Constraints (2006) 11: 221-267
DOI 10.1007/s10601-006-7095-8

Symmetry Breaking Constraints for Value Symmetries
in Constraint Satisfaction

Y. C. Law - J. H. M. Lee

© Springer Science + Business Media, LLC 2006

Abstract Constraint satisfaction problems (CSPs) sometimes contain both variable
symmetries and value symmetries, causing adverse effects on CSP solvers based on
tree search. As a remedy, symmetry breaking constraints are commonly used. While
variable symmetry breaking constraints can be expressed easily and propagated
efficiently using lexicographic ordering, value symmetry breaking constraints are
often difficult to formulate. In this paper, we propose two methods of using symmetry
breaking constraints to tackle value symmetries. First, we show theoretically when
value symmetries in one CSP correspond to variable symmetries in another CSP of
the same problem. We also show when variable symmetry breaking constraints in
the two CSPs, combined using channeling constraints, are consistent. Such results
allow us to tackle value symmetries efficiently using additional CSP variables and
channeling constraints. Second, we introduce value precedence, a notion which can
be used to break a common class of value symmetries, namely symmetries of
indistinguishable values. While value precedence can be expressed using inefficient
if-then constraints in existing CSP solvers, we propose efficient propagation
algorithms for implementing global value precedence constraints. We also charac-
terize several theoretical properties of the value precedence constraints. Extensive
experiments are conducted to verify the feasibility and efficiency of the two proposals.

Keywords Symmetry breaking - Value symmetries - Constraint satisfaction
1 Introduction

Many real life problems can be modeled as constraint satisfaction problems (CSPs),
which is defined by Mackworth [38] as follows:

We are given a set of variables, a domain of possible values for each variable,
and a conjunction of constraints. Each constraint is a relation defined over a
subset of the variables, limiting the combination of values that the variables in

Y. C. Law (X) - J. H. M. Lee

Department of Computer Science and Engineering, The Chinese University of Hong Kong,
Shatin, New Territories, Hong Kong

e-mail: yclaw@cse.cuhk.edu.hk

J. H. M. Lee
e-mail: jlee@cse.cuhk.edu.hk

@ Springer

222 Constraints (2006) 11: 221-267

this subset can take. The goal is to find a consistent assignment of values from
the domains to the variables so that all the constraints are satisfied
simultaneously.

A CSP often exhibit some symmetries, which are mappings that preserve
satisfiability of the CSP. They are a curse of CSP solving algorithms based on tree
search, since symmetrically equivalent states in the search tree can be explored
more than once. One main approach of symmetry breaking is to add symmetry
breaking constraints [43] to a CSP before search, so that some symmetrical
equivalent solutions are removed in the reformulated CSP.

There are two common types of CSP symmetries, namely variable symmetries and
value symmetries. Crawford et al. [18] suggested that we can always break variable
symmetries using lexicographic ordering constraints. In addition, efficient propaga-
tion algorithms [13, 14, 21] exist for maintaining lexicographic ordering. As a result,
variable symmetry breaking constraints can be expressed relatively easily and
executed efficiently in existing constraint programming systems. However, there are
no general methods to date to formulate symmetry breaking constraints for value
symmetries in CSPs. In this paper, we propose two methods to remedy this
difficulty.

The first method makes uses of multiple viewpoints and channeling constraints
[15] to break value symmetries in matrix models [21], which are CSPs with variables
indexed and organized into matrices. Flener et al. [21] suggested that it is possible to
transform an (n — 1)-dimensional matrix with variable and value symmetries into an
n-dimensional matrix of 0/1 variables that contains only variable symmetries.
Symmetry breaking constraints are then expressed in the n-dimensional matrix to
break the symmetries of the problem. We formalize this idea by theoretically
showing that value symmetries in a matrix model always correspond to variable
symmetries in the 0/1 viewpoint. We also generalize the idea to characterize the
conditions when value symmetries in one matrix model correspond to variable
symmetries in another non-0/1 matrix model of the same problem. We then give the
conditions when variable symmetry breaking constraints in two matrix models of the
same problem, when combined using channeling constraints, are consistent. Such
results enable us to break value symmetries in one viewpoint using variable
symmetry breaking constraints in another.

In the second method, we identify an important class of value symmetries,
namely symmetries of indistinguishable values [10, 28], an example of which is the
colors in graph coloring problems. We introduce a notion called value precedence
and explain how imposing value precedence on a sequence of CSP variables can
break symmetries of indistinguishable values in both integer and set domains.
Although the value precedence condition on a sequence of variables is easy to
express using if-then constraints in many existing constraint programming systems,
such a formulation is inefficient both in terms of number of constraints and
propagation efficiency. We propose two efficient propagation algorithms for
implementing value precedence global constraints on integer and set variable
sequences respectively. We also study several theoretical properties of the proposed
value precedence constraints.

This paper, a revised and extended version of the work by Law and Lee [36, 37]
and Law [35], is organized as follows. Section 2 provides background to the paper.

@ Springer

Constraints (2006) 11: 221-267 223

We formally define the concept of CSPs and two common types of CSP symmetries,
namely variable and value symmetries. Section 3 presents how to break value
symmetries in matrix models using multiple viewpoints and channeling constraints.
Section 4 introduces our other method that breaks symmetries of indistinguishable
values using value precedence. Section 5 presents experimental results using the two
proposals and Section 6 presents a brief review of the related work in symmetry
breaking. Section 7 summarizes our contributions, and gives discussions and possible
directions for future research.

2 Background

This section provides background to the paper. We provide the definitions of
various CSP related concepts and defines two common types of CSP symmetries,
namely variable and value symmetries. We give also common existing methods of
breaking such types of symmetries.

2.1 Constraint Satisfaction Problems

A viewpoint is a pair (X, D), where X is a set of variables, and D is a function that
maps each x € X to its associated domain, giving the set of possible values for x.
There are two common classes of variables in CSPs. An integer variable [1] x has an
integer domain, i.e., D(x) is a finite integer set. A set variable [1, 32] x has a set
domain; each element in the domain is a finite integer set. In most implementations,
the domain of a set variable x is represented by two sets. The possible set PS(x)
contains elements that belong to at least one of the possible values of the variable.
The required set RS(x) contains elements that belong to all the possible values of the
variable. By definition, RS(x) C PS(x). The domain of x is then represented as
D(x) = {a|RS(x) Ca C PS(x)}. Domain reduction of a set variable x is done by
removing values from PS(x) and adding values to RS(x). If a value being removed
from PS(x) is in RS(x), a fail is triggered. Adding a value to RS(x) which is not in
PS(x) also triggers a fail. When PS(x) = RS(x), the set variable is bound. For ease of
description, we abuse terminology by defining the possible set PS(x) of an integer
variable x to be D(x).

An assignment x—a in (X,D) means variable x € X is mapped to the value
a € D(x). A compound assignment is a set of assignments in which no variables
can be assigned more than once. We overload the — operator such that
(Xiy,. .., Xy)= ({ay,... ,a;) means the compound assignment {x;—a;[1 <j<k}. A
complete assignment is a compound assignment for all variables in a CSP.

A constraint in a viewpoint V places restrictions on a subset of variables in V,
limiting the combination of values that these variables can take. A CSP model M (or
simply model or CSP) of a problem P is a pair (V,C), where V = (X,D) is a
viewpoint of P and C is a set of constraints in V for P. Besides using (V, C), we also
use the triple (X, D, C) to denote M, i.e., M = (V,C) = (X,D,C). A solution of a
CSP M is a complete assignment that satisfies all the constraints in C. The set of all
solutions of M is denoted by sol/(M).

In order to reason with integer and set variables uniformly, we introduce the
notion of decisions which are analogous to assignments. A decision x> b in (X, D)

@ Springer

224 Constraints (2006) 11: 221-267

means variable x € X is mapped to the value b € PS(x). It has different meanings
depending on the class of variable x. If x is an integer variable, x > b simply means
x—b. If x is a set variable, x> b means b is added to the required set RS(x) of x, i.e.,
b €x. A compound decision is a set of decisions. Decisions are different from
assignments in that multiple decisions are allowed for a set variable, while multiple
assignments are not allowed for any variable. For example, if x is an integer
variable, then § = {x>1,x>2} is not a valid compound decision. However, if x is a
set variable, then 6 is a valid compound decision, meaning {1,2} C x. A compound
decision has a scope indicating the set of assigned variables. For example, for integer
variable x and set variables y and z, the compound decision {x®>1,y>1,y>2} with
scope {x,y,z} means the compound assignment {x—1, y—{1,2}, z—0}. With the
same scope U, compound assignments and compound decisions have a 1-1 cor-
respondence. Therefore, we use compound decisions as well as complete assign-
ments to represent solutions of a CSP interchangeably whenever necessary. We
overload the > operator such that (x;,...,x;) > (ai,...,a;) means the compound
decision {x; >a;|1 <j < k}.

An extension of an assignment x—a is a compound assignment that includes x—a.
A constraint ¢ is generalized arc consistent (GAC) [41] if and only if for each
variable x in ¢ and a € D(x), x—a can be extended to a solution of c. Generalized arc
consistency (GAC) is prohibitive to enforce on constraints involving set variables.
Instead, set bounds consistency (SBC) is typically enforced. A constraint ¢ on set
variables is set bounds consistent (SBC) [32] if and only if for each set variable x in c,
both x—PS(x) and x—RS(x) can be extended to solutions of c. That is, for each set
variable x in ¢ and a € PS(x) \ RS(x), both c Aa € x and ¢ A a ¢ x are satisfiable.

2.2 Symmetries

In this subsection, we define two types of symmetries, namely variable symmetries
and value symmetries. We illustrate existing methods for breaking such symmetries
using the social golfer problem as a running example.

The social golfer problem (SGP), “prob010” in CSPLib," is to find a W-week
schedule of G groups, each containing S golfers, such that no two golfers can play
together more than once. There are totally N'=G x S golfers. We denote each
instance of the problem by (G, S, W). The SGP is highly symmetric [20]:

1. players can be permuted among the A/! combinations,
2. weeks of schedule can be exchanged, and
3. groups can be exchanged inside weeks.

One way to model the problem into a CSP uses the viewpoint Vi = (G, Dg)
which contains an integer variable g;; for each golfer i in week k with 1 <i <N
and 1<k <W. The variable domain Dg(g;;) = {1,...,G} contain the group
numbers that golfer i can play in week k. This model M is a matrix model [21],
since G forms a 2-dimensional matrix of variables. Figure 1(a) gives a solution of the
(3,2,3) instance.

! Available at http://www.csplib.org/.

@ Springer

http://www.csplib.org/

Constraints (2006) 11: 221-267 225

kgolfer 123456 groupweek 1 2 3
I 112233 1 {12} {1,3} {1,6}
2 121323 2 {34} {2,5} {2.3}
3 122331 3 {56} {4,6} {4,5}
@ Vo ®) Ve
Tou week 1 2 3
golferf P - ; - ; S golfergroup 123123123
9 {’{1’}}{23} 0 1 100100100
3 2} {1’3} 0 2 100010010
4 0 {’1} (2,3} 3 010100010
5 0 (2) {1"3} 4 010001001
6 (3} 0 {1’2} 5 001010001
(©) Vi : 6 001001100
@ Vz

Fig. 1 Four equivalent solutions of (3,2,3) in Vi, Vp, Vw, and V7 respectively

2.2.1 Variable Symmetries

A variable symmetry of a CSP M = (X,D,C) is a solution-preserving bijective
mapping from the set of variables X to itself, 0 : X — X. Given a bijective mapping
o: X — X, we overload o to act on a sequence of variables ¥ = (x1,...,x,) such that
o(X) = (o(x1),...,0(x,)), and also on a compound decision ¢ such that o(f) =
{o(x)>a|(x>a) € 0}. A variable symmetry o requires that

0 € sol(M) <= o(0) € sol(M).

Symmetry (1) of the SGP is an example of variable symmetries in V. Consider
the solution in Fig. 1(a), we can exchange the variables of golfers 1 and 2 to obtain
another solution with (g, 1,9 ,,93) > (1,2,2) and (g,1,9,5,9,3) > (1,1,1). Hence,
we have the bijective mapping o as the identity mapping except o((9; x,924)) =
(924, G14) for 1 <k <3. ’

Symmetry (2) is another example of variable symmetries in V. In Fig. 1(a), we
can exchange the variables of weeks 1 and 2 to obtain another solution with
(91.1)-+-1961) >(1,2,1,3,2,3) and (g;,,...,92) >(1,1,2,2,3,3). Hence, we have
another bijective mapping ¢’ which is the identity mapping except o’ ((9i1,9:2)) =
(9i2:9i1) for 1 <i <.

Variable symmetries can be broken using lexicographic ordering [26]. A sequence
X = (x1,...,x,) is lexicographically smaller than or equal to another sequence
¥ =1,...,yn), written as X <j, ¥ or y >, X, if and only if

x1 <y and(/\ x,-r:y,v) —>X,‘§y,‘f01'1 <i<n.
1< <i

The sequence X is lexicographically smaller than y, written as X <j., ¥ or ¥ >, X, if
and only if ¥<;,y and X # y.
In general, a variable symmetry o can be broken by the lexicographic ordering
constraint [18]
X <lex 0'()?)7

@ Springer

226 Constraints (2006) 11: 221-267

where X is a sequence of the variables in the CSP. Using a constraint for each
variable symmetry o, all symmetrical solutions in each equivalence class except the
lexicographically smallest one, with respect to the sequence X, would be removed.
Sometimes, these constraints can be simplified [34] to contain fewer variables. An
example is the row ordering and column ordering constraints for row and column
symmetries [21]. For example, symmetry (1) of the SGP can be broken by the
row ordering constraints (g;1,.-.,diw) <tex (Git1,15-->Gis1w) for 1 <i < N. Sim-
ilarly, we can break symmetry (2) in Vi by the column ordering constraints
(G1hr >IN k) Stex {G1hs1s- >IN dpoo) fOr 1 <k < W. Bessiere et al. [11] showed
the intractability of breaking row and column symmetries completely. These row
ordering and column ordering constraints are only a subset of all the variable
symmetry breaking constraints. They do not necessarily break all the compositions
of the row and column symmetries [21]. There are methods to introduce extra
constraints to break more [27] but they are out of the scope of this paper, which
focuses on value symmetries.

2.2.2 Value Symmetries

A value symmetry under a subset U C X of the variables of a CSP M = (X, D, C),
where PS(x) = PS(x') for all x,x’ € U, is a solution-preserving bijective mapping on
the possible set of the variables in U, 7: PS(x) — PS(x) where x € U. Given a
bijective mapping 7 : Z — Z, we overload 7 to act also on a variable subset and a
compound decision 0 such that 7(U,0) = {x>7(a) | (x>a) e Ax e U} U{x>al (x>
a) € OA x¢ U}, which is a compound decision such that for each decision (x> a) € 6,
x> 7(a) isin 7(U, 0) if U contains the variable x, and x> a is in 7(U,) if U does not
contain x. A value symmetry 7 under U requires that

0 € sol(M) < 7(U,0) € sol(M).

If U is a set of integer variables, 7 is called an integer value symmetry. If U is a set of
set variables, 7 is called a set value symmetry.

Value symmetry is similar to but more general than value interchangeability [24].
Interchangeable values can be exchanged for a single variable without affecting the
satisfiability of constraints, while a value symmetry is under a set of variables and
can be applied to a solution to form another solution of the same CSP. For example,
a value a for a variable x is fully interchangeable [24] with a value b for x if and only
if there is an integer value symmetry 7 under {x} such that 7 is the identity mapping
except 7(a) = b and 7(b) = a.

Symmetry (3) in the SGP is an example of integer value symmetries in V.
Consider the solution in Fig. 1(a). We can permute the values assigned to the set of
variables U = {g; ,...,9¢:} C G from 1 to 2, from 2 to 3, and from 3 to 1 to obtain
another solution with (gm soor961) > (2,2,3,3,1,1). Thus, we have a value
symmetry 7 under U with 7(1) =2, 7(2) =3, and 7(3) = 1.

Value symmetry breaking constraints are difficult to express in general, since we
do not know beforehand which variable will be assigned which value. Value
symmetries are usually handled by pre-assigning the affected variables as far as
possible with some values without loss of generality. However, these pre-assign-
ments, which must be extensible to solutions, cannot break all value symmetries in

@ Springer

Constraints (2006) 11: 221-267 227

general. For example, in the SGP, without loss of generality, we can always have the
pre-assignments

et >(1,...,1,...,G,..., d
<91,1 n.1)> . g . G) an

(gl‘k,...,g&k>l><1,...,8) for k > 1.

The former breaks the value symmetries for week 1. The latter breaks the value
symmetries of values 1 to S from week 2 and so on, but those of values S+ 1 to G
remains intact. Therefore, the larger G — S, the fewer value symmetries can be
broken by the pre-assignments.

Symmetries of indistinguishable values [10, 28] is a special class of value

symmetries. A set of values {vi,..., v} is indistinguishable under U = {xi,...,x,}
if the values imply k! value symmetries 7 under U, where (7(vi),...,7(vg)) is a
permutation of (v1,...,v). In the SGP, our previous example of value symmetry

under U ={gy;,...,9¢1} has the mapping 7(1) =2, 7(2) =3, and 7(3) =1.
Actually, the groups {1,2,3} are indistinguishable values under U, implying 3! = 6
value symmetries under U, which are the six permutations of (1,2,3). The value
symmetry 7 is one of the six permutations.

3 Breaking Value Symmetries with Channeling

In this section, we introduce the method of breaking value symmetries using
multiple viewpoints and channeling constraints. Our method is applicable to multi-
aspect assignment problems (MAPs), which can be naturally formulated into various
matrix models [21]. In the following, we first describe MAPs, and a general method
to derive n + 1 viewpoints for modeling a MAP with n aspects as matrix models. We
then show theoretically when a value symmetry in a CSP (V,C) corresponds to a
variable symmetry in another CSP (V’,C’) modeling the same problem. We also
show when variable symmetry breaking constraints in two viewpoints V and V’,
connected with channeling constraints [15], are consistent. Using these results, we
can tackle value symmetries in (V,C) by expressing variable symmetry breaking
constraints using another viewpoint V' and connecting V' and V' using channeling
constraints.

3.1 Multi-aspect Assignment Problems

In the SGP, there are three aspects, corresponding to the sets of golfers, weeks, and
groups respectively. Solving the problem is to find a set of tuples of the form
(aGolfer,aWeek,aGroup) that satisfies the problem requirements. The SGP is an
instance of multi-aspect assignment problems (MAPs). A MAP consists of n aspects,
each of which corresponds to a set of objects of the problem. Without loss of
generality, we define the set of objects of the i-th aspect as Obj(i) = {1,...,k;},
where k; is the number of objects in aspect i. For example, we can use
Obj(1) ={1,...,.N'}, Obj(2) ={1,...,W}, and Obj(3) = {1,...,G} to denote the
set of all golfers, weeks, and groups respectively in the SGP. Solving a MAP is to
find a solution set of tuples S C Obj(1) x ... x Obj(n), i.e., a relation among the n
aspects, that satisfies the problem constraints. For example, the tuple (1,2,3) in a
solution set of the SGP means that golfer 1 plays in group 3 in week 2. Note that a

@ Springer

228 Constraints (2006) 11: 221-267

multi-aspect assignment problem is different from a multidimensional assignment
problem [42], which is an optimization problem subject to some constraints in
particular forms. Many real life problems, such as combinatorial, configuration,
scheduling, design, and assignment problems, are MAPs. As we shall see, MAPs can
readily be formulated into matrix models [21, 22], which are CSPs in which the
variables can be indexed and organized into one or more matrices.

3.2 Viewpoints for Modeling MAPs

A matrix can be multi-dimensional. We also use the array notation in addition to the
subscript notation to denote the matrix variables in the following discussions for
easier reading. In the following, we describe two types of viewpoints for modeling
MAPs, namely the aspect viewpoints and 0/1 viewpoint.

3.2.1 Aspect Viewpoints

Given a MAP with n aspects, we can always choose any n — 1 aspects as matrix
indices to form a matrix of variables and the remaining aspect to form the variable
domains. For 1 < s <n, let

Xy = {xslin] -+ [is—1]lisa] - - [in] | /\ ix € Obj(k)}
1<k<n.k#s
be the matrix of variables using all but the s-th aspect as indices. The variable
domains correspond to the objects in the s-th aspect, i.e.,

PS(xs[il} T [is—l][iﬁ—l] T [in]) = Ob](s)

For easier reading, we use the notation x[i; - - - i, \ i5] in subsequent discussions to
denote the variable x,[i1] - - [fs—1][is+1] - - - [in]. If the MAP allows only exactly one
decision for each variable in Xj, then Xj is a set of integer variables. Otherwise, X is
a set of set variables. Hence, we can derive n different aspect viewpoints
Vi=(X1,D1),...,V, = (Xu,D,) for a MAP. The subscript k in Vi = (Xx, Dx)
denotes the aspect corresponding to the domains in Vj. The variables between
any two aspect viewpoints Vi and V; (s #1¢) can be related by the channeling
constraints [15]

X[iy -+ i \ i) > iy <= x[iy - -in \ il > i for [\ ix € Obj(k).

1<k<n
They collectively induce a channeling function
fv,t(x[il e in \ lv} > lg‘) = X[il R in \ lt] > i[

from decisions in Vj to those in Vi, for A\,_,., ix € Obj(k). The reverse channeling
function f;; is simply f,,'. Note that f,;! always exists. This can be seen from the
channeling constraints that the sets of all possible decisions in V and V, have a one-
one mapping.

