conjunction of constraints

n∧
i=1

k∧
j=1

(xi = j ⇔ zi j = 1)

Example 14. n-Queens Problem This well-known problem is to place n
queens on an n × n chess board so that no two queens can attack each other.
There are two common ways to model this problem, that is, an integer model
and a Boolean model.

The integer model, MX , consists of n variables, X = {x1, . . . , xn}. Each xi

denotes the column position of the queen on row i, and Dinit(xi) = {1, . . . , n}, for
1 ≤ i ≤ n. The constraints are:

—(QX1) column constraints: ∀1 ≤ i < j ≤ n. xi �= x j

—(QX2.1) diagonal constraints: ∀1 ≤ i < j ≤ n. xi − i �= x j − j
—(QX2.2) diagonal constraints: ∀1 ≤ i < j ≤ n. xi + i �= x j + j

The Boolean model, MZ , consists of n × n Boolean variables, Z = {z11, . . . ,
z1n, . . . , zn1, . . . , znn}. Each Boolean variable zi j denotes whether we have a
queen at row i column j or not. The constraints are:

—(QZ1) row constraints: ∀1 ≤ i ≤ n.
∑n

j=1 zi j = 1

—(QZ2) column constraints: ∀1 ≤ j ≤ n.
∑n

i=1 zi j = 1

—(QZ3.1) diagonal constraints: ∀0 ≤ k ≤ n − 1.
∑n−k

i=1 zi(i+k) ≤ 1

—(QZ3.2) diagonal constraints: ∀1 ≤ k ≤ n − 1.
∑n−k

i=1 z(i+k)i ≤ 1

—(QZ3.3) diagonal constraints: ∀0 ≤ k ≤ n − 1.
∑n−k

i=1 zi(n−i−k+1) ≤ 1

—(QZ3.4) diagonal constraints: ∀1 ≤ k ≤ n − 1.
∑n−k

i=1 z(i+k)(n−i+1) ≤ 1

We combine the two models using the Boolean channel xi = j ⇔ zi j = 1 for
all 1 ≤ i ≤ n, 1 ≤ j ≤ k.

4.3 Set Channels

Another common form of redundant modeling is where one model deals with
integer variables, and the other with variables over finite sets of integers, and
the relation xi = j holds iff i ∈ Sj . This generalizes the permutation problem
to where two or more integer variables can take the same value. Suppose the
integer variables are X = {x1, . . . , xn}, where Dinit(xi) = [1 .. k] for all 1 ≤ i ≤ n,

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 23, Publication date: August 2007.

Removing Propagation Redundant Constraints • Article 23 / 15

and the set variables are S = {S1, . . . , Sk} where Dinit(Sj) = [∅ .. {1, . . . , n}] for
all 1 ≤ j ≤ k.

The set channel function {} is defined as {}(xi = j) = (i ∈ Sj) and {}(xi �= j) =
(i �∈ Sj) for all 1 ≤ i ≤ n, 1 ≤ j ≤ k. The set channel C{} is equivalent to

n∧
i=1

k∧
j=1

(xi = j ⇔ i ∈ Sj)

Example 15. Social Golfers Problem The problem “prob010” in CSPLib
is to arrange n = g × s players into g groups of s players each week, playing
for w weeks, so that no two players play in the same group twice. Smith [2001]
suggests two ways to model this problem.

In the first model we use variables X = {xlk|1 ≤ l ≤ n, 1 ≤ k ≤ w} to
denote the group which player l plays on week k, and Dinit(xlk) = [

1 .. g
]

for all
1 ≤ l ≤ n, 1 ≤ k ≤ w.

The constraints of the problem are expressed as:

—(GX1) each group has s players: ∀1 ≤ i ≤ g .∀1 ≤ k ≤ w.
∑n

l=1(xlk = i) = s
—(GX2) two players only play in the same group in one week:

∀1 ≤ k1 < k2 ≤ w.∀1 ≤ l1 < l2 ≤ n. ¬(xl1k1
= xl2k1

∧ xl1k2
= xl2k2

)

The second model uses set variables S = {Sik|1 ≤ i ≤ g , 1 ≤ k ≤ w} to denote
the set of players play in group i on week k. and Dinit(Sik) = [∅ .. {1, . . . , n}] for
all 1 ≤ i ≤ g , 1 ≤ k ≤ w. The constraints are expressed as:

—(GS1) no groups in the same week have a player in common:

∀1 ≤ k ≤ w.∀1 ≤ i1 < i2 ≤ g . Si1k ∩ Si2k = ∅
—(GS2) each group has s players: ∀1 ≤ i ≤ g .∀1 ≤ k ≤ w. |Sik| = s
—(GS3) no different groups have more than one player in common:

∀1 ≤ i1 �= i2 ≤ g .∀1 ≤ k1 < k2 ≤ w. |Si1k1
∩ Si2k2

| ≤ 1

We can use the set channels to combine the two models, xlk = i ⇔ l ∈ Sik for
all 1 ≤ l ≤ n, 1 ≤ k ≤ w, 1 ≤ i ≤ g .

Example 16. Balanced Academic Curriculum Problem The problem,
listed as “prob030” in CSPLib, is to design an academic curriculum aiming to
balance the loads in each academic period. Following the description in Hnich
et al. [2002], we can have both an integer model MX and set model MS .

Given m courses, and n periods, a, b are the minimum and maximum aca-
demic load allowed per period, c, d are the minimum and maximum number of
courses allowed per period, ti specifies the number of credits for course i, and R
is a set of prerequisite pairs 〈i, j 〉 specifying that course i must be taken before
course j .

We introduce a set of auxiliary variables l j , which is shared by both models,
to represent the academic load in period j as well as a variable u representing
the maximum academic load in any period, i.e. u = max{l j | 1 ≤ j ≤ n}. The
objective function simply minimizes u. We also introduce another set of shared

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 23, Publication date: August 2007.

Article 23 / 16 • C. Choi et al.

auxiliary variables qj to represent the number of courses assigned to a period.
We have Dinit(u) = Dinit(l j) = [0 ..

∑m
i=1 ti] and Dinit(qj) = [1 .. m].

We have the following constraints that are common to both models:

—(B1.1) load allowed per period: ∀1 ≤ j ≤ n. a ≤ l j ≤ b
—(B1.2) number of courses allowed per period: ∀1 ≤ j ≤ n. c ≤ qj ≤ d

We also add the following redundant constraints:

—(B2.1) all the credits must be fulfilled: (
∑n

j=1 l j) = (
∑m

i=1 ti)

—(B2.2) all the courses must be taken: (
∑n

j=1 qj) = m

In the integer model, MX , the variables X = {xi|1 ≤ i ≤ m} represent the
period to which course i is assigned and Dinit(xi) = [1 .. n] for all 1 ≤ i ≤ m. The
constraints for the integer model MX are:

—(BX1) l j is the load taken in period j : ∀1 ≤ j ≤ n. (
∑m

i=1((xi = j) × ti)) = l j

—(BX2) qj is the number of courses in period j : ∀1 ≤ j ≤ n. (
∑m

i=1(xi = j)) = qj

—(BX3) courses are taken respecting prerequisites: ∀〈i, j 〉 ∈ R. xi < x j

In the set model, the set variables S = {Sj |1 ≤ j ≤ n} represent the set of
courses assigned to period j and Dinit(Sj) = [∅ .. {1, . . . , m}] for all 1 ≤ j ≤ n.
The constraints for the set model MS are:

—(BS1) No course is taken twice: ∀1 ≤ i < j ≤ n. Si ∩ Sj = ∅
—(BS2) l j is the load in period j : ∀1 ≤ j ≤ n. (

∑
i∈S j

ti) = l j

—(BS3) qj is the number or courses in period j : ∀1 ≤ j ≤ n. |Sj | = qj

—(BS4) courses are taken respecting prerequisites:

∀〈i, j 〉 ∈ R.∀1 ≤ k ≤ n − 1.∀1 ≤ k′ ≤ k. (i ∈ Sk) ⇒ (j �∈ Sk′)

We can use the set channels to combine the two models, xi = j ⇔ i ∈ Sj for
all 1 ≤ i ≤ m, 1 ≤ j ≤ n

4.4 Channels between Set and Boolean Models

A very uncommon form of redundant modeling is when we give a set model and
a Boolean version of this model. The reason it is uncommon is that there is no
natural gain in expressiveness in moving to the Boolean model.

Suppose the set variables are {S1, . . . , Sn}. where Dinit(Si) = [∅ .. {1, . . . , k}],
and the Boolean variables are zi j , 1 ≤ i ≤ n, 1 ≤ j ≤ k. The set2bool channel
function � is defined as �(j ∈ Si) = (zi j = 1) and �(j �∈ Si) = (zi j = 0). The
set2bool channel C� is equivalent to

n∧
i=1

k∧
j=1

(j ∈ Si ⇔ zi j = 1)

With the � channel, we can map common set constraints (c) to Boolean
constraints (� (c)) as given in Figure 1. We shall prove that set bounds

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 23, Publication date: August 2007.

Removing Propagation Redundant Constraints • Article 23 / 17

Fig. 1. Mapping of common set constraints to Boolean constraints.

propagation of set constraints (c) is equivalent to domain propagation for the
corresponding Boolean constraints (�(c)).

