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Abstract

This paper develops a fuzzy constraint based model for bilateral multi-issue negotiation in trading
environments. In particular, we are concerned with the principled negotiation approach in which
agents seek to strike a fair deal for both parties, but which, nevertheless, maximises their own
payoff. Thus, there are elements of both competition and cooperation in the negotiation (hence semi-
competitive environments). One of the key intuitions of the approach is that there is often more
than one option that can satisfy the interests of both parties. So, if the opponent cannot accept an
offer then the proponent should endeavour to find an alternative that is equally acceptable to it,
but more acceptable to the opponent. That is, the agent should make a trade-off. Only if such a
trade-off is not possible should the agent make a concession. Against this background, our model
ensures the agents reach a deal that is fair (Pareto-optimal) for both parties if such a solution exists.
Moreover, this is achieved by minimising the amount of private information that is revealed. The
model uses prioritised fuzzy constraints to represent trade-offs between the different possible values
of the negotiation issues and to indicate how concessions should be made when they are necessary.
Also by using constraints to express negotiation proposals, the model can cover the negotiation space
more efficiently since each exchange covers a region rather than a single point (which is what most
existing models deal with). In addition, by incorporating the notion of a reward into our negotiation
model, the agents can sometimes reach agreements that would not otherwise be possible.
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1. Introduction

Negotiation is a process by which a group of entities try and come to a mutually
acceptable agreement on some matter [44]. Because of its ubiquity in everyday encounters,
it is a subject that has been extensively discussed in the game-theoretic, economic, and
management science literatures [45,46,69]. Recently, however, there has been a surge of
interest in automated negotiation systems that are populated with artificial agents [20].
This is due to both a technology push and an application pull [50]. The technology push
is mainly from a growing standardised communication infrastructure (e.g., the Semantic
Web and the Grid) which allows distributed and heterogeneous entities to interact flexibly.
The application pull is from domains (e.g., supply chain management, telecommunication
network management, virtual organisations and electronic trading systems) that require
self-interested software entities, representing different stakeholders, to interact in a flexible
manner. In these applications, conflicts often arise because the agents represent distinct
stakeholders with different perspectives and different preferences. Allied to this, is the fact
that the agents act autonomously (i.e., they decide for themselves what actions they should
take, at what time, and under what terms and conditions [60]). In such circumstances,
the interaction between the agents can only proceed by the process of making proposals
and/or trading offers, with the aim of finding a mutually acceptable agreement. In short, by
negotiation.

The process of automating negotiations also opens up a number of new possibilities. In
contrast to its manual counterpart, the potential advantages of automated negotiation are as
follows:

(1) Manual negotiation of contracts is time consuming and hence expensive. Thus, it tends
to be carried out relatively infrequently. This inertia means that institutions tend to
stay locked into contracts that may not be in either parties best interest. In contrast, by
automating the process, negotiations can take place much more frequently, between
many more partners, for much smaller value goods. This has the effect of making
commerce much more frictionless and responsive to the prevailing circumstances
which should make it more efficient.

(2) Manual negotiation is often considered either too embarrassing or frustrating [37] for
ordinary consumers (even if it is in their best interest to do so). Automation removes
these human sensibilities and can lead to more satisfactory outcomes. Moreover,
complicated negotiation problems (perhaps involving multiple, inter-related goods) are
often too difficult for many consumers to handle manually. In this case, automated
negotiation systems can help ordinary users perform like experts in complicated
negotiations (see [5] for preliminary evidence in this direction).

(3) Automated negotiations do not require the participants to be colocated in space or time.
This means that the number of entities with which an agent can negotiate is increased.
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This, in turn, should improve the likely outcome for both buyers and sellers (see [1]

for a full discussion).

According to the cardinality and nature of the interaction, automated negotiation models
can be classified into three main categories [20]. The first consists of many-to-one or
many-to-many models in which multiple agents negotiate with either a single or many
other agents. This category is predominantly handled using various auction-based models
[17,50,58] and these models are widely used in the field of on-line retail (e.g., eBay
(http://www.ebay.com) and eMediator [51]. The second category consists of one-to-one
models in which a pair of agents negotiate directly with one another [2,9,27,39,43]. These
models typically use a range of heuristic methods to cope with the uncertainties that are
endemic in encounters of this type (see Section 6 for more details of this type of model).
The third category consists of argumentation/persuasion-based models [28,29,42] in which
agents use various types of argument, such as threats, rewards and appeals, to persuade
their opponent to accept a deal they would not previously have countenanced. For each of
the three categories, the negotiation domain could be a single-issue one (e.g., price) or a
multiple-issue one (e.g., price, quality, model, volume, delivery date, expiry date, after-sale
service, warranty and return policy).

In this paper, we concentrate on the one-to-one case and develop an automated model
for multi-issue negotiations. In particular, we are interested in trading agents in retail
markets and so we cast our model in terms of buyer and seller agents. In such markets, it
is unnecessary for the sellers to be hostile to buyers [16]. It is more important to make the
customer as satisfied as possible so that long-term relationships can be established. Such
relationships should then ensure long-term profitability. The main business negotiation
theory suitable for this kind of environment is the principled negotiation approach [3,
11,19,45]. In this method, agents strive to reach a fair and reasonable agreement for
both parties, but which, nevertheless, maximises their own payoff. Thus, it can be seen
that principled negotiation has elements of both competition (the agents simply maximise
their individual payoff without regard to the outcome for their opponent) and cooperation
(the agents want to maximise the outcome for both participants). Thus we reterm the
environment semi-competitive.

To base our model on the principled negotiation approach, our design should fulfill a
number of requirements. Firstly, the solutions should be fair for both sides. Secondly, both
sides should endeavour to maximise their own payoff during the course of a negotiation.
Thus, if the opponent cannot accept an offer then the proponent should endeavour to find
an alternative that has the same value to it (i.e., the agent should trade-off between the
various negotiation issues [9]). In other words, an agent should avoid making a concession,
if possible, since this lowers its payoff from the deal. Moreover, when an agent does have
to make a concession it should make the smallest one possible. Thirdly, it is important that
the agents minimise the amount of information they reveal about their preferences since
any such revelation can weaken their bargaining position [45,46].1 Finally, in many real

1 Another reason why the agents need to minimise such information revelation is that humans are basically
unwilling to disclose private information during a negotiation [18]. Thus, if we want negotiation agents to be
generally acceptable, they must follow the same broad tenet.
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retail markets, sellers often use gifts to raise a products’ acceptability for the customers

[4]. This gift may make a previously unacceptable offer acceptable.

Our model employs the notion of prioritised fuzzy constraints [6–8,32,34] at its core
(in particular, to determine which offer should be sent, whether an offer is acceptable,
and which counter offer should be made). The notion of Prioritised Fuzzy Constraint
Satisfaction Problems (PFCSPs) was chosen as the basis of our negotiation model for the
following reasons:

(1) In many cases, buyers do not know the precise details of the products they want to
buy, and so their requirements are often expressed by constraints over multiple issues
(or “attributes”). For example, consider the case of an international student who just
arrives in the UK for the first time and who has to rent some accommodation. Since he
is totally new to the country, he cannot tell a real estate agent exactly what he wants, but
he can naturally express his requirements as some constraints (e.g., the accommodation
should be within walking distance of the university, the rent should not be too high,
and it would be better if there is an Internet connection).

(2) When buyers and sellers negotiate, it is rarely the case that an offer is completely
acceptable or completely inconsistent with their respective constraints. Rather, an offer
usually satisfies the buyer’s constraints more or less. For example, an offer from the
real estate agent, 25 minutes walk and 300 pounds per month, can partially satisfy
the student’s constraints because the distance is a little too far but is still just about
acceptable, and considering his limited scholarship the rent is not beyond his budget
but a lower one would be more acceptable. The PFCSP framework is ideally suited for
capturing constraints of this kind because fuzzy constraints can be partially satisfied
or violated. In fact, the student’s constraints are fuzzy constraints.

(3) For a single attribute of the desired product, a buyer might prefer certain values over
others (e.g., for accommodation type, the student prefers “single room in a flat” over
“shared room in a house”). Such a preference can be expressed as a fuzzy constraint
over a single attribute, and the preference level at a certain value of the attribute is the
constraint’s satisfaction degree for that value. Similarly, for multiple product attributes,
a buyer might prefer certain combinations of values over others (e.g., for rental and
period, the student prefers “cheap and short contracted period” over “expensive and
long contracted period”). Such a preference can be expressed as a fuzzy constraint
over multiple attributes, and the preference level at a certain combination value of
these attributes is the constraint’s satisfaction degree for the combination value.

(4) One of the fundamental things in negotiation is to represent trade-offs (balances)
between the different possible values for attributes. A buyer’s preferences on trade-
offs between different attributes of the desired product can easily be modelled by
fuzzy constraints. For instance, consider the trade-off involved in an agent deciding
whether it prefers to get exactly the desired value of an attribute that is very important
or several sets of less good values for attributes that are less important to it. Such a
trade-off can be modelled by a fuzzy constraint. For example, in an accommodation
renting scenario, suppose that the distance is the most important thing, then rental rate
and finally flexible rental period. Now suppose the ideal distance is about 15 minutes to
the university, rental rate 300 pounds or so is acceptable and at least 6 months contract
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is acceptable. However, if the distance becomes 50 minutes but the rental rate becomes

150 pounds and no restriction is placed on rental period, such an accommodation is
still acceptable. For these combinations of attributes’ values, we simply assign the
same satisfaction degree (the fuzzy constraint is over attributes distance, rental rate
and rental period). If there are some other trade-offs, the student’s preference for them
can be modelled by assigning them different satisfaction degrees (the bigger, the more
preferable).

(5) A buyer’s constraints are not always equally important. For example, the student may
think that the constraint on rent is more important than the one on distance. In order
to deal with different levels of importance of different fuzzy constraints, Dubois et al.
[6–8] introduced the concept of priority into Fuzzy CSPs (FCSPs) to form PFCSPs.

This work advances the state of the art in the following main ways. Firstly, our model
ensures the agents reach a fair deal (a Pareto optimal solution) for both parties if such a
solution exists. Moreover, this is achieved by minimising the amount of private information
that both sides have to reveal. Secondly, by using constraints to express offers, negotiation
proposals can cover regions of the solution space rather than just single point solutions.
This, in turn, means that more of the space can be explored in a given exchange and so
means that the search for a mutually acceptable solution is more efficient. Thirdly, by
incorporating the notion of a reward into our negotiation model, the agents can sometimes
reach agreements that would not otherwise be possible.

The remainder of the paper is organised as follows. Section 2 presents the basic concepts
and notations related to constraint satisfaction problems and fuzzy mathematics that will
be used throughout the paper. Section 3 defines the negotiation model of the seller and
the buyer agents. The model consists mainly of their domain knowledge, primitive actions,
behaviour protocols and communication language. Section 4 explores the properties of our
negotiation model. Section 5 illustrates the operation of our model with an accommodation
renting scenario. Section 6 compares our model with related work. Finally, Section 7
summarises our main contributions and indicates avenues of further research.

2. Preliminaries

In this section, we recall the necessary concepts and notations related to constraint
satisfaction problems [36,55], fuzzy constraint satisfaction problems [6], prioritised fuzzy
constraint satisfaction problems [6–8,32,34], uninorm operators [62], fuzzy logic [67,68]
and the cut-set technique [24] in fuzzy mathematics. These provide the underpinning of
our negotiation model.

We start with the framework of constraint satisfaction problems (CSPs).

Definition 1. A constraint satisfaction problem (CSP) is a 3-tuple (X,D,C), where sets:

(1) X = {xi | i = 1, . . . , n} is a finite set of variables.
(2) D = {di | i = 1, . . . , n} is the set of domains. Each domain di is a finite set containing

the possible values for the corresponding variable xi in X.
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(3) C = {Ri | Ri ⊆ ∏
x ∈var(R ) dj , i = 1, . . . ,m} is a set of constraints. Here var(Ri)
j i

denotes the set of variables of constraint Ri :

var(Ri) = {x ′
1, . . . , x

′
kRi

} ⊆ X. (1)

Definition 2. A label of a variable x is an assignment of a value to the variable, denoted as
vx . A compound label vX′ of all variables in set X′ = {x ′

1, . . . , x
′
m} ⊆ X is a simultaneous

assignment of values to all variables in set X′:
vX′ = (vx ′

1
, . . . , vx ′

m
). (2)

Definition 3. In a CSP (X,D,C), the characteristic function of Ri ∈ C,

µRi :

( ∏
xj∈var(Ri)

dj

)
→ {0,1},

is defined as:

µRi (vvar(Ri)) =
{

1 if vvar(Ri) ∈ Ri ,
0 otherwise.

(3)

A solution to a CSP (X,D,C) is a compound label vX = (vx1, . . . , vxn) of all variables in
X such that:

min
{
µRi (vvar(Ri )) | Ri ∈ C

} = 1. (4)

When returning the value 1, the characteristic function of a constraint Ri signifies the
absolute satisfaction of the constraint Ri over a compound label vvar(Ri). A return value of
0 means the complete violation of the constraint Ri over a compound label. In other words,
in a standard CSP a constraint either admits a compound label or not (this is called a crisp
constraint). There is no intermediary situation. However, this formulation is too rigid for
dealing with problems in which the satisfaction level of a constraint is not a simple zero-
one matter. Thus, the notion of fuzzy CSP [6] is introduced.

Definition 4. A fuzzy constraint satisfaction problem (FCSP) is a 3-tuple (X,D,Cf ),
where X and D are the same as those in Definition 1, and Cf is a set of fuzzy constraints:

Cf =
{
R

f
i | µ

R
f
i

:

( ∏
xj ∈var(Rf

i )

dj

)
→ [0,1], i = 1, . . . ,m

}
, (5)

where var(Rf
i ) denotes the set of variables of R

f
i .

By using the cut-set technique in fuzzy mathematics [24], a fuzzy constraint can induce
a crisp constraint.

