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Abstract. In classical constraint satisfaction, combining mutually re-
dundant models using channeling constraints is effective in increasing
constraint propagation and reducing search space for many problems.
In this paper, we investigate how to benefit the same for weighted con-
straint satisfaction problems (WCSPs), a common soft constraint frame-
work for modeling optimization and over-constrained problems. First, we
show how to generate a redundant WCSP model from an existing WCSP
using generalized model induction. We then uncover why naively com-
bining two WCSPs by posting channeling constraints as hard constraints
and relying on the standard NC* and AC* propagation algorithms does
not work well. Based on these observations, we propose m-NC∗

c and m-
AC∗

c and their associated algorithms for effectively enforcing node and
arc consistencies on a combined model with m sub-models. The two no-
tions are strictly stronger than NC* and AC* respectively. Experimental
results confirm that applying the 2-NC∗

c and 2-AC∗
c algorithms on com-

bined models reduces more search space and runtime than applying the
state-of-the-art AC*, FDAC*, and EDAC* algorithms on single models.

1 Introduction

Redundant modeling [1] has been shown effective in increasing constraint propa-
gation and solving efficiency for constraint satisfaction problems (CSPs). While
the technique, which is to combine two different CSP models of a problem using
channeling constraints , is applied successfully to classical CSPs, we study in this
paper how to benefit the same for weighted CSPs (WCSPs) [2,3], a common soft
constraint framework for modeling optimization and over-constrained problems.

Unlike classical CSPs, obtaining mutually redundant WCSP models for a
problem is more difficult in general, since each problem solution is associated
with a cost. Besides the problem requirements, we need to ensure the same cost
distribution on the solutions of the two models. While model induction [4] can
automatically generate a redundant classical CSP from a given one, we generalize
the notion so that redundant permutation WCSPs can also be generated.
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For classical CSPs, we can rely on the standard propagation algorithms of the
channeling constraints to transmit pruning information between sub-models to
achieve stronger propagation. We can also do the same to combine WCSPs by
posting the channeling constraints as hard constraints. However, we discover that
applying the standard AC* algorithm [3] to the combined model results in weaker
constraint propagation and worse performance. Some prunings that are available
when propagating a single model alone would even be missed in a combined
model. Based on these observations, we generalize the notions of node and arc
consistencies and propose m-NC∗

c and m-AC∗
c for a combined model with m sub-

models. The m-NC∗
c (resp. m-AC∗

c) has strictly stronger propagation behavior
than NC* (resp. AC*) and degenerates to NC* (resp. AC*) when m = 1. While
m-NC∗

c and m-AC∗
c are applicable to general WCSPs, we focus our discussions

on permutation WCSPs. Experimental results confirm that 2-AC∗
c is particularly

useful to solve hard problem instances. Enforcing 2-AC∗
c on combined models

reduces significantly more search space and runtime than enforcing the state-of-
the-art local consistencies AC* [3], FDAC* [5], and EDAC* [6] on single models.

2 Background

WCSPs associate costs to tuples [7]. The costs are specified by a valuation struc-
ture S(k) = ([0, . . . , k], ⊕, ≥), where k ∈ {1, . . . , ∞}, ⊕ is defined as a ⊕ b =
min{k, a + b}, and ≥ is the standard order among naturals. The minimum
and maximum costs are denoted by ⊥ = 0 and � = k respectively. A bi-
nary WCSP is a quadruplet P = (k, X , D, C) with the valuation structure S(k).
X = {x1, . . . , xn} is a finite set of variables and D = {Dx1, . . . , Dxn} is a set
of finite domains for each xi ∈ X . An assignment x �→ a in P is a mapping
from variable x to value a ∈ Dx. A tuple is a set of assignments in P . It is
complete if it contains assignments of all variables in P . C is a set of unary and
binary constraints . A unary constraint involving variable x is a cost function
Cx : Dx → {0, . . . , k}. A binary constraint involving variables x and y is a cost
function Cx,y : Dx ×Dy → {0, . . . , k}. We also assume a zero-arity constraint C∅
in P which is a constant denoting the global lower bound of costs in P . Fig. 1(a)
shows a WCSP with variables {x1, x2, x3} and domains {1, 2, 3}. We depict the
unary costs as labeled nodes and binary costs as labeled edges connecting two
assignments. Unlabeled edges have � cost; ⊥ costs are not shown for clarity.

