
Finite Domain Bounds Consistency Revisited

C.W. Choi1, W. Harvey2, J.H.M. Lee1, and P.J. Stuckey3

1 Department of Computer Science and Engineering, The Chinese University of Hong
Kong, Shatin, N.T., Hong Kong SAR, China

Email: {cwchoi,jlee}@cse.cuhk.edu.hk
2 CrossCore Optimization Ltd, London, United Kingdom

Email: warwick.harvey@crosscoreop.com
3 NICTA Victoria Laboratory, Department of Computer Science & Software

Engineering, University of Melbourne, 3010, Australia
Email: pjs@cs.mu.oz.au

Abstract. A widely adopted approach to solving constraint satisfaction
problems combines systematic tree search with constraint propagation
for pruning the search space. Constraint propagation is performed by
propagators implementing a certain notion of consistency. Bounds con-
sistency is the method of choice for building propagators for arithmetic
constraints and several global constraints in the finite integer domain.
However, there has been some confusion in the definition of bounds con-
sistency and of bounds propagators. We clarify the differences among
the three commonly used notions of bounds consistency in the literature.
This serves as a reference for implementations of bounds propagators by
defining (for the first time) the a priori behavior of bounds propagators
on arbitrary constraints.

1 Introduction

One widely-adopted approach to solving CSPs combines backtracking tree search
with constraint propagation. This framework is realized in constraint program-
ming systems, such as ECLiPSe [4], SICStus Prolog [23] and ILOG Solver [10],
which have been successfully applied to many real-life industrial applications.

Constraint propagation, based on local consistency algorithms, removes in-
feasible values from the domains of variables to reduce the search space. The
most successful consistency technique was arc consistency [15], which ensures
that for each binary constraint, every value in the domain of one variable has a
supporting value in the domain of the other variable that satisfies the constraint.

A natural extension of arc consistency for constraints of more than two vari-
ables is domain consistency [24] (also known as generalized arc consistency and
hyper-arc consistency). Checking domain consistency is NP-hard even for linear
equations, an important kind of constraints.

To avoid this problem weaker forms of consistency were introduced for han-
dling constraints with large numbers of variables. The most successful one for
linear arithmetic constraints has been bounds consistency (sometimes called in-
terval consistency). Unfortunately there are three commonly used but incom-
patible definitions of bounds consistency in the literature. This is confusing to

practitioners in the design and implementation of efficient bounds consistency
algorithms, as well as for users of constraint programming systems claiming to
support bounds consistency. We clarify the three existing definitions of bounds
consistency and the differences between them.

Propagators are functions implementing certain notions of consistency to per-
form constraint propagation. For simplicity, we refer to propagators implement-
ing bounds consistency as bounds propagators. We aim to formalize (for the first
time) precisely the operational semantics of various kinds of bounds propagators
for arbitrary constraints. The precise semantics would serve as the basis for all
implementations of bounds propagators. We also study how bounds propagators
are used in practice.

2 Propagation Based Constraint Solving

We consider integer constraint solving using constraint propagation. Let Z de-
note the integers, and R denote the reals.

We consider a given (finite) set of integer variables V , which we shall some-
times interpret as real variables. Each variable is associated with a finite set of
possible values, defined by the domain. A domain D is a complete mapping from
a set of variables V to finite sets of integers. The intersection of two domains
D and D′, denoted D u D′, is defined by the domain D′′(v) = D(v) ∩ D′(v)
for all v ∈ V . A domain D is stronger than a domain D′, written D v D′,
iff D(v) ⊆ D′(v) for all variables v ∈ V . A domain D is equal to a domain
D′, denoted D = D′, iff D(v) = D′(v) for all variables v ∈ V . A domain D

is stronger than (equal to) a domain D′ w.r.t. variables V , denoted D vV D′

(resp. D =V D′), iff D(v) ⊆ D′(v) (resp. D(v) = D′(v)) for all v ∈ V .
Let vars be the function that returns the set of variables appearing in an

expression or constraint. A valuation θ is a mapping of variables to values (inte-
gers or reals), written {x1 7→ d1, . . . , xn 7→ dn}. Define vars(θ) = {x1, . . . , xn}.
In an abuse of notation, we define a valuation θ to be an element of a domain
D, written θ ∈ D, if θ(v) ∈ D(v) for all v ∈ vars(θ). Given an expression e,
θ(e) is obtained by replacing each v ∈ vars(e) by θ(v) and calculating the value
of the resulting variable free expression.

