
Solving Finite Domain Constraint Hierarchies by Local
Consistency and Tree Search⋆

S. Bistarelli⋆⋆1,2, P. Codognet3, H.K.C. Hui4, and J.H.M. Lee4

1 Istituto di Informatica e Telematica, CNR, Pisa, Italy
Stefano.Bistarelli@iit.cnr.it,

2 Dipartimento di Scienze,
Universitá degli Studi “G. D’annunzio” di Chieti-Pescara, Italy

bista@sci.unich.it,
3 Department of Computer Science

University of Paris 6, France
Philippe.Codognet@lip6.fr

4 Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Hong Kong SAR, China

{kchui,jlee}@cse.cuhk.edu.hk

Abstract. We provide a reformulation of the constraint hierarchies (CHs) frame-
work based on the notion oferror indicators. Adapting the generalized view of
local consistency in semiring-based constraint satisfaction problems (SCSPs), we
defineconstraint hierarchyk-consistency(CH-k-C) and give a CH-2-C enforce-
ment algorithm. We demonstrate how the CH-2-C algorithm can be seamlessly
integrated into the ordinary branch-and-bound algorithm to make it a finite do-
main CH solver. Experimentation confirms the efficiency and robustness of our
proposed solver prototype. Unlike other finite domain CH solvers, our proposed
method works for both local and global comparators. In addition, our solver can
support arbitrary error functions.

1 Introduction
The Constraint Hierarchy (CH) framework [8] is a general framework for the specifi-
cation and solutions of over-constrained problems. Originating from research in inter-
active user-interface applications, the CH framework attracts much effort in the design
of efficient solvers in the real number domain [1, 17]. To extend the benefit of the CH
framework to also discrete domain applications, such as timetabling and resource allo-
cation, the paper takes a step towards a general and efficientfinite domain CH solver,
based on consistency techniques and tree search.

Central to the paper is the notion ofconstraint hierarchyk-consistency(CH-k-C),
defined using error indicators which are structures isomorphic to the structure of a given

⋆ We thank the anonymous referees for their constructive comments. The work described in this
paper was substantially supported by a grant from the Research Grants Council of the Hong
Kong Special Administrative Region (Project no. CUHK4358/02E).

⋆⋆ Part of this research was carried out while the author was visiting the Department of Computer
Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China

CH used for storing the error information of the CH problem (similar notion was de-
fined by Bistarelliet al. [4]). We give also an algorithm for enforcing CH-2-C of a CH
problem. While classical consistency algorithms [19] aim to reduce the size of con-
straint problems, our CH-2-C algorithm works by explicating error information that is
originally implicit in CH problems. We also suggest ways of utilizing such extracted
information to help prune non-fruitful computation in a branch-and-bound searching
algorithm, which forms the basis of our finite domain CH solver. We have constructed a
prototype of the solver, and performed experiments on a set of randomly generated CH
problems that confirm the efficiency and robustness of our proposal.

This paper is a revised and extended version of another by thesame authors [3].
The rest of the paper is organized as follows. Section 2 provides necessary back-

ground definitions. In Section 3, we present an equivalent redefinition of the CH frame-
work using the notion of error indicators and hierarchy problem, which are central in
the definition of constraint hierarchyk-consistency and the associated enforcement al-
gorithm in Section 4. In Section 5, we give a constraint hierarchy 2-consistency enforce-
ment algorithm and discuss its complexity. The finite domainCH solver, which has a
branch-and-bound backbone, is introduced in Section 6, followed by experimental re-
sults in Section 7. Related works are discussed in Section 8 before summarizing the
major results and shedding light on possible future direction of research in Section 9.

2 Constraint Hierarchies

Let D be a constraint domain. Avariablex is an unknown that has an associatedvari-
able domainD(x) ⊆ D, which defines the set of possible values forx. An n-ary con-
straint c is a relation overDn. A labeled constraintcs is a constraintc with a strength
s ∈ {0, . . . , k}. The strengths are totally ordered. Constraints with strength s = 0
arerequired constraints(or hard constraints) and those with strength1 ≤ s ≤ k are
non-required constraints(or soft constraints). The larger the strength, the weaker the
constraint is. In addition, each labeled constraint may be associated with a weightw
(for use with the global comparators). Aconstraint hierarchyH is a multiset of labeled
constraints. The symbolHi denotes a set of labeled constraints with strengths = i.
H0, therequired level, denotes the set of required constraints which must be satisfied.
H1, . . . , Hk, thenon-required level, denote the sets of non-required constraints which
can be violated but should be satisfied as much as possible. Weuse an example in Fig-

V = {x, y, z} andD(x) = D(y) = D(z) = {1, 2}

H = {H0, H1, H2, H3}
H0 = ∅, H1 = {c1

1 : x > y, c1

2 : x = 2}, and
H2 = {c2

1 : y = 3, c2

2 : z < y}
H3 = {c3

1 : z = 1, c3

2 : x + y + z > 4}

Fig. 1: An example of constraint hierarchy.

ure 1 to explain CHs in more details. There are three levels inthe constraint hierarchy
H . There are no required constraints in the required levelH0. However, there are two

strongconstraintsc1

1
andc1

2
in H1, two mediumconstraintsc2

1
andc2

2
in H2 and two

weakconstraintsc3

1
andc3

2
in H3.