5. PROPAGATION REDUNDANT CONSTRAINTS IN REDUNDANT MODELING

In redundant modeling, each model is logically redundant with respect to the
other model plus the channeling constraints. In general, the propagators de-
fined for two viewpoints act in different ways and discover information at dif-
ferent stages in the search. However, we show two possibilities in which propa-
gation caused by some constraints in one model can be made redundant by: (a)
propagation induced from constraints in the other model through channels and
(b) propagation of the channels themselves. For brevity, we shall concentrate on
one model when stating some of the lemmas and theorems. The restrictions on
the other model can be seen easily by examining the inverse channel function.

5.1 Propagation Redundancy through Channels

In order to show that the propagation caused by some constraints in one model is
subsumed by propagation induced from constraints in the other model through
channels, we often need to break up the consideration of propagator into in-
dividual propagation rules. Therefore, we need the following lemma to ensure
that the domain and set bounds propagator of a constraint is equivalent to the
union of the propagation rules implemented by the propagator.

LEMMA 5. Consider a minimal set of propagation rules, �dsb(c), implemented
by dsb(c) for constraint c. Then {dsb(c)} ≈ �dsb(c).

PROOF. See the appendix.

Next, we need to define formally the notion of subsumption.

Definition 9. A propagation rule C1 � c1 directly subsumes a rule C2 � c2

iff

|= (Dinit ∧ C2) → C1 and |= (Dinit ∧ c1) → c2.

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 23, Publication date: August 2007.

Article 23 / 18 • C. Choi et al.

A channel function enables us to map a propagation rule r from one model
to the other model. If the mapped propagation rule is directly subsumed by
another propagation rule r ′ in the other model, then the following lemma tells
us that r is propagation redundant w.r.t. the channel propagator and r ′.

LEMMA 6. Let C � c be a propagation rule on Y variables, and C′ � c′ be a
propagation rule on X variables. If C′ � c′ directly subsumes ♦−1(C) � ♦−1(c),
then ({C′ � c′} ∪ F♦) � {C � c}.

PROOF. Consider the case that |= D → C for all D
 Dinit. Applying F♦
to D, D1 = solv(F♦, D), we have |= D1 → ♦−1(C) using the definition of F♦.
By the condition of the lemma and Definition 9, we have that |= D1 → C′.
By applying C′ � c′ to D1, D2 = (C′ � c′)(D1), we have |= D2 → c′. By the
condition of the lemma and Definition 9, we have |= D2 → ♦−1(c). Applying F♦
to D2, D3 = solv(F♦, D2), we have |= D3 → c using the definition of F♦. Since
we have show that |= solv({C′ � c′} ∪ F♦, D) → c for |= D → C, {C′ � c′} ∪ F♦
implements C � c. By definition, ({C′ � c′} ∪ F♦) � {C � c}.

We can straightforwardly lift the results of Lemma 6 to talk about propaga-
tion rules that are directly subsumed by the domain and set bounds propagator
for a constraint.

THEOREM 7. Let cX be a constraint on X variables and C � c be a propa-
gation rule on Y variables. If

|= (Dinit ∧ cX ∧ ♦−1(C)) → ♦−1(c),

then {dsb(cX)} ∪ F♦ � {C � c}.

PROOF. By Lemma 5, we have that dsb(cX) implements the propagation rule
♦−1(C) → ♦−1(c). Hence by Lemma 6 the result holds.

A corollary of Theorem 7 is that if every propagation rule in a minimal set
of propagation rules implemented by dsb(cY) is subsumed by dsb(cX) through
the channel function, then dsb(cY) is propagation redundant w.r.t. the channel
propagator and dsb(cX).

COROLLARY 8. Let cX be a constraint on X variables, cY be a constraint on
Y variables, and �dsb(cY) be a minimal set of propagation rules implemented by
dsb(cY). If

|= (Dinit ∧ cX ∧ ♦−1(C)) → ♦−1(c) for all (C � c) ∈ �dsb(cY),

then {dsb(cX)} ∪ F♦ � {dsb(cY)}.

Example 17. Consider the (LY2.1) constraints of the Langford’s Problem
(Example 12),

cY ≡ y j = 3i − 2 ⇔ y j+(i+1) = 3i − 1

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 23, Publication date: August 2007.

Removing Propagation Redundant Constraints • Article 23 / 19

for all 1 ≤ i ≤ 9 and 1 ≤ j ≤ 27 − 2(i + 1). A minimal set of propagation rules
�dsb(cY) for dsb(cY) consists of the rules:

(r1) y j = 3i − 2 � y j+(i+1) = 3i − 1
(r2) y j+(i+1) = 3i − 1 � y j = 3i − 2
(r3) y j �= 3i − 2 � y j+(i+1) �= 3i − 1
(r4) y j+(i+1) �= 3i − 1 � y j �= 3i − 2

Using the channel function ��−1, the propagation rule (r1) is mapped to

x3i−2 = j � x3i−1 = j + i + 1.

Now, it is straightforward to show that

|= (Dinit ∧ cX ∧ x3i−2 = j) → x3i−1 = j + i + 1

where cX ≡ x3i−1 = x3i−2 + (i + 1) of (LX2.1). Similar arguments apply for the
other propagation rules (r2), (r3) and (r4). Hence, using Corollary 8, dsb(cY) is
propagation redundant w.r.t F�� and dsb(cX).

For the (LY2.2) constraints, c′
Y ≡ y j = 3i−2 ⇔ y j+2(i+1) = 3i where 1 ≤ i ≤ 9

and 1 ≤ j ≤ 27 − 2(i + 1), we can similarly show that dsb(c′
Y) is propagation

redundant w.r.t. F�� and dsb(cX ∧ c′
X) where c′

X ≡ x3i = x3i−1 + (i + 1) of
(LX2.2). Although model MX does not include the propagator dsb(cX ∧ c′

X), we
can still show propagation redundancy since {dsb(cX), dsb(c′

X)} ≈ {dsb(cX ∧c′
X)}

by Theorem 4.
Similar arguments apply for the (LY3) constraints y j �= 3i − 2, where 1 ≤

i ≤ 9 and (28 − 2(i + 1)) ≤ j ≤ 27, is propagation redundant w.r.t. C�� and cX .

For brevity we shall introduce pseudo atomic constraints x ≤ d equivalent
to the conjunction x �= d + 1, . . . , x �= supDinit

(x) and x ≥ d equivalent to the

conjunction x �= infDinit (x), . . . , x �= d − 1, to discuss the next example.

Example 18. Consider the (BX2) constraints of the balanced academic
curriculum problem (Example 16),

cX ≡
(

m∑
i=1

(xi = j)

)
= qj

for all 1 ≤ j ≤ n. A minimal set of propagation rules �dsb(cX) consists of the
rules:

(r1) xi1 = j ∧ · · · ∧ xid = j � qj ≥ d
(r2) xi1 �= j ∧ · · · ∧ xim−d �= j � qj ≤ d
(r3) qj ≤ d ∧ xi1 = j ∧ · · · ∧ xid = j � xk �= j
(r4) qj ≥ d ∧ xi1 �= j ∧ · · · ∧ xim−d �= j � xl = j

∀d ∈ {1, . . . , m}, ∀k ∈ ({1, . . . , m} − K), and ∀l ∈ ({1, . . . , m} − L) where K =
{i1, . . . , id } ⊆ {1, . . . , m} and L = {i1, . . . , im−d } ⊆ {1, . . . , m}. All the atomic
constraints involving qj are mapped to themselves by the channel function {}
since qj is shared by the two models, e.g. the propagation rule (r1) is mapped
to:

i1 ∈ Sj ∧ · · · ∧ id ∈ Sj � qj ≥ d .

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 23, Publication date: August 2007.

Article 23 / 20 • C. Choi et al.

Now, it is straightforward to show that

|= (Dinit ∧ cS ∧ i1 ∈ Sj ∧ · · · ∧ id ∈ Sj) → qj ≥ d

where cS ≡ |Sj | = qj of (BS3). Similarly arguments apply for the other propa-
gation rules (r2), (r3) and (r4). Hence, using Corollary 8, dsb(cX) is propagation
redundant w.r.t. to F{} and dsb(cS).

Similar arguments apply to show that for constraint (BX1), c′
X ≡ (

∑m
i=1((xi =

j) × ti)) = l j for all 1 ≤ j ≤ n, dsb(c′
X) is made propagation redundant by F{}

and dsb(c′
S) where c′

S ≡ (
∑

i∈S j
ti) = l j of (BS2).

Often a single constraint does not capture all the propagation effects of a
constraint on the other side of the permutation model. In that case we may
need to find for each particular propagation rule, a constraint on the other side
that causes the same propagation to occur.

THEOREM 9. Let cY be a constraint on Y variables and �dsb(cY) be a minimal
set of propagation rules implemented by dsb(cY). If there exists a constraint cr

on X variables for each (r ≡ (C � c)) ∈ �dsb(cY) such that

|= (Dinit ∧ cr ∧ ♦−1(C)) → ♦−1(c),

then ⋃
r∈�dsb(cY)

{dsb(cr)} ∪ F♦ � {dsb(cY)}.

PROOF. The proof follows straightforwardly from Lemma 5 and
Theorem 7.

Example 19. Consider the (IY2.1) constraints of the all intervals series
(Example 13),

cY ≡ (yi − y j = 1) ⇒ (vj−i = y j)

for all 1 ≤ i < j ≤ n. A minimal set of propagation rules �dsb(cY) for dsb(cY) is
of the forms,

(r1) yi = k + 1 ∧ y j = k � vj−i = k
(r2) vj−i �= k ∧ y j = k � yi �= k + 1
(r3) yi = k + 1 ∧ I � y j �= k

where I (of r3) is any conjunction of disequations on vj−i and y j , excluding
y j �= k, ensuring that vj−i �= y j . To apply Theorem 9, we look at each of the
propagation rules:

—For the propagation rule (r1), we can show that

|= (Dinit ∧ cr1 ∧ xk+1 = i ∧ xk = j) → (uk = j − i)

where cr1 ≡ (uk = |xk − xk+1|) of (IX2).