In the SGP, Vi = (G, Dg) is an aspect viewpoint using the golfers and weeks to
form the variables, and sets of groups to form the domain. The other two aspect
viewpoints are Vp = (P, Dp) and Vyy = (W, Dy). Viewpoint Vp uses the groups and
weeks to form the variables, and sets of golfers to form the domain. Viewpoint Vy,

@ Springer

Constraints (2006) 11: 221-267 229

uses the golfers and groups to form the variables, and sets of weeks to form the
domain. Since a group in a particular week can contain multiple golfers, the
variables p;, € P are set variables with PS(p;«) = {1,...,N'}. Similarly, a golfer can
have the same group number for multiple weeks, the variables w;; € W are also set
variables with PS(w;;) = {1,...,W}. Figure 1(a)-(c) show the same solution of
(3,2,3) expressed in Vg, Vp, and Vi respectively. The channeling constraints
between Vi and Vp are g,,>j <= pji>i, the ones between Vi and Vy are
g;x>j <> wij>k, and the ones between Vp and Vy are p;i>i<= w;;>k, for
1<i<N,1<j<G and1<k<W.

3.2.2 0/1 Viewpoint

Besides the aspect viewpoints, we can use all n aspects of a MAP to form an n-
dimensional matrix of 0/1 variables

Z={zlir] -+ lia] | J\ ix € Obj(ir)}.

1<k<n

Each variable z[ij]---[iy] € Z denotes whether the tuple (i1,...,i,) is in a solu-
tion of the MAP. Hence, Dz(z[i1]--[in]) = {0,1}, giving us the O/1 viewpoint
V;=(Z,Dz). For 1 <s<n, the channeling constraints [15] between aspect
viewpoint V; and 0/1 viewpoint V; are

xliy - i \ i) > iy <= z[i] - [ia] > 1 for ik € Obj(k).

1<k<n
They collectively induce a channeling function
foz(x[ir- iy \is] > is) = z[i1] -+ [in] > 1

from decisions in V; to only those of the form “z[i1] - - - [i,] > 17 in Vz, for A\, ix €
Obj(k) (since the channeling constraints never generate decisions of the form
“z[i] -+ - [ia] > 07). Again, fz, is f,}, which always exists because f; 7 is a one—one
mapping. In the SGP, V contains variables z;4; for each golfer i, week k, and
group j with Dz(z;x;) = {0,1}. Figure 1(d) shows the same solution as those in
Fig. 1(a)—(c), but expressed in V. The channeling constraints between V and, say,
Vi, are g; > j <= zigj>lfor 1 <i <N, 1<k<W,and1<j<G.

3.3 From Value Symmetries to Variable Symmetries

In the rest of the section, we suppose M, = (V;,Cy), M, = (V;,C;), and My =
(Vz,Cz) are CSP models for the same MAP with n aspects, where V; = (X, D)
and V, = (X;, D,) are aspect viewpoints, and Vz = (Z, D) is the 0/1 viewpoint.

3.3.1 From Aspect Viewpoint to 0/1 Viewpoint

Flener et al. [21] suggested that value symmetries in a matrix model can be broken
as variable symmetries in the 0/1 viewpoint. The following theorem formally
describes this idea and shows that a value symmetry 7 in M always corresponds to a

variable symmetry o in M.

@ Springer

230 Constraints (2006) 11: 221-267

Theorem 1 Given a value symmetry T under U; C X, we have

o (fs2(0)) = fsz(7(Us, 0))
for all 6 € sol(My), where

zlin] -+ [is—a][7(is)][issa] - - [in]
olzli] - [in]) = & Xslia] - lisaalisea] - [in] € Us

z[ir] -+ [in]
otherwise.

In addition, o is a variable symmetry in Mz corresponding to T in M;.
Proof: Let 6 € sol(M;).

T(Us, 0) = {x[iy -+ - in \ is]> s |
(x[iy+ i \ s> i) € OAX[iy -+ in \ is] & Uy}
U{x[i1- i \ is]>7() |
(x[iy -+ iy \ i5]>4s) € O AX[i1 - -in \ i5] € Us}
€ sol(Mj)
f.z(1(Us, 0)) = {zlia] - - [ia] > 1 |
(x[i1 -+ i \ i5]>i5) € O AX[iy---in \ i5] ¢ Us}
U {zlin] - i) [rG)lisa] - - [in]> 1]
(x[ix - iy \ is|>is) € OAX[i1---in \ is] € Us}

fs2(0) = {z[ir] -~ [tn]> 1| (x[iy -+ - \ is]>d) € 6}
= {z[i] -+ - [in]>1]
(xfi1 - dp \ is]>i) € O AX[iy -1 \ is] ¢ Us}
U{zlia] -+ [in]>1]
(x[i1 - in \ is]>is) € O Ax[i1 -+ iy \ is] € Uy}
o (fs2(0)) = {z[i] -+ [in]>1]
(x[i1 -+ in \ is]>is) € O Ax[i1 -+ in \ is] ¢ Ug}
U{z[ia] - fis—a][m ()] [is] - - - [in] > 1 |
(x[ir - in \ is]>is) € O A x[iy -+ -0y \ is] € Ug}
:f;,Z(T(UYae))

Note that f;2(0) and f; z(7(Us,6)) do not consist of all decisions for solutions
of My, since f; 7 only generates decisions of the form “z[i;] - - [i,] > 1.” But they can
be complemented to include decisions with value O for all other variables in Z
to make them solutions of Mz. So, o is a solution preserving bijective map-
ping. Hence, a variable symmetry in My corresponds to the value symmetry 7
in M. |

For each solution 6 of Mj, since 7 is a value symmetry under Uy, 7(Us, 0) is also a
solution of M,. Theorem 1 states that when both 6 and 7(Usy, §) are transformed to
V', via the channeling function f; z, obtaining f; z(6) and f; z(7(Us, 6)), we can always
find a bijective mapping o such that o(f; z(0)) = f;.z(7(Us, 8)). Since o transforms
solutions to solutions, it is a variable symmetry corresponding to 7.

@ Springer

Constraints (2006) 11: 221-267 231

In the SGP, the value symmetry 7 under U ={g;,...,9¢1} With 7(1) =2,
7(2) =3, and 7(3) = 1 corresponds to the variable symmetry o in V;z where o is the
identity except U(Zi,l,l) =Zil2, U(ZLI,Z) =Zil3, and U(Zi‘1,3) =Zi11 forl1 <i<eé.

3.3.2 From Aspect Viewpoint to Aspect Viewpoint

The previous theorem states that a value symmetry 7 in M always corresponds to a
variable symmetry in M. However, we find that 7 does not always correspond to a
variable symmetry in M, of aspect viewpoint V,. The following theorem states the
conditions when this correspondence occurs.

Theorem 2 Given a value symmetry T under Uy C Xj, if

1. there exists Obj' (k) C Obj(k) forl < k < nandk # s suchthat Ug = {xl[iy - - - in \ is]
| Algkgn,k#s ik € Ob]/(k)}) and

2. Obj'(t) = Obj(1),
then there is a mapping o : X; — X, such that o (f;,(0)) = fs.(7(Us, 0)) for all
0 € sol(M;), where

S X[N Nicken ks ore ik € OBJ' (k)
olli--in \u) =q . :
x[ir---iy \ if] otherwise.
In the mapping, i; = i; for j € {1,...,n} \ {s,t} and i = 7(is). In addition, o is a
variable symmetry in M, corresponding to T in Mj.

Proof: Without loss of generality, we assume s < ¢ in the proof. Let 6 € sol(Mj)

and B = Alskgn‘,k;&s,k;ét ix € Obj' (k). It Uy = {x[i1---in \i] | /\lgkgnﬁk#x ix € Obj'(k)
C Obj(k)}, then

T(Us, 0) = {x[iy -+ - in \ is] > i |
(x[ir -+ in \is] > i) € OAN—(B Nip € Obj' (1))}
U{x[iy i \ is] > 7(is) |
(x[i1---in \is] > is) € 9 ANB Nip € Obj' (1)}
€ sol(M;)

Fsu(T(Us, 0)) = fo ({x[iy -+ - i \ i)™ |
(x[i1 S \ is}[>is) €ON _‘(B Nip € Ob]',(t))})
U foal{xlin - -in \is]>7(s) |
(x[i1 -+ i \ is]>is) € O AB NI € Obj'(1)})
= {x[iy - in \ if]>0 |
(x[iy -+ i \ s> is) € O A(B Nip € ObJ' (1))}
Uefin] - i) [()] [ia] - - i) fiea] - - [ta]> i |
(x[i1 - in \is]>is) € OANB Nip € Obj (1)}
€ sol(M;)

If Obj () = Obj(1), then i, € Obj'(t) <> i, € Obj(t), which is always true. Hence,

Fu(T(Us, 0)) = {x[ir - - \ i) >dg | (x[i1 - - i \ is]>i5) € O A B}
U{xfin] - - lisa][()] Esa] - - [fe-a]i] - - [a] >0 |
(x[iy -+ in \ is]>i5) € 6 A B}

@ Springer

232 Constraints (2006) 11: 221-267

On the other hand,

fir(0) = {xfiy i \ i) > i | (X[i1 -+ -8 \ is]>i5) € 6}

= {xfiy i \)i | (i1 i \ ds] i) € 0 A ~B}
U {xfir - in \ il | (x[i1 -+ 0 \ i5]>is) € 6 A B}

€ sol(Mj)

o(fs(0)) = o({x[ir -+ in \ i]>ir | (x[iy -+ - in \ is]>i5) € O AB})

Uo({xlir---in \ it]>i | (x[i1 -+ - ip \ is]>i5) € 0 A BY})

= {xlir - in \ Q] i [(x[iy -+ in \ is] > i) € 0 A =B}
U] - it (] -+ il -+)|

(x[iy -+ -1y \ i5]>i5) € O A B}
= fs(7(Us, 0))

The bijective mapping o preserves solutions in V,. Hence, it is a variable symmetry
in V; and corresponds to the value symmetry 7 in V. u

Theorem 2 shows that given a value symmetry 7 under U, in V, we can find a
solution-preserving bijective mapping o for variables in M, (i.e., a variable symmetry
in V,) under two sufficient conditions. First, the variable subset U, cannot be arbi-
trarily chosen. We need to ensure that Obj (k) C Obj(k) for 1 <k <n and k # s,
i.e., the set of variable indices in Uy has to be the Cartesian product of a subset
Obj'(k) of the objects Obj(k) in each aspect k except s. Second, Obj'(t) = Obj(t),
i.e., Obj(t) must contain all the objects in aspect ¢, which corresponds to the
domains in V.

We illustrate the two conditions in Theorem 2 using the (3,2,3) instance of the
SGP. Let the golfers, weeks, and groups be the first, second, and third aspect
respectively, giving Obj(1) = {1,...,6} and Obj(2) = Obj(3) = {1,2,3}. In Vg, any
value symmetry is under all the golfers in one week. For example, the value sym-
metry 7(1) =2, 7(2) =3, and 7(3) = 1 is under U = {g1,...,961} = {9ix | (i,k) €
Obj' (1) x Obj'(2) NObj'(1) = {1,...,6} ANObj(2) = {1}}, i.e., the set of all golf-
ers in week 1. This satisfies condition (1) in Theorem 2. Consider Vp as the sec-
ondary viewpoint, which uses aspect 1 (golfers) to form the domains. Condition
(2) is also satisfied because Obj (1) = Obj(1)={1,...,6}, i.e., Obj (1) con-
tains all the golfers. Therefore, 7 corresponds to a variable symmetry o in Vp,
with o((p11,p21,P31)) = (P21,P31,P11). On the other hand, consider Vy as
the secondary viewpoint, which uses aspect 2 (weeks) to form the domains,
Obj'(2) = {1} # Obj(2) = {1,2,3}. Hence, condition (2) is not satisfied. In this
case, 7 does not correspond to any variable symmetry in Vy. Figure 2 shows the
solution in V' after applying 7 to the solution in Fig. 1(a). No variable symmetries
can transform the solution in Fig. 1(c) to the one in Fig. 2.

3.4 Symmetry Breaking Constraints in Two Viewpoints

Recall that variable symmetry breaking constraints are easier to express than value
symmetry breaking constraints. By Theorems 1 and 2, value symmetries in a matrix
model (V,C) can correspond to variable symmetries in another matrix model
(V',C") of the same MAP. We can thus break the value symmetries in (V,C) by

@ Springer

Constraints (2006) 11: 221-267 233

Fig. 2 Another solution of colfer> 0P 1 2 3
(3,2,3) expressed in Vi 1 2,30 {1} 0
2 0 (1,23} 0
3 {2r 8y {4
4 0 0 {1,2,3}
5 {2z {3
6 {1,3} 0 2}

combining (V, C) and (V’, C' U Cy) using channeling constraints [15], where C; is the
set of variable symmetry breaking constraints in V' for breaking the value
symmetries in V. Since (V,C) and (V’,C’) are models for the same MAP, C’ is
logically redundant with respect to C and the channeling constraints. Hence, we can
drop any of the constraints in C’ when we connect V and V’'. However, combining
mutually redundant models with channeling constraints increases constraint
propagation [15]. Therefore, a possible way is to drop only constraints in C’ which
are propagation redundant [16, 17] so that there would not be less propagation, but
this is outside the scope of the paper. Note that if we drop all the constraints in C’,
then only (V, C) and (V’, Cs) are combined, and V’ is solely used for expressing the
variable symmetry breaking constraints for the value symmetries in V. Variable
symmetries in (V,C), if they exist, can be tackled by variable symmetry breaking
constraints in V as well. Now that both variable and value symmetries can be
tackled by symmetry breaking constraints and channeling constraints, we enjoy the
best of both worlds.

An important issue of such symmetry breaking technique is the consistency of the
symmetry breaking constraints in the two viewpoints V and V'. Two sets of
symmetry breaking constraints are consistent [21] if and only if at least one element
in each symmetry class of assignments, defined by the compositions of the
symmetries under consideration, satisfies both sets of constraints. In row and
column symmetries, Flener et al. [21] showed that the row ordering constraints and
the column ordering constraints are consistent symmetry breaking constraints. In
our multiple viewpoint method, we would also want to show that symmetry breaking
constraints in two viewpoints can be made consistent. In the following, we give first
an example of inconsistent symmetry breaking constraints in two viewpoints, and
then theoretical results on how to avoid such inconsistency problem.

3.4.1 Inconsistent Symmetry Breaking Constraints in Two Viewpoints

The quasigroup existence problem (QEP), “prob003” in CSPLib, is to find an A/ x
N matrix consisting of numbers 1 to N with no rows and no columns con-
taining the same number more than once. We consider the variant of the prob-
lem (QEP*) which further restricts the main (“southeast”) diagonal of the matrix
to contain the same number. Figure 3(a) shows all the six solutions of order 3 QEP*
(ie., N =3). The QEP* is a MAP with three aspects, namely the rows, col-
umns, and numbers. Aspect viewpoint Vy = (N, Dy) uses the rows and columns as
indices to form the variables n;; € N and the numbers to form the domains

DN(H,',/') = {1, .. ,N}
@Springer

234 Constraints (2006) 11: 221-267

01 0o 03 04 05 Og
132 123 231 213 321 312
(213) (312) <123> (321) (132> <231)
321 231 312 132 213 123

(a) Vw

9, 0, 0, 0, 0. 0,
123 123 231 312 231 312
(231) (:»,12) <123) (123> (312> <231)
312 231 312 231 123 123

(b) Vr

Fig. 3 All solutions of order 3 QEP*, expressed in Vi and Vi respectively

In the QEP*, consider the symmetries of (1) the 180° rotation, and (2) the
permutation of the numbers in the matrix. Symmetry (1) implies a variable
symmetry o in Vi, with o(n;;) = nyy1-in+1-; for 1 <i,j <N. For order 3 QEP*,
we have:

n;j ni1 nz N3 N2 Npp N3 N3 N3p N33

o(nij) N33 N3p N31 Np3 Moo Moy M3 Mg A

Symmetry (2) implies that {1,..., N} are indistinguishable values under N in Vy.

Consider a sequence h= (ht,...,h) of variables in N. In other words, #; € N
for1 <i<|IN|= N2 Symmetry (1) can be broken by symmetry breaking constraint
1 <iex (h) Although we can form A/ possible variable sequences from N, two
common ways of flattening a matrix into sequences are the row-by-row and column-
by-column traversals, giving

-

h, = <n1,1 yN12,113,M2,1,N22,123,13 1,132, n3,3> and

he = <n1,1,n2,1>n3,17711,2,’12,2,713,27111’3,”2,37”3,3)

respectively for order 3 QEP*. The corresponding symmetry breaking constraints
for T are

—

Ry <iex(n33,M32,R31,...,113,12,11,1) and
he<iex(n33,M23,M13,...,n31,02,1,011)

respectively. Note that in order 3 QEP*, n1; = n33. Also, ny» # n3, and ny 1 # np 3.
Therefore, the two constraints can be simplified to ni, < n3; and ny1 < ny3
respectively, which accept different solutions. Solutions 6,, 64, and 6 in Fig. 3(a)
satisfy the former constraint, while 6;, 63, and 05 satisfy the latter.

By Theorem 2, the value symmetries in Vy become variable symmetries in
Vr = (R, Dg), the aspect viewpoint using the numbers and columns to form the
variables ¢ ; € R and rows to form the domains Dg(rx;) = {1,...,N'}. Both the row-
by-row and column-by-column traversals of the matrix of Varlables in R generate,
after simplifications [34], the same symmetry breaking constraints (rx1,...,) <iex
(Fks1,15- -+ s Tesa), OF equivalently iy < ryq 1, for 1 <k < N. Figure 3(b) shows
the same six solutions as in Fig. 3(a), but expressed in V. In the figure, solution ¢,
corresponds to solution 6; in Fig. 3(a) and the rows of the matrices #; correspond
to the number aspect. Only ¢ satisfies ry1 < rri11, but 6; violates the variable

@ Springer

Constraints (2006) 11: 221-267 235

symmetry breaking constraint ny, < n3;. Therefore there are no solutions satis-
fying ri1 < k411 and nyp < n3p simultaneously, and hence they are inconsistent
symmetry breaking constraints. On the other hand, ¢, satisfies both ry; < ri411 and
ny1 < np3 simultaneously. As we shall see, the latter pair of symmetry breaking
constraints are consistent.

3.4.2 Aspect Priorities, Scanning Sequences, and Selections

We first define several notions which are useful to address the consistency issue for
variable symmetry breaking constraints in two viewpoints. In a symmetry breaking
constraint ﬁg,exa(ﬁ) for a variable symmetry o in an aspect viewpoint Vi, his a
sequence of variables in Xj, i.e., & is an arbitrary linearization of the matrix to a
single dimensional sequence. Given |X;| variables, there are |X;|! possible
combinations of variable sequences for X;, and different sequences may generate
different variable symmetry breaking constraints in V. The QEP* is an example. In
the following, we restrict our attention to only the variable sequences generated by
aspect priorities. An aspect priority in an aspect viewpoint V is a sequence of
aspects which is a permutation of {1,...,n}\ {s}. It is a permutation of all the
aspects corresponding to the variable indices in V. Similarly, an aspect priority in
the 0/1 viewpoint V is a sequence of aspects which is a permutation of {1,...,n}.
For example, in the SGP, (golfer, week) and (week, golfer) are aspect priorities in
Ve and (golfer, week, group) is an aspect priority in V.

An aspect priority defines a scanning sequence of the variables in a view-
point. A scanning sequence of an aspect priority (ki,...,k, 1) of Vi, denoted by
sseq((ki,... ,k,-1)), is a sequence (hy,...,hx,) of X; such that h, = x[iy ---i, \ iy],

where
a=1+ Z ((ik, - 1) X H ‘Ob](km”)

1<i<n l<m<n

A scanning sequence in a viewpoint is an aspect-by-aspect traversal of the matrix of
variables in the viewpoint. There are n — 1 aspects in an aspect priority in Vj, so
there are (n — 1)! possible aspect priorities in Vj, and hence the same number of
possible scanning sequences for the variables in V5.

For example, there are three aspects in the QEP* (i.e., n =3), giving a =
(i, — 1) x |Obj(k3)| + ix, for aspect viewpoint V. Let aspects 1, 2, and 3 be the
rows, columns, and numbers respectively. In order 3 QEP*, |Obj(1)| = |0Obj(2)| =
|Obj(3)| = 3. On the one hand, the aspect priority (1,2) ({row, column)) thus gives
h(i—1)x3+j = nij, giving the scanning sequence

—

hy = (n11,m12,113,12,1, 22,123, 13,1, 132, 1133).

On the other hand, the aspect priority (2,1) ((column,row)) gives h(j_1)x3+i = nij,
giving the scanning sequence

he = (n11,n21,131,012,M22,132, 113,123, 133).

Note that the sequences h, and h, correspond to the row-by-row and column-by-
column traversals of the matrix in Vi respectively.

The previous definition of scanning sequence is applicable to aspect viewpoints.
We can define scanning sequences of aspect priorities in the 0/1 viewpoint similarly.

@ Springer

236 Constraints (2006) 11: 221-267

A scanning sequence sseq((ki,...,k,)) of an aspect priority (ki,...,k,) of V2 is a
sequence (hy,...,hz) of Z such that h, = z[i1] - - - [in], where
a=1+Y (i —1)x] |Obj(km)|>.
1<i<n l<m<n

There are n! possible aspect priorities and scanning sequences in Vz.

Selection of a sequence h under a variable set U, select(h U), is a sub-
sequence of h retaining only the variables in U. For example, in order 3 QEP”,
selectlon of h under U = {ny1,n21,n3,} is select(h,, U) = (n11,n21,n31). Similarly,
select (hr, {1’11 2,N22, N3, 2}) <n1$2,n2,2,n3.2>

3.4.3 Generating Consistent Symmetry Breaking Constraints

Before giving theorems to specify the conditions when symmetry breaking
constraints in two viewpoints are consistent, we give two lemmas to state the
ordering relationship between variables in aspect viewpoints and 0/1 viewpoint.