A valuationθ = {v1 7→ d1, . . . , vn 7→ dn} for a set of variables{v1, . . . , vn}
assigns to eachvi the valuedi ∈ D(vi). Let c be a constraint andθ a valuation. The
expressioncθ is the boolean result of applyingθ to c. We say thatcθ holdsif cθ is true.
An error functione(cθ) measures how well a constraintc is satisfied by valuationθ. The
error function returns non-negative real numbers and must satisfy the property:e(cθ) =
0 ⇔ cθ holds. A trivial error function is an error function that gives0 if cθ holds
and1 otherwise. The valuee(cθ) returned by an error function is anerror value. We
usevars(c) (or vars(θ)) to denote the set of all variables in constraintc (or valuation
θ). The possible valuations for the variables{x, y, z} are{θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8}.
Figure 2 gives the error values of all valuations in the complete search tree using the
trivial error function. The error values of a valuationθ are computed for each constraint
(e(c1

1θ), e(c
1
2θ), e(c

2
1θ), e(c

2
2θ), e(c

3
1θ), e(c

3
2θ)). Since, for example,θ1 satisfiesc3

1 but
violatesc1

1
, e(c3

1
θ1) = 0 ande(c1

1
θ1) = 1 respectively. We can obtain the error values

of other valuations similarly. In order to compare values, anumber ofcomparators
are defined:locally-better(l-b), weighted-sum-better(w-s-b), worst-case-better(w-c-
b), andleast-squares-better(l-s-b). We can use these comparators to definesolutionsof
CHs [8].

θ Error values fore(ci
jθ) θ Error values fore(ci

jθ)

θ1 (1, 1, 1, 1, 0, 1) θ5 (0, 0, 1, 1, 0, 1)

θ2 (1, 1, 1, 1, 1, 1) θ6 (0, 0, 1, 1, 1, 0)

θ3 (1, 1, 1, 0, 0, 1) θ7 (1, 0, 1, 0, 0, 0)

θ4 (1, 1, 1, 1, 1, 0) θ8 (1, 0, 1, 1, 1, 0)

Fig. 2: The possible valuations and their error values.

3 A Reformulation of Constraint Hierarchies
To facilitate subsequent illustration of the CH local consistency concept, we formulate
the CH framework [8] (in particular in the definition of comparators and solution set)
using error indicators (as defined in [4]).

We denote an error value byξ, possibly with subscripts. LetI = {ξ1, . . . , ξN} be
a poset (partially ordered set), each elementξj of which is anerror indicator. Given
a constraint hierarchyH = {H0, . . . , Hn} wheren is the number of non-required
levels, and for alli ∈ {0, . . . , n}, Hi = {ci

1, . . . , ci
ki
} with ki being the number of

constraints in leveli. An error indicatorξθ of a valuationθ for a set of variablesV

is a tuple of error values such thatξθ = 〈〈ξθ
0

1
, . . . , ξθ

0

k0
〉, . . . , 〈ξθ

n
1
, . . . , ξθ

n
kn
〉〉 and

∀a ∈ {0, . . . , n}, ∀b ∈ {1, . . . , ka}, ξθ
a
b = e(ca

bθ) if vars(ca
b) ⊂ V andξθ

a
b = 0 if

vars(ca
b) 6⊂ V . Error indicators provide a measure of the “badness” of valuations with

respect toH .
To explain the meaning of the error indicator of a valuation,we use the example in

Figure 1 with the trivial error function. Ifθ = {z 7→ 2}, thenξθ = 〈〈〉, 〈0, 0〉, 〈0, 0〉, 〈1, 0〉〉.
If θ = {x 7→ 1, y 7→ 2}, thenξθ = 〈〈〉, 〈1, 1〉, 〈1, 0〉, 〈0, 0〉〉. If θ = {x 7→ 2, y 7→
2, z 7→ 1}, thenξθ = 〈〈〉, 〈1, 0〉, 〈1, 0〉, 〈0, 1〉〉.

The comparator predicatebetterin the original CH formulation is redefined using a
partial order, denoted by≺. We define≺ to be irreflexive and transitive overI. Hence,
it preserves the meaning ofbetter. Intuitively, ξ′ ≺ ξ′′ meansξ′′ is “better” thanξ′ in
I. In general,≺ will not provide a total ordering. For convenience, we define� such
that∀ξ′, ξ′′ ∈ I, ξ′ � ξ′′ → (ξ′ ≺ ξ′′) ∨ (ξ′ = ξ′′).

We can redefinel-b in the original formulation as a partial order≺l−b as follows.
Given any two valuationsθ andσ, and the corresponding error indicatorsξθ andξσ,
≺l−b is defined as:

ξθ ≺l−b ξσ ≡ ∃l > 0 such that∀i ∈ {0, . . . , l − 1},
∀j ∈ {1, . . . , ki}, ξθ

i
j = ξσ

i
j

∧∃a ∈ {1, . . . , kl}, ξσ
l
a < ξθ

l
a

∧∀b ∈ {1, . . . , kl}, ξσ
l
b ≤ ξθ

l
b.

The intuitive meaning ofξθ ≺l−b ξσ is that valuationσ is locally-betterthan valu-
ationθ.