We are interested in determining the infimums and supremums of expres-
sions with respect to some domain D. Define the infimum and supremum of
an expression e with respect to a domain D as infD e = inf{θ(e)|θ ∈ D} and
supD e = sup{θ(e)|θ ∈ D} respectively. A range is a contiguous set of integers,
and we use range notation: [l .. u] to denote the range {d ∈ Z | l ≤ d ≤ u}
when l and u are integers. A domain is a range domain if D(x) is a range for all
x. Let D′ = range(D) be the smallest range domain containing D, i.e. domain
D′(x) = [infD x .. supD x] for all x ∈ V .

A constraint places restriction on the allowable values for a set of variables
and is usually written in well understood mathematical syntax. More formally, a
constraint c is a relation expressed using available function and relation symbols
in a specific constraint language. For the purpose of this paper, we assume the

2

usual integer interpretation of arithmetic constraints and logical operators such
as ¬, ∧, ∨, ⇒, and ⇔. We call valuation θ an integer (resp. real) solution of c

iff vars(θ) = vars(c) and Z |= θ(c) (R |= θ(c)). We denote by solns(c) all the
integer solutions of c.

We can understand a domain D as a constraint: D ↔
∧

v∈V

∨

d∈D(v) v = d.

A constraint satisfaction problem (CSP) consists of a set of constraints read as
conjunction.

A propagator f is a monotonically decreasing function from domains to do-
mains, i.e. D v D′ implies that f(D) v f(D′), and f(D) v D. A propagator f

is correct for constraint c iff for all domains D

{θ | θ ∈ D} ∩ solns(c) = {θ | θ ∈ f(D)} ∩ solns(c)

This is a weak restriction since, for example, the identity propagator is correct
for all constraints c.

Typically we model a CSP as a conjunction of constraints ∧n
i=1ci. We provide

a propagator fi for each constraint ci where fi is correct and checking for ci.
The propagation solver is then applied on the set F = {fi | 1 ≤ i ≤ n}. The
consideration of individual constraints is crucial. By design (of what constraints
are supported in a constraint language), we can provide efficient implementa-
tions of propagators for particular constraints, but not for arbitrary ones. A
human modeler should exploit this fact in constructing efficient formulations of
problems.

A propagation solver for a set of propagators F and current domain D,
solv (F, D), repeatedly applies all the propagators in F starting from domain
D until there is no further change in the resulting domain. In other words,
solv (F, D) returns a new domain defined by solv(F, D) = gfp(iterF)(D) where
iterF (D) = uf∈F f(D), and gfp denotes the greatest fixpoint w.r.t. v lifted to
functions.

Propagators are often linked to some notion of implementing some consis-
tency for a particular constraint. A propagator f implements a consistency C
for a constraint c, if D′ = solv({f}, D) ensures that D′ is the greatest domain
D′ v D that is C consistent for c.1 Note that f only needs to satisfy this property
at its fixpoints.

Definition 1 A domain D is domain consistent for a constraint c where vars(c) =
{x1, . . . , xn}, if for each variable xi, 1 ≤ i ≤ n and for each di ∈ D(xi) there exist
integers dj with dj ∈ D(xj), 1 ≤ j ≤ n, j 6= i such that θ = {x1 7→ d1, . . . , xn 7→
dn} is an integer solution of c, i.e. Z |=θ c.

We can now define a domain propagator, dom(c), for a constraint c as:

dom(c)(D)(v) =

{

{θ(v) | θ ∈ D ∧ θ ∈ solns(c)} where v ∈ vars(c)
D(v) otherwise

1 This assumes that such a greatest domain exists. This holds for all sensible notions
of consistency, including all those in this paper.