Lemma 3 Given two variables x[iy - - - iy \ is] and x[j, - --j, \ j,| in Vs and channeling
function f; 7, we have

X[i1 cedp \lr] < xUl ..]n \]‘] = 212022

where

Zv=(z[a] - [l (Wi] - il 2[0] - - (i) [|OBf(9)[Essa] - - - [in]) and
2 = (2l sl WUsal - Ul 20l - ls-al OB ()]sl - - [nl)-

Proof: By f; 7, a compound decision of 7; is of the form Z; > (0,...,0,1,0,...,0)
(i.e., only one “1” and the rest are all “0”), and similarly for Z,. When
X[iy - -ip \ is]) < x[j; -+, \ JiJ, it means the “1” in Z; would never occur to the right
of the “1” in Z,, which means 7| >, Z2. The opposite is also true. |

The lemma states that two variables x[ij---i, \ i) and x[j; ---j, \ j;| in V are
in non-decreasing order if and only if their corresponding sequences of var-
iables 7; and 7, in Vz are in non-increasing lexicographic order, and vice versa.
For example, consider a MAP with three aspects and |Obj(s)| = 3. When
(e i x[j]) > (1,2), e [< x[j], we have (z[i[L], z[i[2], z[i[3)) > (1,0,0) and
LML 212, 2L1B) o (0»1,0>» Le., (z[i][A], z[i[2], 21 [B1) Zuex ([(1], 21121, 2 [13])-

Lemma 3 can be generalized to sequences of variables in V instead of only single
variables.

Lemma 4 Given two sequences h and W of variables in Vi of equal length, and
channeling function f; 7, we have

h <lex H =7z Zlex Zl

where Z and Z' are respectively formed by replacing each variable x[iy - - i, \ is] in h
and W with

zli] -][l -l z[i] - - [l [|OB () [Esa] - - -).

@ Springer

Constraints (2006) 11: 221-267 237

Proof: Direct consequence of Lemma 3 extended to sequences of variables in V
instead of two variables x[i; - - - i, \ i5] and x[j; ---j, \ j,|.

We also recall the proposition by Crawford et al. [18] which states the consistency
of variable symmetry breaking constraints in 0/1 viewpoint using lexicographic
ordering.

Proposition 5 [18] Let M, be a CSP model in 0/1 viewpoint V, = (Z, D) and k be
a sequence of variables in Z. Then the constraints

ﬁ Zlex U(ﬁ)

for each variable symmetry o in M are satisfied only by the lexicographically
smallest solution in each equivalence class of solutions. Hence, the constraints are
consistent for M.

Using Lemmas 3 and 4 and Proposition 5, we can state sufficient conditions for
consistent symmetry breaking constraints in two viewpoints. We start with the issue
between an aspect viewpoint V and the 0/1 viewpoint V. The following theorem
applies to any value symmetries.

Theorem 6 Let:

— o be a variable symmetry in Vg

— o be a variable symmetry in Vz corresponding to a value symmetry in Vi,
- k={(ki,... ,ky1) be an aspect priority in Vy; and

- X = sseq(E) and 7 be sequences of variables in X; and Z respectively.

If
7 =sseq((ki,. .., kn-1,5)),

then symmetry breaking constraints X <j.x 0(¥X;) for o and o'(Z) <jxZ for o are
consistent.

Proof: Let o(x[iy- iy \i]) =x[j;---j, \JJ- The variable symmetry o in Vj
corresponds to another variable symmetry o, in Vz where o,(z[i1] - [in]) =
zji] -+ - Us-allis]saa] - - [l for Ay i<,y i € Obj(k). When Z = sseq((ky,..., kn-1,5)),
Z can be constructed from X, by substituting each variable x[i; - - - i, \] in X; with

zla] -)Wl -], 2l - - [l [1OB()[[sia] - -).

By Lemma 4, X<,y 0(Xs) <= Z>1.x0;(Z). By Proposition 5, Z>.c0,(Z) and Z7>.x0'(Z)
are consistent, and hence so do X;<j.o(¥X;) and 7>..0’ (7). [

To maintain consistency between the variable symmetry breaking con-
straints for o in V; and ¢’ in Vz, Theorem 6 requires that the scanning sequence
sseq({k1,...,kn_1,5)) in Vis used. That means the aspect priority in V is the
sequence (ki,...,k,_1) followed by s in the last position. Furthermore, the lexico-
graphic order in V7 is reverse of that in V;. This is because by Lemma 4, a smaller-
than order in V corresponds to a greater-than order in V,, and vice versa.

In the SGP, Theorem 6 ensures that the variable symmetry breaking constraints
<Zl,k‘j,~ .. 72/\/4k,j>216x<zl‘,k‘j+l,- .. 7ZN,k,_7'+1> for1 <j < Gand 1 <k <W in V; break

@ Springer

238 Constraints (2006) 11: 221-267

the value symmetries in Vg, and are consistent with those variable symmetry
breaking constraints in V.

The condition when variable symmetries in V,, corresponding to value
symmetries in V;, can be broken consistently with the variable symmetries in Vj is
more difficult to specify. In the 0/1 viewpoint V, there is one more aspect in the
variable indices than V. We can simply add an aspect to an aspect priority in V; to
form an aspect priority in V,. Aspect viewpoints V and V,, however, have the same
number of aspects as variable indices. We cannot use the same technique to form
aspect priorities. Instead, we consider the special class of value symmetries, the
symmetries of indistinguishable values, which have a special form of symmetry
breaking constraints in V, to allow us to specify the consistency condition.

Theorem 7 Let:

— o be a variable symmetry in V;

— 7 be a value symmetry of two indistinguishable values a and b (where
a < b) under Uy = {x[ir -+ +in \ is] | N\ij<peniss ic € ObJ' (k) € Obj(k)} in V with
Obj'(1) = Obj(r);

- k={(ki,... ky2) be a permutation of {1,... ,n}\ {s,t}; and

— g be any aspect priority in V, formed by inserting s into k (i.e., G is a permutation
of {1,...,n} \ {t} and k is a subsequence of §).
if

h = sseq({ki,... kn2,1)),
then symmetry breaking constraints h < a(fz) for o and i_i; <lex ﬁ;, for o
are consistent, where o' is the variable symmetry in V, corresponding to the
value symmetry 7 in Vs, h;=select(sseq(q),U;) for j€ {a,b}, and U=
{xliv - in N id] [is = J A Ni<raniopnn ik € ObJ (K)}.

Proof: By Theorem 1, the value symmetry 7 in V, corresponds to a variable
symmetry ¢ in V, where

Z[il} T [isfl][b] [iS+1] T [in] if iy =a A Algkgn.k;&s Ik € Obj/(k)

o (zlir] -+ [in]) = § 2lia] -+ lismallallissa] - [in] 3 i = b A Ay cpcppns i € OB (k)
zZ[ir] -+ [in] otherwise.

If ﬁ:sseq((kl,...,kn,z,t)), then by Theorem 6, ﬁg,exa(ﬁ) is consistent with
7>1x0"(Z), where 7 = sseq({k1,...,kn2,t,s)). From the definition of ¢”, we can
see that 7>,0"(Z) can be simplified to

select(Z, UY) >ox select(Z, Uy), (1)

where Uj' = {z[i1] -+ [in] | is =] A Nickenirps ik € Obj'(k)} for j € {a,b}. Note that
the indices i; of all variables in Uj’ are fixed to j (i.e., either a or b). Therefore,
for any aspect priority w in V; formed by inserting s into (ki,...,kn—2,1),
select(sseq(w), Uj') = select(Z, U") is always true. Hence, constraint (1) is now
equivalent to

select(sseq(W), UY) >y select(sseq(w), Uy). (2)

@ Springer

Constraints (2006) 11: 221-267 239

In particular, consider w = (q1,...,qn-1,t). Recall that § = (q1,...,¢g,-1) is an
aspect priority in V, formed by inserting s into (ki,...,k,—2). By Lemma 4,
constraint (2) is equivalent to

select(sseq(q), U,,) <ix select(sseq(d), Up), (3)

where U} = {x[“in \ i) [y = A Nickepirs ik € ObJ'(k)} for j € {a,b}. Constraint
h <iex o (h) is consistent with Z>0’ '(Z), which is equivalent to constraint (3),
therefore hglexa(h) is consistent with constraint (3). |

Suppose a symmetry of two indistinguishable values in V corresponds to a var-
iable symmetry in V;, and we lexicographically order the variables in V; corresponding
to the indistinguishable values (i.e., h <lex hb in the theorem). Theorem 7 states
that when generating the variable symmetry breaking constraints in Vy, aspect ¢ (cor-
responding to the domain in V;) must be least prioritized in the aspect priority in V.
In such case, consistency between the symmetry breaking constraints in V; and V,
are guaranteed.

Theorem 7 is applicable to symmetries of two indistinguishable values. It can be
generalized to handle multiple indistinguishable values.

Corollary 8 Let:

— o be a variable symmetry in V;

- {vi,..., v} be a set of indistinguishable values (where vi < ... < vy) under
Us = {x[ir -~ -in \ 1] | Algkgmk;és ix € Obj (k) C Obj(k)} in Vs with ObJ(t) =
Obj(1);

— k= (ki,... ko) be a permutation of {1,... ,n}\ {s,t}; and

— 4 be any aspect priority in V, formed by inserting s inio k (i.e., 4 is a permutation
of {1,...,n} \ {t} and k is a subsequence of §).

1

d h= sseq({ki,... ,kn2,1)),

then symmetry breaking constraints h <lex (H) for o and ﬁ’ Slex - <,exﬁ for the
symmetries of indistinguishable values are consistent, where h’ = select(sseq(q) U))

j
for1<j<mand U/ ={xlin i \if] [ig =j A /\1<k<nk7£sk7£t ix € Obj'(k)}.

Proof: Direct consequence of Theorem 7 for all pairs of indistinguishable
values.

For the QEP* example in Section 3.4.1, the symmetry breaking constraint, say,
(P11 i) Ztex(r2,15- -, T2 pr), in Vg corresponds to the constraint fzaglmﬁb in the
theorem. There are two possible aspect priorities (2,3) and (3,2) in Vg, which
means (column, number) and (number, column) respectively. The variable sequence
(ri1,...,ra) is the selection of the scanning sequence of both aspect priorities with
index value 1 in aspect 3 (numbers), i.e., (ri1,...,r1) = select(sseq((2,3)),U’) =
select(sseq((3,2)), U') where U’ = {ry1,...,ry y}. Similarly for (rp,...,r, »). There-
fore, according to Theorem 7, the variable symmetry breaking constraints in Vy
must be generated using the scanning sequence of the aspect priority (2,1), i.e
aspect 1 (rows) must be least prioritized, to maintain consistency between the
symmetry breaking constraints in Vy and Vg. The variable symmetry breaking
constraint np; < ny3 is generated using the scanning sequence of the aspect priority
(2,1). Thus, it is consistent with the symmetry breaking constraints in V.

@ Springer

240 Constraints (2006) 11: 221-267

Consider again the value symmetries in Vi of the SGP. By Theorem 2, they
correspond to variable symmetries in Vp. Theorem 7 and Corollary 8 ensure that the
symmetry breaking constraints min (p;x) < min(pj14)forl <j < Gand1 <k <W
in Vp (the degenerated lexicographic ordering constraints for set variables) breaks
the value symmetries in V. These constraints are consistent with the row and col-
umn lexicographic ordering constraints in V, which are the simplification results of
those generated by both aspect priorities (golfer,week) and (week, golfer) in V.
The solution in Fig. 1(a) satisfies both types of symmetry breaking constraints.

4 Value Precedence Constraints

The method discussed in the previous section makes use of existing modeling
techniques; no new algorithms have to be designed. In this section, we propose
another method which tackles an important and common class of value symmetries,
namely symmetries of indistinguishable values. This method requires designing new
propagation algorithms. In the following, we introduce the notion of value pre-
cedence on integer and set sequences and show how the notion can be used to break
symmetries of indistinguishable values. Two propagation algorithms for implement-
ing integer and set value precedence global constraints are presented. We also study
some theoretical properties attained by various usages of the global constraints.

4.1 Integer and Set Value Precedence

Value precedence of s over ¢ in an integer sequence ¢ = (qo,...,q,—1) means that if
there exists j such that g; = 1, then there must exist i < j such that g; = s. We say
that value s is an antecedent while value ¢ is a subsequent, and that the antecedent
s precedes the subsequent ¢ in g, written as s <5 t. For example, the sequence § =
(0,2,2,1,0,1) implies 0 <51, 0 <52, and 2 <5 1. Note that if a value j does not
appear in ¢, then i <5 j is true for any i. In the previous example, 0 <5 3 and 4 <5 3
are thus also true. Note also that value precedence is transitive: if i <5 j and j <j k,
then i <; k.

The notion of value precedence can be extended to sequences of sets, where
antecedents and subsequents are elements of the sets in the sequence. Value
precedence of s over ¢ in a sequence g of sets means that if there exists j such that
s¢ g; and t € gj, then there must exist i < j such that s € g; and ¢ ¢ g;. For example,
consider the sequence ¢ = ({0,2},{0,1},0,{1}). We have 0 <; 1 and 2 <; 1. We
also have 0 <z 2, because there is no set in g that contains 2 but not 0. Again, if j
does not belong to any set in ¢, then i <z j is true for any i. Thus, we also have, say,
0 <z 4. Note that set value precedence degenerates to integer value precedence
when the cardinality of each set in the sequence is one, because in such case, 1 € g;
implies s ¢ g; and s € g; implies 1 ¢ g;.

4.1.1 Value Precedence and Indistinguishable Values

Value precedence can be used for breaking symmetries of indistinguishable values.
Given two indistinguishable values under some variables U in a CSP, we can break

@ Springer

Constraints (2006) 11: 221-267 241

the symmetry of the values by maintaining value precedence for them. We have to
construct a sequence u# of U, and assume one value to be the antecedent and the
other to be the subsequent. Without loss of generality, we usually pick the smaller
value as antecedent. For example, suppose there are two indistinguishable values
{0,1} under {x1,x3,x3} in a CSP M = (X, D, C), where X = {xo,...,x4} is a set of
set variables. If x¥—({1,2},{0,2},{0,1},{1,2},0) is a solution of M, where
X = (x0,...,xa), then ¥—({1,2},{1,2},{0,1},{0,2},0) should be another solution
of M. We can let i = (x1,x,,x3) and add the constraint 0 <; 1 on variables x1, x;,
and x3 to M to break the symmetry. Thus, ¥—({1,2},{0,2},{0,1}, {1,2}, ®) remains
a solution, but its symmetrical counterpart ¥—({1,2},{1,2},{0,1},{0,2},0) would
now be rejected because 0 < 1 is false.

In general, there can be more than two indistinguishable values in a CSP. The
following theorem states that we can always use the value precedence vy <j ... <z
vk—1 to completely break the symmetries of a set of indistinguishable values V =
{v0,...,vk_1} under U, where i is a sequence of U. For example, if V = {0,1, 2,3},
then we can maintain 0 <z 1 <z 2 <z 3.

Theorem 9 Given a set of indistinguishable values {vy,...,vi_1} under U, in each
equivalence class of solutions induced by the symmetries, there is exactly one solution
satisfying the value precedence vy <j ... <y Vi1, where Ui is a sequence of the
variables in U.

Proof: Given a solution in an equivalence class, for 0<i < k—1 and
i <j<k-—1,if v; <3v; is false, we swap the occurrences of v; and v; in the
solution to obtain another one with v; <; v; satisfied. After iterating a value for i, we
have maintained the value precedence vy <z ... <z v;. Hence, after all, we construct
a solution with vy <j ... < vi_1, and swapping the occurrences of any two values in
{vo,...,vk_1} would violate this value precedence. m

When tackling both variable symmetries and symmetries of indistinguishable
values simultaneously in a CSP, we have to ensure that the two corresponding
sets of symmetry breaking constraints are consistent [21]. For example, we have
a CSP M = (({x,y},D),{x # y}), where D(x) = D(y) = {1,2}. CSP M has (1) the
variable symmetry o such that o((x,y)) = (y,x), and (2) values 1 and 2 are indis-
tinguishable. To break symmetry (1), we can use the constraint x <y (which is a
degenerated lexicographic ordering); whereas 2 <, 1 can break symmetry (2).
These two constraints result in no solution, which is undesirable. The following
theorem shows when maintaining s <z ¢ is consistent with variable symmetry
breaking constraints.

Theorem 10 Let X be the set of variables of a CSP M, and ¥ = (xg,...,Xy-1)
and 1 be sequences of variables in X and U C X respectively. Suppose o is a variable
symmetry in M and s and t are any two integer indistinguishable values under U. The
value precedence constraint s < t (resp. t < s) is consistent with the variable sym-
metry breaking constraint X <j,x o(X) (resp. o(X) <jex dX) if

- s <t (resp. t <s)and
— U is a subsequence of X, i.e., U can be formed by deleting some elements from X.

@ Springer

242 Constraints (2006) 11: 221-267

Furthermore, if X is a sequence of set variables, then the <y, ordering should be
used to compare two sets p and q instead of the < ordering to compare two
numbers, where p <y q if and only if (1) g =0, or (2) min(p) < min(q), or (3)
min(p) = min(q) Ap \ {min(p)} < g\ {min(q)}.

Proof: We prove the case of s <; t and X <j,, o(X) only since the case of t <; s
and o(¥)<j,X is analogous. In each equivalence class of solutions induced by the
variable symmetry o, the symmetry breaking constraint X <j, o(X) keeps the
lexicographically smaller solution with respect to the sequence X. If s < t, 5 <; ¢
also keeps the lexicographically smaller solution with respect to the sequence i
in each equivalence class of solutions induced by the indistinguishable values. If i
is a subsequence of X, then a lexicographic smaller solution with respect to # is also a
lexicographic smaller one with respect to X¥. Hence, s <;t is consistent with
X<jxo(¥) if s < t and # is a subsequence of X.

The <, ordering should be used to compare two sets p and ¢, since both
orderings <, for sets and < for numbers are equivalent to lexicographic order-
ing >, on the Boolean (or occurrence) representations of sets and numbers
respectively.

According to Theorem 10, x <y and 1 <, ;) 2 are consistent, resulting in a single
solution (x,y)—(1,2). Similarly, y < x and 2 </, 1 are consistent, resulting in a
single solution (x, y)—(2,1).

The definition of the <, ordering, similar to but different from that of multiset
ordering [25], suggests that () is the largest element in the ordering, and the ordering
degenerates to < for numbers when the cardinalities of the two sets are 1. For
example, {1,2} <, {1,3,4} < {1,3}.

This <, ordering on two sets has the property that it is equivalent to
lexicographic ordering >, on the Boolean representations of the two sets. Take
the ordering {1,2} <, {1,3,4} <,/ {1,3} as an example. Suppse we are recording
the occurrences of values 1 to 4. The Boolean representations of the sets {1,2},
{1,3,4}, and {1,3} are (1,1,0,0), (1,0,1,1), and (1,0, 1,0) respectively. We can see
that (1,1,0,0)>4,(1,0,1,1)>,,(1,0,1,0). This property is in parallel to the <
ordering on numbers stated in Lemma 3.

4.1.2 Constraints for Maintaining Value Precedence

Constraints to enforce value precedence s <3zt for a sequence of constrained
variables X can be constructed straightforwardly from its declarative meaning. In
subsequent discussions, we assume that s # ¢ and the sequence X contains different
variables, i.e., the same variable cannot occur more than once in X¥. Suppose ¥ is a
sequence of integer variables. Since s must precede ¢, xy, the first variable in X, must
not be assigned ¢. The constraints are then

1. x9#tand
2. x]-:t—>V0§l-<jx,-:sfor1§j< n.

If X is a sequence of set variables, then ¢ must not be in x; without being
accompanied by s. Hence, the constraints are

1. s€xoVitéxyand
2. (sgxiAtex) — Voo j(s€xiAtgx) for1 <j < n.

@ Springer

Constraints (2006) 11: 221-267 243

Note that for both integer and set variables, we need n constraints, which we
collectively call if-then value precedence constraints, to maintain value precedence.
Among the n constraints, one is a unary constraint, and the remaining n — 1 are if-
then constraints. The following theorem shows that for integer variables, GAC on
the conjunction of the n if-then value precedence constraints is equivalent to GAC
on each individual if-then value precedence constraint.

Theorem 11 Given an integer variable sequence X, GAC on s <z t is equivalent to
GAC on each individual if-then value precedence constraint for integer variables.

Proof: Let ¢y and ¢; be the constraints xo # ¢ and x; =t — \/quxi =sforl<
j < nrespectively. GAC on s <y t is clearly no weaker than GAC on ¢; for 0 <j <
n individually. Conversely, suppose each ¢; for 0 <j < n is GAC individually but
s <z t is not GAC. That is, there exists an assignment such that any of its extensions
fails to satisfy s <z t. We show by induction that if such an assignment exists, then
s,t¢ D(xj) for 0 <j < n.

As the base case, we have s,t¢ D(x() because x(—s alone will satisfy s <3 ¢ and ¢
is GAC. Given s,1¢ D(x;) for 0 <i < j, xp—s alone will satisfy s <y ¢. Therefore,
in order to fail s <3¢, we must have s¢ D(x;). Furthermore, since ¢; is GAC,
Ni<i<;s,t¢ D(x;) implies t ¢ D(x;). Hence, by induction, we have A\,; _, s, &D(x;).

However, all possible compound assignments X— (uo,...,u,—1) With u; € D(x;) \
{s,t} are solutions of s <3z t. Thus, s <3 ¢ is also GAC and therefore GAC on s <z ¢ is
equivalent to GAC on ¢; for 1 <j < n individually. u

For set variables, SBC on the conjunction of the n if-then value precedence con-
straints is equivalent to SBC on each individual if-then value precedence constraint.