Definition 5. Given the cut level σ ∈ [0,1], the induced crisp constraint Rc of a fuzzy
constraint Rf is defined as:

µRc(vvar(Rf )) =
{

1 if µRf (var(Rf )) � σ ,
0 otherwise.

(6)
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Intuitively, a cut level for a fuzzy constraint is a kind of threshold: if the satisfaction

degree to which a compound label satisfies a fuzzy constraint is not less than the threshold,
the label is regarded as satisfactory with respect to the constraint; otherwise, it is regarded
as unsatisfactory.

In a standard FCSP, each constraint has no priority or, equivalently, all constraints have
the same level of priority (importance). However, this is not always true in practice. Thus,
Dubois et al. [6–8] extended FCSPs by associating different constraints with different
priorities, and hence introduced the concept of prioritised FCSPs (PFCSPs). In this work,
we use a revised version [32,34] of their concept.2

Definition 6. A prioritised fuzzy constraint satisfaction problem (PFCSP) is a 4-tuple
(X,D,Cf ,ρ), where (X,D,Cf ) is a FCSP (see Definition 4), called the counterpart
FCSP of the PFCSP, and ρ :Cf → [0,∞) is a priority function. Given a compound label
vX of all variables in X, its overall satisfaction degree is given by:

αρ(vX) = min

{(
ρ(Rf )

ρmax

)

 µRf (vvar(Rf )) | Rf ∈ Cf

}
, (7)

where

ρmax = max
{
ρ(Rf ) | Rf ∈ Cf

}
(hereafter unless otherwise specified, the symbol ρmax always takes this meaning), and
operator 
 : [0,1] × [0,1] → [0,1], called a priority operator, satisfies:

(1) ∀a1, a2, a
′
2 ∈ [0,1], a2 � a′

2 ⇒ a1 
 a2 � a1 
 a′
2,

(2) ∀a1, a
′
1, a2 ∈ [0,1], a1 � a′

1 ⇒ a1 
 a2 � a′
1 
 a2,

(3) ∀a ∈ [0,1],1 
 a = a, and
(4) ∀a ∈ [0,1],0 
 a = 1.

A solution to a PFCSP (X,D,Cf ,ρ) is a compound label vX of all variables in X such
that:

αρ(vX) � τ, (8)

where τ ∈ [0,1] is a predetermined value, called the solution threshold of the PFCSP.

Intuitively, the solution threshold τ means that if the overall satisfaction degree of
a compound label is not less than the threshold, the label is acceptable as a solution;
otherwise, it is not.

In addition to the above concepts related to constraints, two further concepts from fuzzy
mathematics are also needed for our model. The first one is that of uninorm operators

2 Our extension has a number of special properties that we need in our negotiation system. In particular,
whether priorities of constraints are normalised or not, the constraint with the highest priority can act like a hard
constraint: if a compound label completely violates it then the label cannot be accepted as a solution. Secondly,
when all constraints in a PFCSP have the same priority (importance), the PFCSP degenerates to a FCSP. Finally,
in dynamic situations, users can add or remove constraints without re-assigning priorities to all the existing
constraints in the constraint set. None of these properties hold in the original model.
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[61,62]. We use this kind of operator to help calculate the buyer’s acceptability for a prod-

uct that consists of multiple attributes. Intuitively, acceptability depends mainly on the
overall satisfaction degree of all the buyer’s requirement constraints. As a secondary fac-
tor, however, the product’s level of acceptability may be increased by the seller offering
an additional reward to accompany the purchase of the product in question. Accordingly,
when a seller uses a reward to try and raise the buyer’s acceptability, if the acceptability
level is originally less than the acceptability threshold, the reward can raise the acceptabil-
ity to some extent but probably not to its maximal value. Similarly, if the acceptability level
is originally greater than the acceptability threshold, the reward can raise the acceptability
to some extent but cannot raise it beyond the maximum value. To capture these intuitions,
uninorm operators are employed because they have a number of relevant properties (espe-
cially property (3) in Lemma 2 in the following). We will formally prove this point (see
Section 4) after formally defining the buyer’s acceptability for a product (see Section 3.2).

Definition 7. A binary operator ⊕ : [0,1] × [0,1] → [0,1] is called a uninorm operator if
it is increasing, associative and commutative and there exists τ ∈ [0,1] such that:

∀a ∈ [0,1], a ⊕ τ = a. (9)

Here τ is said to be the unit element of a uninorm.

The following lemma, related to uninorm operators, is useful later on, and so is listed
here.

Lemma 1. A uninorm operator ⊕ with unit element τ has the following properties:

(1) ∀a1, a2 ∈ (τ,1], a1 ⊕ a2 � max{a1, a2};
(2) ∀a1, a2 ∈ [0, τ ), a1 ⊕ a2 � min{a1, a2};
(3) ∀a1 ∈ [0, τ ), a2 ∈ (τ,1],min{a1, a2} � a1 ⊕ a2 � max{a1, a2};
(4) ∀a ∈ [0,1],0 ⊕ a = 0.

Actually, we can regard the unit element of a uninorm operator as a threshold: if
an evaluation is greater than the threshold the evaluation is regarded as being positive;
otherwise, it is regarded as being negative. Thus, in Lemma 1, property (1) reveals the
intuition that when two evaluations are both positive they should enhance the effect of
each other; property (2) that when two evaluations are both negative, they should weaken
each other; and property (3) that when two evaluations are in conflict, we should get a
compromise.

Given these general observations, the next step is to determine which specific uninorm
operator we should adopt in our negotiation model. Here we chose the following3 (from
[23]):

3 Our reason is as follows. For unit element τ ∈ (0,1), six other kinds of uninorm operator have been proposed:
Yager and Rybalov [62] proposed R∗ and R∗, and Li and Shi [30] proposed R1, R2, R and R. Uninorm
operators R∗, R2 and R share the common characteristic: when min{a1, a2} � τ � max{a1, a2} the result of
the operation on a1 and a2 is min{a1, a2}. Uninorm operators R∗, R1 and R share the common characteristic:
when min{a1, a2} � τ � max{a1, a2}, the result of the operation on a1 and a2 is max{a1, a2}. In other words,
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Lemma 2. An operator ⊕P : [0,1] × [0,1] → [0,1], given by:
a1 ⊕P a2 = (1 − τ )a1a2

(1 − τ )a1a2 + τ (1 − a1)(1 − a2)
, (10)

where τ ∈ (0,1), is a uninorm operator with unit element τ , and

min{a1, a2} < τ < max{a1, a2} ⇒ min{a1, a2} < a1 ⊕P a2 < max{a1, a2}.
(11)

The second concept from fuzzy mathematics that we exploit is fuzzy truth propositional
logic [67,68]. Again this is useful in calculating the buyer’s acceptability for a product. In
particular, fuzzy truth propositions are employed to represent the facts in the buyer’s profile
model because these facts are often partially true (i.e., they have truth values between
“completely true” and “completely false”). For instance, for a student who wants to rent
accommodation, a telephone, new furniture and an economic heater might be valuable to
degrees of 70%, 30% and 80%, respectively.

Definition 8. A fuzzy truth proposition system is 5-tuple (F, t,∧,∨,¬), where

(1) F = {fi | i = 1, . . . , n} is the set of primitive propositions,
(2) t :F → [0,1] is a truth function, which associates each proposition f with a truth

t (f ) ∈ [0,1], and
(3) ∧, ∨ and ¬ are logical operators.

A composite proposition c of primitive propositions f1, . . . , fn, called a Boolean
expression of f1, . . . , fn, is constructed from f1, . . . , fn through the logical operators ∧,
∨ and ¬. The truth, t (c), of composite proposition c is calculated recursively by:

t (¬c0) = 1 − t (c0), (12)

t (c1 ∧ c2) = min
{
t (c1), t (c2)

}
, (13)

t (c1 ∨ c2) = max
{
t (c1), t (c2)

}
, (14)

where c0, c1, c2 are primitive propositions or composite propositions. The truth t (c) of
composite proposition c is also denoted as c′(t (f1), . . . , t (fn)).

3. The negotiation model

In this section we present our conceptualisation of the negotiating agents. Firstly, we
specify the buyer and seller agents (Sections 3.1 and 3.2, respectively). Then we briefly

when one operand is greater than the unit element and the other is smaller, we cannot expect to obtain a real
compromise result using any of these six kinds of uninorm operator. However, because of (11) we can expect this
through uninorm operator ⊕P and hence it is our choice (more details of which can be found in Sections 4.1 and
5).
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deal with the communication aspects (Section 3.3). Finally, we specify the negotiation

behaviour of our buyer and seller (Sections 3.4 and 3.5, respectively).

In what follows we adopt the CommonKADS framework [52] for our specification.
This choice is based on our observation that human negotiations are heavily knowledge-
based [11,56,57] and that the automated counterpart is therefore likely to be a knowledge
intensive system. For such systems, CommonKADS is a reasonably common specification
framework [52]. At this point, we make no claim that CommonKADS is any better than
any of the other more common techniques for specifying agent systems; however it is also
not provably worse. We use it as a tool because it is a well articulated framework with
well-defined models that when taken together provide a comprehensive specification of a
complex knowledge system. Moreover, we have found that the rigours of the framework
are an important software engineering aid in ensuring that all the necessary details are
present in our model and that our implementation from this specification was a reasonably
straightforward endeavour.

3.1. Specifying the seller agent

The following represents our conceptualisation of a seller agent.

Definition 9. A seller agent is a 5-tuple knowledge system

(G,A,P,�,Θ)

where:

(1) G = {gi | gi = (ci, ri , ui,pi),pi = (vi1, . . . , vin),0 � i � k}, called the product model,
is the domain knowledge of the agent (i.e., the set of products the seller holds). ci is the
restriction attached to product gi that a buyer agent must satisfy in order to obtain the
product (e.g., buyers must be over 18 years old or the goods are for the export market
only). The restriction is expressed as a Boolean expression (see Definition 8) of some
primitive propositions. ri is the reward associated with product gi , which the seller
agent may use to persuade a buyer agent to purchase the product. The reward is also
expressed as a Boolean expression (see Definition 8) of some primitive propositions.
ui is the profit that the seller agent gets if product gi is sold at a particular price. pi ,
called the product-attributes, is the value vector of negotiable attributes (e.g., price,
quality, model, volume, delivery date, expiry date, after-sale service and warranty) of
product gi . Finally, k is the total number of products the seller agent possesses.

(2) A = {generate,update,propose-restriction,propose-reward, receive,present} is the
set of primitive actions that the seller agent can take during negotiations.
– Action generate puts forward a solution, from its product set, to satisfy the

constraint set that a buyer has submitted. If more than one solution satisfies the
constraint set, a solution with the highest profit is chosen in order to guarantee the
maximum profit for the seller agent.

– Action update modifies (adds or deletes) constraints in a constraint set. The effect
of deleting a constraint is to remove it from the set and then add its negation into the
set.



X. Luo et al. / Artificial Intelligence 148 (2003) 53–102 63

– Action propose-restriction proposes the restriction attached to a product.

– Action propose-reward proposes the reward associated with a product.
– Action receive receives an offer from the buyer agent.
– Action present sends an offer to a buyer agent.

(3) P is the behaviour protocol that specifies the rules that the seller agent must obey
during the course of the negotiation.

(4) � = (Oseller,Obuyer) is the communication port of the seller agent; Oseller is a seller’s
offer, and Obuyer is a buyer’s offer.4

(5) Θ = (constraint-set, solution, last-solution, previous-solutions) is the working
memory of the seller agent. The constraint-set stores the constraint(s) that a buyer
agent has so far submitted to the seller agent. The solution stores the current solution
that the seller agent finds according to the constraint-set in the current round of
negotiation. The last-solution stores the solution that the seller agent found in the
last round of negotiation. The previous-solutions stores all the solutions that the seller
agent found, before the current round, according to the same constraint-set the buyer
had submitted.

These definitions mean that the seller agent consists of five main components: (1)
the domain knowledge—a set of products plus their associated information, (2) a set
of primitive actions, (3) a behaviour protocol, (4) the communication port, and (5) the
working memory. This accords with the view that agents are action-based systems that can
autonomously act upon the environment and/or interact with other agents [21].

The method used to generate offers, the negotiation strategy, is the way in which the
actions generate, propose-restriction, and propose-reward work. In this context, action
generate chooses the solution with the highest profit from the set of feasible solutions,
and actions propose-restriction and propose-reward simply retrieve the attached restriction
and the associated reward according to the name of a product.5

3.2. Specifying the buyer agent

Using the same representation scheme, the buyer agent can be viewed as consisting of
five components: (1) a domain knowledge model consisting of the buyer’s requirement
model, the buyer’s profile model, and the buyer’s acceptability threshold, (2) a set of
primitive actions, (3) a behaviour protocol, (4) a communication port, and (5) a working
memory. More concretely:

Definition 10. A buyer agent is a 5-tuple knowledge system

(KD,A,P,�,Θ)

where:

4 Since the communication port involves both the buyer and seller agents, it is detailed after the buyer agent
has been defined (see Section 3.3).

5 The algorithms to implement these actions are straightforward, and so we omit their details for the sake of
space.
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(1) KD = (C,B, τ ) is the domain knowledge of the buyer agent.

– C = (X,D,Cf ,ρ,$) is the buyer’s requirement model. (X, D, Cf , ρ) is a PFCSP

(see Definition 6). X is the set of attributes of the products. Each domain di ∈ D

is a set of possible values of an attribute of the products. Cf is a set of fuzzy
constraints that express the buyer’s requirements on the attributes of the desired
product. Each constraint R

f
i ∈ Cf is associated with a priority ρ(R

f
i ) ∈ [0,+∞)

as well as a relaxing threshold $(R
f
i ) ∈ [0,1]. Given a cut level (see Definition

5), a fuzzy constraint can be relaxed if the cut level, by which the fuzzy constraint
induces a crisp constraint, is not less than the relaxing threshold.