Similarly, we can defineg-b≺g−b, and its instancesw-s-b≺w−s−b, w-c-b≺w−c−b,
andl-s-b≺l−s−b respectively. Given any two valuationsθ andσ, and the corresponding
error indicatorsξθ andξσ:

ξθ ≺g−b ξσ ≡ ∃l > 0 such that∀i ∈ {0, . . . , l − 1},
g(〈ξθ

i
1, . . . , ξθ

i
ki
〉) = g(〈ξσ

i
1, . . . , ξσ

i
ki
〉)

∧g(〈ξσ
l
1, . . . , ξσ

l
kl
〉) < g(〈ξθ

l
1, . . . , ξθ

l
kl
〉),

whereg is acombining functionfor error values:

ξθ ≺w−s−b ξσ ≡ ξθ ≺g−b ξσ, whereg(〈ξi
1
, . . . , ξi

ki
〉) ≡

∑

j∈{1,... ,ki}
ξi
j ,

ξθ ≺w−c−b ξσ ≡ ξθ ≺g−b ξσ, whereg(〈ξi
1
, . . . , ξi

ki
〉) ≡ maxξi

j | j ∈ {1, . . . , ki}},

ξθ ≺l−s−b ξσ ≡ ξθ ≺g−b ξσ, whereg(〈ξi
1
, . . . , ξi

ki
〉) ≡

∑

j∈{1,... ,ki}
ξi
j

2
.

Notice that by definition, all local/global comparators ignore constraints in hierarchy
levels greater than or equal tol.

We are now ready to define the solution setS of a CH with variablesV by:

S0 = {θ | vars(θ) = V, ξθ
0

i = 0 for all i ∈ {1, . . . , k0}} and
S = {θ ∈ S0 | ∀σ ∈ S0, ξθ 6≺ ξσ}.

The following lemma gives the monotonicity of the introduced comparators, which are
collectively denoted by≺better and�better in the rest of the paper.

Lemma 1. Given any two error indicatorsξ′ andξ′′. If for all a, b we haveξ′′ab ≤ ξ′
a
b ,

thenξ′ �better ξ′′.

Notice that the above lemma lets us compare valuation for both local and global
comparators (because the�better order implies all the orders induced from any specific
comparator) and for arbitrary error functions.

We also introduce the notion of ahierarchy problemwhich is a CH augmented with
error information.

Definition 1 (Hierarchy Problem and Error Indicator Store). A hierarchy problem
P = 〈H, IH〉 is a constraint problem, whereH is a CH with variablesV andIH is a
set containing error indicator storesξx=d for all variablesx ∈ V and for alld ∈ D(x).
Eachξx=d is used for keeping an estimate (a lower bound) of the errors of valuations
involving{x 7→ d}.

Definition 2 (Solution of a Hierarchy Problem). A valuationθ is a solutionof P =
〈H, IH〉 if (1) θ is a solution ofH and (2)ξθ �better ξx=d for all ξx=d ∈ IH .

In other words, solutions ofP = 〈H, IH〉 are solutions ofH which have a “worse”
error than the estimates provided inIH . By the definition, the solutions ofH always
contain those of〈H, IH〉. Equality holds when the error estimates provided inIH fails
to “filter” out any solutions ofH .

Theorem 1. Consider a CHH and the associated hierarchy problemP = 〈H, IH〉,
and denote thesolution setsof H andP bySH andSP respectively.

– SP ⊆ SH , and
– SP = SH if ξθ �better ξx=d for all (x 7→ d) ∈ θ andθ ∈ SH .

In particular, a hierarchy problem〈H, IH〉 must share the same solution asH if all
ξx=d ∈ IH contain only the error value 0 (i.e.no error information). This fact is useful
in ensuring the correctness of our local consistency algorithm and the completeness of
our branch-and-bound solver later.

4 Local Consistency in CHs
The classical notion oflocal consistency[19] characterizes when a constraint problem
contains non-fruitful values. The main purpose of detecting local inconsistency is thus
to remove the inconsistent values from the variable domainsand constraints. Hence,
the problem is “simpler” to solve when the problem is smaller. However, we adopt a
more general notion of local consistency used for SCSP:“Applying a local consistency
algorithm to a constraint problem means explicitating someimplicit constraints, thus
possibly discovering inconsistency at a local level”[5]. We adapt this general notion
for CH, and defineconstraint hierarchyk-consistency(CH-k-C).

Before defining CH-k-C, we need two operations,MAX andMIN , on error
indicators. Given a CHH with n non-required levels and any two error indicators,
ξθ, ξσ ∈ I, for H .MAX (ξθ, ξσ) is defined as

〈〈max(ξθ
0

1
, ξσ

0

1
), . . . , max(ξθ

0

k0
, ξσ

0

k0
)〉, . . . , 〈max(ξθ

n
1
, ξσ

n
1
), . . . , max(ξθ

n
kn

, ξσ
n
kn

)〉〉

andMIN (ξθ, ξσ) is

〈〈min(ξθ
0

1, ξσ
0

1), . . . , min(ξθ
0

k0
, ξσ

0

k0
)〉, . . . , 〈min(ξθ

n
1 , ξσ

n
1), . . . , min(ξθ

n
kn

, ξσ
n
kn

)〉〉

whereki is the number of constraints in leveli of H .
Given two error indicators,MIN (orMAX) combines the two indicators by tak-

ing the best (or the worst). ObviouslyMAX andMIN are commutative and associa-
tive. Thus, it makes sense to writeMAX{ξ1, . . . , ξK} andMIN{ξ1, . . . , ξK}) for
anyK > 2.