Theorem 12 Given a set variable sequence X, SBC on s <z t is equivalent to SBC on
each individual if-then value precedence constraint for set variables.

Proof: Let ¢y and ¢; be the constraints s € xoVi¢xy and (s¢xjAt€x;) —
Vo<i<j(s €xiNtgx;) for 1 <j < nrespectively. SBC on s < 1 is clearly no weaker
than SBC on ¢; for 0 <j < nindividually. Conversely, suppose each ¢jfor0 <j < n
is SBC but s <3 ¢ is not SBC. That is, there exists either an assignment x;—RS(x;) or
x;—PS(x;) such that any of its extensions fails to satisfy s <3 z. We show by induction
that if such an assignment exists, then (s¢ RS(x;) Ve PS(xj)) A (s € RS(x;) Vv
t¢ PS(xj)) for 0 <j < n.

As the base case, since s € RS(xg) A t¢ PS(xo) always satisfies s <z ¢, in order to
fail s <3¢, we must have s¢ RS(xo) V¢ € PS(xg). Also, since ¢y is SBC, we have
s € RS(xp) V t¢PS(xp).

Given (s ¢ RS(x;) V¢ € PS(x;)) A (s € RS(x;) V¢ PS(x;)) for 0 <i < j, s € RS(xj)A
t¢ PS(x;) always satisfy s <z ¢. Therefore, we have s¢RS(x;) Ve PS(x;). Further-
more, since ¢; is SBC, Ao ;((s & RS(x;) Vi€ PS(x;)) A (s € RS(x;) Vi ¢ PS(x;)))
implies s € RS(x;) V 1 ¢ PS(x;). Hence, by induction, we have A\ _,((s ¢ RS(x;) v
t € PS(x;)) A (s € RS(xj)V t ¢ PS(x;))). However, all possible compound assignments
X—(uo,... ,up—1) with (s ¢ RS(x;) Ve PS(x;)) A (s € RS(xj) Vt¢ PS(x;)) for 0<
j < n are solutions of s <z t. Thus, s <z ¢ is also SBC and therefore SBC on s <j ¢ is
equivalent to SBC on ¢; for 1 <j < n individually. |

@ Springer

244 Constraints (2006) 11: 221-267

4.2 Propagation Algorithms for Value Precedence

We develop two propagation algorithms IntValuePrecede and SetValuePrecede to
implement two global constraints for integer and set value precedence respectively.
Both global constraints use the same prototype ValuePrecede(X,s,t), meaning s <y ,
where X is a variable sequence and s and ¢ are integer constants. GAC (resp. SBC) is
enforced on the integer (resp. set) value precedence constraint. The integer and set
versions of the propagation algorithms are similar. Their time complexity is linear to
the length of X. Both of them use three pointers «, 3, and v to point to different
indices of X, but the pointers have different meanings for the two versions. The two
algorithms are also similar to that of the lexicographic ordering global constraint
[26] in the sense that both maintain pointers running in opposite directions from the
two ends of variable sequences. On the other hand, they are different from those
of some other global constraints which are developed using automata constructions
[9, 13, 14]. In subsequent discussions, we assume the variable sequence ¥ =
(x0,...,xn—1) to be a sequence of non-repeating variables and s and ¢ to be distinct.

4.2.1 Integer Version

In IntValuePrecede, pointer « is the smallest index of X such that s is in the domain
of x,,1.e.,s € D(x,) and s¢ D(x;) for 0 <i < «. If no variables in ¥ have value s in
their domains, then we define « = n. Pointer 3 is the second smallest index of X such
that s is in the domain of xg, i.e., s € D(x3) and s¢ D(x;) for o < i < f. If fewer
than two variables in X contain value s in their domains, then we define that 3 = n.
Pointer v is the smallest index of ¥ such that x, is bound to ¢, i.e., D(x,) = {t}
and D(x;) # {t} for 0 <i < ~. If no variables in X are bound to ¢, then we define
that v = n. During propagation, o and § must be increasingly updated, while
must be decreasingly updated. For example, let X = (xo,x1,x2,x3), s =1, and t = 2.
Suppose D(xo) = {2,3}, D(x1) = {1,2,3}, D(x2) = {2}, and D(x3) = {1,3}. Then,
we have a =1, =3, and v = 2.

Recall the integer if-then value precedence constraints xo #¢ and x; =t —
\/quxi =sfor1 <j < n.Pointer « tells that s ¢ D(x;) for 0 <i < «. Thus, we can
remove ¢ from D(x;) for 0 <i < a. Our first pruning rule is that:

1. value t can be removed from the domains of the variables on or before position «
in X.

In the above example, we have a = 1. Therefore, we can remove value ¢t = 2 from
the domains of xy and x; as shown in Fig. 4(a).

Pointer v tells the smallest index of X such that x, is bound to . Therefore,
according to the if-then value precedence constraints, the constraint \/o; . x; =s
must be satisfied. Since s¢ D(x;) for 0 <i < a, ;. x;i=s can be refined to
Va<i <~ Xi = 5. Furthermore, pointer {3 tells that s ¢ D(x;) for @ < i < 3. Therefore,
if v < g, then Vagi o Xi=S becomes x, =s. Our second pruning rule is that:

2. if vy < B, then x,, can be bound to s.

Note that once x,, is bound to s, s <z ¢ is satisfied. In the above example, we have
B>~ (3 > 2). Therefore, we can bound x, (x1) to 1, as shown in Fig. 4(b), and 1
must precede 2 in X afterwards.

@ Springer

Constraints (2006) 11: 221-267 245
r xy x1 X2 X3 r xy 11 Ty I3
D(xzi) {3} {1,3} {2} {1,3} D(xy) {3} {1} {2} {1,3}
Ta 17 158 Ta 17 158
(a) (b)

Fig. 4 Illustrating the use of the pointers «, 3, and 7 in IntValuePrecede

The propagation algorithm IntValuePrecede, shown in Fig. 5, is based on the two
pruning rules just described. The variables alpha, beta, and gamma ensure correct
positions for the pointers a, §, and ~ respectively. Procedure initialize() is called
when a value precedence constraint is posted. It finds initial values for the pointers
alpha, beta, and gamma. In the procedure, procedure updateAlpha() is first invoked
to search the position for alpha, starting from position 0. During the search, the first
pruning rule is applied. We then search for a value for gamma. Since value ¢ is
removed from D(x;) for 0 < i < alpha, gamma must be greater than alpha and the
position search for gamma starts from position alpha 4+ 1. Note that the second
pruning rule cannot be applied at this point because beta is not yet initialized. After
fixing gamma, procedure updateBeta() is invoked to initialize beta. By definition,
beta > alpha. Therefore the search starts from position alpha + 1. After fixing beta,
the second pruning rule can be applied.

Procedure propagate(i) in Fig. 5 is called whenever the domain of x; is modified.
If gamma < beta, then value precedence is already entailed and no more
propagation is needed. Otherwise, if i = alpha and s¢ D(x;), then we have to update
alpha and beta. The search for new position for alpha starts from position beta,
because xpq, is the original second earliest variable that contains s in its domain.

procedure initialize()

alpha := 0;

update Alpha();

beta = alpha;

gamma := alpha;

if alpha < n then
repeat gamma := gamma + 1
until gamma = nV D(&gamme) =
updateBeta()

endif

{th

procedure updateAlpha()
while alpha < n A's & D(Taipha)
D(@aipha) = D(@aipha) \ {t};
alpha = alpha + 1
endwhile
if alpha < n then
D(%aipha) = D(Taipha) \ {t}
endif

procedure updateBeta()

repeat beta := beta + 1

until beta = nV s € D(Tpetq);

if beta > gamma then
D(%aipha) := D(Taipha) N {5}

endif

Fig. 5 The IntValuePrecede propagation algorithm

procedure propagate(i)
if beta < gamma then
if i = alpha A s ¢ D(x;) then
alpha := alpha + 1;
while alpha < beta
D(-Tulpha) = D(-'L'alphu) \{th
alpha := alpha + 1
endwhile
updateAlpha();
beta := alpha;
if alpha < n then
updateBeta()
endif
else if i = beta A s ¢ D(z;) then
updateBeta()
endif
endif

procedure checkGammal(i)
if beta < gamma N i < gamma
A D(z;) = {t} then
gamma = i;
if beta > ¢ then
D(-Talpha) = D(J:alpha> n {5}
endif
endif

@ Springer

246 Constraints (2006) 11: 221-267

Once s is removed from D(xupn.), beta becomes the first potential value for
alpha. However, before the search, value ¢ has to be removed from D(x;) for
alpha < i < beta. During the search, the first pruning rule is applied. Pointer beta is
updated after finding a new value for alpha. The search for new value for beta starts
from position alpha + 1. The procedure updateBeta() is called to update beta. In the
procedure, once beta is updated, the second pruning rule is applied to check whether
beta > gamma.

In procedure propagate(i), if i = beta and s¢ D(x;), then only beta has to be
updated. Hence, the procedure updateBeta() is called to find a new value for beta
and to apply the second pruning rule.

Procedure checkGamma(i) in Fig. 5 serves to update gamma. It is called
whenever x; is bound. If i < gamma and x; is bound to ¢, then gamma is updated
to i, and the second pruning rule is applied to check whether beta > gamma. The
IntValuePrecede algorithm enforces GAC on s <3 t.

Theorem 13 Given an integer variable sequence X and integers s and t, the
IntValuePrecede algorithm triggers failure if s <3t is unsatisfiable; otherwise, the
algorithm prunes values from domains of variables in X such that GAC on s <z t is
enforced and solutions of s <z t are preserved.

Proof: The proof makes use of the definitions of the pointers «, §, and v. The
pruning rules 1 and 2 implemented in IntValuePrecede ensure that all values
removed from the variable domains must not lead to solutions of s <z t. Therefore,
IntValuePrecede preserves the solutions of s <z t. To show that IntValuePrecede
enforces GAC on s <j t, consider the two cases of v < S and 8 < +. Pruning rule 2
implemented in IntValuePrecede has already ensured the satisfiability of s <y ¢ for
the former case (by enforcing x, =s). For the latter case, suppose there is an
assignment that cannot be extended to a solution of s <z ¢ but is not removed by
IntValuePrecede. Since any extension with x,+—s must be a solution of s <3 ¢, and
X,—t is removed by pruning rule 1, the inconsistent assignment that cannot be
removed by IntValuePrecede must be x,—u, where u € D(x,) \ {s,t}. We show,
however, that x,—u can always be extended to a solution of s <3 ¢. Since 8 < =,
variables xy,...,xs are not yet bound to t. Also, by the definitions of a and f,
s¢D(x;) for 0 <i < 8 and i # a. Therefore D(x;)\ {s,t} must be non-empty for
0<i < B and i # a. Hence, we can extend x,—u by assigning any value other

than {s,¢} to xo,...,xq—1 and X441,...,%3_1, S to X3, and any value to xg.1,...,X,_1.
This extension must be a solution to s <zt. Thus, x,—u is consistent and
IntValuePrecede maintains GAC on s <j f. u

4.2.2 Set Version

In SetValuePrecede, the meanings of the pointers «, 3, and are similar to those in
the integer version. Pointer « is the smallest index of ¥ such that s is in the possible
set of x, and ¢ is not in the required set of x,, i.e., s € PS(x,) At ¢ RS(x,) and
s¢ PS(x;)Vte RS(x;) for 0 <i < a. If s¢ PS(x;) Vt e RS(x;) for 0 <i < n, then
we define o = n. Pointer (3 is the second smallest index of ¥ such that s is in the
possible set of x5 and ¢ is not in the required set of xg, i.e., s € PS(x3) At ¢ RS(xp)
and s ¢ PS(x;)) Vt € RS(x;) for a < i < 8. If a=n or s¢ PS(x;) Vt € RS(x;) for

@ Springer

Constraints (2006) 11: 221-267 247

«a < i < n, then we define 3 = n. Pointer + is the smallest index of X such that s is
not in the possible set of x, and ¢ is in the required set of x,, i.e., s ¢ PS(x,) At €
RS(x,) and s € PS(x;) Vt¢ RS(x;) for 0<i < 5. The definition of ~ implies
sEx,Ntex, If sePS(x;))Vt¢ RS(x;) for all 0 <i < n, then we define v=n.
As in the integer version, a and § must be updated increasingly, while v must be
updated decreasingly. Let ¥ = (xq,x1,x2,x3), s = 1, and ¢ = 2. Suppose we have:

X X0 X1 X2 X3 X4

PS(a) {2} {1,2} {1,2} {2,3} {1}
RS(x;) 0 {2} 0 {23y 0

Then, « =2, =4, and v = 3.

Pointer « tells that s ¢ PS(x;) Vt € RS(x;) for 0 <i < «a, which entails s ¢ x;V
t € x;. Hence, according to the set if-then value precedence constraints s € xo V 1 ¢ xo
and (s¢x;At€x;) = Voo j(s€xiAt¢x;) for 1 <j < n, the constraints s €
x;Vitgx; for 0 <i<a must be satisfied. Since s € PS(x,) At ¢ RS(x,) must be
true, s € x, V't ¢ x, is already consistent. Consequently, our first pruning rule for
SetValuePrecede is to maintain consistency on s € x; Vit ¢ x; for 0 <i < a.

1. For0<i < a, ifsisnotin PS(x;), then t can be removed from PS(x;); otherwise,
s can be added to RS(x;).

In the above example, value 1 is not in PS(xp), so we can remove 2 from PS(xy).
Value 2 is in PS(x1); thus 1 is added to RS(x;). The resulting domains are shown in
Fig. 6(a).

Pointer ~ tells that s ¢ PS(x,) At € RS(x,), which entails s ¢ x, At € x,. According
to the if-then value precedence constraints, \/o; (s € x; At ¢ x;) must be satisfied.
By the meaning of «, this constraint can be refined to \/,.; . (s € x; A1¢ x;).
Furthermore, pointer (3 tells that s¢ x; V¢ € x; must be satisfied for a < i < (.
Therefore, if v < 3, then \/,; _ (s € x; A1 ¢ x;) becomes s € x, A 1 ¢ X,. Our second
pruning rule for SetValuePrecede is that:

2. if v < B, then scan be added to RS(x,) and t can be removed from PS(x,).

The constraint s <y ¢ is satisfied once x,, is proved to contain s but not ¢. In the above
example, 3 =+ < §=4. Therefore, 1 can be added to RS(x,) and 2 can be
removed from PS(x,), as shown in Fig. 6(b).

The SetValuePrecede algorithm in Fig. 7, based on two pruning rules, contains
five procedures with the same names as and similar structures to IntValuePrecede.
Procedure initialize(), called when ValuePrecede(X,s,t) is posted, initializes alpha,

T)) T3 T4 T) X1) I3 T4
PS(z;) 0 {1 2} {1,2} {2,3} {1} PS(ZZ) 0 {1,2} {1} {2,3} {1}
RS(z:) O {1,2} 0 {23} 0 RS(x) 0 {1,2} {1} {2,3} 0

Ta Ty 108 Ta Tv 18
() (b)

Fig. 6 Illustrating the use of the pointers «, 3, and 7 in SetValuePrecede

@ Springer

248

Constraints (2006) 11: 221-267

procedure initialize()

alpha := 0;

update Alpha();

beta = alpha;

gamma = alpha;

if alpha < n then
repeat gamma := gamma+ 1
until gamma =n

\ (s ¢ PS(Igammu) At e RS(¢gamma))§

update Beta()
endif

procedure update Alpha()
while alpha < n
A (5 & PS(Taipha) V't € RS(Taipha))
if s ¢ PS(Tapha) then
Ps(zalpha) = PS(Ialpha) \ {t}

else
RS(Ialpha) = RS(Ialpha) U {5}
endif
alpha := alpha + 1
endwhile

procedure updateBetal()
repeat beta := beta + 1
until beta =n
V (8 € PS(Tpeta) AN ¢ RS (Theta));
if beta > gamma then
PS(‘”alpha) = PS(Ialpha) \ {t};
RS(Ialplm) = RS(Ialph,u,) U {S}

procedure propagate(i)
if beta < gamma then
if i = alpha
A(s ¢ PS(z;) vVt € RS(z;)) then
repeat
if s ¢ PS(zapha) then
PS(apha) = PS(Tapha) \ {t}
else
Rs(malpha) = Rs(zalpha) U{s}
endif
alpha := alpha + 1
until alpha > beta;
updateAlpha();
beta := alpha;
if alpha < n then
updateBeta()
endif
else if i = beta
A (s ¢ PS(z;) vVt e RS(z;)) then
updateBeta()
endif
checkGamma(i)
endif

procedure checkGamma(i)
if beta < gamma N i < gamma
Ns ¢ PS(z;) ANt € RS(z;) then
gamma = t;
if beta > i then
PS(Taipha) = PS(Tatpha) \ {t};
RS(Ialpha) = Rs(xalpha) U {s}

endif
endif

endif

Fig. 7 The SetValuePrecede propagation algorithm

beta, and gamma. Procedure propagate(i) is called whenever D(x;) is modified, i.e.,
either PS(x;) or RS(x;) is modified. If gamma < beta, value precedence is already
entailed and no more propagation is needed. Otherwise, there are two different
cases. First, i = alpha A (s¢PS(x;) Vt € RS(x;)), alpha and beta have to be updated.
Second, i = beta A (s¢ PS(x;) V t € RS(x;)), only beta has to be updated. Afterward
checkGammal(i) is called to check if gamma needs update. This differs from the
integer version, where checkGammal(i) is called only when x; is bound, since, in the
set version, gamma may need update even when x; is not bound. The SetValue-
Precede algorithm enforces SBC on s <y t.

Theorem 14 Given a set variable sequence X and integers s and t, the SetValue-
Precede algorithm triggers failure if s <3 t is unsatisfiable; otherwise, the algorithm
prunes values from domains of variables in X such that SBC on s <z t is enforced
and solutions of s <z t are preserved.

Proof: The proof makes use of the definitions of the pointers «, 8, and ~.
Pruning rules 1 and 2 implemented in SetValuePrecede ensure that all values
removed from the possible sets of variables must not lead to solutions of s <3 ¢, and
all values added to the required sets of variables must occur in every solution of
s <z t. Therefore, SetValuePrecede preserves the solutions of s <z . To show that
SetValuePrecede enforces SBC on s <3¢, consider the two cases of v < (§ and

@ Springer

Constraints (2006) 11: 221-267 249

0 < v. Pruning 2 implemented in SetValuePrecede has already ensured the
satisfiability of s <z ¢ for the former case (by enforcing s € x, At¢ x,). For the
latter case, suppose there is a variable x; such that either x;—PS(x;) or x;—RS(x;)
cannot be extended to a solution of s <3 ¢. That is, there is a value a in PS(x;) \
RS(x;) such that either s <ztAa €x; or s <ztAa¢x; is unsatisfiable, but a is
neither removed from PS(x;) nor added to RS(x;) by SetValuePrecede. Since any
extension of x,—u, with s € u, At ¢ u, must be a solution of s <3 ¢, in order to fail
either s <ztAa€x; or s <ztAa¢x;, we must have s¢ u, VvVt e<u, We show,
however, that it is always possible to construct solutions of s <3 t with s ¢ 1, V t € u,.
By the definition of v and the assumption 3 < v, s € PS(x;) V¢ RS(x;) for
0 <i < (. Also, by the definitions of « and 3, s ¢ PS(x;) Vt € RS(x;) for 0 <i <
0 and i # «. Hence, it is always possible to have valid assignments x;—u; with s,t €
u; Vs, t¢u; for 0 <i < g and i # a. The assignment xg—ug with s € ug At ¢ x3 is
also valid since s € PS(x3) At¢ RS(x3). Now that we have the compound
assignment (xo,...,x3)—(uo,...,us), where s,.tcu; Vs, t¢u; for 0<i < g and
i#a,s¢u,Vt €u,,and s € ug At ¢ x3. However, note that any extensions of this
compound assignment are solutions of s <z t. Therefore, it is impossible to fail
either s <ztAa€x; or s<ztANa¢x; for any x; and a € PS(x;) \ RS(x;). Thus,
SetValuePrecede enforces SBC on s <y . |

4.3 Multiple Indistinguishable Values

In many circumstances, there are more than two indistinguishable values in the
same problem, but our global constraints can deal with only two such values at a
time. To break symmetries on a set of variables U induced by a set of indistinguishable
values V = {v,...,vx_1} for k > 2, we can impose the ValuePrecede() constraints
using all pairs of values in V: v; <5 v; for 0 <i < j < k— 1, where ii is a sequence of
U. By transitivity of value precedence, however, an alternative is to impose
constraints using only adjacent pairs of values in V: v; <5 viy for 0 <i<k—2.
Although achieving the same value precedence effect, the former approach can
theoretically achieve more propagation than the latter for both integer and set value
precedence. Following Debruyne and Bessiere, we define that enforcing a local
consistency LC on some constraints C; is strictly stronger [19] than enforcing LC on
some constraints C, if and only if (1) any domain reduction performed by the latter
can also be done by the former, and (2) there exists an assignment that can be pruned
by the former but not the latter.