—For the propagation rule (r2), we can show that

|= (Dinit ∧ cr2 ∧ uk �= j − i ∧ xk = j) → (xk+1 �= i).

where cr2 ≡ (uk = |xk − xk+1|) of (IX2).

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 23, Publication date: August 2007.

Removing Propagation Redundant Constraints • Article 23 / 21

—For the propagation rule (r3), I must contain vj−i �= k since it does not contain
y j �= k and it must force the two to be different. We can show that

|= (Dinit ∧ cr3 ∧ uk �= j − i ∧ xk+1 = i) → (xk �= j).

where cr3 ≡ (uk = |xk − xk+1|) of (IX2).

Note that even though each example propagation rule (r1) to (r3) is made
propagation redundant by C�� and the same uk = |xk − xk+1| of (IX2), we
indeed require a different constraint for each different value of k.

Similar arguments apply to show that the other (IY2.2) constraints (y j − yi =
1) ⇒ (vj−i = yi) is propagation redundant w.r.t. C�� and constraints of (IX2).

Note that the logically redundant constraint (| y1 − yn| = 1) ∧ (vn−1 =
min(y1, yn)) of (IY3) is not propagation redundant.

5.2 Propagation Redundancy Caused by Channels

The channels themselves may actually restrict the possible solutions in one or
both models involved.

Definition 10. A channel function ♦ is restrictive (on the variables X) iff

�|= Dinit → ∃Y C♦

that is not all valuations on X variables are extensible to solutions of C♦.

Example 20. The permutation channel functions �� is restrictive, for ex-
ample {x1 = 2, x2 = 2} cannot be extended to be a solution of C��, since it
requires y2 to take both values 1 and 2.

The Boolean channel function � is unrestrictive. Any valuation on X vari-
ables can be extended to a solution of C�. However, �−1 is restrictive, for exam-
ple {z11 = 1, z12 = 1} cannot be extended to a solution of C� since it requires x1

to be both 1 and 2.
Similarly the set channel function {} is unrestrictive while {}−1 is restrictive.

For example S1 = {1}, S2 = {1} cannot be extended to a solution of C{} since it
requires x1 to be both 1 and 2.

The set2bool channel � is clearly unrestrictive in both directions.

5.2.1 Restrictive Channel Functions. Restrictive channel functions can
themselves make constraints propagation redundant. Smith [2000] first ob-
served that the permutation channel makes each of the disequations between
variables in either model propagation redundant. Walsh [2001] proves this
holds for other notions of consistency.

THEOREM 10 (WALSH [2001]). F�� � {dsb(xi �= x j)} for all 1 ≤ i < j ≤ n.

Example 21. Using Theorem 10, the permutation channel makes the fol-
lowing constraints propagation redundant: the (LX1) and (LY1) constraints
of the Langford’s Problem (Example 12); and the (IX1.1), (IX1.2), (IY1.1) and
(IY1.2) constraints of the all intervals series (Example 13)

Implicit in the Boolean channel is that each integer variable can take only
one, and must take one value. This is represented in the Boolean model as the
constraint

∑k
j=0 zi j = 1. It is enforced by the restrictive channel function �−1.

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 23, Publication date: August 2007.

Article 23 / 22 • C. Choi et al.

THEOREM 11. F� � {dsb(
∑k

j=1 zi j = 1)} for all 1 ≤ i ≤ n.

PROOF. A minimal set of propagation rules for dsb(
∑k

j=1 zi j = 1) consist of
the rules:

(r1) zi j = 1 � zi j ′ = 0, for all j ′ �= j
(r2) zi1 = 0, . . . , zi(j−1) = 0, zi(j+1) = 0, . . . , zik = 0 � zi j = 1.

We show that F� implements both (r1) and (r2).

—For the rule (r1), suppose D
 Dinit where D(zi j) = {1}. Let D1 = solv(F�, D).
By the rule (zi j = 1 � xi = j) ∈ F�, we have D1(xi) = { j }. Hence, j ′ �∈ D1(xi)
for all j ′ �= j . By the rule (xi = j ′ � zi j ′ = 1) ∈ F�, we have 1 �∈ D1(zi j ′) for
all j ′ �= j .

—For the rule (r2), suppose D
 Dinit where D(zi j ′) = {0} for all 1 ≤ j ′ �= j ≤ k.
Let D1 = solv(F�, D). By the rule (zi j ′ = 0 � xi �= j ′) ∈ F� for all j ′ �= j , we
have D(xi) ∩ {1, . . . , j − 1, j + 1, . . . , k} = ∅. Hence, D(xi) = { j }. By the rule
(xi = j � zi j = 1) ∈ F�, we have 0 �∈ D(zi j).

By Lemma 1 and Lemma 5, we have F� � {dsb(
∑k

j=1 zi j = 1)}.
Example 22. The (QZ1) constraints of the n-Queens Problem (Example 14)

are propagation redundant w.r.t. the Boolean channel using Theorem 11.

The channel function {}−1 is restrictive, since each variable xi ∈ X can only
take a single value j . It means that Sj ∩ Sj ′ = ∅ for all 0 ≤ j < j ′ ≤ m. It is
clear that F{} makes these constraints propagation redundant.

THEOREM 12. F{} � {dsb(Sj ∩ Sj ′ = ∅)} for all 1 ≤ j < j ′ ≤ m.

PROOF. A minimal set of propagation rules for dsb(Sj ∩ Sj ′ = ∅), where
j < j ′, consists of the rules:

(r1) i ∈ Sj � i �∈ Sj ′

(r2) i ∈ Sj ′ � i �∈ Sj

We show that F{} implements both (r1) and (r2).

—For the rule (r1), suppose D
 Dinit where i ∈ infD(Sj). Let D1 = solv(F{}, D).
By the rule (i ∈ Sj � xi = j) ∈ F{}, we have D1(xi) = { j } and j ′ �∈ D1(xi). By
the rule (xi �= j ′ � i �∈ Sj ′) ∈ F{}, we have i �∈ supD1

(Sj ′).

—For the rule (r2), suppose D
 Dinit where i ∈ infD(Sj ′). Let D1 = solv(F{}, D).
By the rule (i ∈ Sj ′ � xi = j ′) ∈ F{}, we have D1(xi) = { j ′} and j �∈ D1(xi).
By the rule xi �= j � i �∈ Sj , we have i �∈ supD1

(Sj).

By Lemma 1 and Lemma 5, we have F{} � {dsb(Sj ∩ Sj ′ = ∅)}.
Example 23. Using Theorem 12, the set channel makes both the (GS1)

constraints of the social golfers problem (Example 15) and (BS1) constraints
of the balanced academic curriculum problem (Example 16) propagation
redundant.

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 23, Publication date: August 2007.

Removing Propagation Redundant Constraints • Article 23 / 23

5.2.2 Unrestrictive Channel Functions. Unrestrictive channel functions do
not make any constraints (on X) propagation redundant. Interestingly in this
case we can argue about propagation redundancy simply in terms of logical
consequence. If a constraint cX logically implies another constraint cY through
an unrestrictive channel, then dsb(cX) subsumes all the propagation rules im-
plemented by dsb(cY).

LEMMA 13. Let cX a constraint on X variables, cY be a constraint on Y
variables and �dsb(cY) be a minimal set of propagation rule implemented by
dsb(cY). If ♦ be an unrestrictive channel function and

|= (Dinit ∧ cX ∧ C♦) → cY ,

then

|= (Dinit ∧ cX ∧ ♦−1(C)) → ♦−1(c)) for all (C � c) ∈ �dsb(cY).

PROOF. Suppose to the contrary that for some rule (C � c) ∈ �dsb(cY) there
exists a solution θX of Dinit ∧ cX ∧ ♦−1(C) but not a solution of ♦−1(c). Since θX

is a solution of Dinit ∧ cX and ♦ is unrestrictive, we can map θX to θY using ♦
and θ = θX ∪ θY is a solution of Dinit ∧ cX ∧ C♦. By the condition of the lemma,
we have that θ is a solution of cY . In particular, θY ⊂ θ is a solution of cY since
vars(cY) contains only Y variables. By construction, θY is also a solution of C
since θX is a solution of ♦−1(C). Similarly, θY is not a solution of c since θX is
not a solution of ♦−1(c). Using Lemma 1, dsb(cY) does not implement C � c,
contrary to the hypothesis.

We can straightforwardly lift the results of Lemma 13 to determine propaga-
tion redundancy of constraints simply in terms of logical implication through
unrestrictive channel.

THEOREM 14. Let cX a constraint on X variables and cY be a constraint on
Y variables. If ♦ be an unrestrictive channel function and

|= (Dinit ∧ cX ∧ C♦) → cY ,

then {dsb(cX)} ∪ F♦ � {dsb(cY)}.
PROOF. The proof follows straightforwardly from Lemma 13 and

Corollary 8.

The reason the channel function must be unrestrictive for this result to hold
is that the |= (Dinit ∧ cX ∧ C♦) → cY is too weak a condition in the general case.