The cost of a complete tuple θ = {xi �→ vi | 1 ≤ i ≤ n} in P is V(θ) =
C∅⊕

∑
i Cxi(vi)⊕

∑
i<j Cxi,xj(vi, vj). If V(θ) < �, θ is a solution of P . Solving a

WCSP is to find a solution θ with minimized V(θ), which is NP-hard. The WCSP
in Fig. 1(a) has a minimum cost 2 with the solution {x1 �→ 3, x2 �→ 1, x3 �→ 2}
(C∅ ⊕ Cx1(3) ⊕ Cx2(1) ⊕ Cx3(2) ⊕ Cx1,x2(3, 1) ⊕ Cx1,x3(3, 2) ⊕ Cx2,x3(1, 2) =
1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 2). A WCSP is equivalent to a classical CSP if each
cost in the WCSP is either ⊥ or �. Two WCSPs are equivalent if they have the
same variables and for every complete tuple θ, V(θ) is the same for both WCSPs.

Following Schiex [2] and Larrosa [3], we define node and arc consistencies for
WCSPs as follows. They degenerate to their standard counterparts for CSPs.



Speeding Up Weighted Constraint Satisfaction Using Redundant Modeling 61

1 2 3

y1

y2

y3

Cφ=1, T=4

(b) P2

3

3

1 2

2
1

2

3

x1

(a) P1

Cφ=1, T=4
x2 x3

3

3

2
21

1 2 3

y1

y2

y3

Cφ=2, T=4

(d) AC* on P2

1

2

3

x1

Cφ=1, T=4
x2 x3

(c) AC* on P1

1

2

3 1

2

21

y1

y2

y3

x1

Cφ=4, T=8
x2 x3

(f) 2-NC*c on P c

1

2

3

3

2
1

1 2 3

3

1

2

1 2 3

y1

y2

y3

1

2

3

x1

Cφ=4, T=8
x2 x3

1

(h) 2-AC*c on P c

1

y1

y2

y3

x1

Cφ=3, T=8
x2 x3

(e) AC* on P c

1

2

3

3

1
2

21

1 2 3

3

12

2

Cφ=4, T=8
1 2 3

y1

y2

y3

x1 x2 x3

(g) Intermediate step of 2-AC*c on P c

1

2

3 1

2

1
1

1

2

2

1

2

Fig. 1. Enforcing node and arc consistencies on WCSPs P1, P2, and Pc

Definition 1. Let P = (k, X , D, C) be a binary WCSP.

Node consistency. An assignment x �→ a in P is star node consistent (NC*)
if C∅ ⊕ Cx(a) < �. A variable x in P is NC* if (1) all assignments of x are
NC* and (2) there exists an assignment x �→ a of x such that Cx(a) = ⊥.
Value a is a support for x. P is NC* if every variable in P is NC*.

Arc consistency. An assignment x �→ a in P is arc consistent (AC) with re-
spect to a constraint Cx,y if there exists an assignment y �→ b of y such that
Cx,y(a, b) = ⊥. Value b is a support for x �→ a. A variable x in P is AC if
all assignments of x are AC with respect to all binary constraints involving
x. P is star arc consistent (AC*) if every variable in P is NC* and AC.

NC* and AC* are enforced by forcing supports for variables and pruning node
inconsistent values. Supports can be forced by projections of unary (resp. binary)
constraints over C∅ (resp. unary constraints) [2,3]. Let 0 ≤ b ≤ a ≤ k, we
define subtraction as a � b = a − b if a �= k; and a � b = k otherwise. Let
α = mina∈Dx{Cx(a)} for a variable x. Projection of Cx over C∅ [3] is defined
such that C∅ := C∅ ⊕ α and for each a ∈ Dx, Cx(a) := Cx(a) � α. After forcing
supports for all variables, all assignments x �→ a with C∅ ⊕ Cx(a) = � can
be removed. NC* can be enforced on a WCSP with n variables and maximum
domain size d in O(nd) time [3]. The WCSP in Fig. 1(a) is not NC*. Removing
value 1 from Dx1 makes it NC*. Similarly, given variables x and y, for each
a ∈ Dx, let αa = minb∈Dy {Cx,y(a, b)}. Projection of Cx,y over Cx [2,3] is defined
such that for each a ∈ Dx, Cx(a) := Cx(a)⊕αa and for each a ∈ Dx and b ∈ Dy,
Cx,y(a, b) := Cx,y(a, b)�αa. Consider the assignment x1 �→ 2 and the constraint
Cx1,x2 in Fig. 1(a), all the costs Cx1,x2(2, 1), Cx1,x2(2, 2), and Cx1,x2(2, 3) are
non-⊥. We can subtract 2 from each of these costs and add 2 to Cx1(2) to force
a support for x1 �→ 2. AC* can be enforced using a fix point algorithm in O(n2d3)
time [3]. The WCSP in Fig. 1(c) is AC* and equivalent to the one in Fig. 1(a).