Theorem 15 Given an integer variable sequence i and a set of integer indistin-
guishable values V = {vy,... ,vi_1} under U, enforcing GAC on each of v; <y v for
0<i<j<k-—1 is strictly stronger than enforcing GAC on each of v; <y viy1 for
0<i<k-2

Proof: The former is clearly as strong as the latter. To show strictness, sup-
pose X = (xg,...,x4) is a sequence of integer variables X and V = {0,1,2,3} be a
set of indistinguishable values under X. Consider D(xy) = {0}, D(x;) = {0,1},
D(x;) = D(x3) = {0,2}, and D(x4) = {3}. Each of the constraints 0 <3z 1, 1 <3 2, and
2 <z 3 is GAC. However, the constraint 1 <3z 3 is not GAC, since the assignment
x1—0 cannot be extended to a solution of 1 <3 3. u

@ Springer

250 Constraints (2006) 11: 221-267

Theorem 16 Given a set variable sequence u and a set of integer indistinguishable
values V = {vo,...,vi_1} under U, enforcing SBC on each of v; <y v;j for 0 <i <
j<k—1 is strictly stronger than enforcing SBC on each of v; <zviy1 for
0<i<k-2

Proof: The former is clearly as strong as the latter. To show strictness, consider
the set variable sequence y = (yo,...,y3) with PS(yo) = {0}, PS(»1) = {1},
PS(y,) = PS(y3) = {1.2}, RS(yo) = RS(y1) = RS(y2) = 0, and RS(ys) = {2}. Sup-
pose V ={0,1,2} is a set of indistinguishable values under {yy,...,ys}. Each of the
constraints 0 <3 1 and 1 <5 2} is SBC. However, the constraint 0 <5 2 is not SBC,
since yo—RS(yp), i.e., yo—0, cannot be extended to a solution of 0 <5 2. |

As we shall see in the experimental results, such difference in propagation level,
although theoretically possible, might not show up in practice. Furthermore, it is still
an open question whether enforcing GAC on each of v; <z v; for 1 <i < j<k
achieves GAC on the multiple value precedence vi <z ... <z Vi as a whole.

5 Experiments

To demonstrate the feasibility and efficiency of the two proposals, we perform
experiments on various problems including graph coloring, the concert hall
scheduling problem, the SGP, and the Steiner triple system. All experiments are
all-solution search using the smallest-domain-first variable ordering heuristic, and
are run using ILOG Solver 4.4 [1] on a Sun Blade 1000 workstation with 2GB
memory. For models using the multiple viewpoints method, unless otherwise
specified, the extra viewpoint is solely used to express variable symmetry breaking
constraints that breaks the value symmetries in the primary viewpoint. Only
variables in the primary viewpoint are used as branching variables. We report and
compare the number of fails and CPU time for each instance of each model. In the
tables, the best number of fails and CPU time among the models for each instance
are highlighted in bold. A cell labeled with “-” means execution does not terminate
in 2 hours of CPU time.

5.1 Graph Coloring

Given a graph and k colors, graph coloring is to color the vertices of the graph with
k colors such that the two vertices connected by each edge have different colors. A
CSP model of the problem is to use a variable x; for each vertex with domain
Dx(x;) ={1,...,k} representing the colors. Using this aspect viewpoint Vi, the
colors 1,..., k are indistinguishable values. We build seven different models for this
problem to illustrate the effects of the proposals. The no-break model does not
break the symmetries of indistinguishable values, and the remaining models break
the symmetries in various ways. The if-then model uses if-then value precedence
constraints on adjacent pairs of indistinguishable values. The symmetries of
indistinguishable values in Vx becomes variable symmetries in the 0/1 viewpoint
V. Each color j becomes a sequence of variables (zi,...,z,;) in this viewpoint,

@ Springer

Constraints (2006) 11: 221-267 251

where n is the number of vertices in a graph. Flener et al. [21] suggested that the 0/1
viewpoint V can always be used to both model a problem and express symmetry
breaking constraints. We therefore build the all-bool model using this technique. It
solely uses V7 to express all the problem constraints as well as lexicographic
ordering constraints (zi;,...,Zn;) <iex(Z1j4+15- -, Znj+1) for 1 <j < k to break the
symmetries. The int-bool model contains the problem constraints in Vy, variable
symmetry breaking constraints in V; which breaks the value symmetries in Vy, and
channeling constraints connecting Vy and V. The glb-adj and glb-all models use
adjacent-pair and all-pair postings of the value precedence global constraints
respectively, which are i <yi+1 for 1 <i < k and i<zj for 1<i<j<k
respectively, where X is a sequence of variables in X. The intbool+glbadj model is
the int-bool model plus the adjacent-pair postings of value precedence global
constraints. This model shows the combined use of both methods together. The
vertices of a graph are re-ordered with decreasing degree. As a result, for models
using variables in Vy as branching variables, ties of the smallest-domain-first
variable ordering heuristic are broken by choosing a more constrained variable [12].
Another consequence is that in all-bool, which does not contain Vi, variables with a
smaller vertex number is branched earlier in the search.

Table 1 shows the experimental results of solving various instances in the Second
DIMACS Challenge? using the minimal number of colors (k*). In the results,
models that break the value symmetries (except all-bool) are generally more
efficient than no-break. The if-then model is sometimes less efficient than no-break,
despite the latter’s larger search space. The all-bool and no-break models are
incomparable. One is sometimes more efficient than the other and vice versa.
Models using global constraints are the fastest among all, confirming the efficiency
of our integer value precedence propagation algorithm. The glb-all model shows no
extra pruning over glb-adj, and is thus slightly less efficient due to the overhead in
maintaining additional constraints. The if-then model also has the same propagation
as glb-adj and glb-all, but execution is much slower because of the inefficient
propagation of if-then constraints. The int-bool model is slower than glb-adj and
glb-all, but more robust than no-break and if-then, which cannot solve myciel4.col
and 1e450_5b.col respectively. The intbool+-glbadj model has the same propagation
as glb-adj. The running time of the former is worse than that of the latter, due to
the extra viewpoint used in the model.

Note that ILOG Solver does not enforce GAC on constraints of the form ¢; — ¢,
in general, where ¢; and ¢, are some constraints. Their propagation behavior is that
(1) propagation of c; is triggered only after ¢; is entailed, and (2) propagation of ¢;
is triggered only after —c; is entailed. In our experiments, however, we empirically
show that GAC is enforced on the integer if-then value precedence constraints. as
seen from the same number of fails of if-then and glb-adj. This is probably due to
the specific form of the if-then value precedence constraints, in which the left hand
side is a unary assignment constraint, and the right hand side is a disjunction of
assignment constraints. These make the left hand side relatively easy be proved
true and the right hand side relatively easy be proved false, thus propagation of
the if-then constraint can be triggered earlier.

2 Available at http://mat.gsia.cmu.edu/COLOR/instances.html.

@ Springer

http://mat.gsia.cmu.edu/COLOR/instances.html

Constraints (2006) 11: 221-267

252

'/ UOT}O3S#/A3[PNP _ /OU O[[oYd"dWOY
//:d11Y 99§ "SI0[09 9} JO SIOUILINIIO A} JOLIISAI 0) JUIBIISUOD SUNUNOD BIIXO UB Sy UYoIym juerrea 3uriojod ydeid e s1 1] 'SOVINIQ WOIJ J0u SI ddue)sul Y], ,

16T S€ 66°0 S€ ¥8'0 s€ wr 6¢ ST 79€97 LE9 S€ ¥6'98 00ZH S yuerdieas
ST6T9 W vSI0€ €T y8we w@ vL'89S T698S €ESt 9chp Y8YLIS T - - S [09"p[orAW
10°0 0 10°0 0 0 0 10°0 91 10°0 € €00 0 110 0 v [0oglotofw
$9°0 €191 8€0 €191 ¥T°0 €191 850 68ST TE680T T8SLVIT +v9°CT €I9T T€0S8 08hTheL L 105, fuodanb
$6°0 0€9¢ 8S0 0€9€ LEO 0€9€ S80 699€ SLEEl ¢v8IIF STEl 0€9€ L6781 080206L1 L 109" 9uoanb
100 0 0 0 0 0 100 14 900 T 100 0 Y00 0 ¢ [09°¢ gudonb
L60 1243 LY0 %3 LE0 %3 €6°0 68¢ - - 89199 ¥vE 9L78 091$ S [09PST0SHAI
L0 € 9¢°0 € 870 € 0 691 - - 9,TIS €T 606 ObvL S 109967053l
9¢'6C TLIIT v9TL TLIIT 188 TLITT €L€T SI6SL - - - - 9L%6 0¥816¢ S 109957 0S¥l
€8 800S g€ 800S S£°T 800S 90°€C €890C — YEPP99 800§ 69°€LT 0899L6 S [09°BGTOSHI
owiny, s[reg owl] s[re wi] s[re Qwi] S[ieq suy, s[re.q owly, s owi s[req
[pe-q|6-+j00g-ju lle-qib lpe-qi6 |oog-jul |oog-jie uayy-yl Jeaig-ou .y soue)suy

Surrojoo ydeid 10J s)nsa1 [eyuowradxy T d[qel

pringer

AN

Constraints (2006) 11: 221-267 253

Fig. 8 An instance of the con-

18 € W ti 1 2 3
cert hall scheduling problem 1 ll 5 16 1me .
with 2 rooms and 4 applica- 2 9 310 room 1 | app 1 | |‘(lI’I) 3
ziool?lii((,ff(?i a}rllg an optimal 33310 room 2 I app 2
& 41 310 Total income: 30

5.2 Concert Hall Scheduling

A hall director receives n applications to use the k identical rooms of a concert hall.
Each application i specifies a period [s;, ¢;] and an offered price w; to use a room for
the whole period. The concert hall scheduling problem is to decide which
applications to accept in order to maximize the total income. Each accepted
application should be assigned the same room during its whole applied period.
Figure 8 shows an example with 2 rooms and 4 applications and an optimal
schedule. This problem is generalized from one in the Asia Regional Contest of
ACM/ICPC 2003, in which k = 2,° but is a special case of the temporal knapsack
problem [8], in which each application can request more than one room.

We use a variable x; for each application i with domain Dy (x;) = {1,... ,k+ 1} to
denote the room assigned to the application. The dummy value k + 1 is to denote an
rejected application. Under this viewpoint, any two identical applications i and j
(ie., si=sj, e, =e;, and w; =w;) are symmetric and we can use the variable
symmetry breaking constraint x; < x; where i < j to break the symmetry. Moreover,
all domain values except the dummy value k + 1 are indistinguishable values. This is
our only benchmark problem in which not all the domain values are indistinguish-
able. We build the no-break, if-then, all-bool, int-bool, glb-adj, glb-all, and
intbool + glbadj models, which have the same meaning as in graph coloring. Several
random instances are generated with 40 applications, 1 <s; <e¢; <100, and
10 < Lfﬁ <100, where s;, e;, and w; are uniformly distributed in their ranges,
and are solved as an optimization problem for the maximum total income with
different number of rooms k.

Table 2 shows the experimental results. Like graph coloring, models tackling the
indistinguishable values (i.e., if-then, int-bool, glb-adj, glb-all, and intbool+glbadj)
are generally more efficient than no-break, which is again generally more efficient
than all-bool. The glb-adj and glb-all models have the same number of fails;
execution time between them is negligible. Unlike graph coloring, int-bool is more
efficient than glb-adj and glb-all in most instances, but they are all much more
efficient than if-then. Actually, the different propagation behaviors between int-bool
and glb-adj (as well as glb-all) make the smallest-domain-first variable ordering
heuristic choose different variables to be assigned next during search. It seems the
heuristic fits more to int-bool than to glb-adj and glb-all so int-bool has a smaller
overall search tree. The intbool+glbadj model has the same propagation as glb-adj
but slower execution. We also tried solving an instance obtained from ACM/ICPC
2003 containing 1000 applications within 365 days. The glb-adj, glb-all, and int-bool
models can be solved in about 3.2 hours CPU time, while the other models do not
terminate after 6 hours execution.

Bartlett et al. [8] suggested a model, which uses one 0/1 variable for each
application to denote whether the application is accepted, for the temporal

3 See http://www.u-aizu.ac.jp/conference/ ACM/problems/all.pdf.

@ Springer

http://www.u-aizu.ac.jp/conference/ACM/problems/all.pdf

221-267

Constraints (2006) 11

254

SO'8€9T 9€8E86E €506C1 9€8E€86E 9¢'SITI 9€8ER6E (3 843 S8€061C - - T'TLLS 9€8E6E - - S gisut
061 Y6581 89°¢ST Y6581 16°LYI 876581 6€°0ST U84 LLLSTT LS989ILT 1€°68S 86581 ySTCEL 61€8T8Y 14 gisut
9¥'81 Loy S8°CI Loy SP'SL Loy 8¥'91 TIELY LY'T8 IL10€9 169 Loy LS L8YSOT € gisut
4N 9¢€e 66°0 9¢€€e 66°0 9¢€€e 't 9¢€€e 961 LSLTT we 9¢€e 161 7599 T gisut
°6'€S6 991L20€ 80°1€L 991L20€ SY'8EL 991L20¢ 65°S09 195690C 66'716€ CIS9s61E L1°208C 991L20€ LL'8TST £€8615801 € isut
8LYC €91€8 8€°0T €91€8 8€°0T €91€8 LTET 191€8 L9°€E 679L6C 8Ly €91€8 €'6€ SLST9T C pisut
9°689¢ SS0889 c1rosec SS0889 90°€€8¢C 650889 ¥'6¥01 PLOETTT - - - - - - S gisut
80°66€ SCS98L 60°CCe STS98L STLIE STS98L L99ET LTVTI0E 6°88ST Tvevr68 66'866 STS98L LTl S6lToce 14 gisur
60°CE £€999 9¢€9¢ £€999 209¢ ££€999 (34! |2 3% L08 TevLyy €9 £€999 8L'LS LISPST € gisur
9T sLe TT SLT T SLT LT'T €6LT 16’1 L9TTT €6'1 SLT LTT SSye T gisur
SECIS CTLLSS0T 20°16€ CTLLSS0T LETLE TLLSS0T 6vEL 6L6VOE - - YETO8T CTLLSS0T T¥'89¢€1 0€5886¢ S asut
S6'79 corerl €518 corerl sSor corerl €97 £€079 8¥°'L8LY 9ELLISSY £€8°C61 corerl cToel 91691 14 gisut
(4N 8889T 116 8889T 106 8889¢C 2 86€01 crore SYP99LTT 119C 8889C 8LCT LT86E € asut
690 9L1C LSO 9LIT LSO 9L1T S9°0 SLIT STV 90The LET 9L1C 4N €LY T asut
6'€90C 1484%44 €2°0091 148701544 80°SrST v1veecy TSIt STP9£9T - - LES099 PIv6ETh - - S Tisut
£6'S€C 91LTCS €re6l 91LTCS 68981 91LTCS 68°SST T8LYLE €6'C9L SSLovTY LLELY 91LTCS 89°00TT STL8YYE 14 Tisut
£€9'vC 2985 9¥°0C 2985 woc 298¢ 9891 [Uli44 18'8y 88L99C £€9°9¢ 298¢ P68 680L8T € Tisut
LET 876¢ 6rI'L 876¢ oIl 876¢ o« 876¢ 6v'1 S198 86T 876¢ €€T OLLL T Tisut

awrL [re. awiry, e awL e, awrg e awr e awrg e awrg [re.

100g-ul lle-qi6 Ipe-qib [00g-ju loog-|le uay)- eaig-ou .y oouelsu[

worqoxd Jurmnpayds [[ey 1190U0d Y} 0] S}NSI [ejuowiodxg g d[qe]

pringer

AN

Constraints (2006) 11: 221-267 255

knapsack problem. Their model, which does not involve particular halls, is more
efficient than those used in our experiments. The main aim of our experiments,
however, is to evaluate symmetry breaking methods applied to CSPs with value
symmetries. The quality of models used in this problem is immaterial to us.

5.3 Social Golfer Problem

For the SGP, we build integer and set models in Vs and Vp respectively as two
bases and tackle the indistinguishable values in Vs [symmetry (3)] and Vp
[symmetry (1)] using different methods. We also test both the integer and set
versions of the value precedence propagation algorithms in this benchmark. Note
that the two sets of experiments should not be compared directly because (1) models
in the two sets have different problem constraints, and (2) different search variables
are used (integer and set variables).

5.3.1 Integer Model

In the integer model, symmetries (1) and (2) are variable symmetries, which can be
broken by row and column lexicographic ordering constraints. Note that the row

ordering constraints (g;1,...,9w)<wex(dis11,---+9i41n) can be simplified to
(9i1,9i2)<tex(Gi+1.1,9i12)> since two golfers can meet each other at most once.
Similarly, the column ordering constraints (gy ..., gn k) <tex(F1 f11- - - » In ky1) CAN

also be simplified to (gy4;.-.,9g:14) <tex(G14415--+>9g+1441)- These problem-
specific simplified constraints allows more propagation than the original ones, and
therefore are used in our experiments.

Using this basis, we build the int-set and int-bool models which use multiple
viewpoints and break the symmetries of indistinguishable values in V as variable
symmetries in Vp and V respectively. Note that in int-set, we add extra implied
constraints [pjx| =8 for 1 <j<G and 1<k <W, since they can increase
propagation on the symmetry breaking constraints in Vp. We also build glb-adj
and glb-all that breaks the symmetries using global constraints. The all-bool model is
the same as the one used by Frisch et al. [26] except that we apply the same
simplification technique as above to simplify the row and column lexicographic
ordering constraints. Since there are two models int-bool and int-set using the
multiple viewpoints method, we correspondingly build two models intbool+glbadi
and intset+glbadj using the combined method. Table 3 shows the experimental
results.

Again, glb-adj and glb-all are the fastest among all. The performance of int-set
and int-bool approaches that of the global constraints models. The glb-adj, glb-all,
int-set, and if-then models has the same number of fails. The int-bool model achieves
less propagation than them. Nevertheless, its performance is still generally much
better than if-then and all-bool. The int-set and int-bool models are incomparable.
The former is sometimes slightly slower than the latter, but in certain instances [e.g,
(5,5,3), (5,5,4), (5,5,5), and (6,6,3)], the difference in number of fails between
them is so large that int-set shows its robustness and is significantly faster. Both
intbool+-glbadj and intset+glbadj again have the same propagation as glb-adj, but
they are slower in execution.

@ Springer

221-267

Constraints (2006) 11

256

9T0 99 vIo 99 o 99 vro 99 9T0 99 850 8Y¢ - - 6L T 99 TLL
60°LE LYY91 e LYYI1 ST61 LYY91 SI°'ST LYYI1 9t"9¢ LYY91 ST'I¢ S8Y6C - - 81'8C1 LYY91 YL
L09C1 L009Y 67°€8 L009Y SOvL LO09Y £0°69 L009Y TL°€TT LO09Y 98°SH1 9991¢T - - 78'69¢ L009Y TSL
8C6IS LYLO9 LTTYE LYLO9 6€£°€6C LYLO9 ¥$°69C LYLO9 L1'90S LYL0O9 oreee $8699 - - 6L YETT LYLO9 YL
96'16 081 979 081 €LTS 081 678y (1118 S'16 081 9T'¢9 Y0SL - - S8°681 081 L
SLO 9 SY 9 &0 9 8€°0 9 1L°0 9 €9°0 78 11 9LS6S LO'T 9 UL
26'8SS1 LT60T LL'SOTT L160T SO'186 L160T €T€S6 L160T $8'8¢CS1 LT60T - - - - 65°00€€ L160T €99
91 971 10T 9271 980 9771 80 971 LS'T 971 vl oree - - 66'¢ 92T1 7s9
98’1 LLE Y1 LLE 0’1 LLE 86°0 LLE 81 LLE 881 1861 - - 69°¢ LLE 9
vL'T (1] 8 1 o1 96°0 o1 68°0 or 69'1 o1 LT'T 20 98'¢eT TI8EIL €8C [1] 8 79
8YYCl 6S06€ 76°¢6 6S06€ €O'TL 6506€ w's9 65S06€ S8611 6506€ £€9°G6 6CS0TT 8T'LST 1896C¢T L8OVT 6506€ €79
90 LET €0 LET 970 LET 970 LET S0 LET 9C'T 9LLT - - 880 LET 9'6'g
€9°C £€61 8T €€61 ST €€61 j2al® €€61 86T £€61 9Tr1 IYLLT - - 10°¢ €e61 [SISlS
€88 T1€06 629 T€06 1c¢e T1€06 T10°S T1€06 98 T1€06 L'€6 80061 - - 16°CT T€06 $'S'S
LTT w 60 w 9L0 w vL0 w wl w el 8¢€0T1C - - Y6'T w (XSS
- - 96'T0S9 T686V8P T €¥'8¢CCS T686¥8Y1 L8966V 7686¥8P1 - - - - - - - - 'S
- - 19°99%¢ LLSLISET LLLEYY LLSLISET L6'T9TY LLSLISET - - - - - - - - 'S
LEETT 0LT9T1 6'S8 0LT9T1 9569 0LT9T1 $6°99 0LT9TT 8S°0CT 0LT9T1 €9°¢8T 9978¢ - - 6L°¢8T 0LT9TL [
' Ere9 0€T¥S60T 9091 0€TPS60T €16Cee 0€TPS60T €LITE 0€TPS60T S0Ce9 0€TPS60T 6'178¢ TvT61001 - - - - L'E'S
SL08¢C LYTLOT +9°20C LITLOT T10°9ST LITLOT (Y4148 LITLOT 96'69C LITLOT T€T61 8CECTT 90°0SvE YyThTosT 86'89¢ LITLOT €S
8C6IEY T€6STE8 9ISee T€6STE8 €0°88¢CC 7€6STE8 ¥8°9L0T T€6STE8 8S°ELOY T€6STE8 9¢°01CE 0089916 06'6ErS T19€TCTrT 89°9C¢t TE6STES 6'TS
- - - - £€6'7S89 9509661 WyLT9 S9509661 - - - - - - - - 8C'S
- - - - SL'SYTS 8S€€809 TI°sesy 85€€809 - - 19°6£89 TSSS099 - - - - 9'T'S
TT16ST 0198SL LSI9LTT 0T98SL 66'S18 0198SL €0°LIL 0T98SL YE8SYT 0198SL S6°SLOT 16LL98 10°S0ST 961€LY6 91°00t 1 0T198SL [S4S
6TC8 089¢ 9¢°€9 1089¢ LEEY 089¢ £€°0p 1089¢ YL 089¢ 6°LS £PSTS jaaaan 96LCS COvL 1089¢ YT
961 SL9 w SL9 80 SL9 LLO SL9 6¢'T SLY 4 LTET 6'C 66581 6¢'1T SL9 €S
wo LI6 820 LT6 170 L16 0 LT6 LE0 L16 LEO 6¢€] (5 aat L20¥9 9¢°0 LT6 PeY
920 6LT 0 6LT €10 6LT €10 6LT Y20 6LT 81°0 €€¢ 1S°0 865C ST°0 6LT 9Ty
w®€0 €9¢ 920 €97 LT°0 €9C ST'0 €97 620 €9C €C0 LOE 650 866C €C0 €97 [Syad
QuIL, req QUuIL, red QuIL], req QuIL], red QuIL], req QUIL], red QuIL], req QuILT, req
peqB+jesiul [peq|B-+looqyur lle-q16 lpe-qib Jos-jul |oog-jul |00g-|je usuly MSH

so[qeLIeA 1oFojul Suisn ‘g0 dY) 10j sINsaI [ejuowiadxy ¢ dqeL

pringer

ANs

Constraints (2006) 11: 221-267 257

5.3.2 Set Model

In the set model, symmetries (3) and (2) are variable symmetries. Barnier and
Brisset [7] suggested the constraints min(p;x) < min(pj;1x) for 1 <j < Gand 1 <
k<W and min(pix \ {1}) < min(p1x41 \ {1}) for 1 <k < W for breaking the
symmetries respectively. These constraints are degenerated from the lexicographic
ordering constraints with the set ordering we propose and the problem constraints
that two variables p;x and p; x for some j # j’ must be disjoint. Using this basis, we
again build the glb-adj and glb-all models, using our set value precedence
constraints, as well as the set-int and set-bool models that breaks the value
symmetries in V as variable symmetries in Vp and V; respectively. Note that the
variable symmetry breaking constraints in Vp of set-int are actually the same as the
row ordering constraints in the integer model described in previous subsection.
Therefore, the simplified constraints (g; 1, 9;2) <tex(9i+11,9i112) can be used instead.
Furthermore, since only variables of weeks 1 and 2 in V¢ are used for expressing
constraints, the remaining variables in V¢ (and the channeling constraints relating
them) are removed from the model so that only part of V; is connected with Vp and
less overhead of channeling is incurred. Similarly, in set-bool, only variables of
weeks 1 and 2 in V' are connected with Vp. Note that when VW = 2, there will be no
savings in the number of variables. This modeling trick is not applicable when using
global constraints, and is actually an advantage of using multiple viewpoints over
global constraints to break value symmetries.