3

From the definition, it is clear that the domain propagator dom(c) imple-
ments domain consistency for the constraint c. The domain propagator dom(c)
is clearly idempotent.

3 Different Notions of Bounds Consistency

The basis of bounds consistency is to relax the consistency requirement to apply
only to the lower and upper bounds of the domain of each variable x. There
are three incompatible definitions of bounds consistency used in the literature,
all for constraints with finite integer domains. For bounds(D) consistency each
bound of the domain of a variable has integer support among the values of the
domain of each other variable occurring in the same constraint. For bounds(Z)
consistency the integer supporting values need only be within the range from
the lower to upper bounds of the other variables. For bounds(R) consistency the
supports can be real values within the range from the lower to upper bounds of
the other variables.

Definition 2 A domain D is bounds(D) consistent for a constraint c where
vars(c) = {x1, . . . , xn}, if for each variable xi, 1 ≤ i ≤ n and for each di ∈
{infD xi, supD xi} there exist integers dj with dj ∈ D(xj), 1 ≤ j ≤ n, j 6= i

such that θ = {x1 7→ d1, . . . , xn 7→ dn} is an integer solution of c.

Definition 3 A domain D is bounds(Z) consistent for a constraint c where
vars(c) = {x1, . . . , xn}, if for each variable xi, 1 ≤ i ≤ n and for each di ∈
{infD xi, supD xi} there exist integers dj with infD xj ≤ dj ≤ supD xj , 1 ≤
j ≤ n, j 6= i such that θ = {x1 7→ d1, . . . , xn 7→ dn} is an integer solution of c.

Definition 4 A domain D is bounds(R) consistent for a constraint c where
vars(c) = {x1, . . . , xn}, if for each variable xi, 1 ≤ i ≤ n and for each di ∈
{infD xi, supD xi} there exist real numbers dj with infD xj ≤ dj ≤ supD xj,
1 ≤ j ≤ n, j 6= i such that θ = {x1 7→ d1, . . . , xn 7→ dn} is a real solution of c.

Definition 2 is used in for example for the two definitions in Dechter [6, pages
73 & 435]; Frisch et al. [7]; and implicitly in Lallouet et al. [12]. Definition 3 is
far more widely used appearing in for example Van Hentenryck, Saraswat, &
Deville [24]; Puget [19]; Régin & Rueher [21]; Quimper et al. [20]; and SICStus
Prolog [23]. Definition 4 appears in for example Marriott & Stuckey [17]; Schulte
& Stuckey [22]; Harvey & Schimpf [9]; and Zhang & Yap [27]. Apt [1] gives both
Definitions 3 (called interval consistency) and 4 (called bounds consistency).

3.1 General Relationship and Properties

Let us now examine the differences of the definitions. The following relationship
between the three notions of bounds consistency is clear from the definition.

Proposition 1. If D is bounds(D) consistent for c it is bounds(Z) consistent
for c. If D is bounds(Z) consistent for c it is bounds(R) consistent for c. 2

4

Example 1. Consider the constraint clin ≡ x1 = 3x2 + 5x3. The domain D2

defined by D2(x1) = {2, 3, 4, 6, 7}, D2(x2) = [0 .. 2], and D2(x3) = [0 .. 1] is
bounds(R) consistent (but not bounds(D) consistent or bounds(Z) consistent)
w.r.t. clin .

The domain D3 defined by D3(x1) = {3, 4, 6}, D3(x2) = [0 .. 2], and D3(x3) =
[0 .. 1] is bounds(Z) and bounds(R) consistent (but not bounds(D) consistent)
w.r.t. clin .

The domain D4 defined by D4(x1) = {3, 4, 6}, D4(x2) = [1 .. 2], and D4(x3) =
{0} is bounds(D), bounds(Z) and bounds(R) consistent w.r.t. clin .