Example 24 ((Counterexample)). The permutation channel function is re-
strictive. Now |= C → y3 = 3, where C ≡ x1 + x2 < 4 ∧ C�� since the only
solutions of C are

{x1
→ 1, x2
→ 2, x3
→ 3, y1
→ 1, y2
→ 2, y3
→ 3} and
{x1
→ 2, x2
→ 1, x3
→ 3, y1
→ 2, y2
→ 1, y3
→ 3}.

However, it is not the case that x1 + x2 < 4 → x3 = 3. The problem is that the
channel C�� removes solutions of x1 + x2 < 4 like {x1
→ 1, x2
→ 1, x3
→ 1}
from consideration.

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 23, Publication date: August 2007.

Article 23 / 24 • C. Choi et al.

We can use Theorem 14 to prove propagation redundancy of many of the
propagators in our examples.

Example 25. Consider the (QZ3.1) constraint of the n-Queens Problem
(Example 14) for k = 0,

cZ ≡
n∑

i=1

zii ≤ 1.

It is clear that

cX ≡ (x1 − 1 �= xi − i) ∧ · · · ∧ (xi−1 − (i − 1) �= xi − i) ∧
(xi+1 − (i + 1) �= xi − i) ∧ · · · ∧ (xn − n �= xi − i)

of (QX2.1) satisfies |= Dinit ∧ cX ∧ C� → cZ . We also have

{dsb(cX)} ≈ {dsb(x1 − 1 �= xi − i), . . . , dsb(xi−1 − (i − 1) �= xi − i),
dsb(xi+1 − (i + 1) �= xi − i), . . . , dsb(xn �= xi + n − i)}

by Theorem 4. Since � is an unrestrictive channel function, dsb(cZ) is prop-
agation redundant w.r.t. F� and the propagators of constraints (QX2.1) by
Theorem 14.

Similar arguments apply to show that the other constraints of (QZ3.1) and
(QZ3.2) are propagation redundant w.r.t. C� and the propagators of (QX2.1).
Also, the constraints of (QZ3.3) and (QZ3.4) are propagation redundant w.r.t. to
C� and the propagators of (QX2.2).

Note that the (QZ2) constraints
∑n

i=1 zi j = 1, where 1 ≤ j ≤ n, are not
propagation redundant. However, we can split (QZ2) into two constraints:

—(QZ2.1)
∑n

i=1 zi j ≤ 1

—(QZ2.2)
∑n−1

i=0 zi j ≥ 1.

Using similar arguments to cZ , we can show that constraint (QZ2.1) is propa-
gation redundant w.r.t. C� and (QX1).

The following example demonstrates that our approach is also applicable to
propagators for global constraints. The use of the alldifferent global con-
straints in the n-Queens problem can make constraints (QZ2) propagation
redundant.

Example 26. Consider the (QX1) constraints of the n-Queens Problem
(Example 14). Rather than using a set of separate disequality constraints, we
can use a single alldifferent global constraint:

(QX1’) alldifferent([x1, . . . , xn]).

The propagator dsb(alldifferent([x1, . . . , xn])) is equivalent to

dsb

(
n−1∧
i=1

n∧
j=i+1

xi �= x j

)

and has an efficient implementation [Régin 1994].

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 23, Publication date: August 2007.

Removing Propagation Redundant Constraints • Article 23 / 25

Consider the (QZ2) constraints, cZ ≡ ∑n
i=1 zi j = 1, where 1 ≤ j ≤ n. It is

straightforward to verify that

|= Dinit ∧ alldifferent([x1, . . . , xn]) ∧ C� → cZ .

Since � is an unrestrictive channel function, dsb(cZ) is propagation redundant
w.r.t. F� and the propagator dsb(alldifferent([x1, . . . , xn])) by Theorem 14.

Example 27. Consider the (GS2) constraints of the social golfers problem
(Example 15),

cS1
≡ |Sik| = s

where 1 ≤ i ≤ g and 1 ≤ k ≤ w. It is clear that cX 1
≡ ∑n

l=1(xlk = i) = s of (GX1)
satisfies |= Dinit ∧ cX 1

∧ C{} → cS1
. Since {} is an unrestrictive channel function,

by Theorem 14, dsb(cS1
) is propagation redundant w.r.t. F{} and dsb(cX 1

).
We can similarly show that the (GS3) constraints are propagation redundant

w.r.t. C{} and the (GX2) constraints.

Example 28. Consider the (BS4) constraints of the balanced academic
curriculum problem (Example 16),

cS ≡ (i ∈ Sk) ⇒ (j �∈ Sk′)

where 〈i, j 〉 ∈ R, 1 ≤ k ≤ n − 1 and 1 ≤ k′ ≤ k. It is clear that the (BX3)
constraint, cX ≡ xi < x j , satisfies |= (Dinit ∧ cX ∧ C{}) → cS . Since {} is an un-
restrictive channel function, by Theorem 14, dsb(cS) is propagation redundant
w.r.t. F{} and dsb(cX).

In part because the � channel is unrestrictive in both directions, we can
prove that set bounds propagation provide the same propagation strength as
the mapping of set constraints to Booleans.5

THEOREM 15. Let dsb(c) be the set bounds propagator for set constraint c and
�(c) be the Boolean equivalent of c. Then

(a) {dsb(c)} ∪ F� � {dsb(c′) | c′ ∈ �(c)} and
(b) {dsb(c′) | c′ ∈ �(c)} ∪ F� � {dsb(c)}.

PROOF. See the appendix.

For ease of referencing, Table I summarizes the results presented in this
section. This serves as a guide for problem modelers to quickly identify which
theorems are related to their problem.

6. EXPERIMENTS

We can take advantage of the reasoning about propagation redundancy to elim-
inate propagators that are propagation redundant. We then get a model with
exactly the same propagation strength but with fewer propagators. This can
translate into faster propagation.6 We verify empirically the improvement of

5Set bounds propagation, however, does still provide a more efficient implementation.
6Note there is no guarantee since the number of propagation steps may have increased depending

on the order and the events which propagators are processed.

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 23, Publication date: August 2007.

Article 23 / 26 • C. Choi et al.

Table I. A Summary of Results

Channel Function Type Applicable Theorems

Corollary 8 (Example 17)

�� / ��−1 Restrictive Theorem 9 (Example 19)

Theorem 10 (Example 21)

� Unrestrictive Theorem 14 (Examples 25 and 26)

Corollary 8

�−1 Restrictive Theorem 9

Theorem 11 (Example 22)

{} Unrestrictive Theorem 14 (Examples 27 and 28)

Corollary 8 (Example 18)

{}−1 Restrictive Theorem 9

Theorem 12 (Example 23)

� / �−1 Unrestrictive Theorem 15

removing propagation redundant constraints for the problems in Section 4, ex-
cept for the n-Queens problem, the reason being that there exist better single
models for the n-Queens problem using the global alldifferent constraint so
that redundant modeling is not worthwhile.

In the following experiments, all the benchmarks are executed using ILOG
Solver 4.4 on Sun Ultra 5/400 workstations running Solaris 8. The first column
of each table indicates the problem instances. The second column describes the
models under comparison. The third column indicates the choices of search
variables. In the case of combined models, we have the choice of searching
the variables for just one model, or from both models together. However, the
question of choosing the “best” set of search variables that gives the smallest
search space is out of the scope of this paper. To compare the performance of
the different models, we measure the total number of fails (fourth column), to-
tal memory used in kilobytes (fifth column), and CPU time in seconds (sixth
column). Table entries marked with a “—” mean failure to solve the problem
after one hour of execution. To highlight the benefits of removing propaga-
tion redundant constraints, we place the figures for the full combined model
and the optimized combined model on the same cell separated by the sym-
bol “/”. To improve the efficiency of combined models, we use the IlcInverse
global constraint in ILOG Solver to implement the permutation channel. How-
ever, ILOG Solver does not provide such a global constraint implementation
for the other two channels. Hence, we have implemented our own global con-
straints for the Boolean channel and set channel to make the results more
consistent.

6.1 Langford’s Problem

Table II compares the different models for finding the first solution of the Lang-
ford’s Problem. The models under comparison include the single models: MX

and MY , the full combined model (MX + C�� + MY), and an optimized com-
bined model (LX2.1 + LX2.2 + C��) as discussed in Examples 17 and 21. We
use the smallest domain first (i.e., IlcChooseMinSizeInt in ILOG Solver) vari-
able ordering heuristic and order values in the domain from the least to the
greatest.

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 23, Publication date: August 2007.