3 Generating Redundant WCSP Models

Deriving multiple classical CSP models for the same problem is common, al-
though not trivial. Cheng et al. [1] modeled a real-life nurse rostering problem
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as two different CSPs and showed that combining those CSPs using channeling
constraints can increase constraint propagation. Hnich et al. [8] made an exten-
sive study of combining different models for permutation and injection problems.
Law and Lee [4] proposed model induction which automatically generates a re-
dundant CSP from a given one. Two CSPs P1 and P2 are mutually redundant if
there is a bijection between the two sets of all solutions of P1 and P2. For two
WCSPs P1 and P2, we further require that if a solution θ1 of P1 corresponds
to a solution θ2 of P2, then V(θ1) = V(θ2). Thus, deriving mutually redundant
WCSP models is more difficult. We propose here a slight generalization of model
induction that generates mutually redundant permutation WCSPs.

A permutation WCSP (PermWCSP) is a WCSP in which all variables have
the same domain, the number of variables equals the domain size, and every
solution assigns a permutation of the domain values to the variables, i.e., we can
set the costs Cxi,xj(a, a) = � for all variables xi and xj and domain value a.
Given a PermWCSP P = (k, X , DX , CX ), we can always interchange the roles
of its variables and values to give a dual PermWCSP. If X = {x1, . . . , xn} and
Dxi = {1, . . . , n}, a dual model is P ′ = (k, Y, DY , CY) with Y = {y1, . . . , yn}
and Dyj = {1, . . . , n}. The relationship between the variables in X and Y can
be expressed using the channeling constraints xi = j ⇔ yj = i for 1 ≤ i, j ≤ n.

Generalized model induction of a WCSP P requires a channel function that
maps assignments in P to those in another set of variables. If P is a PermWCSP,
we always have the bijective channel function f(xi �→ j) = yj �→ i. The
constraints CY in the induced model are defined such that for 1 ≤ a, i ≤ n,
Cya(i) = Cxi(a), and for 1 ≤ a, b, i, j ≤ n, Cya,yb

(i, j) = Cxi,xj(a, b) if i �= j; and
Cya,yb

(i, j) = � otherwise. Note that the induced model must be a PermWCSP,
since Cya,yb

(i, i) = � for all 1 ≤ a, b, i ≤ n. Fig. 1(b) shows the induced
model P2 of P1 in Fig. 1(a). In the example, we have, say, the unary cost
Cy1(2) = Cx2(1) = 1 and the binary cost Cy2,y3(1, 2) = Cx1,x2(2, 3) = 3.

4 Combining Mutually Redundant WCSPs

Following the redundant modeling [1] technique, we can also combine two mu-
tually redundant WCSPs P1 = (k1, X , DX , CX ) and P2 = (k2, Y, DY , CY) us-
ing a set of channeling constraints Cc to give the combined model Pc = (k1 +
k2, X ∪ Y, DX ∪ DY , CX ∪ CY ∪ Cc). In Pc, Cc contains hard constraints. For ex-
ample, the channeling constraint x1 = 2 ⇔ y2 = 1 has the cost function
Cx1,y2(a, b) = ⊥ if a = 2 ⇔ b = 1; and Cx1,y2(a, b) = � otherwise. We perform
some preliminary experiments in ToolBar,1 a branch and bound WCSP solver
maintaining local consistencies at each search node, using Langford’s problem
(prob024 in CSPLib2) to evaluate the performance of the single and combined
models. The single model P used is based on a model by Hnich et al. [8] Since
the problem is over-constrained for many instances, we soften P so that the

1 Available at http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/ToolBarIntro.
2 Available at http://www.csplib.org.
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constraints except the all-different constraint can have random non-� costs.
The combined model Pc contains P and its induced model as sub-models.

Unlike redundant modeling in classical CSPs, enforcing AC* on Pc is even
weaker than on P . The former requires more backtracks than the latter in the
search, and solving Pc is about three times slower than solving P . This is mainly
due to three reasons. First, there are more variables and constraints in Pc than
in P . It takes longer time to propagate the constraints. Second, we need a large
number of channeling constraints to connect two models. For CSPs, efficient
global constraints exist for propagating the channeling constraints, but there
are no such counterparts for WCSPs. Third, we discover that enforcing AC* on
Pc can miss some prunings which are available even in P . For example, Figs. 1(a)
and 1(b) show two mutually redundant WCSPs P1 and P2 respectively, which
can be combined using Cc = {xi = j ⇔ yj = i | 1 ≤ i, j ≤ 3} to give Pc with the
valuation structure S(4+4) = S(8) and C∅ = 1⊕1 = 2. Figs. 1(c), 1(d), and 1(e)
respectively show the AC* equivalent of P1, P2, and Pc. Note that x1 �→ 1 and
y1 �→ 1 are removed in Figs. 1(c) and 1(d) respectively. However, in Fig. 1(e),
the assignments are still NC* and AC*, since C∅ ⊕ Cx1(1) = 3 ⊕ 3 < � = 8 and
C∅ ⊕ Cy1(1) = 3 ⊕ 2 < � = 8, and thus they cannot be removed. This example
shows the undesirable behavior that enforcing AC* on a combined model results
in weaker constraint propagation than on its sub-models individually.