The experimental results in Table 4 shows that set-int is the most efficient in
terms of both the number of fails and CPU time. It always has the smallest number
of fails due to the extra propagation of the simplified symmetry breaking
constraints. The removal of the unused variables in the second viewpoint also
reduces the overhead of channeling. The set-bool model achieves the same amount
of propagation as glb-adj. Their runtime are similar in many instances. In larger
instances (down in the table), glb-adj is more competitive than set-bool due to the
extra variables in the latter model. The models using global constraints still perform
much better than if-then and all-bool, confirming the efficiency of our set
propagation algorithm. Note that all-bool is slightly different from the one in the
previous subsection, because a different aspect priority (and hence scanning
sequence) is used to generate the variable symmetry breaking constraints in V.
The scanning sequence (golfers, weeks, groups) is used in all-bool previously, while
(weeks, groups, golfers) is used here. The glb-all model achieves more propagation
than glb-adj does in some instances. The difference in the number of fails, however,
is usually small, so the overhead of extra global constraints cannot be compensated.
An exception is the (4,4,4) instance where glb-all has significantly fewer fails than
glb-adj, and all-bool is the best among all models. Actually, glb-all posts O(/\/'z) =
O(G>S?*) more constraints than glb-adj. Hence, instances with more golfers
incur more overhead than those with fewer golfers. The setbool+-glbadj and
setint+glbadj models have the same propagation as set-bool and set-int respective-
ly. Therefore, their execution is slightly longer due to the extra value precedence
constraints in the models.

Besides using the smallest-domain-first variable ordering heuristic, we also tried
using the default and static lexicographic variable ordering heuristic (i.e., always
choose the first unbound variable). We find that the number of fails of glb-adj and
glb-all are the same in all instances. It seems that the extra propagation of glb-all

@ Springer

3
N
1_4
n
=
—
—
O

m 98°0 80¢ 8S°0 L6E ST1 L6E ST°0 L6E L0 80¢€ S0 L6E 80 covt €r'e L6E TLL

~1 190 SOT ey CILLTT LL'88 CILLTT 801 CILLTT €5°0 SO1 8t°S¢ CILLTT LSYT TTr18 8C°0CT CILLTT 7oL

m SL'LY 8 S6°68S P19L88T ST8E6 Y19L881 SYvLL 19L88T 86°Th 8 €6°L6Y 19L881 Y1'8v¢ YOTSE]T 96°'68LE Y19L88T TSL

.m L19C €9 e €501 8TE8IEE 69°¢8T1 8TE8IEE SLYYE 8TE8IEE €L°9€T €9 1826 8TE8TEE 60698 SOLSSYY - - YL

271 LS9 w 61°0¢T (40483 9201 (3401489 L6’LY (40483 6'8S w crelt (3401489 91'I¢T SLSYS9 Tr'v98 (5401489 TeL

m SLO 1 €01 9LTT S9°0 9LTT o 9LTT 69°0 | ¢4 L6°0 9LTT LY'T 6656 LTS 9LTT L

@] 06y LYLITST STESS 0v66TLT LS €¥8T 0V661LT 14874 0v661LT IIvIy LYLYTST LL 06V 0v661LT L'TO6E 68L09C0T - - €99

€10 09 €0'C 060L €L'T 060L 90 060L 10 09 W 060L 80 7688 91’8 060L s9

1T Ei4 16'S LOVTT 209 LOVTT 10T LOVCTT 66°0 Fi4 LTS LO¥TT [A84 SL9LT SS°LT LO¥TT r9

€T o€ 16C £T88 vTT €88 T €788 91l 0€ 89°C €788 €LT 0€9LT w9l €788 g9

1+'88 65961 Y768 02661 6°ClT 02661 £6'88 02661 18°s8 65961 96°S8 02661 YI'T1LT €98L991 96'CC8 02661 €79

9¢T 600€T 68°1S 666SST 6€°¢€9 666SST €L°9C 666SST | 4 600€T [54S4 666SST 1$°SC 68576 96206 666SST 4SS

€50 B1848 9T 6CC8 9¢°¢ 6CC8 LET 6TC8 9°0 1148 YT 6TC8 S6'C 16£6 (R4 6TC8 [N

76'8¢€S L8ST080€ 9¢€°0¥SS LSOISYIE - - LLLOES LSOTISYIE Y6'0LLY L8ST080€ L9°€S6Y LSOTISYIE - - - - ladY

€6'ClT SSL8S9 89°¢Cl 0vL¥69 +9°6CC 0vLy69 99°CI1 0vLr69 €7'86 SSL8S9 91901 0vLy69 Y LLE 1960LST wrertl 0vLY69 (32

899ST (454154 TL9ST LE6TOY L1°€TT LE6TOY 0ST LE6TOY 90071 sriey 66°6€1 LE6TOY S6eE 1S0S0ST eP601 LE6TOY €es

S90ETL 190S68¢ €9°CCIL L0S68E 1°9%0L YL0S68E L80LLY YL0S68E 65 T¥89 190S68¢ T€S89 YL0S68E - - - - 6'TS

8'990C 88SPSST LY'0L0T Y00SSST SY'ovee T66¥SST 1#°€00C #00SSST TL9S61 88SYSST 91961 #00SSST - - - - TS

€0¥8 £9056 65°C8 60156 816 60156 SOt 60156 9v'8L £90S6 SE'SL 60156 #9'8S¢C 199681 v1°0cy 60156 TS

eIl 1S vI'T 9¢¢ €1 9¢¢ 1T 9¢¢ L0T 1cs 80°T 9¢¢ 8T L100T Se9 9¢¢ €Ts

179 0ISL o6 09LST 'L 006¥1 S09 09LST €9°¢ 0ISL L6'L 09LST o (1144 1'86 09LST Sty

S 40 6SLST Y0 €lC 06881S €eel €662y T'eCl 06881S 178 6SLST 969LT 06881S 80°0 9LE 86°L8TC 06881S Py

€60 e €C'T 016S ST'T 920S €0'T 0T6S 18°0 e LET 0T6S 9C'T €Sv6 LS'TT 0T6S ey

91°0 L6 91°0 00T ST'0 00T ST°0 00T ST'0 L6 91°0 00T 60 91STY [N 00T L'TY

0 TeL 1570 9¢L SS°0 9¢L %0 9¢L 150 1L 15°0 9¢L Sye 2109¢ Se 9¢L 9Ty

SS0 88 S0 126 850 616 S0 126 €0 788 €50 126 18T T6€8T 80°¢ 126 STy

120 997 o 8I¢ 0 1489 20 8I¢ 610 99¢ 20 81¢ 70 SE6E 980 81¢ [y

s, req s, req s, e sy, e auiry, [req auir], e s, [req auirf, req

[peq|b+unes [peq|B+|ooges Ire-q6 [pe-q|6 r-jes |00g-}os |oog-|le uwyrl MMSH

SO[qEIIBA J9S UISN ‘JOS 9Y) 10J S}NSaI [ejuowradxg ¢ J[qe],
0
&

pringer

AN

Constraints (2006) 11: 221-267 259

only occurs after we add values to the required set of a non-first unbound variable.
This shows that the theoretical possibility of extra propagation of glb-all over glb-adj
does not guarantee a pruning in search space. Indeed, the search states that lead to
extra propagation by glb-all must be reachable during search in order for an actual
pruning in practice.

5.4 Steiner Triple System

Let X = {1,...,v}, where v > 3. A Steiner triple system S(v) of order v is a set of
3-subset (unordered triples) of X such that every 2-subset of X occurs in exactly one
triple of S(v). An example of S(7) is {{1,2,3},{1,4,5},{1,6,7},{2,4,6},{2,5,7},
{3,4,7},{3,5,6}}. A Steiner triple system of order v exists if and only if v =
1,3 (mod 6) [33].

Finding Steiner triple systems of order v is a MAP with two aspects: the triples
and the set X. The problem can thus be modeled using an aspect viewpoint Vp with
a set of set variables B = {by,...,b,} (where n = @) and PS(b;) ={1,...,v}. In
Vg, the variable symmetries are that any two variables b; and b; can be exchanged.
They can be broken by the constraints min(b;) < min(b;;;) and min(b;) =
min(b;y1) — min(b; \ {min(b;)}) < min(b;+1 \ min(b;11)}) for 1 <i < n (which are
the degenerated lexicographic variable symmetry breaking constraints). The values
in PS(b;) = {1,...,v} are indistinguishable values. Such value symmetries can be
broken by using global constraints (glb-adj and glb-all), channeling with the 0/1
viewpoint (set-bool), and channeling with the other aspect viewpoint Vy with set
variables xi,...,x, and PS(x;) ={1,...,n} (set-set). The symmetry breaking
constraints in Vy are min(x;) < min(xj;) and min(x;) = min(xj+1) — min(x; \
{min(x;)}) < min(x;1; \ {min(x;41)}) for 1 <j < n, which are similar to those in
V. Since ILOG Solver does not provide a set minus constraint, in the experiments
we emulate the expression y\ {min(y)} using y’, where |y'| = |y| — 1, min(y) ¢y,
and y' C y.

Experimental results in Table 5 show that setset+glbadj achieves the best
results. It combines the benefits of set-set and glb-adj and achieves much more
propagation than either of them. For v = 13, it is faster than set-set, the second
most efficient model, by an order of magnitude, while executions of the other
models does not terminate after 24 hours. This phenomenon is different from what
we observe in previous benchmarks, in which models using combined methods have
the same propagation as either methods. This is probably due to the special set
minus constraints used in Vy; they do not occur in previous benchmarks. This shows
that when symmetry breaking constraints in the second viewpoint involves set minus
constraints, the two methods need not be used alone. They can be used
simultaneously to obtain even more speedup.

6 Related Work

Symmetry breaking is an important line of research in the constraint community.
There are several main types of techniques in breaking symmetries in CSPs. In the
first approach, symmetry breaking constraints [43] are added to a CSP so as to
traverse fewer number of symmetrical regions during the search for solutions.
Crawford et al. [18] suggested a general scheme to add symmetry breaking

@ Springer

Constraints (2006) 11: 221-267

260

- - VTUSELT L9SSE6E — - - - TS00ST PIEHOOYE — - - - €1
8F'T TOOLL €0°0 €1 LT 9€TLl €ST 9€TLL 6070 00S €T 12001 89 9€TLT 6
100 SL 0 ua 100 8 0 8 0 u 10°0 6T 00 T8 L
owry g sy, Ired owly, e owll [req sy, Ired oy, [red owil qreg
[peq|6-+iooqies [peq|b-+iesies I1e-q16 [pe-qib 188-188 [0og-||e uay}-Hi a

suro)sAs o[dLr) 10Ur9)§ I0J SINSAI [BjudwWIadXg § J[qe]

pringer

AN

Constraints (2006) 11: 221-267 261

predicates to satisfiability problems. Aloul et al. [3] improved this scheme by
constructing more efficient CNF representations of symmetry-breaking predicates.
The scheme by Crawford et al. can be extended to break variable symmetries in
CSPs by using lexicographic ordering constraints [13, 14, 26]. For each variable
symmetry o in a CSP, we add a lexicographic ordering constraint ¥<;,,o(X) to the
CSP, where X is a sequence of variables in the CSP. Flener et al. [21] identified row
and column symmetries in 2-dimensional matrix models, which are commonly found
in many CSPs. Row and column symmetries are the variable symmetries that every
two rows and every two columns in a matrix of variables can be exchanged. Given
a matrix with » rows and m columns, row and column symmetries collectively
imply n!m! variable symmetries. Flener et al. [21] showed that adding constraints to
lexicographically order both the rows and the columns are always consistent,
although they do not necessarily break all the row and column symmetries. Bessiere
et al. [11] showed the intractability of breaking row and column symmetries
completely. Multiset ordering constraints [25] and allperm constraints [27] are also
available for breaking row and column symmetries in matrix models. Gent [28]
designed special constraints to break symmetries of indistinguishable values under
some integer variables. The constraints assume that all the domain values of the
variables are indistinguishable. It is not clear what consistency is enforced on the
constraints. Our value precedence constraints is applicable to both integer and set
variables, enforcing GAC and SBC respectively. They break symmetries of two
indistinguishable values, and can be posted multiple times to break symmetries of
multiple indistinguishable values.

The second approach is to break symmetries dynamically during search [4, 5, 20,
23, 31]. Search algorithms for solving CSPs are modified such that symmetric
states are pruned from the search tree as it is developed during execution. A re-
presentative of this approach is Symmetry Breaking During Search (SBDS) and
its variants [29, 31]. Upon a backtrack of the search, SBDS [31] adds a symmetry
breaking constraint for each symmetry in a CSP to remove all the states which
are symmetric to the one that causes the current backtrack. Backofen and Will
introduced Symmetry Excluding Search (SES) [4, 5], which is similar to but more
general than SBDS. SES allows a search tree to branch over arbitrary con-
straints instead of simple unary assignment constraints in SBDS. CSP symmetries
form symmetry groups; Gent et al. [29] incorporated GAP [2], a computational
group theory system, to SBDS such that large symmetry groups can be handled
efficiently.

Another representative of the second approach is called Symmetry Breaking via
Dominance Detection (SBDD) and its variants [6, 7, 20, 44, 46]. In SBDD [20],
whenever the search algorithm generates a new search node, we check whether it is
dominated by another node previously visited through some symmetries. If so, the
current search node can be pruned; otherwise it is processed normally. Unlike
SBDS, which uses compound assignments to determine what constraints are to be
added upon backtracking, SBDD uses the sets of variable domains at each search
node to represent a state in the search tree. A problem specific dominance checker
is needed to check whether one state is dominated by another previously visited
state. Barnier and Brisset [6, 7] proposed SBDD+, an improvement of SBDD. The
key idea of the improvement is a deep pruning technique which allows to prune
higher in the search tree whenever possible. Gent et al. [30] again used
computational group theory to extend SBDD. They also proposed a generic

@ Springer

262 Constraints (2006) 11: 221-267

dominance checker, which avoids the need of implementing a specific checker in
SBDD for each problem by a constraint programmer.

It is possible to combine this dynamic approach those using symmetry breaking
constraints to tackle symmetries. Smith and Gent [48] showed how the use of
symmetry breaking constraints and SBDS can be combined to break row and
column symmetries in matrix models [21]. They also empirically compared several
different approximations to eliminating the symmetries and an exact method that
eliminates the symmetries completely for small matrices. Puget [45] showed how to
combine the use of lexicographic ordering constraints and SBDD for row and
column symmetries. He also presented a method that adds some lexicographic
ordering constraints during the search for solution. These constraints break the
symmetries that leave the current partial assignment unchanged.

The third approach to tackle symmetries in CSPs is to use the symmetries to
guide the search. Meseguer and Torras [39, 40] propose variable ordering heuristics
which select the variable leading to a search subspace with the largest number of
distinct states. They also propose a symmetric domain value pruning procedure
along the search based on nogood recording.

The fourth approach is to construct specialized search trees that does not contain
symmetries [47, 49]. Van Hentenryck et al. [49] studied three classes of CSPs for
which symmetry breaking is tractable. These CSP classes, featuring specific forms of
indistinguishable values,* allow symmetry breaking to be performed in constant
time and space during search using dedicated search procedures. Roney-Dougal
et al. [47] generalized their idea and introduced GE-tree as a conceptual abstraction
in symmetry breaking. A GE-tree with symmetry group G is a search tree such that
(1) no search node of the tree is isomorphic (symmetrically equivalent) under G to
any other node and (2) given a complete assignment ¢, there is at least one leaf node
of the tree which lies in the orbit of ¢. Constructing and traversing a GE-tree breaks
all symmetries in a CSP, although it is difficult in general to do so for arbitrary
symmetries. Roney-Dougal et al. showed the tractability for the case of arbitrary
value symmetries by giving a polynomial time algorithm to construct GE-trees for
the case.

Constructing GE-trees for symmetries of some indistinguishable values {v,..., v}
under U can be equivalent to maintaining the value precedence vi < ... < Vi,
where i is a sequence of the variables in U. Figure 9 shows a GE-tree for the
symmetries of indistinguishable values {1,2,3,4} under U = {xi,x2,x3,x4}, Where
D(x;) = {1,2,3,4} for 1 <i <4. In the tree, each level of nodes (except the leaf
level) represents a variable to be labeled. Each edge under a node represents a
domain value that is chosen in the labeling process. Therefore, a node can be thought
of as a compound assignment constructed by traversing from the root of the tree to
that node. The leaf nodes of the GE-tree represent the unique solutions under the
symmetries. This GE-tree tree can be constructed using a simple rule [49]: at each
node whose level corresponds to variable x;, suppose the node represents a compound
assignment ¢. We construct edges for the domain values of x; that have occurred in ¢,
collected in a set V4, and exactly one edge for one new value that is not in V,, i.e.,

4 Van Hentenryck et al. [49] used the term interchangeable values to denote indistinguishable
values.

@ Springer

Constraints (2006) 11: 221-267 263

T

Fig. 9 A GE-tree for the indistinguishable values {1,...,4} under {x,..., x4}

one value in D(x;) \ V. For example, in Fig. 9, consider the node representing the
compound assignment ¢ = {x;—1,x,—2}, i.e., the rightmost node in level x3. Values
1 and 2 occur in ¢. Therefore, V,;; = {1,2} and we construct edges labeled 1 and 2.
Furthermore, we construct eactly one edge whose value is in D(x3) \ V4. In this
example, we choose the value 3 among values 3 and 4. Hence, we construct three
edges labeled 1, 2, and 3 for this node.

The solutions in the GE-tree are collected in Fig. 10. It can be seen that the
solutions are exactly the same as those of 1 <j; 2 <; 3 <; 4, where ©i = (x1,x2,X3,X4).

Although GE-trees can be constructed tractably for arbitrary value symmetries,
we break symmetries of indistinguishable values {vy,...,vi_1} using O(k) or O(k?)
value precedence constraints, depending on the adjacent-pair or all-pair of postings.
Value precedence constraints can also be used to break such symmetries on set
variables, which is not defined for GE-trees.

7 Concluding Remarks

We conclude the paper by summarizing our contributions and giving discussions and
possible directions for future research.

7.1 Contributions

We have proposed two methods of using symmetry breaking constraints to break
value symmetries in CSPs. The contributions of our work can be summarized as
follows. First, we have introduced the framework of Multi-aspect Assignment
Problems (MAPs), and shown in general how to derive n + 1 CSP viewpoints for a
MAP with n aspects. The viewpoints are called aspect viewpoints and 0/1 viewpoint.