– B = (F, t) is a fuzzy truth proposition system (see Definition 8), representing the
buyer’s profile model. This is the background information it uses to evaluate the
seller’s offer. F = {fi | i = 1, . . . , l} is a set of fuzzy propositions. t :F → [0,1] is
a truth function.

– τ ∈ [0,1] is the acceptability threshold which the seller’s offer must surpass to be
acceptable for the buyer agent (see Definition 11).

(2) A = {select, verify, satisfy, evaluate, critque, relax, receive, present} is the set of
primitive actions the buyer agent can take during negotiations.
– Action select generates a crisp constraint induced from the fuzzy constraint with

the highest priority in the buyer’s constraint set. It does this by using the cut-set
technique (see Definition 5) at cut level 1. If there is more than one constraint with
the highest priority, choose randomly between them.

– Action verify checks the attribute values of a seller offered product against the crisp
constraints induced. It does this by using the cut-set technique (see Definition 5) at
a given cut level, from the buyer’s constraint set. If the test is passed, return “true”;
otherwise, return “false”.

– Action satisfy calculates the overall satisfaction degree of all the fuzzy constraints
whose induced crisp constraints have been submitted to the seller agent at the current
point of the negotiation process.

– Action evaluate evaluates a seller’s offer to determine if it is acceptable. This offer
consists of the attribute values of the product plus its attached restriction condition
(if any) and associated reward (if any).

– Action critique uses the cut-set technique (see Definition 5) to induce a crisp
constraint from the fuzzy constraint with the highest priority among those whose
induced crisp constraints are violated by the seller’s offer.

– Action relax relaxes the fuzzy constraint that has the lowest priority among the
constraints that have already been submitted to the seller agent. The cut-set
technique (see Definition 5) is used to relax a fuzzy constraint as little as possible.
That is, first decrease the current cut level as little as possible (the formal definition
for this will be given in Definition 16). Then, at the decreased cut level induce a crisp
constraint from the fuzzy constraint. The crisp constraint is the relaxed constraint
ready for submitting to the seller agent.

– Action receive receives an offer from a seller agent.
– Action present sends an offer to a seller agent.

(3) P is the behaviour protocol that specifies the rules that the buyer agent must obey
during the course of the negotiation.
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(4) � = (Oseller,Obuyer) is the communication port of the buyer agent; Oseller is a seller’s

offer, and Obuyer is a buyer’s offer.

(5) Θ = (submitted-constraints, cut-level) is the working memory of the buyer agent.
The submitted-constraints stores the constraints that the buyer agent has so far sent
to the seller. The cut-level stores the current degree to which the fuzzy constraints are
relaxed.

As before, the buyer’s negotiation strategy is defined by the way in which the actions
select, critique, relax, evaluate and satisfy work. The operation of the first three actions is
self-evident from the above definition. Those of the last two need to be further detailed. In
our model, the buyer agent evaluates a seller’s offer according to its acceptability for the
offered product, which is defined as follows:

Definition 11. Suppose the acceptability threshold of a buyer agent is τ ∈ [0,1]. Let ⊕ be
a uninorm operator with unit element τ which satisfies the following property:

min{a1, a2} < τ < max{a1, a2} ⇒ min{a1, a2} < a1 ⊕ a2 < max{a1, a2}. (15)

Let (X,D,Cf ,ρ,$) be the requirement model (see Definition 10), and (F, t) be the
buyer’s profile model (see Definition 10). For an offered product

gi = (ci, ri ,pi),

where:

• ci is the restriction expressed as a Boolean expression of f ′
1, . . . , f

′
s ∈ F ;

• ri is the reward expressed as a Boolean expression of f ′′
1 , . . . , f ′′

t ∈ F ; and
• pi = (vi1, . . . , vin) is the value vector of the product’s attributes.

Now the buyer’s acceptability can be expressed as:

acceptability(gi) = min
{
α(vi1, . . . , vin), β

} ⊕ (
(1 − τ )γ + τ

)
, (16)

where:

α(vi1, . . . , vin) = min

{(
ρ(Rf )

ρmax

)

 µRf (vvar(Rf )) | Rf ∈ Cf

}
, (17)

β = 1 − c′
i

(
t (f ′

1), . . . , t (f
′
s )

)
, (18)

γ = b′
i

(
t (f ′′

1 ), . . . , t (f ′′
t )

)
. (19)

The meaning of the three parameters in acceptability formula (16) is as follows:

(1) α(vi1, . . . , vin) ∈ [0,1] (α for short) is the overall satisfaction degree to which the
compound label (vi1, . . . , vin) on attributes of product gi satisfies all the buyer agent’s
constraints. Actually, α is calculated from the buyer’s requirement model by using the
overall satisfaction degree formula (7). In what follows, α is called the requirement
satisfiability of the product.
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(2) β ∈ [0,1] is the possibility the buyer agent can obey the attached restriction of product

gi (hence it is called the product’s restriction obedience). Restricting ci for the buyer
means that ci should not be true, to some extent, for the buyer. So, the degree to which
the buyer can obey restriction ci is 1 − c′

i (t (f
′
1), . . . , t (f

′
s )) since c′

i (t (f
′
1), . . . , t (f

′
t ))

represents the degree to which ci is true for it. Actually, β is calculated from the buyer’s
profile model by using fuzzy truth formulas (12), (13) and (14).

(3) γ ∈ [0,1] is the degree to which the reward associated with product gi is valuable
(hence it is called the product’s reward value). Actually, γ is also calculated from the
buyer’s profile model by using the fuzzy truth formulas (12), (13) and (14).

The rationale for acceptability formula (16) will be given in Section 4 where we
concentrate on various properties of our model. Notice, however, that since the uninorm
operator is closed on [0,1] and the two operands in acceptability formula (16) are in [0,1],
the buyer’s acceptability for a product takes on a value in the range [0,1]. The larger the
value, the more acceptable the product. In particular, when it takes value 1, the product is
completely acceptable; when it takes value 0, the product is absolutely unacceptable. In
between it is more or less acceptable.

Finally, the definition below gives the formula used by action satisfy to calculate the
buyer’s potential payoff 6 during negotiation.

Definition 12. Suppose that in a given round of negotiation the crisp constraints the
buyer agent has submitted to the seller agent are R′c

1 , . . . ,R′c
m and the fuzzy constraints

which induced these crisp constraints are R
′f
1 , . . . ,R

′f
m . The buyer’s potential payoff with

respect to R
′f
1 , . . . ,R

′f
m , denoted as pp(R′f

1 , . . . ,R
′f
m ), is the overall satisfaction degree

of R
′f
1 , . . . ,R

′f
m for a product that the seller agent offers, when the attributes’ values

av1, . . . ,avl of the product satisfy R′c
1 , . . . ,R′c

m. That is,

pp
(
R

′f
1 , . . . ,R

′f
m

) = min

{
ρ(R

′f
i )

ρmax

 µ

R
′f
i

(�a) | µR′c
i
(�a) = 1, 1 � i � m

}
, (20)

where �a = (av1, . . . ,avl ) and ρmax = max{ρ(R
′f
1 ), . . . , ρ(R

′f
m )}.

Our definition of the potential payoff conforms to the following: if in round k of the
negotiation the buyer has submitted crisp constraints R′c

1 , . . . ,R′c
m that are induced at this

cut level from R
′f
1 , . . . ,R

′f
m , and in round k + 1 the seller’s offer to the buyer is a product

satisfying R′c
1 , . . . ,R′c

m, then the overall satisfaction degree of R
′f
1 , . . . ,R

′f
m for the product

is the buyer’s payoff that it may get in round k. In other words, the concept of potential
payoff is used to ensure that the buyer’s payoff will not be unnecessarily lost (i.e., when

6 Intuitively, this can be viewed as the payoff (satisfaction degree of its constraints on the desired product) that
the buyer agent expects to receive when submitting its constraint at a given point in the negotiation process. That
is, in the next round if the seller’s offer satisfies the buyer’s constraints, the buyer’s potential payoff becomes its
actual payoff. This concept of potential payoff is different from the standard concept of expected utility [22,40]
that represents a kind of “average payoff” of various uncertain consequences (if a particular consequence really
occurs, the actual payoff is the utility of the consequence).
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the buyer offers new constraints its potential payoff should not decrease). In Section 4, we

will show the design indeed achieves this.

3.3. Inter-agent communication

The agents communicate using an alternating offers protocol [48]. The communication
ports of our seller and buyer agents consist of a pair of messages the two agents present
to one another. As is common in the field [59], we separate the representation of messages
between agents into two levels—the communication language level and the content
language level.

(1) At the communication language level, we adopt the KQML standard [10] with several
minor additions. Specifically, we provide performatives through which the seller
agent can ask the buyer agent to relax constraints, and check the product against its
requirement and profile models; and through which the buyer agent can ask the seller
agent to find or refind a product compatible with the submitted constraints, and ask
the seller agent to end negotiation. The details of these performatives will be given in
Definitions 13 and 14 below.

(2) At the content language level, a seller’s offer is a solution (a product specified
by a compound label on the attributes of products) to a CSP, plus any associated
information (its attached restriction condition or associated reward). Given the fact
that the message content of a buyer’s offer contains constraints, we choose to base
our content language on the Constraint Choice Language [59] since this is specifically
designed for carrying, between agents, constraints or solutions to CSPs. This language
needs a minor extension for our purposes in order for it to have the ability to contain
information about the attached restriction and associated reward of a product.7

Formally, and more precisely, we have:

Definition 13. A seller’s offer is a message with the following structure:

Oseller = (product, restriction, reward,performative),

where:

(1) The item product = (a1, . . . , an) is a value vector of attributes of the product that the
seller agent believes satisfies the constraints submitted by the buyer agent.

(2) The item restriction attached to the product is a Boolean expression (see Definition 8).
(3) The item reward associated with the product is a Boolean expression (see Defini-

tion 8).

7 In this work, we assume that the agents share a common ontology for the terms they exchange at this level.
While this is obviously a simplification, it is one that we believe is reasonable in this context given the aims of
this paper.
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(4) The item performative represents the action that the seller agent wants the buyer agent

to take after receiving the message:8

– check: The seller agent is asking the buyer agent to check whether the product
is acceptable. That is, to check whether the product plus any accompanying
information can satisfy its whole constraint set (because some of the buyer’s
constraints may not yet have been revealed to the seller) and whether the buyer’s
minimum interest (its acceptability threshold) can be guaranteed.

– relax: The seller agent is asking the buyer agent to relax one of the constraints it
has submitted. This is sent when the seller agent cannot find a product that satisfies
the constraints submitted by the buyer agent.

The selection of these performatives is based on the following intuitions. Firstly, since
negotiation involves mutual agreement by both parties, if the seller finds a product that it
believes satisfies the buyer’s requirements (as so far specified) then what it would like to
do is to ask the buyer to check whether the product does indeed meet all the constraints.
Secondly, sellers always prefer to make a (profitable) sale. So, even if sellers cannot find
products that satisfy the constraints submitted by buyers, they are unlikely to say “fail”.
Rather they prefer to ask the buyers to relax their submitted constraints to see if a
compatible product can be found.

Definition 14. A buyer’s offer is a message with the following structure:

Obuyer = (constraint,performative),

where:

(1) The item constraint contains the constraints that the buyer agent uses to specify the
product it wants to buy. In particular, if the buyer agent wants to relax a constraint
c that it has already submitted, it is represented as −c and +c′, where c′ is the
relaxed constraint. If the buyer agent wants to add a new constraint c, the constraint is
represented as +c.

(2) The item performative represents the action that the buyer agent wants the seller agent
to take after receiving the message:
– find: The buyer agent is asking the seller agent to find a product that satisfies the

constraints it has submitted.
– refind: The buyer agent is asking the seller agent to find an alternative product

for it. This is sent when the buyer cannot accept the product that it has just been
offered.

– deal: The buyer agent is asking the seller agent to end their negotiation. It is sent
when a successful deal has been made.

8 Naturally, since the agents are autonomous these requests do not have to be adhered to. However, since it
is in the interests of both agents to do so, we assume in our subsequent descriptions that the agents do indeed
perform the actions suggested by their counterpart.
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– fail: The buyer agent is asking the seller agent to end their negotiation. It is sent

when the seller agent cannot offer a product compatible with the buyer’s submitted
constraints and the buyer cannot relax any constraint further.

The selection of the performatives is based on the following intuitions. Firstly, when
a buyer submits a constraint to a seller, the buyer’s intention is to ask the seller to find
a product satisfying the present constraint and any previously submitted ones. Secondly,
when a buyer reviews a seller’s offer which does not violate any of its constraints at the
current cut level, but does not reach its acceptability threshold, the buyer does not want to
give up on the chance of reaching a deal. Thus, it asks the seller to refind an alternative.
Thirdly, the buyer needs a means of signifying the end of a negotiation (whether a deal is
made or not).

3.4. The seller agent’s behaviour

After specifying the communication between the buyer and the seller, we turn to their
behaviour. This subsection specifies the seller agent’s behaviour protocol, and the next
subsection specifies the buyer’s.

The behaviour protocol of a seller agent is shown in Fig. 1. The basic assumption behind
it is that the seller agent is trying to obtain the best deal it can. Therefore, according to
the tenets of the principled negotiation approach when the buyer cannot accept the seller’s
offer, the seller always tries to find a trade-off offer with the same profit to it as the previous
offer. Only when the seller cannot do this, does it makes some concession (i.e., provides
another offer with less profit for it). However, the seller always wants to see if it can reach
a profitable agreement since it receives no revenue unless it make agreements. Thus if the
buyer agent does not accept its offer (even with the inducement of a reward) and it cannot
find an alternative offer, it will ask the buyer to relax its constraints.

Therefore, during the course of a negotiation, the seller acts according to the messages
it receives as follows:

(1) find or refind (as shown on lines 4–25 in Fig. 1): First the seller agent tries to
generate a solution for the buyer agent.
– In the case that the performative of the buyer message is find (as shown on lines

5–7 in Fig. 1): the constraints contained in the message are added in and/or deleted
from its constraint set. Then, it tries to find the solution (product) that is consistent
with its constraint set and at the same time maximises its own profit.