To remedy the drawbacks, in the following subsections, we propose m-NC∗
c

and m-AC∗
c and their associated algorithms for effectively improving propagation

in a combined model with m sub-models. We also reveal that the propagation of
pruning information among sub-models can be done by enforcing m-NC∗

c . This
means that redundant modeling can be done with no channeling constraints.

4.1 Node Consistency Revisited

We observe in the above example that given any solution θ of Pc, if an assign-
ment xi �→ j in P1 is in θ, then according to the channeling constraints, the
corresponding assignment yj �→ i in P2 must be also in θ, and vice versa. There-
fore, we can check the node consistencies of xi �→ j and yj �→ i simultaneously. If
C∅⊕Cxi(j)⊕Cyj (i) = �, then both xi �→ j and yj �→ i cannot be in any solution
of Pc and can be pruned. Consider the assignments x1 �→ 1 and y1 �→ 1 in Pc

in Fig. 1(e), since C∅ ⊕ Cx1(1) ⊕ Cy1(1) = 3 ⊕ 3 ⊕ 2 = 8 = �, both assignments
should be pruned, thus restoring the available prunings in the single models.

Furthermore, a complete tuple of P2 must contain exactly one assignment of,
say, y1. The set of assignments {y1 �→ 1, y1 �→ 2, y1 �→ 3} in P2 corresponds to
θ = {x1 �→ 1, x2 �→ 1, x3 �→ 1} in P1. Therefore, a solution of Pc must contain
exactly one assignment in θ. In Fig. 1(e), the minimum cost among Cx1(1),
Cx2(1), and Cx3(1) is 1 > ⊥, we can use such information to tighten C∅ of Pc.

By capturing the previously described ideas, we propose a new notion of
node consistency m-NC∗

c for combined WCSP models with m sub-models. Note
that m-NC∗

c is a general notion; it is not restricted to PermWCSPs only. In
the following, we assume Ps = (ks, Xs, Ds, Cs) for 1 ≤ s ≤ m are m mutually
redundant WCSPs, where Xs = {xs,i | 1 ≤ i ≤ ns} and Ds = {Dxs,i | 1 ≤ i ≤ ns}
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(ns = |Xs|). Cs,t is the set of channeling constraints connecting Ps and Pt, and
Cc =

⋃
s<t Cs,t. Pc = (k, X , D, C) is a combined model of all m sub-models Ps,

where k =
∑

s ks, X =
⋃

s Xs, D =
⋃

s Ds, and C =
⋃

s Cs ∪Cc. Function fs,t is a
bijective channel function from assignments in Ps to those in Pt. By definition,
ft,s = f−1

s,t and fs,s is the identity function. ϑt(xs,i) = {fs,t(xs,i �→ a) | a ∈ Dxs,i}
is a set of all the corresponding assignments of xs,i in Pt.

Definition 2. Let Pc be a combined model of m sub-models Ps for 1 ≤ s ≤ m.

– An assignment xs,i �→ a is m-channeling node consistent (m-NC∗
c) if C∅ ⊕∑

t Cxt,j (bt) < �, where fs,t(xs,i �→ a) = xt,j �→ bt for 1 ≤ t ≤ m.
– A variable xs,i ∈ X is m-NC∗

c if (1) all assignments of xs,i are m-NC∗
c and

(2) for 1 ≤ t ≤ m, there exists an assignment (xt,j �→ b) ∈ ϑt(xs,i) such that
Cxt,j (b) = ⊥. The assignment xt,j �→ b is a c-support for ϑt(xs,i).

– Pc is m-NC∗
c if every variable in X is m-NC∗

c .

For example, Pc in Fig. 1(e) is NC* (and AC*) but not 2-NC∗
c , since (1) C∅ ⊕

Cx1(1)⊕Cy1(1) = � and (2) there are no c-supports for the tuple {x1 �→ 1, x2 �→
1, x3 �→ 1}. Fig. 1(f) shows its 2-NC∗

c equivalent. Note that 1-NC∗
c is equivalent

to NC*, while m-NC∗
c is a stronger notion of consistency than NC*.

Theorem 1. Let Pc be a combined model of m sub-models Ps for 1 ≤ s ≤ m.
Enforcing m-NC∗

c on Pc is strictly stronger than enforcing NC* on Pc.

