Solving Finite Domain Constraint Hierarchies by Local
Consistency and Tree Search

S. Bistarellt*1-2, P. Codognét H.K.C. Hui*, and J.H.M. Leé

1 |stituto di Informatica e Telematica, CNR, Pisa, Italy
Stefano.Bistarelli@it.cnr.it,
2 Dipartimento di Scienze,
Universita degli Studi “G. D’annunzio” di Chieti-Pescalaly
bi sta@ci.unich.it,
3 Department of Computer Science
University of Paris 6, France
Phi | i ppe. Codognet @i p6.fr
4 Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Hong Kong SAR, China
{kchui , j | ee}@se. cuhk. edu. hk

Abstract. We provide a reformulation of the constraint hierarchied¢iframe-
work based on the notion @frror indicators Adapting the generalized view of
local consistency in semiring-based constraint satigfiagiroblems (SCSPs), we
defineconstraint hierarchyk-consistency{CH-k-C) and give a CH2-C enforce-
ment algorithm. We demonstrate how the @G algorithm can be seamlessly
integrated into the ordinary branch-and-bound algoritbrmgke it a finite do-
main CH solver. Experimentation confirms the efficiency asiolistness of our
proposed solver prototype. Unlike other finite domain CH/erd, our proposed
method works for both local and global comparators. In daldjtour solver can
support arbitrary error functions.

1 Introduction

The Constraint Hierarchy (CH) framework [8] is a generahfeavork for the specifi-
cation and solutions of over-constrained problems. Oaitiy from research in inter-
active user-interface applications, the CH frameworkaats much effort in the design
of efficient solvers in the real number domain [1, 17]. To exitthe benefit of the CH
framework to also discrete domain applications, such asttibling and resource allo-
cation, the paper takes a step towards a general and efficidatdomain CH solver,
based on consistency techniques and tree search.
Central to the paper is the notion cdnstraint hierarchyk-consistencyCH-%-C),

defined using error indicators which are structures isomioro the structure of a given

* We thank the anonymous referees for their constructive cemsn The work described in this
paper was substantially supported by a grant from the Relséarants Council of the Hong
Kong Special Administrative Region (Project no. CUHK43IBHE).

** Part of this research was carried out while the author watingshe Department of Computer
Science and Engineering, The Chinese University of Honggkélong Kong SAR, China

CH used for storing the error information of the CH problefm{kr notion was de-
fined by Bistarelliet al.[4]). We give also an algorithm for enforcing CHEC of a CH
problem. While classical consistency algorithms [19] aoréduce the size of con-
straint problems, our CRB-C algorithm works by explicating error information that is
originally implicit in CH problems. We also suggest ways difizing such extracted
information to help prune non-fruitful computation in a bch-and-bound searching
algorithm, which forms the basis of our finite domain CH salvée have constructed a
prototype of the solver, and performed experiments on afsandomly generated CH
problems that confirm the efficiency and robustness of oypqsal.

This paper is a revised and extended version of another bsatime authors [3].

The rest of the paper is organized as follows. Section 2 ges/necessary back-
ground definitions. In Section 3, we present an equivaleatdfieition of the CH frame-
work using the notion of error indicators and hierarchy peal which are central in
the definition of constraint hierarchiyconsistency and the associated enforcement al-
gorithmin Section 4. In Section 5, we give a constraint higrg 2-consistency enforce-
ment algorithm and discuss its complexity. The finite don@ilh solver, which has a
branch-and-bound backbone, is introduced in Section Bvied by experimental re-
sults in Section 7. Related works are discussed in Sectioef@d summarizing the
major results and shedding light on possible future dioectif research in Section 9.