Given a CHH with variablesV . If x ∈ V andd ∈ D(x), we define

approxk(x 7→ d) =
MAX{MIN{ξθ | vars(θ) = {x} ∪ U, (x 7→ d) ∈ θ} | U ⊂ V, |U | = k − 1}

for any 1 ≤ k ≤ |V |. We call it k-approximation, which provides an estimate of
the “badness” of valuations involving the assignmentx 7→ d for all m-ary constraints
involving x with m ≤ k. Since the error indicators of all valuations involvingx 7→ d
might not be comparable, we can only give an approximation, andapprox|V |(x 7→ d)
gives an error estimate involving all constraints in the problem. However, calculating
approx|V |(x 7→ d) is computationally expensive, andapproxk(x 7→ d) for some small
k < |V | gives a more practical approximation.

Referring to the same example in Section 2,

approx2(y 7→ 2) =MAX{MIN{ξ{x 7→1,y 7→2}, ξ{x 7→2,y 7→2}},
MIN{ξ{y 7→2,z 7→1}, ξ{y 7→2,z 7→2}}}

=MAX{MIN{〈〈〉, 〈1, 1〉, 〈1, 0〉, 〈0, 0〉〉, 〈〈〉, 〈1, 0〉, 〈1, 0〉, 〈0, 0〉〉},
MIN{〈〈〉, 〈0, 0〉, 〈1, 0〉, 〈0, 0〉〉, 〈〈〉, 〈0, 0〉, 〈1, 1〉, 〈1, 0〉〉}}

=MAX{〈〈〉, 〈1, 0〉, 〈1, 0〉, 〈0, 0〉〉, 〈〈〉, 〈0, 0〉, 〈1, 0〉, 〈0, 0〉〉}
= 〈〈〉, 〈1, 0〉, 〈1, 0〉, 〈0, 0〉〉

The following theorem states thatapproxk(x 7→ d) is monotonically decreasing ink.

Theorem 2. If H is a CH with variablesV , x ∈ V andd ∈ D(x), thenapproxk2
(x 7→

d) �better approxk1
(x 7→ d), ∀1 ≤ k1 ≤ k2 ≤ |V |.

By using Lemma 1 we can show thatk-approximations provide upper bounds for
the error indicators of complete valuations for any comparators.

Theorem 3. If H is a CH with variablesV , x ∈ V andd ∈ D(x), thenξθ �better

approx|V |(x 7→ d) �better approxk(x 7→ d) for all 1 ≤ k ≤ |V | and all θ such that
vars(θ) = V and(x 7→ d) ∈ θ, where�better represents any locally/globally better
comparator.

Theorem 3 suggests thatk-approximations can be used as the basis of the notion of
local consistency in CH.

A hierarchy problemP = 〈H, IH〉 is constraint hierarchyk-consistent (CH-k-C) if
the error indicator stores inIH explicitly indicate the implicit inconsistency information
in all m-ary constraints inH wherem ≤ k. Formally, we define CH-k-C as follows.

Definition 3 (CH k-Consistency (CH-k-C)).Given a hierarchy problemP = 〈H, IH〉
with variablesV . P is CH-k-C if, for all ξx=d ∈ IH , ξx=d �better approxk(x 7→ d)
for some1 ≤ k ≤ |V |.

The CH-k-C condition ofP = 〈H, IH〉 imposes that the estimated error infor-
mation ofH placed in the error indicator stores inIH is at leastas accurate as that
provided byk-approximations. In addition, explicating the errorP = 〈H, IH〉 using
k-approximations makesP CH-k-C without changing the solution space ofP .

Theorem 4. Given a hierarchy problemP = 〈H, IH〉with variablesV . If eachξ′

x=d ∈
I ′H is defined as follows:

ξ′

x=d =

{

ξx=d if ξx=d �better approxk(x 7→ d)
approxk(x 7→ d) if approxk(x 7→ d) �better ξx=d

whereξx=d ∈ IH , then the hierarchy problemP ′ = 〈H, IH〉 is (1) CH-k-C and (2)
shares the same solution set asP .

A simple corollary follows directly from Theorems 1 and 4.

Corollary 1. Given a hierarchy problemP = 〈H, IH〉 with variablesV , andP ′ =
〈H, IH〉 defined so that eachξ′

x=d ∈ I ′H is:

ξ′

x=d =

{

ξx=d if ξx=d �better approxk(x 7→ d)
approxk(x 7→ d) if approxk(x 7→ d) �better ξx=d

whereξx=d ∈ IH . Denote the solution sets ofH , P , and P ′ by SH , SP , and SP ′

respectively.

SH = SP ⇔ SH = SP ′

5 A CH-2-C Enforcement Algorithm
Arc-consistency algorithm is a common and practical technique to detect local incon-
sistency in classical CSPs [2, 15]. We design and implement an algorithm to enforce
CH-2-C. The purpose of the CH-2-C algorithm is to explicate and place inIH the im-
plicit error information in a CH that is otherwise not visible. Such an algorithm is given
in Figure 3. The subroutinesch1c pri andch2c pri , in Figures 4 and 5 respectively, are
responsible for handling unary and binary constraints respectively. The CH-2-C algo-
rithm ensures that all error indicator storesξx=d are updated to reachapprox2(x 7→ d).