To enforce m-NC∗
c on Pc, we propose a new form of projection which forces

c-supports for tuples. Given a tuple θ, let α = min(x �→a)∈θ{Cx(a)}. C-projection
of a tuple θ over C∅ is a flow of α cost units such that C∅ := C∅ ⊕ α and
for each (x �→ a) ∈ θ, Cx(a) := Cx(a) � α. C-projection is a generalization
of ordinary projection. The former allows the assignments in θ from different
variables, while the latter is equivalent to c-projection of all assignments of
a single variable. Clearly, after c-projection of a tuple θ, there must exist an
assignment (x �→ a) ∈ θ such that Cx(a) = ⊥. Given a variable xs,i in Pc,
c-projection of ϑt(xs,i) over C∅ transforms Pc into an equivalent WCSP.

In the above example, θ = {x1 �→ 1, x2 �→ 1, x3 �→ 1} is the set of assignments
in P1 corresponding to the set of all assignments of y1 in P2. Hence, c-projection
of θ over C∅ maintains the same cost distribution on complete tuples. In the
original Pc, Cx1(1) = 3, Cx2(1) = 1, and Cx3(1) = 2, c-projection of θ deducts 1
from each of the costs and increases C∅ by 1, forcing a c-support x2 �→ 1 for θ.

Fig. 2(a) shows an algorithm for enforcing m-NC∗
c on a combined model Pc.

The algorithm first forces a c-support for each ϑt(xs,i) by c-projecting each
ϑt(xs,i) over C∅. Next, for each xs,i ∈ X , pruneVarc(xs,i) is called to prune
any non-m-NC∗

c assignments. By using table lookup, a channel function can be
implemented in O(1) time. Therefore, pruneVarc() and NC∗

c () runs in O(md) and
O(mnd) time respectively, where d is the maximum domain size and n = |X |.

In Pc, when an assignment xs,i �→ a is not m-NC∗
c , all fs,t(xs,i �→ a) for

1 ≤ t ≤ m are also not m-NC∗
c and can be pruned. Therefore, enforcing m-NC∗

c
on Pc has already done all the propagation of the channeling constraints, and
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procedure NC∗
c (k,X ,D, C)

1. for each xs,i ∈ X each 1 ≤ t ≤ m do
2. α := min(xt,j �→b)∈ϑt(xs,i){Cxt,j

(b)};
3. C∅ := C∅ ⊕ α;
4. for each (xt,j �→ b) ∈ ϑt(xs,i) do
5. Cxt,j

(b) := Cxt,j
(b) � α;

6. for each xs,i ∈ X do
7. pruneVarc(xs,i);
endprocedure
procedure pruneVarc(xs,i)
8. for each a ∈ Dxs,i

do
9. let xt,j �→ bt ≡ fs,t(xs,i �→ a) for 1 ≤ t ≤ m
10. if C∅ ⊕�t Cxt,j

(bt) = 
 then
11. for each 1 ≤ t ≤ m do
12. Dxt,j

:= Dxt,j
\ {bt};

endprocedure

procedure findCSupport(xs,i, xs,j)
1. for each 1 ≤ t ≤ m do
2. supported := true;
3. for each (xt,i′ �→ a′) ∈ ϑt(xs,i) do
4. if S(xt,i′ �→ a′, xs,j , t) /∈ ϑt(xs,j) then
5. let xt,j∗ �→ b∗ ≡ argmin(x

t,j′ �→b′)∈ϑt(xs,j){Cx
t,i′ ,x

t,j′ (a′, b′)};
6. S(xt,i′ �→ a′, xs,j, t) := (xt,j∗ �→ b∗);
7. α := Cx

t,i′ ,xt,j∗ (a′, b∗); Cx
t,i′ (a

′) := Cx
t,i′ (a

′) ⊕ α;
8. for each (xt,j′ �→ b′) ∈ ϑt(xt,j) do
9. Cx

t,i′ ,x
t,j′ (a′, b′) := Cx

t,i′ ,x
t,j′ (a′, b′) � α;

10. if Cx
t,i′ (a

′) = ⊥ ∧ α > ⊥ then supported := false;
11. if ¬supported then
12. let xt,i∗ �→ a∗ ≡ argmin(x

t,i′ �→a′)∈ϑt(xs,i)
{Cx

t,i′ (a
′)};

13. S(xs,i, t) := (xt,i∗ �→ a∗);
14. α := Cxt,i∗ (a∗); C∅ := C∅ ⊕ α;
15. for each (xt,i′ �→ a′) ∈ ϑt(xs,i) do
16. Cx

t,i′ (a
′) := Cx

t,i′ (a
′) � α;

endprocedure
(a) m-NC∗

c algorithm (b) m-AC∗
c algorithm

Fig. 2. Algorithms for enforcing m-NC∗
c and m-AC∗

c

we can skip posting them in Pc to save propagation overhead. In subsequent
discussions, we assume no channeling constraints exist in a combined model if
m-NC∗

c is enforced.