Removing Propagation Redundant Constraints • Article 23 / 27

Table II. Finding the First Solution of the Langford’s Problem

Instance Model Search Fails KBytes Seconds

3 × 9 MX X 192 142 0.08

full/opt X 77/77 2079/142 0.56/0.07

MY Y — — —

full/opt Y 48/48 2362/142 0.36/0.05

full/opt X ∪ Y 42/42 2075/142 0.40/0.05

3 × 10 MX X 569 161 0.27

full/opt X 217/217 3002/165 2.24/0.21

MY Y — — —

full/opt Y 22/22 3166/161 0.28/0.03

full/opt X ∪ Y 116/116 2978/165 1.55/0.13

Table III. Finding All the Solutions of the Langford’s Problem

Instance Model Search Fails KBytes Seconds

3 × 9 MX X 938 142 0.38

full/opt X 432/432 2220/142 3.11/0.35

MY Y — — —

full/opt Y 348/348 2413/142 2.77/0.28

full/opt X ∪ Y 251/251 2260/142 2.32/0.25

3 × 10 MX X 3114 161 1.39

full/opt X 1318/1318 3166/169 13.51/1.16

MY Y — — —

full/opt Y 1059/1059 3575/169 11.22/0.88

full/opt X ∪ Y 768/768 3190/169 9.52/0.78

4 × 14 MX X 83068 475 89.03

full/opt X 20885/20885 21574/491 1494.09/46.74

MY Y — — —

full/opt Y 8139/8139 25206/487 704.30/21.01

full/opt X ∪ Y 6553/6553 22870/487 640.13/16.87

4 × 15 MX X 351126 538 399.14

full/opt X —/78556 —/550 —/176.24

MY Y — — —

full/opt Y 25270/25270 32957/550 2440.22/66.57

full/opt X ∪ Y 20526/20526 29243/546 2270.67/55.63

Our opt model corresponds to the minimal combined model of Smith [2000].
Smith empirically shows that using the minimal combined model with search
variables X ∪ Y is more efficient in solving this problem. Our results agree
with those presented by Smith, where the opt model is faster and maintains
the same number of fails as the full model for all three sets of search variables,
and the opt model with search variables X ∪ Y is the fastest among all the
models under comparison. In addition to time and number of fails, the amount
of memory consumption needed to solve a problem is also an important measure
of performance (which is not presented by Smith). The presence of propagation
redundant constraints consumes a lot of unnecessary memory spaces. From
Table II, we can see that the opt model requires a lot less memory than the
corresponding full model.

The benefits of removing propagation redundant constraints are more appar-
ent when we solve for all the solutions of the Langford’s Problem (see Table III).
Problem instances “4×14” and “4×15” are infeasible and have no solutions. For

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 23, Publication date: August 2007.

Article 23 / 28 • C. Choi et al.

Table IV. Finding All the Solutions of the All Interval Series Problem

Instance Model Search Fails KBytes Seconds

12 MX X 880112 189 265.91

full/opt X 39241/39241 2587/169 213.31/33.37

MY Y — — —

full/opt Y 16280/16280 2846/173 76.58/6.13

full/opt X ∪ Y 39195/39195 2587/173 216.03/32.23

13 MX X 4914499 228 1632.54

full/opt X 158383/158383 3494/200 1016.96/142.78

MY Y — — —

full/opt Y 62949/62949 3859/200 310.22/24.14

full/opt X ∪ Y 158297/158297 3494/200 1008.84/177.39

14 MX X — — —

full/opt X —/685301 —/228 —/696.12

MY Y — — —

full/opt Y 266130/266130 5127/240 1473.22/107.39

full/opt X ∪ Y —/684592 —/228 —/696.25

15 MX X — — —

full/opt X —/3096868 —/267 —/3415.98

MY Y — — —

full/opt Y —/1275661 —/271 —/521.63

full/opt X ∪ Y —/3091947 —/267 —/3444.73

all instances, the experiment confirms that the opt model has the same search
space as the full model. As the problem size increases, the opt model leads to a
more significant saving of time and memory consumption over the full model.

6.2 All Interval Series

Finding the first solution for the All Interval Series problem is an easy problem.
The challenge is to find all the solutions. Table IV compares the different models
for finding all the solutions of the all interval series problem. The models under
comparison include the single models MX and MY , the full combined model
(MX + C�� + MY), and an optimized combined model (IX2 + C�� + IY3) as
discussed in Examples 19 and 21. We use the smallest domain first variable
ordering heuristic and order values in the domain from the least to the greatest.

Given the same set of search variables (X or Y), the full models reduce
the number of fails significantly as compared to the single models (MX and
MY). However, the overhead of redundant modeling surpasses the gains from
the reduction in search space. By removing propagation redundant constraints
from the combined models, the opt model with search variables Y is the fastest.
The experiment confirms that the opt model maintains the same number of fails
as the full model for all test cases. As the problem size increases, the benefit
of the opt model is more apparent for both time and memory consumption, and
it is the only model which could solve instance n = 15 within the time limit.
The amount of memory consumption for the opt models is competitive to the
single models (MX , MY), as opposed to huge memory overhead for the full
model.

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 23, Publication date: August 2007.

Removing Propagation Redundant Constraints • Article 23 / 29

Table V. Finding the First Solution of the Social Golfers Problem

Instance Model Search Fails KBytes Seconds

4-3-4 MX X 1509146 240 395.31

full/opt X 1509146/1509146 330/244 592.41/459.66

MS S 2389 142 0.41

full/opt S 1102/1102 326/244 0.41/0.27

full/opt X ∪ S 4587/4587 326/244 1.81/1.33

7-2-13 MX X 63860 2587 33.56

full/opt X 63860/63860 6048/2627 122.96/37.62

MS S 37158 3598 30.44

full/opt S 27998/27998 6064/2603 34.87/13.38

full/opt X ∪ S 361/361 6079/2627 1.37/0.42

8-4-9 MX X 32 5952 0.32

full/opt X 32/32 8519/6015 0.89/0.35

MS S — — —

full/opt S —/— —/— —/—

full/opt X ∪ S —/— —/— —/—

9-2-17 MX X 7355 7039 8.00

full/opt X 7355/7355 17474/7114 29.39/8.46

MS S 74098 10718 111.78

full/opt S 51444/51444 17531/7055 134.26/45.68

full/opt X ∪ S 6788/6788 17580/7114 26.67/7.43

6.3 Social Golfers Problem

The social golfers problem has a large number of symmetric solutions, and it
is impractical to search for all the solutions.7 Table V compares the different
models for finding the first solution to the social golfers problem. The problem
instances are indicated using the parameters g -s-w as described in Example 15.
The models under comparison include the single models: MX and MS , the full
combined model (MX + C{} + MS), and an optimized combined model (GX1 +
GX2 + C{}) as discussed in Examples 23 and 27. The following heuristics are
used for variable ordering. For search variables X , we use ascending order
of variables indices and variables are ordered players by weeks. Barnier and
Brisset [2002] show that this heuristic can solve the 8-4-9 instances efficiently.
For search variable S and X ∪ S, we simply use smallest domain first with
values ordered from the least to the greatest.

The experiment confirms that the opt model has the same number of fails
as the full model and, at the same time, speeds up the search and reduces
the memory consumption for all test cases. The combined models (full and opt)
with search variables S reduce the number of fails when compared to the single
model MS , but this is not the case when compared to MX with search variables
X . In terms of runtime, no one model dominates the others. The opt model
with search variables S is the fastest for instance 4-3-4, opt model with search

7Although many effective (and often sophisticated) symmetries breaking techniques have been

studied (e.g., Puget [2002]), we restrain from doing so since the focus of this paper is on removing

propagation redundant constraints. To have a fair comparison, we also avoid the addition of sym-

metry constraints because the same constraint might be easy to express in one model but not the

other [Smith 2001].

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 23, Publication date: August 2007.

Article 23 / 30 • C. Choi et al.

Table VI. Finding the Optimal Solution and Proving Optimality of the

Balanced Academic Curriculum Problem

Instance Model Search Fails KBytes Seconds

8 Periods MX X 101 377 0.08

full/opt X 101/101 589/79 0.19/0.02

MS S — — —

full/opt S 1577/1577 589/79 2.16/0.19

full/opt X ∪ S 118/118 589/79 0.21/0.03

10 Periods MX X 468 432 0.50

full/opt X 470/470 766/87 1.62/0.12

MS S — — —

full/opt S 323/323 766/83 0.63/0.07

full/opt X ∪ S 149/149 766/87 0.32/0.02

12 Periods MX X 33602 801 27.47

full/opt X 33530/33530 1692/102 147.46/4.97

MS S — — —

full/opt S 882/882 1669/98 3.78/0.19

full/opt X ∪ S —/10541901 —/102 —/1393.21

variables X ∪ S is the fastest for instance 7-2-13, and the single model MX is
the fastest for instances 8-4-9 and 9-2-17.

6.4 Balanced Academic Curriculum Problem

Hnich et al. [2002] report that it is difficult to find the optimal solution of
the balance academic curriculum problem with propagation-based constraint
solver alone. The challenge of this problem is to find the optimal solution
and prove optimality. Table VI compares the different models for finding the
optimal solution and proving optimality for the three problem instances of the
balanced academic curriculum problem posted in CSPLib. The models under
comparison include the single models: MX and MS , the full combined model
(MX + C{} + MS), and an optimized combined model (B1.1 + B1.2 + B2.1 +
B2.2 + BX3 + C{} + BS2 + BS3) as discussed in Examples 18, 23 and 28. The
following heuristics are used for variable ordering. We use smallest domain
first for search variables X and X ∪ S, and ascending order of variable indices
for search variable S. Values are ordered from the least to the greatest.

It is interesting to note that we were able to solve all the problem instances
with MX alone after adding redundant constraints (B2.1) and (B2.2). The ex-
periment confirms that the opt model has the same number of fails as the full
model for all three sets of search variables. The opt model is faster and con-
sumes less memory than the full model. It is interesting to note that for this
problem, the amount of memory consumption for the opt model is minimal, even
less than the single model MX . The performance of the opt model is clearly su-
perior to the other models. The opt model with search variable X is the fastest
for instances with 8 periods, the opt model with search variables X ∪ S is the
fastest and has the least number of fails for instances with 10 periods, and the
opt model with search variables S is the fastest and has the least number of
fails for the instance with 12 periods.

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 23, Publication date: August 2007.