– In the case that the performative of the buyer message is refind (as shown on
lines 8–9 in Fig. 1): its constraint set remains unchanged, but it tries to generate a
new solution to the constraint set, while still trying to maximise its own profit.

For either of the above two cases:
– In the case that the seller agent succeeds in finding a product (as shown on lines

11–14 in Fig. 1), it will ask the buyer agent to check whether the product satisfies
all its constraints (not all of them may have been exposed to the seller) and whether
the product reaches its acceptability threshold.



70 X. Luo et al. / Artificial Intelligence 148 (2003) 53–102
1. last-solution := NIL; constraint-set := ∅;
2. REPEAT
3. receive(Obuyer);
4. IF Obuyer.performative = ‘find’ OR ‘refind’ THEN
5. IF Obuyer.performative = ‘find’ THEN
6. constraint-set := update(constraint-set,Obuyer.constraint);
7. solution := generate(constraint-set); previous-solutions := ∅;
8. ELSE
9. solution := generate(constraint-set ∪ {solution /∈ previous-solutions});
10. END IF;
11. IF solution �= NIL THEN
12. Oseller.product := solution; Oseller.reward := NIL;
13. Oseller.restriction := propose-restriction(solution.product);
14. Oseller.performative := ‘check’
15. ELSE IF last-solution = NIL THEN
16. Oseller.performative := ‘relax’;
17. ELSE IF propose-reward(last-solution.product) �= NIL
18. AND last-solution.reward = NIL THEN
19. Oseller.reward := propose-reward(last-solution.product);
20. Oseller.product := last-solution.product;
21. Oseller.restriction := last-solution.restriction;
22. Oseller.performative := ‘check’
23. ELSE Oseller.performative := ‘relax’;
24. END IF; END IF; END IF;
25. END IF;
26. IF Obuyer.performative = ‘deal’ THEN decision := Oseller END IF;
27. IF Obuyer.performative = ‘fail’ THEN decision:=NIL END IF;
28. present(Oseller); last-solution := Oseller;
29. previous-solutions := previous-solutions ∪ {last-solution};
30. UNTIL Obuyer.performative = ‘fail’ OR ‘deal’ END REPEAT;
31. RETURN decision

Fig. 1. The specification of the seller agent’s behaviour. The explanation of the symbols is given in Definitions 9,
13 and 14.

– In the case that the seller agent fails to find a product that satisfies the buyer’s
constraints (as shown on lines 15–23 in Fig. 1), the next action depends on the
negotiation context. If the seller agent is in the first round of negotiation, i.e., the
last solution does not exist (as shown on lines 15–16 in Fig. 1), it will ask the buyer
agent to relax its constraint(s). Otherwise (as shown on lines 17–23 in Fig. 1), the
seller agent insists on the last solution (i.e., the product it offered to the buyer agent
in the last round of negotiation) if the reward associated with the last offer has not
been mentioned before (as shown on lines 17–22 in Fig. 1), but offers some reward
to see whether the buyer’s acceptability for the product can be increased to such a
degree that the product becomes acceptable. If the reward was already mentioned to
the buyer before (as shown on line 23 in Fig. 1), the seller asks the buyer to relax its
constraint.



X. Luo et al. / Artificial Intelligence 148 (2003) 53–102 71

(2) deal or fail (as shown on lines 26, 27 and 30 in Fig. 1): The negotiation has either

succeeded or failed and thus the negotiation process terminates.

The above protocol defines the rules that a seller agent should obey. In addition to
this, however, the other component that needs to accompany the behaviour protocol is
the negotiation strategy. The strategy is the method that the seller agent uses to maximise
its own payoff within the confines of the behaviour protocol. In this case, the strategy of
our seller agent works in the following way:

(1) When the seller agent generates a solution for a CSP, if there are multiple alternatives
it always chooses the one from which it gains the highest profit. It has, after all, a
degree of self-interest and so tries to maximise its profit.

(2) When a buyer agent asks the seller agent to refind an alternative, the seller
agent uses action generate to provide a new solution if it can. This is equivalent
to always trying to make a trade-off among the product’s different attributes since
action generate always provides the solution with the highest profit if one exists. If the
highest profit is the same as that of the seller’s last offer, this keeps the seller’s profit
unchanged and so the solution represents a trade-off. Here in the case of the buyer
asking for an alternative, we do not choose a strategy of only reducing price to reach
a deal. The reason for this is that according to the principled approach to negotiation
only reducing price, but not obtaining compensation on some other negotiation issues,
is not a prudent course of action. Thus in our model we do not reduce the price of
the same product, but we offer an alternative product (deal). This alternative may well
have a lower price but will necessarily be better for the seller (but worse for the buyer)
on some other attributes.

(3) When the seller agent cannot find a new solution, it always tries to provide the buyer
agent with some additional reward. In this way, the seller agent tries to keep its profit
largely unchanged (assuming the cost of providing the reward is small in comparison
to the cost of the product). Notice that the seller agent does not provide the buyer
agent with a reward when it can find a solution. It only offers rewards if the buyer
agent cannot accept a solution and the seller agent cannot find an alternative. The goal
of such a design is to satisfy the buyer as much as possible. By doing so the seller aims
to build or maintain its reputation and so make more profit in the long term.

3.5. The buyer agent’s behaviour

The behaviour protocol of a buyer agent is shown in Fig. 2. The basic assumption behind
it is that the buyer agent tries to maximise the overall satisfaction degree of its requirements
(constraints). Accordingly, for the buyer we need to ensure that when it makes a concession
(i.e., it relaxes a constraint), it should relax a less important constraint; when it submits
constraints, it submits more important ones before less important ones. Meanwhile we
assume that it also always prefers a (profitable) deal to be struck. Hence, if the seller agent
cannot offer it a product that satisfies the constraints that it has submitted, it will endeavour
to relax some of its constraints to a certain extent; if the buyer can accept the seller’s offer,
it does not lie to the seller hoping it will make more concessions or offering it more benefits
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1. Obuyer.performative := ‘find’; Obuyer.constraint := select;
2. present(Obuyer); submitted-constraint-set := ∅;
3. REPEAT
4. receive(Oseller);
5. submitted-constraints := submitted-constraints ∪ {Obuyer.constraint};
6. IF Oseller.performative = ‘check’ THEN
7. cut-level := satisfy(submitted-constraint-set,Obuyer.product);
8. IF verify(Oseller.product, cut-level) = true THEN
9. IF evaluate(Oseller) = true THEN
10. Obuyer.performative := ‘deal’;
11. decision := Oseller;
12. ELSE
13. Obuyer.performative := ‘refind’
14. END IF;
15. ELSE
16. Obuyer.constraint := critique(Oseller, cut-level);
17. Obuyer.performative := ‘find’;
18. END IF;
19. END IF;
20. IF Oseller.performative = ‘relax’ THEN
21. (Obuyer.constraint, cut-level) := relax(submitted-constraints, cut-level);
22. IF Obuyer.constraint �= NIL THEN
23. Obuyer.performative := ‘find’
24. ELSE
25. Obuyer.performative := ‘fail’; decision := NIL;
26. END IF;
27. END IF;
28. present(Obuyer);
29. UNTIL Obuyer.performative = ‘fail’ OR ‘deal’ END REPEAT;
30. RETURN decision

Fig. 2. The specification of the buyer agent’s behaviour. The explanation of the symbols used is given in
Definitions 10, 13 and 14.

since this jeopardises the deal. A secondary objective of the buyer agent is to minimise the
amount of information that it has to reveal in order to strike a deal (as per the discussion in
Section 1).

Similar to the seller agent, the buyer agent’s actions are driven by the messages it
receives. As shown on line 1 in Fig. 2, the buyer agent initiates the negotiation by selecting
the constraint with the highest priority from its constraint set and submitting this constraint
to the seller agent.9 Then, in each subsequent round of negotiation the buyer agent acts
according to the performative message the seller sends to it:

9 Intuitively, the constraint with the highest priority should be satisfied before any other. Formally, Theorem 3
(given in the next section) guarantees that making such a choice maximises the buyer’s overall satisfaction degree.



X. Luo et al. / Artificial Intelligence 148 (2003) 53–102 73

(1) check (as shown on lines 6–19 in Fig. 2): The buyer agent checks whether the product

offered by the seller agent satisfies all its requirement constraints and whether its
acceptability threshold for the product is reached. Notice that if a seller’s offer violates
a fuzzy constraint this means that it violates the crisp constraint induced by the fuzzy
constraint at the current cut level.
– If the seller’s offer is acceptable (i.e., there are no violated constraints and the

buyer’s acceptability for the product is above the acceptability threshold) (as shown
on lines 8–11 in Fig. 2), the buyer agent indicates that a deal is made. Thus, the
negotiation procedure terminates.

– If the seller’s offer is unacceptable (i.e., there are no violated constraints but the
buyer’s acceptability for the product is less than the buyer’s acceptability threshold)
(as shown on lines 12–13 in Fig. 2), the buyer agent asks the seller agent to refind
an alternative offer.

– If the seller’s offer satisfies some of the constraints, but violates others (as shown on
lines 15–17 in Fig. 2), the buyer agent will pick out the constraint with the highest
priority from the constraints that are violated, and ask the seller agent to refind an
alternative offer.

(2) relax (as shown on lines 20–27 in Fig. 2): The buyer agent tries to relax the
constraints it has submitted to the seller to see if a deal can be made.
– If there is a constraint which can be relaxed (i.e., after the current cut level is

decreased, it is still not less than its relaxing threshold) (as shown on lines 22–23 in
Fig. 2), the buyer agent will ask the seller to delete the constraint to be relaxed, and
add the newly relaxed one. Meanwhile, the current cut level is updated to the newly
decreased one.

– If there are no constraints that can be relaxed (i.e., after the current cut level is
decreased, it becomes less than its relaxing threshold) (as shown on lines 24–25 in
Fig. 2), the buyer agent will inform the seller agent that their negotiation has failed.
Thus, the negotiation process terminates.

Let us explain why, when the buyer agent receives a product offer, the check is
necessary. This is because in each round of their negotiation the buyer agent submits
only one new constraint or relaxes an already submitted one. Thus, during negotiation
it is often the case that there are some constraints that the buyer agent has not revealed
to the seller agent. The rationale of this design is that the buyer and seller agents are in a
semi-competitive situation in which information revelation can be exploited. On the other
hand, if an offered product satisfies all the buyer agent’s constraints it is unnecessary for
the buyer agent to expose all of them to the seller agent. Thus there is clearly a trade-off to
be made. In any case, our incremental protocol ensures that the buyer agent minimises the
amount of information that it reveals during the course of the negotiation. We will return
to this point in Sections 4 and 5.

In sum, the strategy that the buyer agent employs to maximise the overall satisfaction
degree of its requirements (constraints) can be stated as follows:
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(1) When submitting constraints, always use a cut level as high as possible to transform a

fuzzy constraint to a hard (crisp) one and then submit the hard constraint to the seller
agent.

(2) When submitting a new constraint to the seller agent, choose the highest priority one
among those not yet submitted.

(3) When relaxing a constraint, always try the one with the lowest priority first. If there
is more than one, choose randomly. If a constraint with the lowest priority cannot be
relaxed, then try the one with the second lowest priority, and so on.

The aim of such a design is to guarantee that the buyer’s overall satisfaction degree is
maximised. In the next section we will formally prove our design indeed achieves this goal.

4. Properties of the negotiation model

This section analyses the key aspects and properties of our negotiation model. Particular
attention is focused on the condition under which a buyer accepts a deal (Section 4.1), the
foundational principles of the buyer’s negotiation strategy (Section 4.2) and the overall
properties of the negotiation outcomes and the revelation of information that occurs when
using our model (Section 4.3).

4.1. The buyer’s acceptability conditions

The design of the acceptability formula (16) is based on the following intuitions.
Firstly, the product must more or less satisfy the buyer’s requirement constraints, and
the buyer must more or less satisfy the product’s attached restrictions. In other words,
when the product’s requirement satisfiability α = 0 or the restriction obedience β = 0, the
product is absolutely unacceptable. Secondly, when the product’s requirement satisfiability
α, restriction obedience β and reward value γ increase, the buyer’s acceptability for a
product should also increase. Thirdly, a reward is used to try and increase the buyer’s
acceptability for a product. Fourthly, if the buyer agent does not care at all about the reward
associated with a product (or equally there is no reward), the reward should not increase
the buyer’s acceptability for the product. Finally, when a seller uses a reward to try to
raise a buyer’s acceptability, if the main factor, the product’s requirement satisfiability α,
is originally less than the acceptability threshold, the reward as the secondary factor can
raise the acceptability to some extent, but this raise should not make the product maximally
acceptable. Formally, we have the following definition:

Definition 15. The function f : [0,1] × [0,1] × [0,1] → [0,1] is the buyer’s acceptability
function for a product if it satisfies:

(1) ∀α,β, γ ∈ [0,1], f (0, β, γ ) = 0, f (α,0, γ ) = 0;
(2) ∀α,α′, β,β ′, γ , γ ′ ∈ [0,1], α � α′, β � β ′, γ � γ ′ ⇒ f (α,β, γ ) � f (α′, β ′, γ ′);
(3) ∀α,β, γ ∈ [0,1], f (α,β, γ ) � min{α,β};
(4) ∀α,β ∈ [0,1], f (α,β,0) = min{α,β}; and
(5) ∀α,β, γ ∈ [0,1], α < τ,γ > 0 ⇒ α < f (α,β, γ ) < 1.
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The following theorem shows that all five axioms listed in the above definition are

indeed met in formula (16).

Theorem 1. Formula (16) is appropriate for using as a buyer’s acceptability function.