The relationship between the bounds(Z) and bounds(D) consistency is straight-
forward to explain.

Proposition 2. D is bounds(Z) consistent with c iff range(D) is bounds(D)
consistent with c. 2

The second definition of bounds consistency in Dechter [6, page 435] works
only with range domains. By Proposition 2, the definition coincides with both
bounds(Z) and bounds(D) consistency. Similarly, Apt’s [1] interval consistency
is also equivalent to bounds(D) consistency. Finite domain constraint solvers
do not always operate on range domains, but rather they use a mix of propa-
gators implementing different kinds of consistencies, both domain and bounds
consistency.

Example 2. Consider the same setting from Example 1. Now range(D3) is both
bounds(D) and bounds(Z) consistent with clin . As noted in Example 1, D3 is
only bounds(Z) consistent but not bounds(D) consistent with clin .

Both bounds(R) and bounds(Z) consistency depend only on the upper and
lower bounds of the domains of the variables under consideration.

Proposition 3. For α = R or α = Z and constraint c, D is bounds(α) consis-
tent for c iff range(D) is bounds(α) consistent for c. 2

This is not the case for bounds(D) consistency, which suggests that, strictly,
it is not really a form of bounds consistency. Indeed, most existing implementa-
tions of bounds propagators make use of Proposition 3 to avoid re-executing a
bounds propagator unless the lower or upper bound of a variable involved in the
propagator changes.

Example 3. Consider the same setting from Example 1 again. Both D3 and
range(D3) are bounds(Z) and bounds(R) consistency with clin , but only range(D3)
is bounds(D) consistent with clin .

There are significant problems with the stronger bounds(Z) (and bounds(D))
consistency. In particular, for linear equations it is NP-complete to check bounds(Z)
(and bounds(D)) consistency, while for bounds(R) consistency it is only linear
time (e.g. see Schulte & Stuckey [22]).

5

Proposition 4. Checking bounds(Z), bounds(D), or domain consistency of a
domain D with a linear equality a1x1 + · · · anxn = a0 is NP-complete, where
{a0, . . . , an} are integer constants and {x1, . . . , xn} are integer variables. 2

There are other constraints where bounds(R) consistency is less meaningful.
A problem of bounds(R) consistency is that it may not be clear how to interpret
an integer constraint in the reals.

3.2 Conditions for Equivalence

Why has the confusion between the various definitions of bounds consistency not
been noted before? In fact, for many constraints, the definitions are equivalent.

Following the work of Zhang & Yap [27] we define n-ary monotonic con-
straints as a generalization of linear inequalities

∑n

i=1 aixi ≤ a0. Let θ ∈R D

denote that θ(v) ∈ R and infD v ≤ θ(v) ≤ supD v for all v ∈ vars(θ).

Definition 5 An n-ary constraint c is monotonic with respect to variable xi ∈
vars(c) iff there exists a total ordering ≺i on D(xi) such that if θ ∈R D is a
real solution of c, then so is any θ′ ∈R D where θ′(xj) = θ(xj) for j 6= i and
θ′(xi) �i θ(xi). An n-ary constraint c is monotonic iff c is monotonic with
respect to all variables in vars(c).

The above definition of monotonic constraints is equivalent to but simpler
than that of Zhang & Yap [27], see Choi et al. [5] for justification and explanation.
Examples of monotonic constraints are: all linear inequalities, and x1 × x2 ≤
x3 with non-negative domains, i.e. infD(xi) ≥ 0. For this class of constraints,
bounds(R), bounds(Z) and bounds(D) consistency are equivalent to domain
consistency.

Proposition 5. Let c be an n-ary monotonic constraint. Then bounds(R), bounds(Z),
bounds(D) and domain consistency for c are all equivalent. 2

Although linear disequality constraints are not monotonic, they are equiva-
lent for all the forms of bounds consistency because they prune so weakly.