4.2 Arc Consistency Revisited

Consider variable x2 in P1, the set of assignments {x2 �→ 1, x2 �→ 2, x2 �→ 3} in
P1 corresponds to θ = {y1 �→ 2, y2 �→ 2, y3 �→ 2} in P2. Now for the assignment
y2 �→ 1 in Fig. 1(e), there is a binary cost Cy2,yj (1, 2) incurred between y2 �→ 1
and (yj �→ 2) ∈ θ. (When j = 2, there are actually no such cost, but we assume
without losing generality that such “cost” is �.) Since the minimum cost among
Cy2,y1(1, 2) = 2, “Cy2,y2(1, 2)” = �, and Cy2,y3(1, 2) = 3 is 2 > ⊥, we can use
such information to tighten the bound on the cost Cy2(1). Thus, we can propose
a new arc consistency m-AC∗

c for combined models with m sub-models.

Definition 3. Let Pc be a combined model of m sub-models Ps for 1 ≤ s ≤ m.

– An assignment xs,i �→ a in Pc is m-channeling arc consistent (m-AC∗
c) with

respect to constraint Cxs,i,xs,j if for 1 ≤ t ≤ m, there exists an assignment
(xt,j′ �→ b′) ∈ ϑt(xs,j) such that Cxt,i′ ,xt,j′ (a′, b′) = ⊥, where xt,i′ �→ a′ =
fs,t(xs,i �→ a). The assignment xt,j′ �→ b′ is a c-support for xt,i′ �→ a′.

– A variable xs,i ∈ X is m-AC∗
c if all assignments of xs,i are m-AC∗

c with
respect to all constraints involving xs,i.

– Pc is m-AC∗
c if each xs,i ∈ X is m-NC∗

c and m-AC∗
c.

The combined model Pc in Fig. 1(e) is AC* but not 2-AC∗
c , since there are no

c-supports among {y1 �→ 2, y2 �→ 2, y3 �→ 2} for y2 �→ 1. Fig. 1(h) shows an
equivalent 2-AC∗

c WCSP. Again, 1-AC∗
c is equivalent to AC*, while m-AC∗

c is a
stronger notion of consistency than AC*.

Theorem 2. Let Pc be a combined model of m sub-models Ps for 1 ≤ s ≤ m.
Enforcing m-AC∗

c on Pc is strictly stronger than enforcing AC* on Pc.



66 Y.C. Law, J.H.M. Lee, and M.H.C. Woo

To enforce m-AC∗
c on a combined model, we extend the definition of c-projections

which can force c-supports for assignments. Given a tuple θ and an assignment
(x �→ a) /∈ θ, let α = min(y �→b)∈θ{Cx,y(a, b)}. C-projection of θ over x �→ a is
a flow of α cost units such that Cx(a) := Cx(a) ⊕ α and for each (y �→ b) ∈ θ,
Cx,y(a, b) := Cx,y(a, b)�α. C-projection of the set of all assignments of a variable
y over x �→ a is equivalent to ordinary binary projection. Given an assignment
(xt,j �→ a) /∈ ϑt(xs,i) in a combined model Pc, c-projection of ϑt(xs,i) over
xt,j �→ a transforms Pc into an equivalent WCSP.

Recall the combined model Pc in Fig. 1(e), y2 �→ 1 has no c-supports in θ =
{y1 �→ 2, y2 �→ 2, y3 �→ 2}, which is the corresponding set of all assignments of
x2 in P1. C-projections of θ over y2 �→ 1 yields Cy2,y1(1, 2) = ⊥, Cy2,y3(1, 2) = 1,
and Cy2(1) = 2, as shown in Fig. 1(g). In the figure, {x1 �→ 1, x2 �→ 1, x3 �→ 1}
is also c-projected over C∅ such that Cx1(1) = 2, Cx2(1) = ⊥, Cx3(1) = 1, and
C∅ = 4. The assignments x1 �→ 1, x1 �→ 2, y1 �→ 1, and y2 �→ 1 are consequently
not 2-NC∗

c , since C∅ ⊕ Cx1(1) ⊕ Cy1(1) = C∅ ⊕ Cx1(2) ⊕ Cy2(1) = 4 ⊕ 2 ⊕ 2 = �,
and are thus pruned. Variable x1 is now bound and further propagation yields
the 2-AC∗

c WCSP in Fig. 1(h). The optimal solution is {x1 �→ 3, x2 �→ 1, x3 �→
2, y1 �→ 2, y2 �→ 3, y3 �→ 1}, which has aggregate cost 4.