Proof. Let f (α,β, γ ) be acceptability(gi) given by (16). In the following, we show it
satisfies all the axioms in Definition 15:

(1) By Definition 11 and property (4) in Lemma 1, we have:

f (0, β, γ ) = min{0, β} ⊕ (
(1 − τ )γ + τ

) = 0 ⊕ (
(1 − τ )γ + τ

) = 0,

f (α,0, γ ) = min{α,0} ⊕ (
(1 − τ )γ + τ

) = 0 ⊕ (
(1 − τ )γ + τ

) = 0.

(2) Since min and uninorm operator ⊕ (see Definition 7) are increasing operators, axiom
(2) in Definition 15 is satisfied.

(3) First notice that (1 − τ )γ + τ � τ . Thus, if min{α,β} � τ , by properties (1) and (3)
of Lemma 1 we have:

f (α,β, γ ) = min{α,β} ⊕ (
(1 − τ )γ + τ

)
� max

{
min{α,β}, (1 − τ )γ + τ

}
� min{α,β}.

(4) By Definitions 7 and 11, we have:

f (α,β,0) = min{α,β} ⊕ (
(1 − τ ) × 0 + τ

) = min{α,β} ⊕ τ = min{α,β}.
(5) Since α < τ implies min{α,β} < τ and γ > 0 implies ((1 − τ )γ + τ ) > τ , by

assumption (15) for the acceptability formula (16) we have:

α � min{α,β} < min{α,β} ⊕ (
(1 − τ )γ + τ

)
< (1 − τ )γ + τ � 1.

That is, α < f (α,β, γ ) < 1. ✷
Actually, formula (16) is just an instantiation of the axiomatic definition (Definition 15)

of the buyer’s acceptability function.10 There are likely to be other instantiations, but this
issue is beyond the scope of this paper.

In order to actually use acceptability formula (16) to calculate the buyer’s acceptability
for a product, we need to instantiate the uninorm operator and the priority operators
for calculating the satisfiability. The condition that the uninorm operator should meet is
specified, i.e., (15). By Lemma 2, the uninorm operator ⊕P given by (11) meets (15)
because of (10), and so ⊕P can be employed in acceptability formula (16).

10 Generally speaking, in engineering any system, it is important to first define the requirements and then pick
an operator to fit. In defining the buyer’s acceptability for a product, what we first find are these requirements (i.e.,
the axioms listed in Definition 15), then in order to fit these requirements we chose a uninorm in formula (16).
In this paper, however, for expository purposes we present these in the inverse order (i.e., we recall the uninorm
operator first, then introduce the buyer’s acceptability function (16), and finally present the requirements for the
acceptability).
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Now we turn to the issue of instantiating the priority operator in order to instantiate

formula (17). Intuitively, we wish that the result obtained when things are prioritised is
different from the one obtained when things are not. Thus:

Definition 16. A priority operator ◦ is a regular priority operator if:

∀a1, a2 ∈ [0,1), a1 ◦ a2 �= a2. (21)

Within this class of operators, we use the following specific one:

Theorem 2. Operator ◦ : [0,1]× [0,1] → [0,1], defined as follows, is a priority operator:

a1 ◦ a2 = (a2 − 1)a1 + 1. (22)

Proof. First, we prove operator ◦, given by (22), is a priority operator. In fact, the axioms
of priority operators as listed in Definition 6 are satisfied with the operator as shown in the
following:

a2 � a′
2 ⇒ (a2 − 1)a1 + 1 � (a′

2 − 1)a1 + 1 ⇒ a1 ◦ a2 � a1 ◦ a′
2,

a1 � a′
1 ⇒ (a2 − 1)a1 + 1 � (a2 − 1)a′

1 + 1 ⇒ a1 ◦ a2 � a′
1 ◦ a2,

1 ◦ a2 = (a2 − 1)a1 + 1 = (a2 − 1) × 1 + 1 = a2,

0 ◦ a2 = (a2 − 1)a1 + 1 = (a2 − 1) × 0 + 1 = 1.

Then we prove the priority operator is also a regular priority operator (i.e., to check whether
(21) is satisfied as well). Now since

(a2 − 1)a1 + 1 = a2 ⇔ (a2 − 1)(a1 − 1) = 0 ⇔ a1 = 1 ∨ a2 = 1,

(21) holds. ✷
The above theorem guarantees that the priority operator given by (22) satisfies our

assumption that the result with priority is not the same as the one without priority. For
example, in (17) let µ
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= min

{
(0.8 − 1) × 10 + 1, (0.9 − 1) × 9 + 1,
10 10

(0.6 − 1) × 8

10
+ 1, (0.65 − 1) × 7

10
+ 1

}

= 0.68 �= min{0.8,0.9,0.6,0.65}.
So, when we calculate the buyer’s satisfiability by (17), we employ priority operator (22).

4.2. The buyer’s negotiation strategy

One of key parts of the buyer’s model is how it implements the relax action (see
Section 3.2). Here the strategy used is based on the following theorem:

Theorem 3. In a PFCSP (X,D,Cf ,ρ), for R
f
i ,R

f
j ∈ Cf , suppose ρ(R

f
i ) � ρ(R

f
j ), and

there are two different compound labels vX and v′
X such that ∀Rf ∈ Cf ,

(1) when Rf �= R
f
i and Rf �= R

f
j , µRf (vvar(Rf )) = µRf (v′

var(Rf )
),

(2) when Rf = R
f
i , µRf (vvar(Rf )) = µRf (v′

var(Rf )
) + δ,

(3) when Rf = R
f
j , µRf (v′

var(Rf )
) = µRf (vvar(Rf )) + δ,

where δ � 0. If

ρ(R
f

i )

ρmax

 µ

R
f
i

(v
var(Rf

i )
) �

ρ(R
f
j )

ρmax

 µ

R
f
j

(v
var(Rf

j )
), (23)

then

αρ(vX) � αρ(v
′
X). (24)

Proof. Since the priority operators are increasing with respect to their second operand,
from assumptions (2) and (3) of the theorem, we have:

ρ(R
f
i )

ρmax

 µ

R
f
i

(v
var(Rf

i )
) �

ρ(R
f
i )

ρmax

 µ

R
f
i

(v′
var(Rf

i )
), (25)

ρ(R
f
j )

ρmax

 µ

R
f
j

(v
var(Rf

j )
) �

ρ(R
f
j )

ρmax

 µ

R
f
j

(v′
var(Rf

j )
). (26)

Thus, by (23), we have:

ρ(R
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ρmax
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R
f
i

(v′
var(Rf

i )
) �

ρ(R
f
j )

ρmax

 µ

R
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j )
). (27)

Since the minimum operator is used in the overall satisfaction degree formula (7), because
of (23) and (27) the following two values
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)
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are independent of the order between the overall satisfaction degrees, αρ(vX) and αρ(v
′ ),
X

for vX and v′
X . Thus, noticing assumption (1) of the theorem, by the overall satisfaction

degree formula (7), the order between αρ(vX) and αρ(v
′
X) depends only on the order

between:

ρ(R
f
i )

ρmax

 µ

R
f
i

(v
var(Rf

i )
),

ρ(R
f
i )

ρmax

 µ

R
f
i

(v′
var(Rf

i )
).

Therefore, by the order of (25) and considering that the minimum operator used in the
overall satisfaction degree formula (7) is increasing with respect to its individual operands,
(24) holds. ✷

Intuitively speaking, the theorem reveals that if an agent wants to raise the overall
satisfaction degree of all its prioritised constraints, a constraint with a relatively high
priority should be more sufficiently satisfied than a constraint with a relatively low priority.
In our case, the buyer agent always tries to maximise the overall satisfaction degree
of all its prioritised constraints since it has a degree of self-interest. As a result, the
strategy used in the buyer’s action relax is to relax the constraint that has the lowest
priority.

For similar reasons, the strategy used in the buyer’s action select (specified in
Definition 10) is to submit to the seller agent the constraint with the highest priority
among all its constraints; the strategy used in action critique (specified in Definition
10) is to submit to the seller agent the constraint with the highest priority among
those that are violated. The second point to note about the strategy used in the buyer’s
critique action is that the newly submitted constraint should, wherever possible, keep
the buyer’s potential payoff unchanged. The following theorem guarantees this point
is indeed realised. Before giving the theorem, we first give a lemma about priority
operators.

Lemma 3. Suppose operator 
 satisfies axioms (2) and (3) of priority operators which are
listed in Definition 6. Then:

a1 
 a2 � a2. (28)

Proof. By axioms (2) and (3) of the priority operators (see Definition 6), we have:

a1 
 a2 � 1 
 a2 = a2. ✷
Theorem 4. In the kth round of negotiation, let the buyer’s potential payoff be
pp(R′f

1 , . . . ,R
′f
m ) (given by (20)). If in round k + 1 the buyer agent takes action critique

and submits to the seller agent a crisp constraint R′c
m+1 induced by fuzzy constraint R′f

m+1.
Then:

pp
(
R

′f
1 , . . . ,R

′f
m ,R

′f
m+1

) = pp
(
R

′f
1 , . . . ,R

′f
m

)
. (29)
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Proof. In negotiation round k when the buyer agent takes action critique, according to the

protocol (see line 7 in Fig. 2) and Definition 12, the cut level is pp(R′f

1 , . . . ,R
′f
m ). Thus,

by Definition 5, µ
R

′f
m+1

(v
var(R′f
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m+1). And by Lemma 3, we have:
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Thus, by Definition 12,
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)
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= pp
(
R

′f
1 , . . . ,R

′f
m

)
. ✷

In the first round of negotiation, the buyer agent takes action select to generate a crisp
constraint induced, at cut level 1, from the fuzzy constraint with the highest priority.
Intuitively, if the seller finds a product satisfying the crisp constraint and offers it to the
buyer, then in round 2 the buyer’s potential payoff should be 1. The following theorem
states that our definition for the buyer’s potential payoff is consistent with this intuition.

Theorem 5. Suppose in negotiation round 1 the crisp constraint that the buyer agent
submits to the seller agent is induced from Rf at cut level 1. Then

pp
(
Rf

) = 1. (30)

Proof. By Definition 5, µRf (vvar(Rf )) � σ = 1, while by Definition 4, µRf (vvar(Rf )) � 1.
Therefore,

µRf (vvar(Rf )) = 1.

Thus, by Definitions 12 and 6,

pp
(
Rf

) = ρ(Rf )

ρmax

 µRf (vvar(Rf )) = ρ(Rf )

ρ(Rf )

 1 = 1 
 1 = 1. ✷

Finally, we give the calculation formula and property of the cut level used in action relax.
Since we assume that all product attributes have finite possible values (see Definitions 2, 4,
6 and 9), all possible combinations of the attributes’ values are finite. Thus, the satisfaction
degrees associated with single attributes’ values or their combinations take finite values in
[0,1]. Keeping this point in mind, we can formally define what it means to “reduce the cut
level as little as possible” in action relax (see Definition 10):

Definition 17. Let the cut level in negotiation round k be σ (k). Suppose that in negotiation
round k + 1 the buyer agent relax fuzzy constraint Rf from crisp constraint Rc (which is
induced from Rf at cut level σ (k)) to crisp constraint R′c. Let all the different satisfaction
degrees of Rf constitute a finite series:

0 � µ1 < · · · < µm � 1. (31)
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Suppose µs < σ(k) � µs+1. Then the cut level (denoted as σ (k+1)), at which Rf induces

R′c , is defined as

σ (k+1) = µs. (32)

This definition states that when taking action relax the buyer agent minimises the
decrease of the cut level at which the relaxed constraint is induced. This implies that the
decrease of the buyer’s potential payoff is minimised.11 In fact, we have the following
theorem:

Theorem 6. In negotiation round k, let the buyer’s potential payoff be pp(k)(R
′f
1 , . . . ,R

′f
m ).

Suppose in round k + 1 the buyer agent takes action relax and submits to the seller agent
a crisp constraint R′′c

m which is induced from R
′f
m at cut level σ (k+1) (given by (32)). In

negotiation round k + 1, let the buyer’s potential payoff be pp(k+1)(R
′f
1 , . . . ,R

′f
m ). Then

pp(k)
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)
, (33)

and the decrease is minimised.

Proof. Let v
(k+1)
X and v

(k+2)
X denote the attributes’ values of the two products the seller

agent offers in negotiation round k + 1 and k + 2, respectively. Thus, by Definitions 5 and
16, we have:
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Then, by property (1) of priority operators listed in Definition 6, we have:
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Thus, by Definition 12,
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And by Definition 16, the decrease from µ
R

′f
m
(v

(k+1)

var(R′f
m )

) to µ
R

′f
m
(v

(k+2)

var(R′f
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) is minimised.

So, the decrease from pp(k)(R
′f
1 , . . . ,R

′f
m ) to pp(k+1)(R

′f
1 , . . . ,R

′f
m ) is also minimised. ✷

11 From Definition 17 we can clearly see that when a constraint is relaxed the procedure is basically one of
hill-climbing. However, according to (31) it is clear that the hill is monotonic decreasing, and so it is impossible
for the relaxing procedure to get stuck in local minima.
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4.3. The negotiation outcome and information revelation
In this subsection, we analyse the properties of our negotiation algorithm and the
solutions that it produces. In particular, we show that our negotiation system can find
Pareto-optimal solutions and at the same time guarantee that the amount of private
information revealed is minimised. We view Pareto-optimal solutions and minimal
information revelation as important properties of our model because they accord closely
with the main tenets of semi-competitive encounters as outline in Section 1. Notice that in
the following all theorems are restricted to our agents’ behaviour protocols and strategies.

In this context, a deal is a product that the seller agent offers to the buyer agent and
the buyer agent accepts. According to standard business theory [4], the payoff that a seller
gains from a deal is the profit of the product sold; and the payoff that a buyer gains is their
satisfaction with the product bought. Formally, we have:

Definition 18. The seller’s payoff is a sold product’s profit (see Definition 9).

Definition 19. The buyer’s payoff for a deal is the overall satisfaction degree of all
constraints on the deal (as given by formula (7)).

Clearly, if an offered product is accepted in round k + 1, the buyer’s potential payoff
(see Definition 12) in round k becomes its actually payoff for the deal.