Proposition 6. Let c ≡ Σn
i=1aixi 6= a0. Then bounds(R), bounds(Z) and

bounds(D) consistency for c are equivalent. 2

All forms of bounds consistency are also equivalent for binary monotonic
functional constraints, such as a1x1 + a2x2 = a0, x1 = ax2

2 ∧ x2 ≥ 0, or x1 =
1 + x2 + x2

2 + x2
3 ∧ x2 ≥ 0.

Proposition 7. Let c be a constraint with vars(c) = {x1, x2}, where c ≡ x1 =
g(x2) and g is a bijective and monotonic function. Then bounds(R), bounds(Z)
and bounds(D) consistency for c are equivalent. 2

For linear equations with at most one non-unit coefficient, we can show that
bounds(R) and bounds(Z) consistency are equivalent.

6

Proposition 8. Let c ≡ Σn
i=1aixi = a0, where |ai| = 1, 2 ≤ i ≤ n, a0 and a1

integral. Then bounds(R) and bounds(Z) consistency for c are equivalent. 2

Even for linear equations with all unit coefficients, bounds(D) consistency is
different from bounds(Z) and bounds(R) consistency.

In summary, for many of the commonly used constraints, the notions of
bounds consistency are equivalent, but clearly not for all, for example clin .

4 Different Types of Bounds Propagators

In practice, propagators implementing bounds(Z) and/or bounds(R) consis-
tency for individual kinds of constraints are well known. Propagators imple-
menting bounds(Z) consistency (and not bounds(D) or bounds(R) consistency)
are defined for the alldifferent constraint in e.g. Puget [19], Mehlhorn &
Thiel [18], and López-Ortiz et al. [14]; for the global cardinality constraint in
e.g. Quimper et al. [20], and Katriel & Thiel [11]; and for the global constraint
combining the sum and difference constraints in Régin & Rueher [21]. Propa-
gators implementing bounds(R) consistency for common arithmetic constraints
are defined in e.g. Schulte & Stuckey [22].

On the other hand, propagators implementing bounds(D) consistency ex-
plicitly are rare. The case constraint in SICStus Prolog [23] allows compact
representation of an arbitrary constraint as a directed acyclic graph. The case

constraint implements domain consistency by default, but there are options to
make the constraint prune only the bounds of variables using bounds(D) consis-
tency. We can also enforce the multibound-consistency operators of Lallouet et
al. [12] to implement bounds(D) consistency by using only a single cluster.

In the following, we give a priori definitions of the different types of bounds
propagators for an arbitrary constraint. Although these definitions are straight-
forward to explain, we are not aware of any previous definition.

Bounds(D) Propagator We can define bounds(D) propagators straightforwardly.
Let c be an arbitrary constraint, then a bounds(D) propagator for c, dbnd(c),
can defined as dbnd (c)(D) = D u range(dom(c)(D)). This definition is also
given in Lallouet et al. [12]. There they implicitly define bounds consistency as
the result of applying this propagator.

The bounds(D) propagator dbnd (c) implements bounds(D) consistency for
the constraint c.

Theorem 1. Given a constraint c, if D′ = dbnd (c)(D), then D′ is the greatest
domain D′ v D that is bounds(D) consistent for c. 2

Like the domain propagator dom(c), the bounds(D) propagator dbnd(c) is
clearly idempotent (as a result of Theorem 1).

7

Bounds(Z) Propagator We can also define bounds(Z) propagators straightfor-
wardly. Let c be an arbitrary constraint, then a bounds(Z) propagator for c,
zbnd(c), can be defined as zbnd(c)(D) = D u range(dom(c)(range(D))).

Unlike the bounds(D) propagator dbnd(c), the bounds(Z) propagator zbnd(c)
is not idempotent.