Removing Propagation Redundant Constraints • Article 23 / 31

7. RELATED WORK

Smith [2000, 2001] has examined the redundant models for a number of indi-
vidual problems including the n-Queens problem, Langford’s problem, and the
social golfers problems. Smith empirically demonstrates that some constraints
in the redundant models can be removed without increasing the search space.
Smith points out that for these problems the so-called minimal combined model,
which combine the first model and only the variables of the second model (with-
out the constraints) using channeling constraints, produces the same search be-
havior as combining the models in full. This is proved in an ad hoc manner by
Choi and Lee [2002]. In this article, we aim for a theoretical framework which
can determine propagation redundancy of a particular constraint involved in
redundant models a priori.

Apt and Monfroy [2001] develop “membership rules” as a way of building
propagators for any constraints. Propagation rules are similar to the “member-
ship rules” when restricted to integer variables. However, we develop propaga-
tion rules as a method for reasoning about the parts of a propagator’s behavior.

Brand [2003] gives a general theorem to determine when a rule is propa-
gation redundant with respect to a set of rules in rule-based constraint pro-
gramming, and illustrates the applicability using “membership rules.” In fact,
our definition of a propagation rule satisfies the required properties of Brand’s
theorem. Hence, we can apply Brand’s theorem to determine when a propaga-
tion rule is propagation redundant with respect to a set of propagation rules. In
this article, we are interested in propagation redundancy beyond the individ-
ual propagation rules, but propagation redundancy of the constraint as a whole.
We also generalize the notion of propagation redundancy of a propagation rules
through a channel function.

Hnich et al. [2004] and Walsh [2001] introduce the notion of constraint
tightness as a measure to compare the propagation strength of different permu-
tation constraints. Their work focuses on comparing the propagation strength
of the different notions of consistency over the disequations, channeling con-
straints, and alldifferent global constraints in redundant modeling of only
permutation problems and injection problems. Our comparison measure is sim-
ilar to constraint tightness except that constraint tightness is parameterized by
a local consistency property. However, in existing constraint solvers, there are
propagators that implement none of the (established) local consistency prop-
erties. An example is the multiplication constraint x = y × z over integer
domain as discussed in Apt [2003, pp. 219–220]. In such cases where the lo-
cal consistency property of a constraint is unknown, our comparison measure
would still be applicable. In this article, we are interested in studying not only
the propagation of the permutation constraints, but also the other constraints
in redundant models. We also cover a broader class of channeling constraints
beyond the permutation channels.

Walsh [2003] proves that “bounds consistency” on set (multiset) variables
is equivalent to bounds consistency on the corresponding occurrence represen-
tation. This result is related to Theorem 15 since the occurrence representa-
tion of set variables corresponds to Boolean variables described in Section 4.4.

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 23, Publication date: August 2007.

Article 23 / 32 • C. Choi et al.

However, existing constraint solvers break Boolean constraints into parts and
propagate each part separately. We prove the theorem based on this more real-
istic assumption.

A corollary of Theorem 4 is that we can determine domain consistency of
an entire integer CSP with tree structure just using the individual domain
propagators, since we can repeatedly apply the above lemma to break the con-
junction of constraints into individual constraints. This is highly related to the
“backtrack-free” approach to solving CSPs with tree structure of Freuder [1982].

8. CONCLUSION

The contributions of this article are threefold. First, we define channeling
constraints in terms of channel functions, which allows us to cover a broad
form of redundant modeling. By breaking up a propagator into individual prop-
agation rules, we reason that constraints in one model can be made propaga-
tion redundant by constraints in the other model through channels. Second, we
introduce the notion of restrictive and unrestrictive channel functions to char-
acterize channeling constraints. Restrictive channel functions can themselves
make a constraint in the combined model propagation redundant. Unrestrictive
channel functions allow the detection of propagation redundancy of a constraint
in one model with respect to a constraint in the other model plus the channels
simply in terms of logical consequence. Third, benchmarking results confirm
that removals of propagation redundant constraints from combined model can
often lead to a faster implementation with the same search space and consum-
ing less memory. As explained in Section 7, this article extends related work
by covering a broader form of redundant modeling and reasoning about the
propagation redundancy of all the constraints in the redundant models.

Although we have concentrated on domain and set bounds propagators, many
of our results can be used for other propagators. Lemma 6 can be applied for any
propagator, since it only relies on the propagation rules. We can use Theorems 7,
9, 14, and Corollary 8 to prove the weaker propagators for c than dsb(c) are
propagation redundant, or that stronger propagators for c than dsb(c) make
another propagator redundant.

Our work prompts a number of important future directions for research. It
is interesting to investigate if the process of removing propagation redundant
constraints can be (semi-)automated. To use Theorem 9 we can straightfor-
wardly define the propagation rules for many constraints (parametrically in
Dinit) or construct them automatically using the approach of Abdennadher and
Rigotti [2002]. The number of propagation rules for most constraints, how-
ever, are exponential. A naive implementation would be computationally too
expensive and impractical for more complex real-life applications. A possible
approach is to consider parameterized propagation rules, which denotes a set
of propagation rules, so that the number of rules is vastly reduced. We can also
try to use Theorem 14 to prove propagation redundancy without considering
propagation rules.

The amount of computation overhead induced by propagation redundant
constraints depends on the order and on the events which constraints are

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 23, Publication date: August 2007.

Removing Propagation Redundant Constraints • Article 23 / 33

processed during constraint propagation. Our experimental platform, ILOG
Solver, is a proprietary constraint programming library which does not provide
access to such information. It would be interesting to study how these factors
affect the performance of constraint solving after propagation redundant con-
straints are removed from the model.

Our existing approach analyzes the propagation behavior of the redundant
constraints in the model statically before search. It is interesting to investigate
for an alternative approach of analyzing dynamically the propagation behavior
of redundant constraints during search. Based on the results of dynamic anal-
ysis, the constraint solver should avoid (as much as possible) processing the
propagation redundant constraints during constraint propagation. This would
minimize the computation overhead incurred by the propagation redundant
constraints even if they are present in the model.

Redundant modeling gives rise to the need to decide which variables to la-
bel during search. As demonstrated in Section 6, the choice of search variables
can greatly affect the size of the search space. For example, Geelen [1992],
Smith [2000; 2001], and Hnich et al. [2004], also show that certain choices
of search variables do lead to a smaller search space. Therefore, it is inter-
esting to study and establish criteria in choosing the better set of search
variables.

APPENDIX

We present the longer proofs, in full, in this appendix, to improve the readability
of the main body of the text.

LEMMA 1. Given a constraint c, dsb(c) implements C � c′ iff

|= (Dinit ∧ c) → (C → c′).

PROOF. To prove the if direction (⇒), suppose to the contrary that dsb(c)
implements C � c′ and �|= (Dinit ∧ c) → (C → c′). Then, there exists a solution
θ ∈ Dinit such that θ satisfies c ∧ C ∧ ¬(c′). Now, we build a domain, Dθ
 Dinit,
from θ as follows:

Dθ (v) =
{ {θ (v)} for all v ∈ vars(θ),

Dinit(v) otherwise

Since θ satisfies c and ¬(c′), we have |= Dθ → C and �|= Dθ → c′. Since θ is a
solution of c, we have dsb(c)(Dθ) = Dθ . Thus, �|= dsb(c)(Dθ) → c′. By Definition 5,
dsb(c) does not implements C � c′, contrary to the hypothesis.

For the only if direction (⇐), suppose to the contrary that |= (Dinit ∧ c) →
(C → c′) and dsb(c) does not implement C � c′. Then, there exists D
 Dinit

such that |= D → C but �|= dsb(c)(D) → c′. For each form of c′, we show that
there exists a solution θ ∈ D of c.

—If c′ ≡ x �= d where x ∈ vars(c) and d ∈ D(x), then �|= dsb(c)(D) → c′ means
that d ∈ dsb(c)(D). By the definition of dsb(c), there exists a solution θ ∈ D
of c where θ (x) = d .

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 23, Publication date: August 2007.

Article 23 / 34 • C. Choi et al.

—If c′ ≡ x = d where x ∈ vars(c) and d ∈ D(X), then �|= dsb(c)(D) → c′ means
that d ′ ∈ dsb(c)(D) where d ′ �= d and d ′ ∈ D(X). By the definition of dsb(c),
there exists a solution θ ∈ D of c where θ (x) = d ′.

—If c ≡ d ∈ S where X ∈ vars(c) and d �∈ infD(S), then �|= dsb(c)(D) → c′

means that d �∈ infD′ (S) where D′ = dsb(c)(D). By the definition of dsb(c),
there exists a solution θ ∈ D of c where d �∈ θ (S).

—If c ≡ d �∈ S where X ∈ vars(c) and d ∈ supD(S), then �|= dsb(c)(D) → c′

means that d ∈ supD′ (S) where D′ = dsb(c)(D). By the definition of dsb(c),
there exists a solution θ ∈ D of c where d ∈ θ (S).

Now, we know that θ ∈ dsb(c)(D) since θ is a solution of c. Using �|= dsb(c)(D) →
c′, we have that θ is not a solution of c′. However, we also know that θ satisfies
Dinit ∧ c ∧ C since D
 Dinit and |= D → C. Hence, �|= (Dinit ∧ c) → (C → c′),
contrary to the hypothesis.

THEOREM 4. If c1 and c2 are two constraints sharing at most one integer
variable, x ∈ VI , then {dsb(c1), dsb(c2)} ≈ {dsb(c1 ∧ c2)}.