Theorem 7. During the negotiation encounter, the buyer’s offers are generated in
decreasing potential payoff order.

Proof. According to the negotiation protocol given in Fig. 2, in the first round of a
negotiation, the fuzzy constraint with the highest priority induces, at cut level 1, a crisp
constraint that is submitted to the seller agent. That is, the buyer’s potential payoff is 1
(by Theorem 5). Then, according to our negotiation protocol, in each of the subsequent
rounds of the negotiation the buyer agent either submits a new crisp constraint or relaxes
an already submitted one. According to Theorem 4, when submitting a new crisp constraint
the buyer’s potential payoff remains the same in the next negotiation round. According to
Theorem 6, when it relaxes the constraint, the buyer’s potential payoff is decreased as little
as possible in the next negotiation round. So, the theorem holds. ✷

We now turn to the properties of the negotiation outcome.

Definition 20. A product p represents a Pareto-optimal solution if there is no other product
p′ such that at least one of the agent’s payoffs is better for p′ than it is for p and no agent’s
payoff is worse in p′ than in p [50].

Theorem 8. If there exists a solution (product) between seller and buyer agents then the
protocol will terminate and a solution will be found through the protocol and strategies
used by the participating agents. Moreover, the solution will be Pareto optimal.
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Proof. First, we prove that if a solution exists then the protocol must terminate and a

solution must be found. Firstly, during the course of a negotiation, at the same level of the
buyer’s potential payoff, the buyer can only submit finite constraints since by Definitions
6 and 10 the buyer’s constraints are finite and their domains are finite. Moreover, by
Definition 9, the seller has a finite number of products and their associated rewards are
also finite. Therefore, the searching procedure will not repeat infinitely at any given level
of the buyer’s potential payoff. Secondly, by Theorem 7, the buyer’s offers are generated
in decreasing potential payoff order and by Theorem 6 each decrease is minimised
(i.e., between two potential payoffs there is no possible offer). Thirdly, according to
the negotiation protocol of Fig. 1, at any point of a negotiation, if there is a product
that can satisfy the buyer’s submitted constraints, the seller must offer it to the buyer.
Fourthly, according to the negotiation protocol given in Figs. 1 and 2, the search along
the decreasing buyer’s potential payoff order terminates when a solution that is accepted
by the buyer agent is found. According to the first three points, all possible solutions are
generated according to the negotiation protocol given in Fig. 2 and in order of the buyer’s
decreasing potential payoff. As a result, according to the fourth point, if the set of mutually
acceptable solutions is not empty, a solution will be found by the search and the protocol
will terminate.

Next, we prove that the solution found (the deal) is Pareto optimal. Assume that the
deal is reached in the ith round. In other words, before the ith round no offers from the
seller agent are acceptable to the buyer agent. Therefore, although before the ith round
the possible solutions have higher payoffs for the buyer agent, these possible solutions are
not acceptable deals. That is, no other solutions can give the buyer agent higher payoff.
Moreover, according to the strategy of the seller’s action generate used to produce the deal
(see Definition 9), the deal that is reached in the ith round is the solution with the highest
profit (payoff) for the seller among the solutions that can give the buyer the same payoff.
That is, no other solutions can give the seller agent higher payoff. Therefore, the deal made
through our protocol is Pareto optimal. ✷

This theorem states that given the buyer and seller’s domain knowledge, our negotiation
algorithm consisting of the negotiation protocol and strategies finds a Pareto-optimal
solution.12 We now turn to the information revealed during the encounter:

Theorem 9. The buyer agent minimises the revelation of its requirement model (see
Definition 10) during the negotiation.

Proof. We have the following four points:
(1) According to the buyer’s behaviour protocol (as shown in Fig. 2), in each round the

buyer agent submits at most one constraint in its requirement model, and once it accepts the
seller’s offer, it does not submit any more constraints and ends the negotiation process. So,
the buyer agent minimises the number of constraints that are revealed to the seller agent.

12 The actual solution can be calculated only after the domain knowledge specifications of the seller and buyer
agents (see Definitions 9 and 10) are actually instantiated. Therefore, it is not possible to determine the actual
solution in this abstract setting.
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(2) According to the way that action relax operates (see Definition 10), when the buyer

agent relaxes a fuzzy constraint it minimises the degree of relaxation. If the degree of
relaxation is not minimal, more compound labels (refer to Definitions 2 and 4) that satisfy
the fuzzy constraint more or less will be revealed to the seller agent. Therefore, when
relaxing a constraint, minimising the degree of relaxation implies that the revelation of the
compound labels of the fuzzy constraint is also minimised.

(3) After the first round of negotiation, when submitting a constraint provided by action
critique (see Definition 10), the buyer agent minimises the revelation of compound labels of
the fuzzy constraint that induces the crisp constraint. In fact, if the cut level used to induce
the crisp constraint from a fuzzy constraint is increased, although the potential payoff of the
buyer agent does not decrease, the potential payoff of the seller agent may decrease. Thus,
it is impossible to obtain a Pareto-optimal solution finally. This conflicts with Theorem 8.

(4) In the first round of negotiation, the buyer agent submits a crisp constraint provided
by action select (see Definition 10). At that time, the cut level, which is used to induce
the crisp constraint from a fuzzy constraint, is 1. So, at that moment the revelation of the
compound labels of the fuzzy constraint is minimised.

In summary, during the course of a negotiation, the buyer agent minimises the number
of constraints revealed. Moreover, for each fuzzy constraint that induces a submitted
constraint, the buyer agent minimises the revelation of the compound labels of the fuzzy
constraint. In addition, only fuzzy constraints in the buyer’s requirement model are revealed
to the seller agent. So, the theorem holds. ✷
Theorem 10. The seller agent minimises the revelation of its product model (see
Definition 9) during the negotiation.

Proof. According to the seller’s behaviour protocol (as shown in Fig. 1), in each round the
seller agent reveals one product’s attributes and attached restriction (refer to Definition 9)
to the buyer agent. Moreover, when a product is revealed to the buyer agent for the first
time, the reward associated with the product is not revealed. Additionally, the profit of a
product is never revealed to the buyer agent. So, the theorem holds. ✷

When being taken together, Theorems 9 and 10 state that our negotiation model
minimises the amount of private information revealed during the encounter. When
combined with Theorem 8, we believe our system should be trusted by both sellers and
buyers since it produces fair outcomes for them and minimises the disclosure of private
information.

5. An accommodation renting scenario

To demonstrate the operation of our model and to show its practicality we have
implemented a prototype systems for an accommodation renting scenario. Here a
prospective tenant (student, the buyer) wants to rent some accommodation from a real
estate agent (the seller). This scenario was chosen for two reasons. Firstly, it is readily
comprehensible to most people. Secondly, such a scenario is a typical semi-competitive
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one. The seller agent tries to ensure the buyer agent rents accommodation which gives it

the most profit, while the buyer agent tries to rent accommodation that most satisfies its
constraints. That is, both agents try to obtain the best deal they can since they are both self-
interested. To this end, they should minimise the revelation of their private information
since it could stop them from getting good deals (see Section 5.3 for more discussion).
However, since the seller needs to build or maintain his reputation (this should equate with
more money in the long term) and the buyer needs to settle down as soon as possible (being
homeless is not a good feeling), it is also necessary for them to cooperate to a certain extent
in the negotiation.

5.1. The domain knowledge

We start by detailing the buyer’s domain knowledge KD (see Definition 10) and the
seller’s domain knowledge G (see Definition 9) for this context.

First consider the buyer agent’s domain knowledge KD = (C,D, τ ). Let us suppose
the buyer agent wants to rent accommodation on behalf of its user who is a student. The
buyer’s requirement model C (refer to Definition 10) consists of two crisp constraints:13

R1: “distance � 15(minutes-walk)” with priority ρ(R1) = 0.37,

R2: “rental-period � 12(months)” with priority ρ(R2) = 0.33,

and fuzzy constraint R3 on the combination of rental rate and period (shown in Table 1)
which has priority ρ(R3) = 0.3 and a relaxing threshold $(R3) = 0.6. Roughly speaking,
the constraint expressed in Table 1 indicates that the more expensive the accommodation is,
the shorter the acceptable rental period should be. So, this constraint actually captures the
student’s preference order on the trade-offs between rental rate and rental period. Thus, for
example, the following are potential trade-offs for the agent: (1) the accommodation with
rental rate £200 and rental period 12 months (line 1 in Table 1), (2) the accommodation
with rental rate £265 and rental period 6 months (line 3 in Table 1), and (3) the
accommodation with rental rate £325 and rental period 0.25 months (line 9 in Table 1).
However, the buyer prefers the first option to the other two (because its satisfaction degree
is bigger).

The buyer’s profile model B (refer to Definition 10) consists of the following facts: the
student is a female, she absolutely dislikes smoking, she likes a pet to the degree of 60%,14

13 Notice that crisp constraints can be regarded as a special case of fuzzy constraints.
14 The concept of liking a pet to a degree of 60% is clearly unnatural. When estimating uncertainties, people

are often reluctant to provide real numbers chosen from a predefined range. Instead they feel more comfortable
with a qualitative estimate [35,41] (i.e., a linguistic term). So, when answering the question how much they like
a pet, people usually answer with one of the following linguistic terms: very much, not much, a lot, and so on.
A linguistic term usually corresponds to a fuzzy set [68]. However, for simplicity, this paper treats a linguistic
term as a number in [0,1]. For example, “very much” may correspond to 60%, and thus “like a pet to a degree
of 60%” means “like a pet very much”. However, although this does not limit the generality of our model, it
clearly limits its applicability since it is not easy for users to use real numbers to express the degree to which a
proposition is true. This limitation could be removed by exploiting Zadeh’s linguistic truth propositional logic
[68]. However, in this case, the computation framework of linguistic fuzzy constraint satisfaction problems [25]
would also need to be employed.
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Table 1

Fuzzy constraint on rent and rental period

Table 2
Accommodation information held by the seller agent

and a telephone, some new furniture and an air conditioner are valuable important for her
to the degrees of 70, 30 and 40%, respectively.

The buyer’s acceptability threshold τ (refer to Definition 10) for accommodation is 0.7.

Now we turn to the seller. Table 2 shows the seller’s product model (i.e., the information
about the available accommodation prepared by the seller agent). Here the unit of
rental rate and profit (the money that a real estate agent can make by renting out an
accommodation) is pound, the unit of distance to the university is minute walk, and the
unit of rental period is month.
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5.2. The negotiation process
The negotiation proceeds as follows.

Round 1.
Buyer: Select the constraint with highest priority as follows:

distance � 15, (34)

then present the seller agent with a message to ask it to find accommodation which
satisfies this constraint.

Seller: Receive the buyer’s offer message, and accordingly update its current constraint
set (empty at the moment) with constraint (34). Thus its current constraint set becomes:

{distance � 15}. (35)

Then, generate a solution, accommodation f3, to the CSP (35). Further, try to propose the
attached restriction for the solution. Here there is none. Finally, present the buyer agent
with a message to ask it to check whether accommodation f3 is acceptable according
to the information “rental-period � 24”, “distance = 15”, and “rental-rate = 300”. Notice
that f2, f4, f5, f6 and f7 also satisfy the constraint, but the profit of accommodation f3 is
the highest, and hence it is the one which is presented.

Round 2.
Buyer: Receive the seller’s offer message, and accordingly verify accommodation f3

against its current constraints in the order of their priorities. This shows that the constraint

rental-period � 12 (36)

is violated. Thus, present the seller agent with a message to ask it to find an
accommodation which can satisfy constraint (36) as well.

Seller: Receive the buyer’s offer message, and first update its current constraint set (35)
with constraint (36). Thus, its current constraint set becomes:

{distance � 15, rental-period � 12}. (37)

Then, generate a solution, accommodation f2, to the CSP (37). Further, propose the
attached restriction for the solution: “no pet”. Finally, present the buyer agent with a
message to ask it to check whether accommodation f2 is acceptable according to the
information “no pet”, “distance = 15”, and “rental-rate = 240”. Notice that f4, f5, f6 and
f7 also satisfy the constraints in (37), but f2 and f4 have the highest profit (f2 is therefore
randomly chosen).

Round 3.
Buyer: Receive the seller’s offer message, and verify accommodation f2 against its

current constraint set. No violations are found. Second, evaluate the buyer’s acceptability
for f2. According to the buyer’s requirement model, f2 completely satisfies all its
constraints, and so by (17) along with priority operator (22), f2’s requirement satisfiability
is
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α = min

{
(µ − 1)

ρ(R1) + 1, (µ − 1)
ρ(R2) + 1, (µ − 1)

ρ(R3) + 1

}

R1 ρmax

R2 ρmax
R3 ρmax

= min

{
(1 − 1) × 0.37

0.37
+ 1, (1 − 1) × 0.33

0.37
+ 1, (1 − 1) × 0.3

0.37
+ 1

}

= 1.

According to the buyer’s profile model, the student likes a pet to the degree of 60%, and
so f2’s restriction obedience β = 1 − 60% = 0.4. Since there is no reward associated with
f2, in (16) f2’s reward value γ = 0. Thus, by (16) we have:

acceptability(f2) = min{α,β} ⊕P

(
(1 − τ )γ + τ

)
= min{1,0.4} ⊕P

(
(1 − 0.7) × 0 + 0.7

)
= 0.4 ⊕P 0.7

= (1 − 0.7) × 0.4 × 0.7

(1 − 0.7) × 0.4 × 0.7 + 0.7 × (1 − 0.4)(1 − 0.7)
= 0.4.

This value is less than the buyer’s acceptability threshold 0.7, and so f2 is not acceptable.
Thus, present the seller agent with a message to ask it to refind an accommodation
which satisfies all the constraints the buyer has submitted so far.

Seller: Receive the buyer’s offer message, and generate an alternative solution,
accommodation f4, which has the same profit as accommodation f2 (i.e., f4 is a trade-
off solution15 of f2). Further, propose the attached restriction for the solution: “no pet”.
Thus, present the buyer agent with a message to ask it to check whether accommodation
f4 is acceptable according to the information “no pet”, “rental-period � 12”, “rental-
rate = 255” and “distance = 8”. Notice that f5, f6, and f7 also satisfy the constraint,
but f4 has the highest profit and so it is the one that is chosen.

