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1 Introduction is a false domain 0P (z) C D»(z) for all variablesz. The

Finding a good model of a constraint satisfaction probleminiti.al domainD;y,;¢ gives the initial .values possible for each
(CSP) is a challenging task. A modeller must specify a set 0 ariable, allows us to restrict attention to domaihsuch that
' C Dinit.

constraints that capture the definitions of the problem thad We adopt the notion ofropagation solver and domain

model should also have strong propagation. In other words, " 1
the model should be able to quickly reduce the domains Ofonsstency from Schulte and Stuckey [2001]. propaga-

the variables of the problerand the implementation of these or f is a monotonically decreasing function from domains

L to domains. Apropagation solver for a set of propagators
ﬁ(r)?%%gt%tgrlgrzréould be efficientd the search space should F and current domai®, solv(F, D), repeatedly applies all

A problem can be modelled differently from two view- the propagators i’ starting from domairD until there is no
points using two different sets of variables. In redundanfUrther change in resulting domain. A domalhis domain
modelling [Chenget al., 1999, we connect the two differ- consistent if Dis the Iea§t domgln containing all solutions of
ent models with channelling constraints, which relatesival ¢ in D. Define thedomain consistency propagator dom(c)

ations in the two different models stronger propagation be!0" & constraine such thatsolv(dom(c), D) is always do-
haviour can be observed. However, the additional variable§'&" consstent foe. :
and constraints impose extra computation overhead may out- For aII_domamsD C Dinit, a set of propagatdry is ”.‘ade
weigh the gain of reduction in search space. propagation redundant by a set of propagators;, written

In this paper we consider redundant models connected b{! > £2: if SOZ”iFlvD.) C solv(F3, D), and isequivalent
permutation channels, which commonly arise when the un® £1: Witten £y = £y, if solu(Fy, D) = solv(Fy, D).
derlying problem is some form of assignment problem. Since 't iS Well known that in general the domain propagation of
each model is complete and only admits the solutions of th& conjunction of constraints is not equivalent to applying t

problem, each model is logically redundant with respect toMain propagators individually. But there are cases where
the other model plus the permutation channel. In order tgroPagation of a conjunction is equivalent to propagation o

keep the benefits of redundant modelling without paying alf"€ individual conjuncts.

the costs, We give a theorem which allows us to determing emma 1 If ¢; and ¢, share at most one variable z, then
when we can eliminate constraints in the mutually redundant joy, (¢, ), dom(c2)} ~ {dom(cy A ¢2)}
models that do not give extra propagation. Due to space lim-

itations, we state the theorem without proof. An atomic congtraint is one ofz; = d or z; # d where
x; € V andd is an integer. An atomic constraint represents

2 Reasoning about Domain Propagation the basic cha_nges in _domam that occur during propa_gat|0n.
A propagation rule is of the formC' — ¢ whereC'is a

We consider integer constraint solving with constrainfgao conjunction of atomic constraints,is an atomic constraint

gation and tree search. andf: C — c. Note our propagation rules are similar to the
An integer valuation 6 is a mapping of variables to integer “membership rules” of Apt and Monfroy [2001] except we
values, writter{zy — d4,...,z, — d,}. Letwvars be the allow equations on the right hand side.

function that returns the set of variables appearing in @ con A propagatorf implementsa propagation rul€¢’ — cif for

straint or valuation. Aconstraint c defines a set of valuations eachD C D;,;; whenever= D — C, then= f(D) — c.

solns(c) each mapping the same set of variabless(c). We ~ We can characterize a propagafoin terms of the propaga-

call solns(c) thesolutions of c. A constraintcis logicallyre-  tion rules that it implements. Letules(f) be the set of rules

dundant with respect to a set of constrairtisif = C' — c. implemented byf. Thenprop(f) C rules(f) are a set of
A domain D is a complete mapping from a fixed (count- propagation rules such that evene rules(f) is subsumed

able) set of variable¥ to finite sets of integers. falsedo- by aruler’ € prop(f).

main D is a domain withD(z) = () for somez. A domain __

D, is stronger than a domainD,, written D; £ D, if Dy 'Equivalently, hyper-arc or generalized arc consistent.



3 Permutation Channels We can similarly show that each of the constrairits=

A common form of redundant modelling is when we con-Yi = 30 © Yji2(+2) = 3i + 2 are propagation redundant
sider two viewpoints to a permutation problem. We canusingcx A cx, wherecy = x50 = a3iy1 + (i +2) by
view the problem as finding a bipartite matching between! heorem 3. Although model/x does not include a domain
two sets of objects of the same size. For notational conve?ropagator forx Ac’y, we can still show propagation redun-
nience, let the two viewpoints as having the set of variable§lancy since{dom(cx), dom(c’x)} ~ {dom(cx A cx)} by
X ={xo,...,xn},andY = {yo, ...,y } respectively. Lemma 1. _ _ _
Thepermutation channel Ci is defined by the conjunction __Similar reasoning applies to show that each constigint
of constraints\!_y A"_(z; = j < y; = i). Thepermuta- 31 Where0 < i < 8 and27 —2(i + 2) < j < 26 is made
tion channel propagator Fi maintains domain consistency of Propagationredundanthy; 1 = wa; + (i +2) A 23i40 =
each individual bi-implication, thatig)"_, U}_o{dom(z; =  T3i+1 (i+2) A0 < w5142 < 26. =
Jey; =i} :
Smijth [2000] first observes that the permutation channel4 Conclusion ]
makes each of the disequations between variables in eith&¥e have extend our approach to other types of channelling

model propagation redundant. Walsh [2001] proves thisholdconstraints and lead to significantly faster models that do

for other notions of consistency. not increase the search space. Although we have illustrated
the use of the theorems herein by hand, the approach can
Lemma 2 (Walsh, 2001) Fi > {dom(x; # wx)} clearly be automated. We can constructs the propagaties rul

Related taCy is thepermutation channel function which ~ automatically using the approach of Abdennadher and Rig-
is a bijection between atomic constraintsinto atomic con-  Otti [2002]. We are interested in extending the work to r@aso

striants inY’, X(z; = j) = (y; = ¢), andX(x; # j) = bounds propagation. Another direction is to study a weaker
(yj 7& ’L) We extendX to map COI’]jUI’\CtiOI’]S of constraints in notion of propagation redundancy which allows removal of
the obvious mannex(C; A Cz) =X(C1)A X(Cy). constraints without affecting the search space given afépec

The fundamental theorem states that a constrainf i search heuristic.
propagation redundant if there exist a constrainkirwhen
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