Tl T2 T3 T4 T XTg XT3 T4 X1 T XT3 T4 T Ty T3 T4 X1 T2 T3 T4
1 r11 1122 1212 1222 1232
1112 1123 1213 1223 1233
1121 1211 1221 1231 1 2 3 4

Fig. 10 Solutions of 1 <; 2 <5 3 <z 4, where = (x1,x2,X3,X4)

@ Springer

264 Constraints (2006) 11: 221-267

Matrix models can then be built using these viewpoints. Many combinatorial
problems are instances of MAPs. Hence, our framework allows handy choices of
viewpoints for CSP modelers. Second, we have identified the conditions when value
symmetries in one aspect viewpoint of a MAP correspond to variable symmetries in
another (aspect or 0/1) viewpoint of the same MAP. While value symmetries
breaking constraints can be difficult to formulate and express, our work gives
possibilities of breaking value symmetries as variable symmetries in another
viewpoint with the aid of channeling constraints. Third, we have introduced the
notions of aspect priorities and scanning sequences. Using these notions, we have
established theorems to identify when symmetry breaking constraints in two
viewpoints, connected using channeling constraints, are consistent.

Fourth, we have introduced the notion of value precedence and shown how the
notion can be used to design constraints for breaking a common class of value
symmetries, namely the symmetries of indistinguishable values. Fifth, we have
presented two efficient propagation algorithms for implementing global constraints
on integer and set value precedence, enforcing GAC and SBC respectively. The
global constraints avoid the use of inefficient if-then constraints. Sixth, we have
given theoretical results to characterize several properties of our proposed
algorithms in different usage scenarios.

7.2 Discussion

Breaking value symmetries with symmetry breaking constraints is not an easy task.
We have proposed two methods to tackle this problem. On one hand, the multiple
viewpoints method is purely a modeling technique, involving no invention of
specialized propagation algorithms and no alteration to the underlying CSP solver.
The method can sometimes tackle arbitrary value symmetries. On the other hand,
we design and implement propagation algorithms for developing two global
constraints to maintain value precedence. Experimental results show that the two
proposed methods are always better than using if-then constraints. Using global
constraints is generally more efficient than the multiple viewpoints method, since
propagation algorithms are specially designed and no additional variables and
channeling constraints are required. The performance of the two methods is
reversed only in cases when special modeling tricks can be applied in the additional
viewpoint used by the multiple viewpoints method. This, however, does not imply
that the multiple viewpoints method is inferior. In fact, the strength of the method
lies in exactly the possibility of applying modeling tricks, which is less available to
the method of using global constraints in a single viewpoint. Therefore, both
methods have their own merits and are valuable to value symmetry breaking.
Actually, as we have shown in the Steiner triple system, the two proposed methods
do not compete but are complementary to each other. They can be used together;
the overall benefits are more than those of using either method alone.

7.3 Future Work

Our work proposes a study of using symmetry breaking constraints for value
symmetries in CSPs. There is scope for future work. First, Theorem 7, which states
the conditions when variable breaking constraints in two aspect viewpoints are

@ Springer

Constraints (2006) 11: 221-267 265

consistent, is applicable to only variable symmetries corresponding to symmetries of
indistinguishable values in one of the aspect viewpoints. Theorem 6, which states the
consistency conditions of variable symmetry breaking constraints between an aspect
viewpoint and the 0/1 viewpoint, is applicable to arbitrary value symmetries. It
would be interesting to generalize Theorem 7 to cover arbitrary value symmetries
also.

Second, we have shown in Theorem 16 that GAC on integer value precedence on
all pairs of indistinguishable values is strictly stronger than GAC on adjacent pairs
of indistinguishable values. However, in our benchmarks using the integer value
precedence constraint, models using adjacent-pair and all-pair postings always
achieve the same number of fails. It is worthwhile to reason about this phenomenon.
Third, the value precedence global constraints can be extended and generalized. For
example, a propagation algorithm for maintaining value precedence of multiple
values may be designed so that symmetries of multiple indistinguishable values can
be broken using only one global constraint. Besides, the antecedent and subsequent
in value precedence can be also integer variables instead of simply integer constants
in our current implementations, so that the generalized constraints have additional
usage besides symmetry breaking. Fourth, our current implementations of the value
precedence global constraints enforce GAC and SBC respectively. It would be
interesting to design propagation algorithms that enforce other local consistencies,
such as bounds consistency for integer value precedence.

Fifth, we have identified and designed constraints to break the symmetries of
indistinguishable values. It is possible to do the same for other classes of value
symmetries, or even arbitrary symmetries. Since using constraints for breaking
symmetries does not involve modifying the underlying CSP solver, such work make
symmetry breaking techniques more accessible to CSP modelers. Sixth, in the
benchmark of Steiner triple systems, we have demonstrated that the model using
both value precedence constraints and the multiple viewpoint approach achieves the
best results. A promising future work is to investigate combining different methods
of breaking symmetries.

Acknowledgments We thank the anonymous referees from CP’04, SAC’05, and the Constraints
journal for their constructive comments which help improve the quality of the paper. We also
acknowledge The University of York for providing the source of the lexicographic ordering global
constraints for our reference. The work described in this paper was substantially supported by grants
from the Research Grants Council of the Hong Kong Special Administrative Region (Project no.
CUHKA4131/05E and CUHK4219/04E).

References

. ILOG Solver 4.4 Reference Manual (1999).

. GAP 4.4.5 Reference Manual (2005).

. Aloul, F. A., Sakallah, K. A., & Markov, 1. L. (2003). Efficient symmetry breaking for boolean
satisfiability. In Proceedings of the 18th International Joint Conference on Artificial Intelligence,
pp. 271-276.

4. Backofen, R., & Will, S. (1999). Excluding symmetries in constraint-based search. In
Proceedings of the 5th International Conference on Principles and Practice of Constraint
Programming, pp. 73-87.

5. Backofen, R., & Will, S. (2002). Excluding symmetries in constraint-based search. Constraints,

7, 333-349.

(OSSN

@ Springer

266 Constraints (2006) 11: 221-267

6. Barnier, N., & Brisset, P. (2002). Solving the Kirkman’s schoolgirl problem in a few seconds. In
Proceedings of the 8th International Conference on Principles and Practice of Constraint
Programming, pp. 477-491.

7. Barnier, N., & Brisset, P. (2005). Solving Kirkman’s schoolgirl problem in a few seconds.
Constraints, 10(1), 7-21.

8. Bartlett, M., Frisch, A. M., Hamadi, Y., Miguel, L., Tarim, S. A., & Unsworth, C. (2005). The
temporal knapsack problem and its solution. In Proceedings of the 2nd International Conference
on Integration of Al and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems, pp. 34-48.

9. Beldiceanu, N., Carlsson, M., & Petit, T. (2004). Deriving filtering algorithms from constraint
checkers. In Proceedings of the 10th International Conference on Principles and Practice of
Constraint Programming, pp. 107-122.

10. Benhamou, B. (1994). Study of symmetry in constraint satisfaction problems. In Proceedings of
the 2nd Workshop on Principles and Practice of Constraint Programming.

11. Bessiere, C., Hebrard, E., Hnich, B., & Walsh, T. (2004). The complexity of global constraints.
In Proceedings of the 19th National Conference on Artificial Intelligence, pp. 112-117.

12. Brélaz, D. (1979). New methods to color the vertices of a graph. Communications of ACM,
22(4), 251-256.

13. Carlsson, M., & Beldiceanu, N. (2002). Arc-consistency for a chain of lexicographic ordering
constraints. Technical Report T2002-18, Swedish Institute of Computer Science.

14. Carlsson, M., & Beldiceanu, N. (2002). Revisiting the lexicographic ordering constraint.
Technical Report T2002-17, Swedish Institute of Computer Science.

15. Cheng, B.M.W., Choi, KM.F., Lee, JHM., & Wu, J.CK. (1999). Increasing constraint
propagation by redundant modeling: An experience report. Constraints, 4(2), 167-192.

16. Choi, C.W., Lee, JHM., & Stuckey, P.J. (2003). Propagation redundancy in redundant
modelling. In Proceedings of the 9th International Conference on Principles and Practice of
Constraint Programming, pp. 229-243.

17. Choi, C.W., Lee, J.H.M., & Stuckey, P.J. (2006). Removing propagation redundant constraints
in redundant modeling. ACM Transaction on Computational Logic. to appear.

18. Crawford, J., Ginsberg, M., Luks, E., & Roy, A. (1996). Symmetry-breaking predicates for
search problems. In Proceedings of the 5th International Conference on Principles of Knowledge
Representation and Reasoning, pp. 148-159.

19. Debruyne, R., & Bessiere, C. (1997). Some practicable filtering techniques for the constraint
satisfaction problem. In Proceedings of the 15th International Joint Conference on Artificial
Intelligence, pp. 412-417.

20. Fahle, T., Schamberger, S., & Sellmann, M. (2001). Symmetry breaking. In Proceedings of the
7th International Conference on Principles and Practice of Constraint Programming, pp. 93-107.

21. Flener, P., Frisch, A.M., Hnich, B., Kiziltan, Z., Miguel, 1., Pearson, J., & Walsh, T. (2002).
Breaking row and column symmetries in matrix models. In Proceedings of the Sth International
Conference on Principles and Practice of Constraint Programming, pp. 462-476.

22. Flener, P., Frisch, A.M., Hnich, B., Kiziltan, Z., Miguel, 1., & Walsh, T. (2001). Matrix
modelling. In Proceedings of the Workshop on Modelling and Problem Formulation.

23. Focacci, F., & Milano, M. (2001). Global cut framework for removing symmetries. In
Proceedings of the 7th International Conference on Principles and Practice of Constraint
Programming, pp. 77-92.

24. Freuder, E.C. (1991). Eliminating interchangeable values in constraint satisfaction problems. In
Proceedings of the 9th National Conference on Artificial Intelligence, pp. 227-233.

25. Frisch, A., Miguel, 1., Kiziltan, Z., Hnich, B., & Walsh, T. (2003). Multiset ordering constraints.
In Proceedings of the 18th International Joint Conference on Artificial Intelligence, pp. 221-226.

26. Frisch, A.M., Hnich, B., Kiziltan, Z., Miguel, 1., & Walsh, T. (2002). Global constraints for
lexicographical orderings. In Proceedings of the 8th International Conference on Principles and
Practice of Constraint Programming, pp. 93-108.

27. Frisch, A.M., Jefferson, C., & Miguel, I. (2003). Constraints for breaking more row and column
symmetries. In Proceedings of the 9th International Conference on Principles and Practice of
Constraint Programming, pp. 318-332.

28. Gent, L.P. (2001). A symmetry breaking constraint for indistinguishable values. In Proceedings
of the 1st International Workshop on Symmetry in Constraint Satisfaction Problems.

29. Gent, L.P., Harvey, W., & Kelsey, T. (2002). Groups and constraints: Symmetry breaking during
search. In Proceedings of the 8th International Conference on Principles and Practice of
Constraint Programming, pp. 415-430.

@ Springer

Constraints (2006) 11: 221-267 267

30.

31.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Gent, L.P., Harvey, W., Kelsey, T., & Linton, S. (2003). Generic SBDD using computational
group theory. In Proceedings of the 9th International Conference on Principles and Practice of
Constraint Programming, pp. 333-347.

Gent, L.P., & Smith, B.M. (2000). Symmetry breaking during search in constraint programming.
In Proceedings of the 14th European Conference on Artificial Intelligence, pp. 599-603.

. Gervet, C. (1997). Interval propagation to reason about sets: Definition and implementation of a

practical language. Constraints, 1(3), 191-244.

. Kirkman, T.P. (1847). On a problem in combinatorics. Camb. Dublin Math. J. 2, 191-204.
. Kiziltan, Z. (2004). Symmetry Breaking Ordering Constraints. PhD thesis, Uppsala universitet.
. Law, Y.C. (2005). Using Constraints to Break Value Symmetries in Constraint Satisfaction

Problems. PhD thesis, The Chinese University of Hong Kong.

. Law, Y.C., & Lee, JJH.M. (2004). Global constraints for integer and set value precedence. In

Proceedings of the 10th International Conference on Principles and Practice of Constraint
Programming, pp. 362-376.

Law, Y.C., & Lee, J.H.M. (2005). Breaking value symmetries in matrix models using channeling
constraints. In Proceedings of the 20th Annual ACM Symposium on Applied Computing,
pp- 375-380.

Mackworth, A.K. (1977). Consistency in networks of relations. Artificial Intelligence, 8(1), 99—
118.

Meseguer, P., & Torras, C. (1999). Solving strategies for highly-symmetric CSPs. In Proceedings
of the 16th International Joint Conference on Artificial Intelligence, pp. 400-405.

Meseguer, P., & Torras, C. (2001). Exploiting symmetries within constraint satisfaction search.
Artificial Intelligence, 129(1-2), 133-163.

Mohr, R., & Masini, G. (1988). Good old discrete relaxation. In Proceedings of the 8th European
Conference on Artificial Intelligence, pp. 651-656.

Pierskalla, W.P. (1968). The multidimensional assignment problem. Operational Research, 16(2),
422-431.

Puget, J.-F. (1993). On the satisfiability of symmetrical constrained satisfaction problems. In
Proceedings of the 7th International Symposium on Methodologies for Intelligent Systems, pp.
350-361.

Puget, J.-F. (2002). Symmetry breaking revisited. In Proceedings of the 8th International
Conference on Principles and Practice of Constraint Programming, pp. 446—461.

Puget, J.-F. (2003). Symmetry breaking using stabilizers. In Proceedings of the 9th International
Conference on Principles and Practice of Constraint Programming, pp. 585-599.

Puget, J.-F. (2005). Symmetry breaking revisited. Constraints, 10(1), 23-46.

Roney-Dougal, C.M., Gent, L.P., Kelsey, T., & Linton, S. (2004). Tractable symmetry breaking
using restricted search trees. In Proceedings of the 16th European Conference on Artificial
Intelligence, pp. 211-215.

Smith, B.M., & Gent, I.P. (2001). Reducing symmetry in matrix models: SBDS v. constraints. In
Proceedings of the Workshop on Symmetry in Constraint Satisfaction Problems.

Van Hentenryck, P., Flener, P., Pearson, J., & Agren, M. (2003). Tractable symmetry breaking
for CSPs with interchangeable values. In Proceedings of the 18th International Joint Conference
on Artificial Intelligence, pp. 277-282.

@ Springer

	Symmetry Breaking Constraints for Value Symmetries in Constraint Satisfaction
	Abstract
	Introduction
	Background
	Constraint Satisfaction Problems
	Symmetries
	Variable Symmetries
	Value Symmetries

	Breaking Value Symmetries with Channeling
	Multi-aspect Assignment Problems
	Viewpoints for Modeling MAPs
	Aspect Viewpoints
	0/1 Viewpoint

	From Value Symmetries to Variable Symmetries
	From Aspect Viewpoint to 0/1 Viewpoint
	From Aspect Viewpoint to Aspect Viewpoint

	Symmetry Breaking Constraints in Two Viewpoints
	Inconsistent Symmetry Breaking Constraints in Two Viewpoints
	Aspect Priorities, Scanning Sequences, and Selections
	Generating Consistent Symmetry Breaking Constraints

	Value Precedence Constraints
	Integer and Set Value Precedence
	Value Precedence and Indistinguishable Values
	Constraints for Maintaining Value Precedence

	Propagation Algorithms for Value Precedence
	Integer Version
	Set Version

	Multiple Indistinguishable Values

	Experiments
	Graph Coloring
	Concert Hall Scheduling
	Social Golfer Problem
	Integer Model
	Set Model