Fig. 2(b) shows the core algorithm for enforcing m-AC∗
c . It uses two data

structures S(xt,i′ �→ a′, xs,j , t) and S(xs,i, t). They store the current c-support
for the assignment xt,i′ �→ a′ among ϑt(xs,j) and for ϑt(xs,i) respectively. The
algorithm generalizes the procedure findSupport() by Larrosa [3] so that for each
sub-model Pt, it forces a c-support among ϑt(xs,j) for each assignment (xt,i′ �→
a′) ∈ ϑt(xs,i) (lines 3–10). C-projections over C∅ are done when necessary (lines
11–16). After finding c-supports, any assignments that are not m-NC∗

c are pruned
using pruneVarc() in Fig. 2(a). The findCSupport() algorithm runs in O(md2)
time, hence the overall m-AC∗

c algorithm runs in O(mn2d3) time.

5 Experiments

We implement the 2-NC∗
c and 2-AC∗

c algorithms in ToolBar to evaluate their
efficiency on combined models, using Langford’s problem and Latin square prob-
lem, both of which can be modeled as PermWCSPs. Enforcing AC* on combined
models is highly inefficient, so comparisons are made among AC* [3], FDAC*
[5], and EDAC* [6] on a single model P and 2-AC∗

c on a combined model Pc,
which contains P and its induced model as sub-models. Experiments are run
on a 1.6GHz US-IIIi CPU with 2GB memory. We use the dom/deg variable or-
dering heuristic [6] and the smallest-cost-first value ordering heuristic [6]. The
initial � provided to ToolBar is n2, where n is the number of variables in a single
model. We report in the tables the average number of fails (i.e., the number of
backtracks occurred in solving a model) and CPU time in seconds to find an
optimal solution. The first column shows the problem instances; those marked
with “∗” have a ⊥ optimal cost. The subsequent columns show the results of
enforcing various local consistencies on either P or Pc. A cell labeled with “-”
denotes a timeout after 2 hours.
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Table 1. Experimental results on solving Langford’s problem and Latin square problem

(a) Classical Langford’s problem (b) Soft Langford’s problem
(m, n) AC* on P FDAC* on P EDAC* on P 2-AC∗

c on Pc AC* on P FDAC* on P EDAC* on P 2-AC∗
c on Pc

fail time fail time fail time fail time fail time fail time fail time fail time
(2, 6) 80 0.01 80 0 80 0.01 57 0.01 180 0.01 177 0.02 176 0.02 130 0.02
(2, 7)* 1 0 1 0.01 1 0.01 2 0.01 91 0.01 79 0.01 80 0.01 90 0.01
(2, 8)* 22 0.01 18 0 18 0 0 0.01 162 0.01 146 0.01 145 0.02 137 0.03
(2, 9) 8576 0.85 8576 0.8 8576 1 4209 0.79 10850 1.09 10823 1.05 10823 1.05 5074 1
(2, 10) 48048 5.03 48048 4.91 48048 6.07 22378 4.48 59681 6.38 59654 6.14 59655 6.13 25718 5.42
(2, 11)* 11 0.01 8 0.01 11 0.01 3 0.02 595 0.07 547 0.07 546 0.08 405 0.1
(2, 12)* 7 0.01 7 0.01 7 0.01 0 0.02 795 0.1 708 0.1 700 0.12 576 0.17
(2, 13) 14.73M 1769.8 14.73M 1691.98 14.73M 2164.02 5.72M 1325.92 18.16M 2232.01 18.16M 2142.04 18.16M 2160.93 6.46M 1552.65
(3, 5) 6 0 6 0 6 0 4 0.01 368 0.04 285 0.04 279 0.05 284 0.06
(3, 6) 20 0.01 20 0.01 20 0.01 14 0.02 901 0.14 681 0.12 668 0.15 600 0.19
(3, 7) 62 0.04 62 0.03 62 0.04 29 0.04 2286 0.51 1687 0.42 1687 0.53 1559 0.67
(3, 8) 238 0.13 238 0.1 238 0.12 96 0.13 2735 0.81 1976 0.61 1962 0.75 2398 1.23
(3, 9)* 195 0.12 193 0.09 192 0.11 53 0.11 2665 0.53 1169 0.31 1360 0.44 3893 1.94
(3, 10)* 590 0.42 560 0.29 560 0.39 97 0.23 6612 1.74 4026 1.34 3903 1.6 8715 5.2
(3, 11) 14512 10.01 14512 7.45 14512 10.09 3029 6.15 77507 43.8 69356 33.89 69455 42.3 27992 33.27
(3, 12) 62016 46.13 62016 35.19 62016 46.69 12252 25.57 275643 178.25 252527 136.27 252830 171.14 82804 119.44
(3, 13) 300800 247.45 300800 191.56 300800 257.59 45274 108.71 949361 736.13 920007 577.57 919749 720.18 174881 354.39
(3, 14) 1.37M 1185.08 1.37M 933.22 1.37M 1229.83 190153 525.88 4.41M 3704.64 4.32M 2886.43 4.32M 3624 596201 1448.54
(3, 15) 7.52M 6992.09 7.52M 5419.17 - - 851968 2750.05 - - - - - - 2.31M 6742.25