Consider a general CH ofnc labeled constraints withnv number of variables. In
addition, the size of the largest variable domain is ofnd. The time complexity of the
subroutinech1c pri is simply ofO(nd), since the only repeating operations, lines 4 to
6 in Figure 4, are placed inside a single loop. These operations are repeated until each
element in a variable domain is tested. However, the time complexity of the subroutine
update(Figure 6) is ofO(nd

2). Therefore, in the worst case, the time complexity of the
subroutinech2c pri is of O(nd

2) as shown in Figure 5. Lines 3 to 5 in the pseudocode
of the CH-2-C algorithm are the operations for checking constraints asshown in Fig-
ure 3. Since these operations should repeat until all the constraints are considered, the
time complexity should be ofO(ncnd

2).

Algorithm 1: The CH-2-C algorithm.

ch2c(H , V , D, IH)
begin

1 for l← 1 to n do
2 for k← 1 to |Hl| do
3 let c be thekth constraint inHl;
4 IH ← ch1c pri (c, l, k, D, IH);
5 IH ← ch2c pri (c, l, k, D, IH);

6 return IH ;
end

Fig. 3: The CH-2-C algorithm.

Since an error indicator is a tuple which stores error valuesof the corresponding
constraints, the space complexity for each error indicatoris of O(nc). The memory
requirement of the CH-2-C algorithm depends on the number of error indicator stores
in IH . Therefore, we requirenvnd error indicators. The space complexity of the CH-2-
C algorithm is simply ofO(nvndnc) in the worst case.

Notice that some better local consistency algorithms couldbe defined when consid-
ering only a specific comparator (see for instance [4] for specific operators dealing with
l-b).

6 A Branch-and-Bound Finite Domain CH Solver
The simplest way to find the solution set of a CH is to constructthe complete search
tree for the problem, so that we can calculate and compare theerror values of each val-
uation. However, traversing the complete search tree and comparing all the valuations
are tedious and time-consuming. We propose to combine the CH-2-C and the branch-
and-bound algorithms so as to prune non-fruitful branches of the search tree.

The input to our solver is a hierarchy problemP = 〈H, IH〉, in whichIH contains
no error information. In other words, the error indicator stores inIH contain only the
error value 0. The backbone of our solver is a standard branch-and-bound algorithm,
since CH-solving is an optimization problem. A branch-and-bound algorithm always
maintains the set of potential best solutions collected so far. The idea is to invoke the
CH-2-C algorithm at each node in the search tree, hoping that the overhead in the CH-
2-C algorithm can be more than compensated by the pruning thatcan take place. The
correctness and completeness of this step is ensured by Corollary 1, so that maintaining
CH-2-C will not change the solution space of the hierarchy problem and the associ-
ated CH. At each CH-2-C tree node, before search proceeds down a selected branch
corresponding to a variable assignment, sayx 7→ d, the solver tries to verify ifξx=d

in IH of that tree node is not worse than the error indicator of eachpotential solution.
If that is the case, search proceeds; otherwise, there is no point to explore the selected

ch1c pri (c, l, k, D, IH)
begin

1 if |vars(c)| = 1 then
2 let {x} = vars(c);
3 for eachd ∈ D(x) do
4 let θ = {x 7→ d};
5 let ξ = ξx=d ∈ IH ;
6 if ξl

k < e(cθ) then ξl
k ← e(cθ);

7 return IH ;
end

Fig. 4: A subroutine to check unary constraints.

branch any further, and search is backtracked to try anotherbranch. When a leaf node
is reached, we compare the error indicatorξ of the valuation associated with the leaf
node against the error indicators of all the collected solutions. If the error indicator of
any collected solution is worse thanξ, then the collected solution will be replaced by
the current valuation.

Our CH-2-C algorithm ensures that each error indicator storeξx=d is approx2(x 7→
d). By Theorem 3, the error indicator of every complete valuation involving assignment
x 7→ d must be worse thanapprox2(x 7→ d). If at a search node,ξx=d is worse than
the error indicators of each potential solution collected so far, there is no point to search
on since all the possible valuations down that branch must beworse than the potential
solutions. The details of our finite domain CH solver is shownin Figure 7, which is
a simple adaptation of a basic branch-and-bound solver withthe CH-2-C algorithm.
The numbered lines give the backbone of the algorithm, whilethe unnumbered lines
are new additions to enable CH-2-C enforcement. The algorithm use as parameters the
constraints inH and and the stores inIH , the variablesV and the domainD. It also
needs the set of assignmentsS0 satisfying constraints inH0, and the corresponding set
of error indicatorsIS0

. The algorithm is also parametric w.r.t. the type of comparator
we want to use (≺better).

Although CH-2-C encompasses also crisp notions of node and arc consistency, we
employ classical algorithms [19] for processing the required constraints inH0 (lines 1)
for performance reasons. Lines 5 to 13 deal with the case of a leaf node. Here there
is a call to subroutinecal error value that computes the errore(cθ) for eachθ. The
CH-2-C algorithm is invoked between lines 13 and 14. Lines 14 to 17perform the
basic variable instantiation (or searching) recursively.The call to the subroutinego
determines whether the error indicator store of the variable assignment of the selected
branch inIH of the current node is not worse than the error indicator of each of the
collected solutions so far.

ch2c pri (c, l, k, D, IH)
begin

1 if |vars(c)| = 2 then
2 let {x, y} = vars(c);

Update eachξx=dx
∈ IH

3 IH ← update(x, y, c, l, k, D, IH);
Update eachξy=dy

∈ IH

4 IH ← update(y, x, c, l, k, D, IH);

5 return IH ;
end

Fig. 5: A subroutine to check binary constraints.