Round 4.
Buyer: Receive the seller’s offer message, and verify accommodation f4 against its

constraints. In this case, find that its constraint

rental-rate � 250 ∧ rental-period = 12 (38)

is violated since the current cut level for fuzzy constraint R3 is 1 according to formula
(20). Then, present the buyer agent with a message to ask it to find an accommodation
which can also satisfy constraint (38). Notice that crisp constraint (38) is induced from the
buyer’s fuzzy constraint, as shown in Table 1, at cut level 1 (see Definition 5).

Seller: Receive the buyer’s offer message, and update its current constraint set (37) with
constraint (38). Thus its current constraint set becomes:

{distance � 15, rental-period � 12, rental-rate � 250 ∧ rental-period = 12}. (39)

15 From Table 2, we can see that the profit of accommodation f2 and f4 is the same (£60) and so the seller is
indifferent between them. However, the two potential solutions differ in their various attributes. In fact, compared
with f2, f4’s distance to the university is closer (hence better), but its rental rate is bigger (hence worse).
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Then, try to generate a solution to the CSP (39), but fail. Thus, propose the reward for the

last solution f4: the seller agent can provide the student with some new furniture. Then,
present the buyer agent with a message to ask it to check again whether accommodation
f4 is acceptable according to the revealed information plus the reward “new furniture”.

Round 5.
Buyer: Receive the seller’s offer message, and check whether the acceptability for f4 is

increased sufficiently by the reward. According to the buyer’s requirement model, by (17)
along with priority operator (22), f4’s requirement satisfiability is:

α = min

{
(µR1 − 1)

ρ(R1)

ρmax
+ 1, (µR2 − 1)

ρ(R2)

ρmax
+ 1, (µR3 − 1)

ρ(R3)

ρmax
+ 1

}

= min

{
(1 − 1) × 0.37

0.37
+ 1, (1 − 1) × 0.33

0.37
+ 1, (0.9 − 1) × 0.3

0.37
+ 1

}

= 0.92.

According to the buyer’s profile model, the student likes a pet to the degree of 60% (so f4’s
restriction obedience β = 1 − 60% = 0.4), and the reward “new furniture” associated with
f4 is valuable to the degree of 30% (so f4’s reward value γ = 0.3). Thus, by acceptability
formula (16) along with uninorm operator (10), we have:

acceptability(f4) = min{α,β} ⊕P

(
(1 − τ )γ + τ

)
= min{0.92,0.4} ⊕P

(
(1 − 0.7) × 0.3 + 0.7

)
= 0.4 ⊕P 0.79

= (1 − 0.7) × 0.4 × 0.79

(1 − 0.7) × 0.4 × 0.79 + 0.7 × (1 − 0.4)(1 − 0.79)
= 0.518.

This value is less than the buyer’s acceptability threshold 0.7. So, even with the associated
reward, f4 is still not acceptable. Thus, present the seller agent with a message to ask it to
refind an alternative which can satisfy all the buyer’s constraints submitted so far.

Seller: Receive the buyer’s offer message, and try to generate a new solution to the CSP
(39), but fail. Moreover, the reward associated with last solution f4 has been mentioned
to the buyer agent. Thus, present the buyer agent with a message to ask it to relax
some constraints. Notice only f1, f2 and f8 can satisfy the constraint “rental-rate � 250”.
However, f1 and f8 cannot satisfy the constraint “distance � 15”. f2 can satisfy all
constraints, but in the third round of the negotiation it was refused by the buyer agent
because the buyer’s acceptability for it was less than its threshold. So, the seller agent
cannot generate a new solution.

Round 6.
Buyer: Receive the seller’s offer message, and relax its fuzzy constraint (as shown

in Table 1) from “rental-rate � 250 ∧ rental-period = 12” to “rental-rate � 260 ∧
(rental-period = 12 ∨ rental-period = 8” (i.e., first reduce the cut level of the fuzzy
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constraint from 1 to 0.9,16 and then by formula (6) the relaxed result is obtained from

Table 1). Then, present the seller agent with a message to ask it to find accommodation
which can satisfy all the submitted constraints (including the newly relaxed one).

Seller: Receive the buyer’s offer message, and update its current constraint set (39), by
deleting constraint (38) and adding17

not(rental-rate � 250 ∧ rental-period = 12), (40)

rental-rate � 260 ∧ (rental-period = 12 ∨ rental-period = 8). (41)

Thus its current constraint set becomes:{
distance � 15, rental-period � 12, not(rental-rate � 250 ∧ rental-period = 12),

rental-rate � 260 ∧ (rental-period = 12 ∨ rental-period = 8)
}
. (42)

Then, try to generate a solution to the CSP (42), but fail again. Moreover, the reward
associated with last solution f4 has already been mentioned to the buyer agent. Thus,
present the buyer agent with a message to ask it to further relax some constraints.

Round 7.
Buyer: Receive the seller’s offer message, and relax the fuzzy constraint (as shown in

Table 1) from “rental-rate � 260 ∧ (rental-period = 12 ∨ rental-period = 8)” to “rental-
rate � 270 ∧ (rental-period = 12 ∨ rental-period = 8 ∨ rental-period = 6)” (i.e., first
reduce the cut level of the fuzzy constraint from 0.9 to 0.8, and then by formula (6) the
relaxed result is obtained from Table 1). Then, present the seller agent with a message to
ask it to find accommodation according to the result of the relaxation.

Seller: Receive the buyer’s offer message, and update its current constraint set (42) by
deleting constraint (41) and adding constraints

not
(
rental-rate � 260 ∧ (rental-period = 12 ∨ rental-period = 8)

)
,

rental-rate � 270 ∧ (rental-period = 12 ∨ rental-period = 8 ∨ rental-period = 6).

Thus, its current constraint set (42) becomes:{
distance � 15, rental-period � 12,

not(rental-rate � 250 ∧ rental-period = 12),

not
(
rental-rate � 260 ∧ (rental-period = 12 ∨ rental-period = 8)

)
,

rental-rate � 270 ∧ (rental-period = 12 ∨
rental-period = 8 ∨ rental-period = 6)

}
. (43)

16 From Table 1, we can see that the second highest satisfaction degree of the fuzzy constraint is 0.9. So,
according to the principle of reducing the cut level as little as possible when relaxing a constraint (see Definitions
10 and 16), we should reduce the cut level of the fuzzy constraint from 1 to 0.9 (instead of, for example, 0.95, or
others).

17 Since accommodation satisfying “rental-rate � 250 ∧ rental-period = 12” also satisfies “rental-rate �
260 ∧ (rental-period = 12 ∨ rental-period = 8)”, “not(rental-rate � 250 ∧ rental-period = 12)” must be added
when the seller deletes “rental-rate � 250 ∧ rental-period = 12” and adds “rental-rate � 260 ∧ (rental-period =
12 ∨ rental-period = 8)”.
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Then, generate a solution, accommodation f5, to the CSP (43), which has an attached

restriction “female and no smoking”. Finally, present the buyer agent with a message to
ask it to check whether accommodation f5 is acceptable according to the information
“female and no smoking”, “rental-rate = 270” and “distance = 10”. Notice that from Table
2 we can see f5 and f7 both satisfy the constraints in (43), but f5’s profit (£55) is higher
than f7’s (£45).

Round 8.
Buyer: Receive the seller’s offer message, and check accommodation f5. According to

the buyer’s requirement model, by (17) along with priority operator (22), f5’s requirement
satisfiability is:

α = min

{
(µR1 − 1)

ρ(R1)

ρmax
+ 1, (µR2 − 1)

ρ(R2)

ρmax
+ 1, (µR3 − 1)

ρ(R3)

ρmax
+ 1

}

= min

{
(1 − 1) × 0.37

0.37
+ 1, (1 − 1) × 0.33

0.37
+ 1, (0.8 − 1) × 0.3

0.37
+ 1

}

= 0.838.

According to the buyer’s profile model, the student can completely obey the restriction
condition “female and no smoking”, and so f5’s restriction obedience β = 1. According
to buyer’s profile model, there is no reward associated with f5, and γ = 0. Thus, by the
acceptability formula (16) along with uninorm operator (10) we have:

acceptability(f5) = min{α,β} ⊕P

(
(1 − τ )γ + τ

)
= min{0.838,1} ⊕P

(
(1 − 0.7) × 0 + 0.7

)
= 0.838 ⊕P 0.7

= (1 − 0.7) × 0.838 × 0.7

(1 − 0.7) × 0.838 × 0.7 + 0.7 × (1 − 0.838)(1 − 0.7)

= 0.838. (44)

This value is greater than the buyer’s acceptability threshold 0.7. Thus, present the seller
agent with a message to tell it that a deal has been made and that it can end its negotiation
process.

Seller: Receive the buyer’s offer message, and end the negotiation process.

To summarise this negotiation, the changes of data for the buyer and seller agents are
given in Tables 3 and 4, respectively. In these tables, rr, rp and d stand for “rental rate”,
“rental period” and “distance”, respectively.

5.3. Observations

After the negotiation exchange for this scenario has been viewed, there are two obvious
questions to ask: (1) Why do we need to bother with this involved interchange? (2) Why
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Offer Offer
constraint performative

+(d � 15) find

+(rp � 12) find

refind

+(rr � 250 ∧ rp = 12) find

refind

−(rr � 250 ∧ rp = 12)
+(¬(rr � 250 ∧ rp = 12))

(rr � 260 ∧ (rp = 12 ∨ rp = 8))
find

(rr � 260 ∧ (rp = 12 ∨ rp = 8))
¬(rr � 260 ∧ (rp = 12 ∨ rp = 8)))

270 ∧ (rp = 12 ∨ rp = 8 ∨ rp = 6))
find

deal
Table 3
The change of the buyer’s data during the negotiation

Received Violated Acceptability Cut Potential
offer constraint level payoff

Round 1 1

Round 2 f3 rp � 12 0 1

Round 3 f2 0.4 1

Round 4 f4 rr � 250 ∧ rp = 12 1

Round 5 f4 rr � 250 ∧ rp = 12 0.518 0.92

Round 6 0.9
+

Round 7 0.8
−

+(

+(rr �

Round 8 f5 0.838 0.838
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Revealed Reward Offer
information performative

rp � 24, d = 15,
rr = 300

none check

no pet, d = 15,
rr = 240

none check

no pet, rp � 12,
d = 8, rr = 255

none check

no pet, rp � 12
d = 8, rr = 255

new
furniture

check

relax

relax

female,
no smoking,

d = 10, rr = 270
none check
Table 4
The change of the seller’s data during the negotiation

Received Candidate Offer Potential
constraint set solutions solution payoff

Round 1 d � 15
f2, f3, f4,

f5, f6, f7
f3 100

Round 2 d � 15, rp � 12
f2, f4, f5,

f6, f7
f2 60

Round 3 d � 15, rp � 12 f4, f5, f6, f7 f4 60

Round 4
d � 15, rp � 12,

rr � 250 ∧ rp = 12
∅ f4 60

Round 5
d � 15, rp � 12,

rr � 250 ∧ rp = 12
∅

Round 6
d � 15, rp � 12,

¬(rr � 250 ∧ rp = 12),
rr � 260 ∧ (rp = 12 ∨ rp = 8)

∅

Round 7

d � 15, rp � 12,
¬(rr � 250 ∧ rp = 12),

¬(rr � 260 ∧ (rp = 12 ∨ rp = 8)),
rr � 270 ∧ (rp = 12 ∨ rp = 8 ∨ rp = 6)

f5, f7 f5 50
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is negotiation necessary for this problem at all? In this subsection, we will discuss both

questions.

From the above negotiation procedure, we know that f1, f2, f3, f4 and f8 are not
acceptable to the buyer agent, but f5 is. Actually, f6 and f7 are also acceptable to the buyer
agent. In fact, according to the buyer’s requirement model, by (17) along with priority
operator (22), f6’s requirement satisfiability is:

α = min

{
(µR1 − 1)

ρ(R1)

ρmax
+ 1, (µR2 − 1)

ρ(R2)

ρmax
+ 1, (µR3 − 1)

ρ(R3)

ρmax
+ 1

}

= min

{
(1 − 1) × 0.37

0.37
+ 1, (1 − 1) × 0.33

0.37
+ 1, (0.6 − 1) × 0.3

0.37
+ 1

}

= 0.676.

According to the buyer’s profile model, f6’s restriction obedience and reward value are
β = 1, and γ = 0.7, respectively. Thus by acceptability formula (16) along with uninorm
operator (10) we have:

acceptability(f6) = min{α,β} ⊕P

(
(1 − τ )γ + τ

)
= min{0.676,1} ⊕P

(
(1 − 0.7) × 0.4 + 0.7

)
= 0.676 ⊕P 0.82

= (1 − 0.7) × 0.676 × 0.82

(1 − 0.7) × 0.676 × 0.82 + 0.7 × (1 − 0.676)(1 − 0.82)
= 0.803. (45)

This value is greater than the buyer’s acceptability threshold 0.7. So, f6 can be accepted
by the buyer agent.

Similarly, for f7, according to the buyer’s requirement model, by (17) along with
priority operator (22), f7’s requirement satisfiability

α = min

{
(µR1 − 1)

ρ(R1)

ρmax
+ 1, (µR2 − 1)

ρ(R2)

ρmax
+ 1, (µR3 − 1)

ρ(R3)

ρmax
+ 1

}

= min

{
(1 − 1) × 0.37

0.37
+ 1, (1 − 1) × 0.33

0.37
+ 1, (0.8 − 1) × 0.3

0.37
+ 1

}

= 0.838.

f7’s obedience and reward value are β = 1 and γ = 0.7, respectively. Thus by formula (16)
along with uninorm operator (10), we have:

acceptability(f7) = min{α,β} ⊕P

(
(1 − τ )γ + τ

)
(46)

= min{0.838,1} ⊕P

(
(1 − 0.7) × 0.7 + 0.7

)
= 0.838 ⊕P 0.91

= (1 − 0.7) × 0.838 × 0.91

(1 − 0.7) × 0.838 × 0.91 + 0.7 × (1 − 0.838)(1 − 0.91)
= 0.957. (47)
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Table 5

The buyer’s and seller’s evaluations for f5, f6 and f7

Buyer’s acceptability Seller’s profile

f5 0.838 50
f6 0.803 55
f7 0.957 45

So, the acceptability for f7 is greater than the buyer’s acceptability threshold 0.7 and so f7
can also be accepted.