(c) Classical Latin square problem (d) Soft Latin square problem
n AC* on P FDAC* on P EDAC* on P 2-AC∗

c on Pc n AC* on P FDAC* on P EDAC* on P 2-AC∗
c on Pc

fail time fail time fail time fail time fail time fail time fail time fail time
5* 0 0 0 0 0 0.01 0 0.01 3 5 0 4 0 4 0 5 0
10* 1 0.13 1 0.14 1 0.16 0 0.23 4 172 0.01 100 0.02 98 0.03 125 0.02
15* 14 1.44 14 1.55 14 1.99 0 2.62 5 25016 2.61 10038 2.85 7325 5.08 14950 2.78
20* 712 11.5 546 13.79 747 24.33 0 18.49 6 751412 153.82 111545 105.95 76353 144.6 203839 93.93
25* 4 65.54 18 36.88 173 41.79 0 130.66 7 - - 1.87M 3558.49 950480 3632.47 3.62M 2933.09

Table 1(a) shows the results on the (m, n) instances of Langford’s problem
solved using a classical CSP model [8] containing m×n variables. In the problem,
only a few instances are satisfiable (marked with “*”). Therefore, we soften
the problem as described in Section 4. For each soft instance, we generate 10
instances and report the average results in Table 1(b). For both classical and soft
cases, 2-AC∗

c achieves the fewest number of fails among all four local consistencies
in most instances. This shows that it does more prunings than AC*, FDAC*,
and EDAC*, reduces more search space, and transmits both pruning and cost
projection information better. The 2-AC∗

c is clearly the most efficient for the
larger and more difficult instances, which require more search efforts to either
prove unsatisfiability or find an optimal solution. We improve the number of
fails and runtime of, say, (3, 14), by factors of 7.2 and 2.2 respectively. There are
even instances that enforcing AC*, FDAC*, and EDAC* on P cannot be solved
before timeout but enforcing 2-AC∗

c on Pc can. The reduction rates of number
of fails and runtime of Pc to P increase with the problem size. Exceptions are
the “*” instances, in which once an ⊥ cost solution is found, we need not prove
its optimality and can terminate immediately. Such instances require relatively
fewer search efforts, and the overhead of an extra model may not be counteracted.

Table 1(c) and 1(d) show the experimental results of classical and soft Latin
square problem (prob003 in CSPLib) respectively. Contrary to Langford’s prob-
lem, Latin square problem has many solutions. We assert preferences among the
solutions by assigning to each allowed binary tuple a random cost from ⊥ to
n inclusive. We can see from Table 1(c) that classical Latin square problem is
easy to solve up to n = 25. The amount of search is small even using a single
model. Enforcing 2-AC∗

c on Pc can still reduce the search space to achieve no
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backtracks. However, the runtime is not the fastest due to the overhead of an
extra model. The soft Latin square problem is more difficult than the classical
one since we are searching for the most preferred solution. We can solve only the
smaller instances within 2 hours. Although 2-AC∗

c does not achieve the smallest
number of fails among other local consistencies, its runtime is highly competi-
tive as shown in Table 1(d). Like in the case of the classical and soft Langford’s
problem, 2-AC∗

c is the most efficient for the larger instances. In fact, even with
two models, the time complexity of 2-AC∗

c is only a constant order higher than
AC*, while FDAC* and EDAC* have higher time complexities O(n3d3) and
O(n2d2 max{nd, �}) respectively. In this problem, 2-AC∗

c strikes a balance be-
tween the amount of prunings and the time spent on discovering these prunings.
This explains why 2-AC∗

c has more fails than EDAC* but the fastest runtime.

6 Conclusion

While we can rely on the standard propagation algorithms of the channeling
constraints for classical CSPs to transmit pruning information between sub-
models, we have shown that this approach does not work well when combining
WCSPs. Instead, we have generalized NC* and AC* and proposed the strictly
stronger m-NC∗

c and m-AC∗
c respectively for combined models containing m sub-

models. Experiments on our implementations of 2-NC∗
c and 2-AC∗

c have shown
the benefits of extra prunings, which lead to a greatly reduced search space and
better runtime than the state-of-the-art AC*, FDAC*, and EDAC* algorithms
on both classical and soft benchmark problems, especially for hard instances.

Redundant modeling for WCSPs is a new concept and has plenty of scope
for future work. We can investigate how generalized model induction can gener-
ate induced models of non-PermWCSPs, and to apply m-AC∗

c to the resultant
combined models. It would be also interesting to incorporate c-supports and
c-projections to FDAC* and EDAC* to obtain m-FDAC∗

c and m-EDAC∗
c .
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