7 Experimental Results

We compare the performance of our proposed solver with generate-and-test, basic branch-
and-bound, and the reified constraint approach by Lua (the Lua’s solver hereafter) [16].
DeltaStar is only a theoretical framework [11], and clp(FD,S) cannot in the current
implementation deal with hierarchies. Since both Lua’s solver and ours are based on a
branch-and-bound backbone, we first implement a solver engineSg, which searches us-
ing ILOG’s defaultgoal definition, in ILOG Solver 4.4 in a generate-and-test fashion.
In order to provide a basic Branch-and-Bound solver (without CH-2-C enforcement) for
comparison, we define an alternative ILOG goal to obtainSb. Our proposed solverSc

is obtained by implementing additional functions and an alternativegoal definitionGc

in Sg. While the input to our solvers is a CH, the input to Lua’s solver Sr (“r” stands
for “reified constraint”) is a CSP with reified constraints for implementing a specific
comparator and error function. Our comparison ensuresfairnesssince all four solvers
share the same backbone.

Our experiments are conducted on Sun Ultra 5/400 workstations with 256MB RAM.
We record the execution time taken bySg, Sb, Sc, andSr to find the solution set of each
problem instance using a particular comparator, denoting these timingstg, tb, tc, andtr.
For each problem instance and comparator, we compute three ratios:tg/tc, tb/tc, and
tr/tc. Each number in the following tables corresponds to the average of the same type
of ratios for fifteen problem instances in a particular problem setPi and a particular
comparator. The columns on the left compareSg andSc, while the ones in the middle
compareSb and Sc, and the ones on the right compareSr and Sc (only for global
comparators). Our 3-part experiments test the effect ofvariable domain size, number of
variables, andnumber of hierarchy levelson the performance of our proposed solver.
In each part, four sets of CHs:P1, P2, P3, andP4, each of which contains 15 problem
instances, are generagedrandomly. All problem instances have no hard constraints to
make them more “difficult” to solve.

update(x, y, c, l, k, D, IH)
begin

1 let ξmin be an error value;
2 for eachdx ∈ D(x) do
3 ξmin ←∞;
4 for eachdy ∈ D(y) do
5 let θ = {x 7→ dx, y 7→ dy};
6 if e(cθ) < ξmin then ξmin ← e(cθ);

7 let ξ = ξx=dx
∈ IH ;

8 if ξl
k < ξmin then ξl

k ← ξmin;

9 return IH ;
end

Fig. 6: A subroutine to update error indicator stores.

In the first part, the number of variables and the number of hierarchy levels are fixed
(|V | = 5, H = {H0, H1, H2}, |H0| = 0, and|H1| = |H2| = 5) across all instances,
while problems in the same set share a specific domain size:Pi has domains of size10i
for i ∈ {1, 2, 3, 4}.

tg/tc (Mean) tb/tc (Mean) tr/tc (Mean)

CHs w-s-bw-c-b l-s-b l-b w-s-bw-c-b l-s-b l-b w-s-bw-c-b l-s-b

P1 8 5 7 10 6 4 6 7 5 4 5
P2 36 15 37 13 18 22 19 9 9 19 9
P3 267 67 261 171 121 47 123 31 113 42 115
P4 385 72 342 76 37 35 39 23 17 27 18

In the second part, the variable domain size and the number ofhierarchy levels are
fixed (|D(x)| = 5 for all variablesx, H = {H0, H1, H2}, |H0| = 0, and |H1| =
|H2| = 5) across all instances, while problems in the same set share aspecific number
of variables:Pi has2(i + 1 variables fori ∈ {1, 2, 3, 4}.

tg/tc (Mean) tb/tc (Mean) tr/tc (Mean)

CHs w-s-bw-c-b l-s-b l-b w-s-bw-c-b l-s-b l-b w-s-bw-c-b l-s-b

P1 1.2 0.9 1.3 1.2 1.2 1.3 1.5 1.4 1.1 1.1 1.4
P2 6 3 6 5 5 3 5 4 5 3 5
P3 7 3 7 4 5 4 5 3 4 4 4
P4 24 8 24 26 3 7 3 5 1.4 6 1.4

In the third part, the number of variables and the variable domain size are fixed
(|V | = 5, |D(x)| = 20 for all variablesx, and|H0| = 0) across all instances, while
problems in the same set share a specific number of hierarchy levels:Pi hasi + 1
non-required levels each with 5 constraints fori ∈ {1, 2, 3, 4}.

Algorithm 2: A Branch-and-bound CH Solver with Pruning

bb solv(H , IH , V , D, S0, in out IS0
,≺better)

begin
Any classical arc consistency algorithm

1 D← arc consistent(H0, D);
2 if D contains an empty variable domainthen
3 return S0;

4 else ifD contains all singleton variable domainthen
5 let θ be the valuation corresponding toD;
6 let ξθ be the error indicator corresponding toθ;
7 ξθ ← cal error values(H , θ, ξθ);
8 for eachσ ∈ S0 do
9 if ξσ ≺better ξθ then

10 S0 ← S0 − {σ}; IS0
← IS0

− {ξσ};

11 else ifξθ ≺better ξσ then return S0;

12 S0 ← S0 ∪ {θ}; IS0
← IS0

∪ {ξθ};
13 return S0;

for eachξx=d ∈ IH do
if d 6∈ D(x) then

IH ← IH − {ξx=d};