PROOF. We have {dsb(c1 ∧ c2)} � {dsb(c1), dsb(c2)} by Lemma 3. To show
{dsb(c1), dsb(c2)} � {dsb(c1 ∧ c2)}, suppose to the contrary that there exists a
variable y ∈ vars(c1 ∧ c‘2) such that

solv({dsb(c1), dsb(c2)}, D)(y) �⊆ solv({dsb(c1 ∧ c2)}, D)(y)

for certain D
 Dinit. Let D1 = solv({dsb(c1), dsb(c2)}, D) and D2 =
solv({dsb(c1 ∧c2)}, D). Assume w.l.o.g. that y ∈ vars(c1). For each type of domain
changes by dsb(c1 ∧ c2), we show that it leads to a contradiction.

—If dsb(c1 ∧ c2) eliminates a value d from D(y) where y ∈ VI , then d ∈ D1(y)
and d �∈ D2(y). By definition of dsb(c1), there exists a solution θ1 ∈ D1 of c1

such that θ (y) = d since d ∈ D1(y). Now if there exists a solution θ2 ∈ D
of c2 where θ2(x) = θ1(x) then we have a contradiction, since θ1 ∪ θ2 ∈ D is a
solution of c1 ∧ c2. Otherwise there is no such θ2, hence dsb(c2)(D) eliminates
the value θ1(x) from D(x). Hence θ1(x) �∈ D1(x). But then θ1 �∈ D1 which
contradicts the hypothesis.

—If dsb(c1 ∧ c2) adds a value d to infD(y) where y ∈ VS , then d �∈ infD1
(y)

and d ∈ infD2
(y). By definition of dsb(c1), there exists a solution θ1 ∈ D1

of c1 such that d �∈ θ1(y) since d �∈ infD1
(y). Now if there exists a solution

θ2 ∈ D of c2 where θ2(x) = θ1(x) then we have a contradiction, since θ1 ∪ θ2 ∈
D is a solution of c1 ∧ c2 which gives a solution where y = d . Otherwise
there is no such θ2, hence dsb(c2)(D) eliminates the value θ1(x) from the
domain of x. Hence θ1(x) �∈ D1(x). But then θ1 �∈ D1 which contradicts the
hypothesis.

—If dsb(c1 ∧ c2) eliminates a value d from supD(y) where y ∈ VS , then d ∈
supD1

(y) and d �∈ supD2
(y). By definition of dsb(c1), there exists a solution

θ1 ∈ D1 of c1 such that d ∈ θ1(y) since d ∈ supD1
(y). Now if there exists

a solution θ2 ∈ D of c2 where θ2(x) = θ1(x) then we have a contradiction,
since θ1 ∪ θ2 ∈ D is a solution of c1 ∧ c2 which gives a solution where y = d .

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 23, Publication date: August 2007.

Removing Propagation Redundant Constraints • Article 23 / 35

Otherwise there is no such θ2, hence dsb(c2)(D) eliminates the value θ1(x)
from the domain of x. Hence θ1(x) �∈ D1(x). But then θ1 �∈ D1 which contradicts
the hypothesis.

LEMMA 5. Consider a minimal set of propagation rules, �dsb(c), implemented
by dsb(c) for constraint c. Then {dsb(c)} ≈ �dsb(c).

PROOF. We have {dsb(c)} � �dsb(c) by Lemma 1 and Theorem 2. To show
that �dsb(c) � {dsb(c)}, suppose to the contrary that there exists a variable
xi ∈ vars(c) where 1 ≤ i ≤ n such that

solv(�dsb(c), D)(xi) �⊆ solv({dsb(c)}, D)(xi)

for certain D
 Dinit. Let D1 = solv(�dsb(c), D) and D2 = solv(dsb(c), D). For
each type of domain changes by dsb(c), we show that it leads to a contradiction.

—If dsb(c) eliminates a value d from D(xi) where xi ∈ VI , then d ∈ D1(xi) and
d �∈ D2(xi). Clearly, dsb(c) implements a rule r ∈ �dsb(c) such that

r ≡
(

n∧
j=1

∧
d ′∈A

x j �= d ′
)

� xi �= d

where A = (Dinit(x j) − D(x j)). Now �dsb(c) � {r} by the definition of �dsb(c).
Hence, d �∈ D1(xi), contrary to the hypothesis.

—If dsb(c) adds a value d to infD(xi) where xi ∈ VS , then d �∈ infD1
(xi) and

d ∈ infD2
(xi). Clearly, dsb(c) implements a rule r ∈ �dsb(c) such that

r ≡
(

n∧
j=1

∧
d ′∈A

d ′ ∈ x j

n∧
k=1

∧
d ′′∈B

d ′′ �∈ xk

)
� d ∈ xi.

where A = infD(Sj) − infDinit (Sj) and B = supDinit
(Sk) − supD(Sk). Now

�dsb(c) � {r} by the definition of �dsb(c). Hence, d ∈ infD1
(xi), contrary to the

hypothesis.

—If dsb(c) eliminates a value d from supD(xi) where xi ∈ VS , then d ∈ supD1
(xi)

and d �∈ supD2
(xi). Clearly, dsb(c) implements a rule r ∈ �dsb(c) such that

r ≡
(

n∧
j=1

∧
d ′∈A

d ′ ∈ x j

n∧
k=1

∧
d ′′∈B

d ′′ �∈ xk

)
� d �∈ xi.

where A = infD(Sj) − infDinit (Sj) and B = supDinit
(Sk) − supD(Sk). Now

�dsb(c) � {r} by the definition of �dsb(c). Hence, d �∈ supD1
(xi), contrary to the

hypothesis.

In order to prove Theorem 15, we need to introduce the notion of nogood
constraints. A nogood constraint c is an integer constraint where every valua-
tion in Dinit except one valuation θ is a solution of c. We call the nonsolution
valuation θ of c the nogood.

Consider a conjunction of a nogood constraint c1 and an integer constraint
c2, such that vars(c2) ⊆ vars(c1). The following lemma tells us about two useful
properties of the nogood of c1 if a value is removed by {dsb(c1 ∧ c2)} and not by
{dsb(c1), dsb(c2)}.

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 23, Publication date: August 2007.

Article 23 / 36 • C. Choi et al.

LEMMA 16. Let c1 be a nogood constraint with vars(c1) = {x1, . . . , xn} ⊆ VI

with the nogood θ , and c2 be a constraint with vars(c2) ⊆ vars(c1). Suppose
D1 = solv({dsb(c1), dsb(c2)}, D) and D2 = solv({dsb(c1 ∧ c2)}, D) for D
 Dinit. If
there exists a value d ∈ D(xk), 1 ≤ k ≤ n such that d ∈ D1(xk) and d �∈ D2(xk),
then

(a) θ ∈ D and
(b) θ (xk) = d.

PROOF. For (a), suppose to the contrary that d ∈ D1(xk), d �∈ D2(xk) and
θ �∈ D, then there must exists 1 ≤ i ≤ n such that θ (xi) �∈ D(xi). Since d ∈ D1(xk),
by definition, d ∈ dsb(c2)(D)(xk). Thus there exists a solution θ1 ∈ D of c2

where vars(θ1) = vars(c1) and θ1(xk) = d . Since θ1(xi) �= θ (xi), clearly θ1 is also
a solution of c1. Hence, d ∈ D2(xk) by the definition of dsb(c1 ∧ c2), contrary to
the hypothesis.

For (b), suppose to the contrary that d ∈ D1(xk), d �∈ D2(xk), and θ (xk) �= d ,
by definition, d ∈ dsb(c2)(D)(xk). Thus there exists a solution θ1 ∈ D of c2

where vars(θ1) = vars(c1) and θ1(xk) = d . Since θ1(xk) �= θ (xk), clearly θ1 is also
a solution of c1. Hence, d ∈ D2(xk) by the definition of dsb(c1 ∧ c2), contrary to
the hypothesis.

The following lemma identifies the condition where propagation of the
conjunction of a nogood constraint c1 and an integer constraint c2, such that
vars(c2) ⊆ vars(c1), is equivalent to propagation on the individual conjuncts.
The condition requires that each valuation θ ′ ∈ Dinit differing from the nogood
θ of c1 by only one assignment must be a solution of c2.

LEMMA 17. Let c1 be a nogood constraint with the nogood θ , vars(c1) =
{x1, . . . , xn} ⊆ VI , and c2 be a constraint with vars(c2) ⊆ vars(c1). If for all
valuations θ ′ ∈ Dinit, such that there exists 1 ≤ j ≤ n and θ ′(xi) = θ (xi) for all
1 ≤ i �= j ≤ n, are solutions of c2, then {dsb(c1), dsb(c2)} ≈ {dsb(c1 ∧ c2)}.

PROOF. By Lemma 3 we have that {dsb(c1∧c2)} � {dsb(c1), dsb(c2)}. To show
{dsb(c1), dsb(c2)} � {dsb(c1 ∧ c2)}, suppose to the contrary that there exists a
variable xk where 1 ≤ k ≤ n such that

solv({dsb(c1), dsb(c2)}, D)(xk) �⊆ solv({dsb(c1 ∧ c2)}, D)(xk)

for certain D
 Dinit. Let D1 = solv({dsb(c1), dsb(c2)}, D) and D2 =
solv({dsb(c1 ∧ c2)}, D), then there exists a value d ∈ D(xk) such that d ∈ D1(xk)
and d �∈ D2(xk). By the definition of solv, d ∈ dsb(c1)(D)(xk) since d ∈ D1(xk).
Now it is not the case that D(xi) = {θ (xi)} for 1 ≤ i ≤ n, i �= k (otherwise,
d �∈ dsb(c1)(D)(xk) since θ is the nogood of c1.) Thus, there must exists 1 ≤ j ≤ n
and j �= k such that |D(x j)| ≥ 2. Hence, there exists d j ∈ D(x j) such that
d j �= θ (x j). By Lemma 16, we have that θ ∈ D and θ (xk) = d . Consider the
valuation θ ′ defined as θ ′(x j) = d j and θ ′(xi) = θ (xi) for all 1 ≤ i ≤ n where
i �= j . Note that θ ′(xk) = θ (xk) = d . By construction, θ ′ ∈ D and θ ′ is a solution
of c1. By the condition of the lemma, θ ′ is also a solution of c2. Hence, d ∈ D2(xk)
using definition of dsb(c1 ∧ c2), contrary to the hypothesis.