Drawing this together, the buyer’s and seller’s evaluations for f5, f6 and f7 are given in
Table 5. It can be seen that from the buyer’s perspective the best solution is f7, but from
the seller’s view this is the worst solution. From the seller’s perspective the best solution
is f6, but from the buyer’s viewpoint this is the worst solution. Thus it can be seen that f5
(the one provided by our model) represents a compromise solution. This is consistent with
the intuitions of the principled model of negotiation.

Against this background, and to demonstrate the rationale for our negotiation model,
consider the following alternative scenarios. Suppose that the buyer agent reveals all its
constraints to the seller agent, but the seller agent reveals nothing to the buyer agent. In
this case, the seller agent will give the buyer agent its best solution, f6 plus the associated
reward air conditioner, because the seller agent is self-interested. Conversely, suppose that
the seller agent reveals all its data to the buyer agent, but the buyer agent reveals nothing. In
this case the buyer agent will get its best solution, f7 plus the associated reward telephone,
because the buyer agent is also self-interested. So, in these two cases, one agent wins and
the other agent loses (i.e., it is not a fair deal).

Another possible way of solving this problem would be to give the data of both the
seller and buyer agents to a neutral third party. Then, this agent could be designed to make
the compromise solution. This is exactly the role and function of many arbitration bodies
[45,46]. However, although arbitration is perhaps a more efficient method of tackling this
problem, it has a number of disadvantages. First, in many cases it is difficult for sellers and
buyers to trust a mediator to act fairly on their behalf. Secondly, the privacy issue makes
it almost impossible for sellers and buyers to expose their individually sensitive data to a
third party. Since usually human negotiators are unwilling to disclose private information,
decentralised methods for searching for Pareto-optimal solutions in negotiation problems
are necessary [18]. Thirdly, arbitration represents a centralised solution to the problem with
all the concomitant disadvantages that accrue. Thus, in this context, a distributed solution
with incremental information revelation is necessary.

6. Related work

A number of models of bilateral multi-issue negotiation have been developed to date.
Some of them are based on constraints, and some are not. Considering those that are not
first. In the multi-issue negotiation model of Matos and Sierra [39], offers and counter
offers are generated by case-based and fuzzy logic based strategies. In the Bazaar system
developed by Zeng and Sycara [70], a multi-issue negotiation is explicitly modelled
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as a sequential decision making model. In fact, a Bayesian network is used to update

the knowledge and beliefs each agent has about the environment and other agents, and
offers and counter offers between agents are generated based on Bayesian probabilities.
While both these models are adequate for dealing with the inherent uncertainties of
bilateral negotiation, they cannot take advantage of the benefits of a constraint based
approach as outlined in Section 1. This is because the users’ requirements on attributes
of a product/service that fuzzy constraints can easily capture are not represented in their
systems. Matos and Sierra’s model uses previous knowledge and information of the
environment state, from a case base, to change its negotiation behaviour, a set of fuzzy rules
to determine the values of the parameters of the negotiation model, and an evolutionary
approach to determine which negotiation strategy is more successful. However, the issue
of the users’ requirements on the desired outcome of negotiation is not addressed in their
work. As to Zeng and Sycara’s model, while Bayesian networks are good at capturing
the uncertain causal links between random variables, they do not have the function for
modelling the users’ requirements on attributes of products/services that our model does.

Moving onto the constraint based models (see Table 6 for a summary and comparison
with our model).

• Tête-à-Tête (T@T) [15] is a multi-issue negotiation system. During a T@T negoti-
ation, constraints on product features and constraints on merchant features are used
to influence the decision of what and whom to buy from. However, the system itself
is merely semi-autonomous. In fact, after evaluating and ordering the offers received
from the sellers, the buyer agent just presents them to its user for consideration. It then
passes the user’s critiques to the seller agent in order to try and extract better offers. In
contrast, our agents are autonomous in that they negotiate with each other on behalf of
both sellers and buyers. Thus, they actually make the contract decisions themselves.

• Faratin et al. [9] dealt with trade-offs among multi-dimensional attributes during
bilateral negotiations. Their criteria evaluation functions on a product’s single issue
can be regarded as a fuzzy constraint on this issue. However, unlike the work in
this paper, fuzzy constraints over the combination of multiple issues of products are
not considered. Moreover, in our work a buyer’s offer is represented as a number of
constraints which correspond to a set of possible solutions. In contrast, in their work
an offer is represented as a single point solution. Generally speaking, even a small set
of constraints can correspond to a large set of possible solutions. Thus, approaches that
perform negotiation over sets of possible solutions are more efficient than approaches
that perform negotiation on single point solutions, one at a time.18

• Kowalczyk and Bui [27] modelled the multi-issue negotiation process as constraint-
based reasoning, and later on they extended [26] their approach into one based on
the computational framework of FCSPs. However, unlike our work, their approach

18 According to human negotiation theory [3,11], performing negotiation on single point solutions (that are
what the negotiating agent wants) can be viewed as positional bargaining, while revealing the constraints (that
need to be met) to the negotiation partner can be viewed as interest-based negotiation. In human negotiations,
usually interest-based negotiations are also better than positional bargaining (the detailed discussion about the
reasons can be found in [3,11]).
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Table 6

The comparison of our work with related work

T@T Faratin Kowalczyk Barbuceanu Ours
Sierra Bui Lo

Jennings

Requirement model

Crisp/fuzzy crisp fuzzy crisp crisp fuzzy
constraint fuzzy

Constraints
over multiple single multiple multiple multiple

single/multiple
issues

Priority no no no no yes

Profile model

Buyer’s fuzzy
profile no no no no truth
model propositions

fuzzy
Reward no no no no truth

proposition

fuzzy
Restriction no no no no truth

proposition

Behaviour model

Optimal unknown no no yes yes

Autonomous semi- full- full- full- full-

Negotiation
over

single/multiple single single single single multiple
solutions

Argument no no no no reward

performs negotiation on individual solutions, one at a time. Moreover, in contrast to
our work, their approaches do not guarantee that an optimal solution is found.

• Although the constraint-based multi-issue negotiation model of Barbuceanu and Lo [2]
can guarantee that an optimal solution is found, their model also performs negotiation
over possible solutions one by one. In contrast, our negotiations are carried out over
fuzzy constraints of multiple issues of products, which is more efficient than doing it
over single solutions. Moreover, the method of Barbuceanu and Lo is based on crisp
constraints that are less flexible than the fuzzy constraints of our model.

In addition, the idea of a reward, from argumentation/persuasion-based negotiation models
[28,29,42], is not integrated into any of the above previous work.
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In the area of e-commerce, Sun et al. [54] also try to bridge CSPs and negotiation

problems. Based on CSPs, they develop a model for order selection and negotiation in
supply chains. In their model, the strategies for generating offers and counter offers are
modelled as constraints. However, their model cannot handle the buyer’s requirements (for
a product) that are modelled by a FCSP. Thus they cannot take FCSPs’ advantages for
negotiation that we mentioned in Section 1.

The framework of CSPs has also been used for production selection and for match-
making between sellers and buyers. For example: Ryu [49] proposed a product selection
mechanism based on a hierarchy of constraints over product attributes, and Freuder and
Wallace [12] describe a paradigm for matchmaking based on the constraint acquisition and
satisfaction model. Here the matchmaker provides potential suggestions based on partial
knowledge, and gains further knowledge through the evaluation of the suggestions from
other agents. However, neither of the models involve negotiation.

In [33], we also developed a negotiation model based on the framework of FCSPs.
However, there are important differences between this model and the one developed here.
Firstly, the model in [33] is designed specially for meeting scheduling problems, whereas
the current one is more widely applicable. Secondly, in [33] each agent has a FCSP and they
negotiate for a common optimal solution for each FCSP. In the current model, one agent
has the set of domains of variables, and another agent has the set of fuzzy constraints. The
two agents negotiate for a solution that maximises the sum of their payoffs. Thirdly, in
[33] the negotiation is performed over single solutions, whereas in the current model the
negotiation is performed over multiple solutions implied by constraints. The latter is more
efficient. Fourthly, in [33] the negotiation protocol is more restricted than that in the current
model (e.g., it has no concepts of counter offer and reward).

Generally speaking, the various constraint-based negotiation processes can be regarded
as a type of Distributed Constraint Satisfaction Problem (DCSP) where the domain,
variables and constraints are distributed among multiple agents. Yokoo and his colleagues
[63–66] have designed various algorithms to search for solutions to DCSPs. However, all
these algorithms are based on the assumption that agents are not at all self-interested and
so they always communicate constraints and modify their local solutions cooperatively.
However, in many applications, agents have a degree of self-interest and so may be
motivated to not disclose all their constraints for selfish reasons (as shown in Section 5.3).
The ensuing constraint-based negotiation models, therefore, implement another class of
algorithms to search solutions to a DCSP/DFCSP because they operate under different
assumptions, namely that the information exchanged between agents may be incomplete
and uncertain.

Finally, according to the convention in human negotiation [53,57], our protocol is
designed as a non-increasing payoff protocol. That is, during the course of a negotiation,
the payoff (benefit) that one negotiation agent expects is non-increasing. This is similar to
the idea of the monotonic concession protocol proposed in [47]. However, their protocol
assumes that the negotiating agents know each others’ utility preferences, and so during
the course of a negotiation they are moving in the direction of non-increasing utilities
that opponents expect from the negotiation. In contrast, in our framework, the negotiating
agents do not have such complete knowledge, and during the course of an encounter they
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move in the direction of non-increasing payoff that they expect from the viewpoint of their

own preferences.

7. Conclusions and future work

This paper developed a prioritised fuzzy constraint based model for bilateral, multi-
issue negotiations in a semi-competitive environment. The roles and benefits of the fuzzy
constraint based approach can be summarised as follows:

• Fuzzy constraints are a natural means of modelling the buyer’s requirements over
products’ single issues and the combination of the products’ multiple issues. They
are also appropriate for modelling trade-offs between different issues of a product.

• During negotiation it is often the case that a seller’s offer only partially satisfies
or violates the buyer’s constraints. In other words, it is often unavoidable that the
buyer has to relax its constraints. The computational framework of fuzzy constraints is
ideally suited for capturing this process.

Compared with previous work, the model presented in this paper is novel in four aspects:

• It exploits the notion of prioritised fuzzy constraint satisfaction problems as the basic
representation scheme. Previous models have used CSPs and FCSPs but not PFCSPs.
The full power of the PFCSP model is needed to obtain all the benefits noted in
Section 1.

• It enables negotiation to be carried out over fuzzy constraints of multiple issues of a
product. This is more efficient than negotiation that is carried out over single point
solutions.

• It guarantees that the outcome of the negotiation is Pareto optimal, yet the participating
agents reveal minimal information about their preferences and constraints.

• It incorporates the concept of a reward, from argumentation/persuasion-based models.
Rewards can be used to increase the buyer’s acceptability for a product and thus
increase the profit of the seller.

There are, however, a number of issues that require further investigation. Firstly, we
would like to investigate the effect of endowing the buyer and/or the seller agents with
alternative negotiation strategies. When submitting constraints, for example, the strategy
of our buyer agent is to submit the highest priority one; when relaxing constraints, its
strategy is to relax the lowest priority one. These strategies could be replaced by others that
would make the agent more or less competitive/cooperative. Similarly, when choosing a
product, our seller agent selects the one with the highest profit among those that completely
satisfy the constraints submitted so far. This strategy might be changed, for example, to the
similarity based mechanism of [9]. By using this strategy, the seller agent might be able to
come to an agreement more quickly since it can focus its search in the acceptable region
of the search space.
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Secondly, since multi-criteria decision making (MCDM) [13,14] is a broadly similar

framework to CSP based decision making, we would like to explore the possibility of
whether the acceptance/counter-offer decision problem in negotiation can be reformulated
as a decision problem that incorporates the advantages of both methods. For example,
the idea that a constraint is on multiple attributes could be incorporated into MCDMs,
and conversely some important concepts in MCDM, such as veto (if the evaluation on a
certain criterion is high, it has no effect on the global evaluation, but if it is low, the global
evaluation will be low too, whatever the evaluation of the other criteria [38]) and favour
(if the evaluation on a certain criterion is low, it has no effect on the global evaluation, but
if it is high, the global evaluation will be high too, whatever the evaluation of the other
criteria [38]), may be introduced into PFCSPs. Such an integrated framework may enable
us to finesse decision making in that some user’s requirements (constraints on negotiation
issues) become very sensitive when evaluating an opponent’s offer during the course of a
negotiation.

Thirdly, since our negotiating agents are knowledge intensive systems, it is natural
that in the next step we will exploit techniques developed in the knowledge acquisition
community in order to accurately extract the domain knowledge. This step is essential
if software agents are to faithfully and appropriately represent their owners. However, to
date, comparatively little attention has been paid to the problem of how users can impart
sufficient knowledge into their agents such that they will be able to negotiate competently
on their behalf. This is a key bottleneck that needs to be overcome if negotiating agents are
to be widely deployed (see [31] for preliminary work in this direction).

Finally, we have adopted the CommonKADS Knowledge Engineering framework to
help specify, organise and describe the knowledge intensive components of our agents.
We regard this as more than an expository convenience and are working toward the
construction of a library of such components that will provide us with a compositional
methodology to support the specification, development and implementation of software
agents.
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