IH ← ch2c(H , V , D, IH);
14 choosevariablex ∈ V for which |D(x)| ≥ 2;
15 W ←D(x);
16 for eachd ∈ W do

if go(ξx=d, S0, IS0
,≺better) then

17 S0 ← bb solv({H0 ∧ x = d, H1, . . . , Hn}, IH , V , D, S0, IS0
,≺better);

18 return S0;
end

Fig. 7: A Branch-and-bound CH Solver with Pruning

tg/tc (Mean) tb/tc (Mean) tr/tc (Mean)

CHs w-s-bw-c-b l-s-b l-b w-s-bw-c-b l-s-b l-b w-s-bw-c-b l-s-b

P1 146 108 151 122 44 44 44 32 37 39 39
P2 209 130 212 116 51 116 50 34 38 104 39
P3 232 168 219 50 42 121 44 21 31 113 29
P4 122 154 124 75 58 132 60 26 51 128 52

The CH-2-C algorithm incurs overhead in the branch-and-bound search. For the
larger problems inP2, P3, andP4, the extra effort paid by the CH-2-C algorithm at
each search node is demonstrated worthwhile. This result isin line with the behavior
of embedding classical consistency techniques in basic tree search in solving classical
CSPs.

The Lua’s solver relies on classical constraint propagation to enforce the semantics
and the operations of the comparators via reified constraints. While the approach, based
on existing technology, is clever and clean, the pruning power of reified constraints is
relatively weak. On the other hand,Sc executes a dedicated algorithm for maintaining
CH-2-C to help pruning and solution filtering, thus attaining a higher efficiency. In
particular,Sr performs the worst on thew-c-b comparator, since theerror combining
constraintis implemented using theIlcMax constraint in ILOG Solver 4.4, which is
again weak in propagation.

8 Related Work
Many efficient algorithms have been proposed to solve CHs, such as DeltaBlue [12],
SkyBlue [22], DETAIL [18], Indigo [6], Generalized Local Propagation [17], and Ultra-
violet [7], apply Local Propagation [24]. Besides, Cassowary and QOCA algorithms [9],
adapting the Simplex algorithm [21], can also solve CHs efficiently. However, they are
designed for the real number domain. We focus on finite domainCHs solving tech-
niques; we can categorize the techniques into four different approaches.

First, the Incremental Hierarchical Constraint Solver (IHCS) [20] proposes to trans-
form a given constraint hierarchy into a set ofbest configurations(a set of constraints).
Therefore, a given CH can be transformed into a set of classical CSPs. However, it can
only find l-b solutions using the trivial error function. The second approach is to trans-
form CHs into ordinary constraint systems based onreified constraint propagation[16].
This approach can only find solutions forglobal comparators(w-s-b, w-c-b, andl-s-b).
The third approach exploits the fact that CH is an instance ofthe SCSP framework [5].
Bistarelli et al. [4] show how a c-semiring can be constructed to model all instances of
globally-better. In addition, only thew-c-b can enjoy semiring-based arc-consistency
techniques [5] supported in clp(FD,S) [14]. The clp(FD,S) solver, however, limits the
size of the semiring to only 32 elements, making it difficult to model any practically
sized problems. The last is the refining approach used by DeltaStar [13]. It is a generic
finite domain CH solver which can find solutions for arbitrarycomparators in theory.
However, it recomputes the solution in each recursive step causing significant overhead.
Hence, it is used only as a general and theoretical frameworkfor solution, from which
efficient algorithms, such as DeltaBlue (only equality constraints) and Cassowary (a
very restricted finite domain subsolver), are inspired and designed for some subset of
the general problem [11].

This paper is also related to many work in soft constraint processing aiming to
show how information gained through local consistency checking during preprocessing
can be used to enhance branch-and-bound search using local computations as global
bounds. In fact, when dealing with Constraint Hierarchies with only 2 levels,w-s-band
w-l-b correspond to weighted CSPs andw-c-bto fuzzy CSPs. Some work, similar to our,
already appear (see for example Weighted CSPs [25], and Valued CSPs[23, 10]). The
bounds computed by these works are better then ours when we restrict our computations
to only2-level, and to a specific comparator.

Our results are somewhat more general. We are able to computebounds for CH
with any number of levelsandwithout fixing a priori a comparator. To reach better
bounds we can easily fix a comparator and define a specificapproxk(x 7→ d) function.
Bistarelli et al. [4]defined such operators for the specific case ofl-b.

9 Conclusion
We formally define constraint hierarchyk-consistency (CH-k-C), based on error indica-
tors. Incorporating a CH-2-C enforcement algorithm in a branch-and-bound algorithm,
we obtain a general finite domain CH solver, which works for arbitrary comparators.
Search space is pruned by utilizing the error information generated by the CH-2-C al-
gorithm. Experiments confirm the efficiency of our research prototype, which brings us
one step towards practical finite domain CH solving.

There is room for future research. First, our implementation and even the CH-2-C
algorithm are hardly optimized. They have much scope for improvement. Second, we
test our solver only on random problems. Experiments on morestructured problems and
real-life problems are needed. Third, our consistency-based and Lua’s reified constraint
approaches do not compete. It would be interesting to study if the two methods can be
combined to produce more pruning. Fourth, the efficiency of branch-and-bound algo-
rithms can be sensitive to variable and value orderings. It is worthwhile to investigate
good ordering heuristics specific to the CH-2-C and the branch-and-bound algorithms.
Fifth, the current proposal of our solver guarantees the correctness of local and global
comparators. In addition, it is easy to check that our solvercan support regional com-
parator [26],regionally-bettercomparator. The existing comparators, although rigor-
ously and mathematically defined, might be too general for a specific real-life situation.
It would be interesting to introduce new comparators that should be of particular rele-
vance to real-life problems and applicable to our solver.