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 23, Publication date: August 2007.

Removing Propagation Redundant Constraints • Article 23 / 37

THEOREM 15. Let dsb(c) be the set bounds propagator for set constraint c and
�(c) be the Boolean equivalent of c. Then

(a) {dsb(c)} ∪ F� � {dsb(c′) | c′ ∈ �(c)} and
(b) {dsb(c′) | c′ ∈ �(c)} ∪ F� � {dsb(c)}.

PROOF. For (a), since � is an unrestrictive channel, this immediately gives
us that {dsb(c)} ∪ F� � {dsb(c′) | c′ ∈ �(c)} using Theorem 14 and Theorem 2.

For (b), since �−1 is also an unrestrictive channel, we also have that

{dsb(∧{c′ | c′ ∈ �(c)})} ∪ F� � {dsb(c)}
using Theorem 14. It remains to show that

{dsb(∧{c′ | c′ ∈ �(c)})} ≈ {dsb(c′) | c′ ∈ �(c)}
for each of the constraints c in Figure 1.

For c of the form: Si = ∅, Sa ⊆ Sb, Sa ∩ Sb = ∅, and |Si| = m, no two
constraints in �(c) share a variable. Hence, the results hold by Theorem 4.

For the remaining constraints, Sa = Sb ∪ Sc, Sa = Sb ∩ Sc, Sa = Sb − Sc, we
show the proof for Sa = Sb − Sc the others are similar.

Consider the 3 Boolean constraints in � (Sa = Sb − Sc) for a particular
j : c1 ≡ zaj ≥ zbj − zcj , c2 ≡ zaj ≤ zbj , and c3 ≡ zaj + zcj ≤ 1. Note that
c1 is a nogood constraint with nogood {zaj
→ 0, zbj
→ 1, zcj
→ 0}, and the
valuations: {zaj
→ 1, zbj
→ 1, zcj
→ 0}, {zaj
→ 0, zbj
→ 0, zcj
→ 0}, and
{zaj
→ 0, zbj
→ 1, zcj
→ 1} are all solutions of c2 ∧ c3. By Lemma 17, we have
that {dsb(c1 ∧ (c2 ∧ c3))} ≈ {dsb(c1), dsb(c2 ∧ c3)}. Now c2 and c3 share only one
Boolean variable zaj , by Theorem 4, {dsb(c2 ∧ c3)} ≈ {dsb(c2), dsb(c3)}. Hence,
{dsb(c1 ∧ c2 ∧ c3)} ≈ {dsb(c1), dsb(c2), dsb(c3)}. Since for any two constraints in
�(c) with different values of j do not share any variables, the results hold by
Theorem 4.

REFERENCES

ABDENNADHER, S. AND RIGOTTI, C. 2002. Automatic generation of rule-based solvers for intention-

ally defined constraints. Int. J. AI Tools 11, 2, 283–302.

APT, K. 2003. Principles of Constraint Programming. Cambridge University Press.

APT, K. AND MONFROY, E. 2001. Constraint programming viewed as rule-based programming.

Theo. Pract. Logic Program. 1, 6, 713–750.

AZEVEDO, F. AND BARAHONA, P. 2000. Modelling digital circuits problems with set constraints. In

Proceedings of the 1st International Conference on Computational Logic (CL00). 414–428.

BARNIER, N. AND BRISSET, P. 2002. Solving the Kirkman’s schoolgirl problem in a few seconds. In

Proceedings of the 8th International Conference on Principles and Practice of Constraint Pro-
gramming (CP02). 477–491.

BRAND, S. 2003. A note on redundant rules in rule-based constraint programming. In Recent
Advances in Constraints, Joint ERCIM/CologNet International Workshop on Constraint
Solving and Constraint Logic Programming. 109–120.

CARLIER, J. AND PINSON, E. 1989. An algorithm for solving the job-shop problem. Manag. Sci. 35, 2,

164–176.

CHEADLE, A., HARVEY, W., SADLER, A., SCHIMPF, J., SHEN, K., AND WALLACE, M. 2003. ECLiPSe: An

introduction. Tech. rep. IC-Parc-03-1, IC-Parc, Imperial College London.

CHENG, B. M. W., CHOI, K. M. F., LEE, J. H. M., AND WU, J. C. K. 1999. Increasing constraint

propagation by redundant modeling: An experience report. Constraints 4, 2, 167–192.

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 23, Publication date: August 2007.

Article 23 / 38 • C. Choi et al.

CHOI, C. W. AND LEE, J. H. M. 2002. On the pruning behaviour of minimal combined models for

permutation CSPs. In Proceedings of the International Workshop on Reformulating Constraint
Satisfaction Problems. 3–17.

CHOI, C. W., LEE, J. H. M., AND STUCKEY, P. J. 2003a. Propagation redundancy for permutation

channels. In Proceedings of the 18th International Joint Conference on Artificial Intelligence
(IJCAI’03). 1370–1371.

CHOI, C. W., LEE, J. H. M., AND STUCKEY, P. J. 2003b. Propagation redundancy in redundant

modelling. In Proceedings of the 9th International Conference on Principles and Practice of Con-
straint Programming (CP’03). 229–243.

FREUDER, E. C. 1982. A sufficient condition for backtrack-free search. J. ACM 29, 1, 24–32.

FRISCH, A. M., JEFFERSON, C., AND MIGUEL, I. 2004. Symmetry breaking as a prelude to implied

constraints: A constraint modelling pattern. In Proceedings of the 16th Eureopean Conference on
Artificial Intelligence (ECAI’04). 171–175.

GEELEN, P. A. 1992. Dual viewpoint heuristics for binary constraint satisfaction problems. In

Proceedings of the 10th European Conference on Artificial Intelligence (ECAI’92). 31–35.

GERVET, C. 1997. Interval propagation to reason about sets: Definition and implementation of a

practical language. Constraints 1, 3, 191–244.

HNICH, B., KIZILTAN, Z., AND WALSH, T. 2002. Modelling a balanced academic curriculum problem.

In Proceedings of the 4th International Workshop on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimisation Problems (CP-AI-OR’02). 121–131.

HNICH, B., WALSH, T., AND SMITH, B. M. 2004. Dual modelling of permutation and injection prob-

lems. J. AI Resear. 21, 357–391.

ILOG. 1999. ILOG Solver 4.4: Reference Manual.

MACKWORTH, A. K. 1977. Consistency in networks of relations. AI 8, 1, 99–118.

MARRIOTT, K. AND STUCKEY, P. J. 1998. Programming with Constraints: An Introduction. The MIT

Press.

MOHR, R. AND MASINI, G. 1988. Good old discrete relaxation. In Proceedings of the 8th European
Conference on Artificial Intelligence (ECAI’88). 651–656.

MÜLLER, T. 2001. Constraint propagation in Mozart. Ph.D. thesis, Universität des Saarlandes,

Naturwissenschaftlich-Technische Fakultät I, Fachrichtung Informatik.

PUGET, J.-F. 2002. Symmetry breaking revisited. In Proceedings of the 8th International Confer-
ence on Principles and Practice of Constraint Programming (CP’02). 446–461.

PUGET, J.-F. AND RÉGIN, J.-C. 2001. Solving the all interval problem. http://4c.ucc.ie/∼tw/

csplib/prob/prob007/puget.pdf.

RÉGIN, J.-C. 1994. A filtering algorithm for constraints of difference in CSPs. In Proceedings of
the 12th National Conference on Artificial Intelligence (AAAI’94). 362–367.

SICSTUS PROLOG. 2003. SICStus Prolog User’s Manual, Release 3.10.1.

SMITH, B., STERGIOU, K., AND WALSH, T. 2000. Using auxiliary variables and implied constraints to

model non-binary problems. In Proceedings of the 17th National Conference on Artificial Intelli-
gence (AAAI’00). 182–187.

SMITH, B. M. 2000. Modelling a permutation problem. Resear. rep. 2000.18, School of Computer

Studies, University of Leeds.

SMITH, B. M. 2001. Dual models in constraint programming. Resear. rep. 2001.02, School of

Computer Studies, University of Leeds.

VAN HENTENRYCK, P., SARASWAT, V., AND DEVILLE, Y. 1998. Design, implementation and evaluation

of the constraint language cc(FD). J. Logic Program. 37, 1–3, 139–164.

WALSH, T. 2001. Permutation problems and channelling constraints. In Proceedings of the
8th International Conference on Logic for Programming, Artificial Intelligence and Reasoning
(LPAR’01). 377–391.

WALSH, T. 2003. Consistency and propagation with multiset constraints: A formal viewpoint. In

Proceedings of the 9th International Conference on Principles and Practice of Constraint Pro-
gramming (CP’03). 724–738.

Received December 2004; revised July 2005; accepted October 2005

ACM Transactions on Computational Logic, Vol. 8, No. 4, Article 23, Publication date: August 2007.