Theorem 2. zbnd(c) implements bounds(Z) consistency for constraint c. 2

Bounds(R) Propagator The basis of a bounds(R) propagator is to relax the
integral requirement to reals. We define a real domain D̂ as a mapping from the
set of variables V to sets of reals. We also define a valuation θ to be an element
of a real domain D̂, written θ ∈ D̂, if θ(vi) ∈ D̂(vi) for all vi ∈ vars(θ). We
can similarly extend the notions of infimum inf

D̂
e and supremum sup

D̂
e of an

expression e with respect to real domain D̂.
We will define the behavior of bounds(R) propagators by extending the def-

inition of domain propagators to reals. Given a constraint c and a real domain
D̂, define the real domain propagator, rdom(c), as

rdom(c)(D̂)(v) =

{

{θ(v) | θ ∈ D̂ ∧ R |=θ c} where v ∈ vars(c)

D̂(v) otherwise

We use interval notation, [l—u], to denote the set {d ∈ R | l ≤ d ≤
u} where l and u are reals. Let D̂ = real(D) be the real domain D̂(v) =
[infD(v)— supD(v)] for all v ∈ V . Let D′ = integral(D̂) be the domain D′(v) =
[

dinf
D̂

(v)e .. bsup
D̂

(v)c
]

for all v ∈ V .
We can now define bounds(R) propagators straightforwardly. This is the first

time (that we are aware of) that this has been formalized. Let c be an arbitrary
constraint, then the bounds(R) propagator for c, rbnd(c) is defined as

rbnd(c)(D) = D u integral(rdom(c)(real(D))).

Similar to bounds(Z) propagators, the previous example clearly shows that
bounds(R) propagators are not idempotent. The bounds(R) propagator does
not guarantee bounds(R) consistency except at its fixpoints.

Theorem 3. rbnd(c) implements bounds(R) consistency for constraint c. 2

5 Related Work

In this paper we consider integer constraint solving. Definitions of bounds con-
sistency for real constraints are also numerous, but their similarities and dif-
ferences have been noted and explained by e.g. Benhamou et al. [2]. Indeed,
we can always interpret integers as reals and apply bounds consistency for real
constraints plus appropriate rounding, e.g. CLP(BNR) [3]. However, as we have
pointed out in Section 3.1, there exist integer constraints for which propagation
is less meaningful when interpreted as reals.

8

Lhomme [13] defines arc B-consistency, which formalizes bounds propaga-
tion for both integer and real constraints. He proposes an efficient propagation
algorithm implementing arc B-consistency with complexity analysis and exper-
imental results. However, his study focuses on constraints defined by numeric
relations (i.e. numeric CSPs).

Walsh [25] introduces several new forms of bounds consistency that extend
the notion of (i, j)-consistency and relational consistency. He gives theoretical
analysis comparing the propagation strength of these new consistency forms.

Maher [16] introduces the notion of propagation completeness with a general
framework to unify a wide range of consistency. These include hull consistency of
real constraints and bounds(Z) consistency of integer constraints. Propagation
completeness aims to capture the timeliness property of propagation.

The application of bounds consistency is not limited to integer and real con-
straints. Bounds consistency has been formalized for solving set constraints [8],
and more recently, multiset constraints [26].

6 Conclusion

The contributions of this paper are two-fold. First, we point out that the three
commonly used definitions of bounds consistency are incompatible. We clarify
their differences and study what is actually implemented in existing systems. We
show that for several types of constraints, bounds(R), bounds(Z) and bounds(D)
consistency are equivalent. This explains partly why the discrepancies among
the definitions were not noticed earlier. Second, we give a priori definitions of
propagators that implement the three notions of bounds consistency, which can
serve as the basis for verifying all implementations of bounds propagators.

Acknowledgements

We thank the anonymous referees for their constructive comments. The work de-
scribed in this paper was substantially supported by grant number CUHK4219/04E
from the Research Grants Council of Hong Kong SAR.

References

1. K. Apt. Principles of Constraint Programming. Cambridge University Press, 2003.
2. F. Benhamou, D. McAllester, and P. Van Hentenryck. CLP(Intervals) revisited.

In ILPS 1994, pages 124–138, 1994.
3. F. Benhamou and W. J. Older. Applying interval arithmetic to real, integer, and

boolean constraints. JLP, 32(1):1–24, 1997.
4. A. Cheadle, W. Harvey, A. Sadler, J. Schimpf, K. Shen, and M. Wallace. ECLiPSe:

An introduction. Technical Report IC-Parc-03-1, IC-Parc, Imperial College Lon-
don, 2003.