References
[1] G.J. Badros, A. Borning, and P.J. Stuckey. The Cassowarylinear arithmetic constraint

solving algorithm. ACM Transactions on Computer-Human Interaction, 8(4):267–306,
2001.

[2] C. Bessière, E.C. Freuder, and J.C. Régin. Using inference to reduce arc consistency com-
putation. InProceedings of IJCAI95, pages 592–598, 1995.

[3] S. Bistarelli, P. Codognet, H.K.C. Hui, and J.H.M. Lee. Solving finite domain constraint hi-
erarchies by local consistency and tree search. In(to appear) Proceedings of the Eighteenth
International Joint Conference on Artificial Intelligence, page (2 pages), 2003.

[4] S. Bistarelli, Y. Georget, and J.H.M. Lee. Capturing (fuzzy) constraint hi-
erarchies in semiring-based constraint satisfaction. Unpublished Manuscript,
http://www.sci.unich.it/∼bista/drafts/soft-fuzzyCH.pdf, 1999.

[5] S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint solving and optimiza-
tion. Journal of the ACM, 44(2):201–236, 1997.

[6] A. Borning, R. Anderson, and B. Freeman-Benson. Indigo:A local propagation algorithm
for inequality constraints. InProceedings of the 1996 ACM Symposium on User Interface
Software and Technology, pages 129–136, 1996.

[7] A. Borning and B. Freeman-Benson. Ultraviolet: A constraint satisfaction algorithm for
interactive graphics.Constraints: An International Journal, 3(1):9–32, 1998.

[8] A. Borning, B. Freeman-Benson, and M. Wilson. Constraint hierarchies.Lisp and Symbolic
Computation, 5(3):223–270, 1992.

[9] A. Borning, K. Marriott, P. Stuckey, and Y. Xiao. Solvinglinear arithmetic constraints
for user interface applications. InProceedings of the ACM Symposium on User Interface
Software and Technology, pages 87–96, 1997.

[10] Martin C. Cooper. Reduction operations in fuzzy or valued constraint satisfaction.Fuzzy
Sets and Systems, 134(3):311–342, mar 2003.

[11] B. Freeman-Benson. Efficiency of DeltaStar. Private Communication, April 2002.
[12] B. Freeman-Benson, J. Maloney, and A. Borning. An incremental constraint solver.Com-

munications of the ACM, 33(1):54–63, 1990.
[13] B. Freeman-Benson, M. Wilson, and A. Borning. DeltaStar: A general algorithm for incre-

mental satisfaction of constraint hierarchies. InThe 11th Annual IEEE Phoenix Conference
on Computers and Communications, pages 561–568, 1992.

[14] Y. Georget and P. Codognet. Compiling semiring-based constraints with clp(FD,S). InPro-
ceedings of the Fourth International Conference on Principles and Practice of Constraint
Programming, 1998.

[15] S.A. Grant and B.M. Smith. The phase transition behavior of maintaining arc consistency.
In Proceedings of ECAI96, pages 175–179, 1996.

[16] Martin Henz, Yun Fong Lim, Seet Chong Lua, Xiao Ping Shi,J. Paul Walser, and Roland
H. C. Yap. Solving hierarchical constraints over finite domains. In Sixth International
Symposium on Artificial Intelligence and Mathematics, Fort Lauderdale, Florida, 2000.

[17] H. Hosobe, S. Matsuoka, and A. Yonezawa. Generalized local propagation: A framework
for solving constraint hierarchies. InProceedings of the Second International Conference
on Principles and Practice of Constraint Programming, pages 237–251, 1996.

[18] H. Hosobe, K. Miyashita, S. Takahashi, S. Matsuoka, andA. Yonezawa. Locally simulta-
neous constraint satisfaction. InProceedings of PPCP94, pages 51–62, 1994.

[19] A.K. Mackworth. Consistency in networks of relations.AI Journal, 8(1):99–118, 1977.
[20] F. Menezes, P. Barahona, and P. Codognet. An incremental hierarchical constraint solver.

In First Workshop on Principle and Practice of Constraint Processing, 1993.
[21] J.A. Nelder and R. Mead. A simplex method for function minimization. The Computer

Journal, 7:308–313, 1965.
[22] M. Sannella. The SkyBlue constraint solver and its applications. In V.A. Saraswat and

P.V. Hentenryck, editors,Proceedings of the First Workshop on Principles and Practice of
Constraint Programming. MIT Press, 1994.

[23] Thomas Schiex. Arc consistency for soft constraints. In Proc. 6th International Conference
on Principles and Practice of Constraint Programming (CP2000), volume 1894, pages
411–424. Springer, 2000.

[24] G.L. Steele and G.J. Sussman. Constraints. InAPL conference proceedings part 1, pages
208–225, 1979.

[25] Richard J. Wallace. Directed arc consistency preprocessing. InConstraint Processing,
Selected Papers, volume 923, pages 121–137. Springer, 1995.

[26] M. Wilson and A. Borning. Hierarchical constraint logic programming.Journal of Logic
Programming, 16:277–318, 1993.