	Steiner Triple System

	Related Work
	Concluding Remarks
	Contributions
	Discussion
	Future Work

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AardvarkPSMT
 /AceBinghamSH
 /AddisonLibbySH
 /AGaramond-Italic
 /AGaramond-Regular
 /AkbarPlain
 /Albertus-Bold
 /AlbertusExtraBold-Regular
 /AlbertusMedium-Italic
 /AlbertusMedium-Regular
 /AlfonsoWhiteheadSH
 /Algerian
 /AllegroBT-Regular
 /AmarilloUSAF
 /AmazoneBT-Regular
 /AmeliaBT-Regular
 /AmerigoBT-BoldA
 /AmerTypewriterITCbyBT-Medium
 /AndaleMono
 /AndyMacarthurSH
 /Animals
 /AnneBoleynSH
 /Annifont
 /AntiqueOlive-Bold
 /AntiqueOliveCompact-Regular
 /AntiqueOlive-Italic
 /AntiqueOlive-Regular
 /AntonioMountbattenSH
 /ArabiaPSMT
 /AradLevelVI
 /ArchitecturePlain
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMTBlack-Regular
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeLight
 /ArialUnicodeLight-Bold
 /ArialUnicodeLight-BoldItalic
 /ArialUnicodeLight-Italic
 /ArrowsAPlentySH
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /Asiana
 /AssadSadatSH
 /AvalonPSMT
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /AvantGardeITCbyBT-Demi
 /AvantGardeITCbyBT-DemiOblique
 /AvantGardeITCbyBT-Medium
 /AvantGardeITCbyBT-MediumOblique
 /BankGothicBT-Light
 /BankGothicBT-Medium
 /Baskerville-Bold
 /Baskerville-Normal
 /Baskerville-Normal-Italic
 /BaskOldFace
 /Bauhaus93
 /Bavand
 /BazookaRegular
 /BeauTerrySH
 /BECROSS
 /BedrockPlain
 /BeeskneesITC
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BenguiatITCbyBT-Bold
 /BenguiatITCbyBT-BoldItalic
 /BenguiatITCbyBT-Book
 /BenguiatITCbyBT-BookItalic
 /BennieGoetheSH
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardBoldCondensedBT-Regular
 /BernhardFashionBT-Regular
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /Bethel
 /BibiGodivaSH
 /BibiNehruSH
 /BKenwood-Regular
 /BlackadderITC-Regular
 /BlondieBurtonSH
 /BodoniBlack-Regular
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /BodoniBT-Bold
 /BodoniBT-BoldItalic
 /BodoniBT-Italic
 /BodoniBT-Roman
 /Bodoni-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Regular
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolFive
 /BookshelfSymbolFour
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /BookwomanDemiItalicSH
 /BookwomanDemiSH
 /BookwomanExptLightSH
 /BookwomanLightItalicSH
 /BookwomanLightSH
 /BookwomanMonoLightSH
 /BookwomanSwashDemiSH
 /BookwomanSwashLightSH
 /BoulderRegular
 /BradleyHandITC
 /Braggadocio
 /BrailleSH
 /BRectangular
 /BremenBT-Bold
 /BritannicBold
 /Broadview
 /Broadway
 /BroadwayBT-Regular
 /BRubber
 /Brush445BT-Regular
 /BrushScriptMT
 /BSorbonna
 /BStranger
 /BTriumph
 /BuckyMerlinSH
 /BusoramaITCbyBT-Medium
 /Caesar
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-Italic
 /CalligrapherRegular
 /CameronStendahlSH
 /Candy
 /CandyCaneUnregistered
 /CankerSore
 /CarlTellerSH
 /CarrieCattSH
 /CaslonOpenfaceBT-Regular
 /CassTaylorSH
 /CDOT
 /Centaur
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturyOldStyle-BoldItalic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Cezanne
 /CGOmega-Bold
 /CGOmega-BoldItalic
 /CGOmega-Italic
 /CGOmega-Regular
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /Charting
 /ChartreuseParsonsSH
 /ChaseCallasSH
 /ChasThirdSH
 /ChaucerRegular
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /ChildBonaparteSH
 /Chiller-Regular
 /ChuckWarrenChiselSH
 /ChuckWarrenDesignSH
 /CityBlueprint
 /Clarendon-Bold
 /Clarendon-Book
 /ClarendonCondensedBold
 /ClarendonCondensed-Bold
 /ClarendonExtended-Bold
 /ClassicalGaramondBT-Bold
 /ClassicalGaramondBT-BoldItalic
 /ClassicalGaramondBT-Italic
 /ClassicalGaramondBT-Roman
 /ClaudeCaesarSH
 /CLI
 /Clocks
 /ClosetoMe
 /CluKennedySH
 /CMBX10
 /CMBX5
 /CMBX7
 /CMEX10
 /CMMI10
 /CMMI5
 /CMMI7
 /CMMIB10
 /CMR10
 /CMR5
 /CMR7
 /CMSL10
 /CMSY10
 /CMSY5
 /CMSY7
 /CMTI10
 /CMTT10
 /CoffeeCamusInitialsSH
 /ColetteColeridgeSH
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CommercialPiBT-Regular
 /CommercialScriptBT-Regular
 /Complex
 /CooperBlack
 /CooperBT-BlackHeadline
 /CooperBT-BlackItalic
 /CooperBT-Bold
 /CooperBT-BoldItalic
 /CooperBT-Medium
 /CooperBT-MediumItalic
 /CooperPlanck2LightSH
 /CooperPlanck4SH
 /CooperPlanck6BoldSH
 /CopperplateGothicBT-Bold
 /CopperplateGothicBT-Roman
 /CopperplateGothicBT-RomanCond
 /CopticLS
 /Cornerstone
 /Coronet
 /CoronetItalic
 /Cotillion
 /CountryBlueprint
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CSSubscript
 /CSSubscriptBold
 /CSSubscriptItalic
 /CSSuperscript
 /CSSuperscriptBold
 /Cuckoo
 /CurlzMT
 /CybilListzSH
 /CzarBold
 /CzarBoldItalic
 /CzarItalic
 /CzarNormal
 /DauphinPlain
 /DawnCastleBold
 /DawnCastlePlain
 /Dekker
 /DellaRobbiaBT-Bold
 /DellaRobbiaBT-Roman
 /Denmark
 /Desdemona
 /Diploma
 /DizzyDomingoSH
 /DizzyFeiningerSH
 /DocTermanBoldSH
 /DodgenburnA
 /DodoCasalsSH
 /DodoDiogenesSH
 /DomCasualBT-Regular
 /Durian-Republik
 /Dutch801BT-Bold
 /Dutch801BT-BoldItalic
 /Dutch801BT-ExtraBold
 /Dutch801BT-Italic
 /Dutch801BT-Roman
 /EBT's-cmbx10
 /EBT's-cmex10
 /EBT's-cmmi10
 /EBT's-cmmi5
 /EBT's-cmmi7
 /EBT's-cmr10
 /EBT's-cmr5
 /EBT's-cmr7
 /EBT's-cmsy10
 /EBT's-cmsy5
 /EBT's-cmsy7
 /EdithDaySH
 /Elephant-Italic
 /Elephant-Regular
 /EmGravesSH
 /EngelEinsteinSH
 /English111VivaceBT-Regular
 /English157BT-Regular
 /EngraversGothicBT-Regular
 /EngraversOldEnglishBT-Bold
 /EngraversOldEnglishBT-Regular
 /EngraversRomanBT-Bold
 /EngraversRomanBT-Regular
 /EnviroD
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErasITC-Ultra
 /ErnestBlochSH
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EuroRoman
 /EuroRomanOblique
 /ExxPresleySH
 /FencesPlain
 /Fences-Regular
 /FifthAvenue
 /FigurineCrrCB
 /FigurineCrrCBBold
 /FigurineCrrCBBoldItalic
 /FigurineCrrCBItalic
 /FigurineTmsCB
 /FigurineTmsCBBold
 /FigurineTmsCBBoldItalic
 /FigurineTmsCBItalic
 /FillmoreRegular
 /Fitzgerald
 /Flareserif821BT-Roman
 /FleurFordSH
 /Fontdinerdotcom
 /FontdinerdotcomSparkly
 /FootlightMTLight
 /ForefrontBookObliqueSH
 /ForefrontBookSH
 /ForefrontDemiObliqueSH
 /ForefrontDemiSH
 /Fortress
 /FractionsAPlentySH
 /FrakturPlain
 /Franciscan
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FranklinUnic
 /FredFlahertySH
 /Freehand575BT-RegularB
 /Freehand591BT-RegularA
 /FreestyleScript-Regular
 /Frutiger-Roman
 /FTPMultinational
 /FTPMultinational-Bold
 /FujiyamaPSMT
 /FuturaBlackBT-Regular
 /FuturaBT-Bold
 /FuturaBT-BoldCondensed
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-ExtraBlack
 /FuturaBT-ExtraBlackCondensed
 /FuturaBT-ExtraBlackCondItalic
 /FuturaBT-ExtraBlackItalic
 /FuturaBT-Light
 /FuturaBT-LightItalic
 /FuturaBT-Medium
 /FuturaBT-MediumCondensed
 /FuturaBT-MediumItalic
 /GabbyGauguinSH
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Antiqua
 /Garamond-Bold
 /Garamond-Halbfett
 /Garamond-Italic
 /Garamond-Kursiv
 /Garamond-KursivHalbfett
 /Garcia
 /GarryMondrian3LightItalicSH
 /GarryMondrian3LightSH
 /GarryMondrian4BookItalicSH
 /GarryMondrian4BookSH
 /GarryMondrian5SBldItalicSH
 /GarryMondrian5SBldSH
 /GarryMondrian6BoldItalicSH
 /GarryMondrian6BoldSH
 /GarryMondrian7ExtraBoldSH
 /GarryMondrian8UltraSH
 /GarryMondrianCond3LightSH
 /GarryMondrianCond4BookSH
 /GarryMondrianCond5SBldSH
 /GarryMondrianCond6BoldSH
 /GarryMondrianCond7ExtraBoldSH
 /GarryMondrianCond8UltraSH
 /GarryMondrianExpt3LightSH
 /GarryMondrianExpt4BookSH
 /GarryMondrianExpt5SBldSH
 /GarryMondrianExpt6BoldSH
 /GarryMondrianSwashSH
 /Gaslight
 /GatineauPSMT
 /Gautami
 /GDT
 /Geometric231BT-BoldC
 /Geometric231BT-LightC
 /Geometric231BT-RomanC
 /GeometricSlab703BT-Bold
 /GeometricSlab703BT-BoldCond
 /GeometricSlab703BT-BoldItalic
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /GeometricSlab703BT-Medium
 /GeometricSlab703BT-MediumCond
 /GeometricSlab703BT-MediumItalic
 /GeometricSlab703BT-XtraBold
 /GeorgeMelvilleSH
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansBC
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSansCondensed-Bold
 /GillSansCondensed-Regular
 /GillSansExtraBold-Regular
 /GillSans-Italic
 /GillSansLight-Italic
 /GillSansLight-Regular
 /GillSans-Regular
 /GoldMinePlain
 /Gonzo
 /GothicE
 /GothicG
 /GothicI
 /GoudyHandtooledBT-Regular
 /GoudyOldStyle-Bold
 /GoudyOldStyle-BoldItalic
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleExtrabold-Regular
 /GoudyOldStyle-Italic
 /GoudyOldStyle-Regular
 /GoudySansITCbyBT-Bold
 /GoudySansITCbyBT-BoldItalic
 /GoudySansITCbyBT-Medium
 /GoudySansITCbyBT-MediumItalic
 /GraceAdonisSH
 /Graeca
 /Graeca-Bold
 /Graeca-BoldItalic
 /Graeca-Italic
 /Graphos-Bold
 /Graphos-BoldItalic
 /Graphos-Italic
 /Graphos-Regular
 /GreekC
 /GreekS
 /GreekSans
 /GreekSans-Bold
 /GreekSans-BoldOblique
 /GreekSans-Oblique
 /Griffin
 /GrungeUpdate
 /Haettenschweiler
 /HankKhrushchevSH
 /HarlowSolid
 /HarpoonPlain
 /Harrington
 /HeatherRegular
 /Hebraica
 /HeleneHissBlackSH
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HenryPatrickSH
 /Herald
 /HighTowerText-Italic
 /HighTowerText-Reg
 /HogBold-HMK
 /HogBook-HMK
 /HomePlanning
 /HomePlanning2
 /HomewardBoundPSMT
 /Humanist521BT-Bold
 /Humanist521BT-BoldCondensed
 /Humanist521BT-BoldItalic
 /Humanist521BT-Italic
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-Roman
 /Humanist521BT-RomanCondensed
 /IBMPCDOS
 /IceAgeD
 /Impact
 /Incised901BT-Bold
 /Incised901BT-Light
 /Incised901BT-Roman
 /Industrial736BT-Italic
 /Informal011BT-Roman
 /InformalRoman-Regular
 /Intrepid
 /IntrepidBold
 /IntrepidOblique
 /Invitation
 /IPAExtras
 /IPAExtras-Bold
 /IPAHighLow
 /IPAHighLow-Bold
 /IPAKiel
 /IPAKiel-Bold
 /IPAKielSeven
 /IPAKielSeven-Bold
 /IPAsans
 /ISOCP
 /ISOCP2
 /ISOCP3
 /ISOCT
 /ISOCT2
 /ISOCT3
 /Italic
 /ItalicC
 /ItalicT
 /JesterRegular
 /Jokerman-Regular
 /JotMedium-HMK
 /JuiceITC-Regular
 /JupiterPSMT
 /KabelITCbyBT-Book
 /KabelITCbyBT-Ultra
 /KarlaJohnson5CursiveSH
 /KarlaJohnson5RegularSH
 /KarlaJohnson6BoldCursiveSH
 /KarlaJohnson6BoldSH
 /KarlaJohnson7ExtraBoldCursiveSH
 /KarlaJohnson7ExtraBoldSH
 /KarlKhayyamSH
 /Karnack
 /Kartika
 /Kashmir
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KeplerStd-Black
 /KeplerStd-BlackIt
 /KeplerStd-Bold
 /KeplerStd-BoldIt
 /KeplerStd-Italic
 /KeplerStd-Light
 /KeplerStd-LightIt
 /KeplerStd-Medium
 /KeplerStd-MediumIt
 /KeplerStd-Regular
 /KeplerStd-Semibold
 /KeplerStd-SemiboldIt
 /KeystrokeNormal
 /Kidnap
 /KidsPlain
 /Kindergarten
 /KinoMT
 /KissMeKissMeKissMe
 /KoalaPSMT
 /KorinnaITCbyBT-Bold
 /KorinnaITCbyBT-KursivBold
 /KorinnaITCbyBT-KursivRegular
 /KorinnaITCbyBT-Regular
 /KristenITC-Regular
 /Kristin
 /KunstlerScript
 /KyotoSong
 /LainieDaySH
 /LandscapePlanning
 /Lapidary333BT-Bold
 /Lapidary333BT-BoldItalic
 /Lapidary333BT-Italic
 /Lapidary333BT-Roman
 /Latha
 /LatinoPal3LightItalicSH
 /LatinoPal3LightSH
 /LatinoPal4ItalicSH
 /LatinoPal4RomanSH
 /LatinoPal5DemiItalicSH
 /LatinoPal5DemiSH
 /LatinoPal6BoldItalicSH
 /LatinoPal6BoldSH
 /LatinoPal7ExtraBoldSH
 /LatinoPal8BlackSH
 /LatinoPalCond4RomanSH
 /LatinoPalCond5DemiSH
 /LatinoPalCond6BoldSH
 /LatinoPalExptRomanSH
 /LatinoPalSwashSH
 /LatinWidD
 /LatinWide
 /LeeToscanini3LightSH
 /LeeToscanini5RegularSH
 /LeeToscanini7BoldSH
 /LeeToscanini9BlackSH
 /LeeToscaniniInlineSH
 /LetterGothic12PitchBT-Bold
 /LetterGothic12PitchBT-BoldItal
 /LetterGothic12PitchBT-Italic
 /LetterGothic12PitchBT-Roman
 /LetterGothic-Bold
 /LetterGothic-BoldItalic
 /LetterGothic-Italic
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Regular
 /LibrarianRegular
 /LinusPSMT
 /Lithograph-Bold
 /LithographLight
 /LongIsland
 /LubalinGraphMdITCTT
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /LydianCursiveBT-Regular
 /Magneto-Bold
 /Mangal-Regular
 /Map-Symbols
 /MarcusHobbesSH
 /Mariah
 /Marigold
 /MaritaMedium-HMK
 /MaritaScript-HMK
 /Market
 /MartinMaxxieSH
 /MathTypeMed
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /MaudeMeadSH
 /MemorandumPSMT
 /Metro
 /Metrostyle-Bold
 /MetrostyleExtended-Bold
 /MetrostyleExtended-Regular
 /Metrostyle-Regular
 /MicrogrammaD-BoldExte
 /MicrosoftSansSerif
 /MikePicassoSH
 /MiniPicsLilEdibles
 /MiniPicsLilFolks
 /MiniPicsLilStuff
 /MischstabPopanz
 /MisterEarlBT-Regular
 /Mistral
 /ModerneDemi
 /ModerneDemiOblique
 /ModerneOblique
 /ModerneRegular
 /Modern-Regular
 /MonaLisaRecutITC-Normal
 /Monospace821BT-Bold
 /Monospace821BT-BoldItalic
 /Monospace821BT-Italic
 /Monospace821BT-Roman
 /Monotxt
 /MonotypeCorsiva
 /MonotypeSorts
 /MorrisonMedium
 /MorseCode
 /MotorPSMT
 /MSAM10
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MSReference1
 /MSReference2
 /MTEX
 /MTEXB
 /MTEXH
 /MT-Extra
 /MTGU
 /MTGUB
 /MTLS
 /MTLSB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MT-Symbol
 /MTSYN
 /Music
 /MVBoli
 /MysticalPSMT
 /NagHammadiLS
 /NealCurieRuledSH
 /NealCurieSH
 /NebraskaPSMT
 /Neuropol-Medium
 /NevisonCasD
 /NewMilleniumSchlbkBoldItalicSH
 /NewMilleniumSchlbkBoldSH
 /NewMilleniumSchlbkExptSH
 /NewMilleniumSchlbkItalicSH
 /NewMilleniumSchlbkRomanSH
 /News702BT-Bold
 /News702BT-Italic
 /News702BT-Roman
 /Newton
 /NewZuricaBold
 /NewZuricaItalic
 /NewZuricaRegular
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NigelSadeSH
 /Nirvana
 /NuptialBT-Regular
 /OCRAbyBT-Regular
 /OfficePlanning
 /OldCentury
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OpenSymbol
 /OttawaPSMT
 /OttoMasonSH
 /OzHandicraftBT-Roman
 /OzzieBlack-Italic
 /OzzieBlack-Regular
 /PalatiaBold
 /PalatiaItalic
 /PalatiaRegular
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /PalmSpringsPSMT
 /Pamela
 /PanRoman
 /ParadisePSMT
 /ParagonPSMT
 /ParamountBold
 /ParamountItalic
 /ParamountRegular
 /Parchment-Regular
 /ParisianBT-Regular
 /ParkAvenueBT-Regular
 /Patrick
 /Patriot
 /PaulPutnamSH
 /PcEncodingLowerSH
 /PcEncodingSH
 /Pegasus
 /PenguinLightPSMT
 /PennSilvaSH
 /Percival
 /PerfectRegular
 /Pfn2BlackItalic
 /Phantom
 /PhilSimmonsSH
 /Pickwick
 /PipelinePlain
 /Playbill
 /PoorRichard-Regular
 /Poster
 /PosterBodoniBT-Italic
 /PosterBodoniBT-Roman
 /Pristina-Regular
 /Proxy1
 /Proxy2
 /Proxy3
 /Proxy4
 /Proxy5
 /Proxy6
 /Proxy7
 /Proxy8
 /Proxy9
 /Prx1
 /Prx2
 /Prx3
 /Prx4
 /Prx5
 /Prx6
 /Prx7
 /Prx8
 /Prx9
 /Pythagoras
 /Raavi
 /Ranegund
 /Ravie
 /Ribbon131BT-Bold
 /RMTMI
 /RMTMIB
 /RMTMIH
 /RMTMUB
 /RMTMUH
 /RobWebsterExtraBoldSH
 /Rockwell
 /Rockwell-Bold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /RomanC
 /RomanD
 /RomanS
 /RomanT
 /Romantic
 /RomanticBold
 /RomanticItalic
 /Sahara
 /SalTintorettoSH
 /SamBarberInitialsSH
 /SamPlimsollSH
 /SansSerif
 /SansSerifBold
 /SansSerifBoldOblique
 /SansSerifOblique
 /Sceptre
 /ScribbleRegular
 /ScriptC
 /ScriptHebrew
 /ScriptS
 /Semaphore
 /SerifaBT-Black
 /SerifaBT-Bold
 /SerifaBT-Italic
 /SerifaBT-Roman
 /SerifaBT-Thin
 /Sfn2Bold
 /Sfn3Italic
 /ShelleyAllegroBT-Regular
 /ShelleyVolanteBT-Regular
 /ShellyMarisSH
 /SherwoodRegular
 /ShlomoAleichemSH
 /ShotgunBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SignatureRegular
 /Signboard
 /SignetRoundhandATT-Italic
 /SignetRoundhand-Italic
 /SignLanguage
 /Signs
 /Simplex
 /SissyRomeoSH
 /SlimStravinskySH
 /SnapITC-Regular
 /SnellBT-Bold
 /Socket
 /Sonate
 /SouvenirITCbyBT-Demi
 /SouvenirITCbyBT-DemiItalic
 /SouvenirITCbyBT-Light
 /SouvenirITCbyBT-LightItalic
 /SpruceByingtonSH
 /SPSFont1Medium
 /SPSFont2Medium
 /SPSFont3Medium
 /SpsFont4Medium
 /SPSFont4Medium
 /SPSFont5Normal
 /SPSScript
 /SRegular
 /Staccato222BT-Regular
 /StageCoachRegular
 /StandoutRegular
 /StarTrekNextBT-ExtraBold
 /StarTrekNextPiBT-Regular
 /SteamerRegular
 /Stencil
 /StencilBT-Regular
 /Stewardson
 /Stonehenge
 /StopD
 /Storybook
 /Strict
 /Strider-Regular
 /StuyvesantBT-Regular
 /StylusBT
 /StylusRegular
 /SubwayRegular
 /SueVermeer4LightItalicSH
 /SueVermeer4LightSH
 /SueVermeer5MedItalicSH
 /SueVermeer5MediumSH
 /SueVermeer6DemiItalicSH
 /SueVermeer6DemiSH
 /SueVermeer7BoldItalicSH
 /SueVermeer7BoldSH
 /SunYatsenSH
 /SuperFrench
 /SuzanneQuillSH
 /Swiss721-BlackObliqueSWA
 /Swiss721-BlackSWA
 /Swiss721BT-Black
 /Swiss721BT-BlackCondensed
 /Swiss721BT-BlackCondensedItalic
 /Swiss721BT-BlackExtended
 /Swiss721BT-BlackItalic
 /Swiss721BT-BlackOutline
 /Swiss721BT-Bold
 /Swiss721BT-BoldCondensed
 /Swiss721BT-BoldCondensedItalic
 /Swiss721BT-BoldCondensedOutline
 /Swiss721BT-BoldExtended
 /Swiss721BT-BoldItalic
 /Swiss721BT-BoldOutline
 /Swiss721BT-Italic
 /Swiss721BT-ItalicCondensed
 /Swiss721BT-Light
 /Swiss721BT-LightCondensed
 /Swiss721BT-LightCondensedItalic
 /Swiss721BT-LightExtended
 /Swiss721BT-LightItalic
 /Swiss721BT-Roman
 /Swiss721BT-RomanCondensed
 /Swiss721BT-RomanExtended
 /Swiss721BT-Thin
 /Swiss721-LightObliqueSWA
 /Swiss721-LightSWA
 /Swiss911BT-ExtraCompressed
 /Swiss921BT-RegularA
 /Syastro
 /Sylfaen
 /Symap
 /Symath
 /SymbolGreek
 /SymbolGreek-Bold
 /SymbolGreek-BoldItalic
 /SymbolGreek-Italic
 /SymbolGreekP
 /SymbolGreekP-Bold
 /SymbolGreekP-BoldItalic
 /SymbolGreekP-Italic
 /SymbolGreekPMono
 /SymbolMT
 /SymbolProportionalBT-Regular
 /SymbolsAPlentySH
 /Symeteo
 /Symusic
 /Tahoma
 /Tahoma-Bold
 /TahomaItalic
 /TamFlanahanSH
 /Technic
 /TechnicalItalic
 /TechnicalPlain
 /TechnicBold
 /TechnicLite
 /Tekton-Bold
 /Teletype
 /TempsExptBoldSH
 /TempsExptItalicSH
 /TempsExptRomanSH
 /TempsSwashSH
 /TempusSansITC
 /TessHoustonSH
 /TexCatlinObliqueSH
 /TexCatlinSH
 /Thrust
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-ExtraBold
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-Roman
 /Times-Semibold
 /Times-SemiboldItalic
 /TimesUnic-Bold
 /TimesUnic-BoldItalic
 /TimesUnic-Italic
 /TimesUnic-Regular
 /TonyWhiteSH
 /TransCyrillic
 /TransCyrillic-Bold
 /TransCyrillic-BoldItalic
 /TransCyrillic-Italic
 /Transistor
 /Transitional521BT-BoldA
 /Transitional521BT-CursiveA
 /Transitional521BT-RomanA
 /TranslitLS
 /TranslitLS-Bold
 /TranslitLS-BoldItalic
 /TranslitLS-Italic
 /TransRoman
 /TransRoman-Bold
 /TransRoman-BoldItalic
 /TransRoman-Italic
 /TransSlavic
 /TransSlavic-Bold
 /TransSlavic-BoldItalic
 /TransSlavic-Italic
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /TribuneBold
 /TribuneItalic
 /TribuneRegular
 /Tristan
 /TrotsLight-HMK
 /TrotsMedium-HMK
 /TubularRegular
 /Tunga-Regular
 /Txt
 /TypoUprightBT-Regular
 /UmbraBT-Regular
 /UmbrellaPSMT
 /UncialLS
 /Unicorn
 /UnicornPSMT
 /Univers
 /UniversalMath1BT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Italic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-CondensedOblique
 /UniversExtended-Bold
 /UniversExtended-BoldItalic
 /UniversExtended-Medium
 /UniversExtended-MediumItalic
 /Univers-Italic
 /UniversityRomanBT-Regular
 /UniversLightCondensed-Italic
 /UniversLightCondensed-Regular
 /Univers-Medium
 /Univers-MediumItalic
 /URWWoodTypD
 /USABlackPSMT
 /USALightPSMT
 /Vagabond
 /Venetian301BT-Demi
 /Venetian301BT-DemiItalic
 /Venetian301BT-Italic
 /Venetian301BT-Roman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /VinetaBT-Regular
 /Vivaldii
 /VladimirScript
 /VoguePSMT
 /Vrinda
 /WaldoIconsNormalA
 /WaltHarringtonSH
 /Webdings
 /Weiland
 /WesHollidaySH
 /Wingdings-Regular
 /WP-HebrewDavid
 /XavierPlatoSH
 /YuriKaySH
 /ZapfChanceryITCbyBT-Bold
 /ZapfChanceryITCbyBT-Medium
 /ZapfDingbatsITCbyBT-Regular
 /ZapfElliptical711BT-Bold
 /ZapfElliptical711BT-BoldItalic
 /ZapfElliptical711BT-Italic
 /ZapfElliptical711BT-Roman
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZappedChancellorMedItalicSH
 /ZurichBT-BlackExtended
 /ZurichBT-Bold
 /ZurichBT-BoldCondensed
 /ZurichBT-BoldCondensedItalic
 /ZurichBT-BoldItalic
 /ZurichBT-ExtraCondensed
 /ZurichBT-Italic
 /ZurichBT-ItalicCondensed
 /ZurichBT-Light
 /ZurichBT-LightCondensed
 /ZurichBT-Roman
 /ZurichBT-RomanCondensed
 /ZurichBT-RomanExtended
 /ZurichBT-UltraBlackExtended
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