5. C. W. Choi, W. Harvey, J. H. M. Lee, and P. J. Stuckey. A
note on the definition of constraint monotonicity. Available from
http://www.cse.cuhk.edu.hk/∼cwchoi/monotonicity.pdf, 2004.

9

6. R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.
7. A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, and T. Walsh. Global constraints for

lexicographic orderings. In CP2002, pages 93–108. Springer-Verlag, 2002.
8. C. Gervet. Interval propagation to reason about sets: Definition and implementa-

tion of a practical language. Constraints, 1(3):191–244, 1997.
9. W. Harvey and J. Schimpf. Bounds consistency techniques for long linear con-

straints. In Proceedings of TRICS: Techniques foR Implementing Constraint pro-
gramming Systems, pages 39–46, 2002.

10. ILOG. ILOG Solver 5.2: User’s Manual, 2001.
11. I. Katriel and S. Thiel. Fast bound consistency for the global cardinality constraint.

In CP 2003, pages 437–451, 2003.
12. A. Lallouet, A. Legtchenko, T. Dao, and A. Ed-Dbali. Intermediate (learned) con-

sistencies. Research Report RR-LIFO-2003-04, Laboratoire d’Informatique Fonda-
mentale d’Orléans, 2003.

13. O. Lhomme. Consistency techniques for numeric CSPs. In IJCAI 93, pages 232–
238, 1993.

14. A. López-Ortiz, C.-G. Quimper, J. Tromp, and P. van Beek. A fast and simple
algorithm for bounds consistency of the alldifferent constraint. In Proceedings of
the 18th International Joint Conference on Artificial Intelligence (IJCAI 2003),
pages 245–250, 2003.

15. A. K. Mackworth. Consistency in networks of relations. Artificial Intelligence,
8(1):99–118, 1977.

16. M. Maher. Propagation completeness of reactive constraints. In ICLP 2002, pages
148–162, 2002.

17. K. Marriott and P. J. Stuckey. Programming with Constraints: an Introduction.
The MIT Press, 1998.

18. K. Mehlhorn and S. Thiel. Faster algorithms for bound-consistency of the sorted-
ness and the alldifferent constraint. In CP2000, pages 306–319, 2000.

19. J.-F. Puget. A fast algorithm for the bound consistency of alldiff constraints. In
Proceedings of the 15th National Conference on Artificial Intelligence (AAAI 98),
pages 359–366, 1998.

20. C.-G. Quimper, P. van Beek, A. López-Ortiz, A. Golynski, and S. B. Sadjad. An
efficient bounds consistency algorithm for the global cardinality constraint. In CP
2003, pages 600–614, 2003.

21. J.-C. Régin and M. Rueher. A global constraint combining a sum constraint and
difference constraints. In CP 2000, pages 384–395, 2000.

22. C. Schulte and P. J. Stuckey. When do bounds and domain propagation lead
to the same search space. In Proceedings of the 3rd International Conference on
Principles and Practice of Declarative Programming (PPDP 2001), pages 115–126,
2001.

23. SICStus Prolog. SICStus Prolog User’s Manual, Release 3.10.1, 2003.
24. P. Van Hentenryck, V. Saraswat, and Y. Deville. Design, implementation and

evaluation of the constraint language cc(FD). Journal of Logic Programming, 37(1–
3):139–164, 1998.

25. T. Walsh. Relational consistencies. Research Report APES-28-2001, APES Re-
search Group, 2001.

26. T. Walsh. Consistency and propagation with multiset constraints: A formal view-
point. In Proceedings of the 9th International Conference on Principles and Prac-
tice of Constraint Programming (CP 2003), pages 724–738, 2003.

27. Y. Zhang and R. H. C. Yap. Arc consistency on n-ary monotonic and linear
constraints. In CP 2000, pages 470–483, 2000.

10