2 Constraint Hierarchies

Let D be a constraint domain. ®ariablex is an unknown that has an associaved-
able domainD(z) C D, which defines the set of possible values{foAn n-ary con-
straint c is a relation ovelD™. A labeled constraint® is a constraint with a strength

s € {0,...,k}. The strengths are totally ordered. Constraints with gtien = 0
arerequired constraintgor hard constraints) and those with strengitkd s < k are
non-required constraintéor soft constraints). The larger the strength, the wedker t
constraint is. In addition, each labeled constraint may dsmeiated with a weight
(for use with the global comparators).canstraint hierarchy is a multiset of labeled
constraints. The symbdll; denotes a set of labeled constraints with strength i.
Hy, therequired level denotes the set of required constraints which must beisdtis
Hy,..., Hg, thenon-required leveldenote the sets of hon-required constraints which
can be violated but should be satisfied as much as possiblas&/en example in Fig-

||V: {z,y,z} andD(z) = D(y) = D(z) = {1,2} ||
H = {Hy, H.1,H>, Hs}

Ho=0,H1 ={cl:2>y,cs:x =2} and
Hy={c:y=3,c:2<vy}
Hy={:2=1,c:c+y+z2>4}

Fig. 1: An example of constraint hierarchy.

ure 1 to explain CHs in more details. There are three levellsaérconstraint hierarchy
H. There are no required constraints in the required I&gelHowever, there are two

strongconstraints:} andcl in H;, two mediumconstraints? andc3 in H, and two
weakconstraints$ andc; in Hs.

A valuationf = {v; — di,...,v, — d,} for a set of variablegvy,... ,v,}
assigns to each; the valued; € D(v;). Letc be a constraint and a valuation. The
expressiond is the boolean result of applyirtgto c. We say that6 holdsif ¢ is true.
An error functione(cf) measures how well a constrairis satisfied by valuatioé. The
error function returns non-negative real numbers and natistfy the propertye(cf) =
0 < cf holds. Atrivial error function is an error function that give8 if ¢ holds
and1 otherwise. The value(cf) returned by an error function is aror value We
usevars(c) (or vars(#)) to denote the set of all variables in constrairfor valuation
). The possible valuations for the variables y, z} are{6:, 02, 05,04, 65,605, 07,05}.
Figure 2 gives the error values of all valuations in the cartgbkearch tree using the
trivial error function. The error values of a valuatiéare computed for each constraint
(e(ciB),e(cih), e(c20), e(c30), e(c30), e(c30)). Since, for exampled; satisfiesc? but
violatesci, e(c36;) = 0 ande(c}6;) = 1 respectively. We can obtain the error values
of other valuations similarly. In order to compare valuesyumber ofcomparators
are definedlocally-better(l-b), weighted-sum-bettgw-s-b), worst-case-bettew-c-
b), andleast-squares-bettél-s-b). We can use these comparators to dedimlationsof
CHs [8].

|;H|| |;H3\ |;H|| ;Hz| |;H||

6, 6, by 0. by b6 o B
|| @ [Error values fore(c}6)]| 6 |Error values fore(c’6)]]

6.] (1,1,1,1,0,1) [16s] (0,0,1,1,0,1)
0] (1,1,1,1,1,1) |l6s|] (0,0,1,1,1,0)
s (1,1,1,0,0,1) ||6z| (1,0,1,0,0,0)
0. (1,1,1,1,1,0) |16s| (1,0,1,1,1,0)

Fig. 2: The possible valuations and their error values.

3 A Reformulation of Constraint Hierarchies

To facilitate subsequent illustration of the CH local catesincy concept, we formulate
the CH framework [8] (in particular in the definition of contpors and solution set)
using error indicators (as defined in [4]).

We denote an error value gy possibly with subscripts. Let= {£;,... ,£x} be
a poset (partially ordered set), each elemgnof which is anerror indicator. Given
a constraint hierarchff = {Ho, ..., H,} wheren is the number of non-required
levels, and for ali € {0,...,n}, H; = {ci,... ¢, } with k; being the number of
constraints in level. An error indicatoréy of a valuationd for a set of variable$”

is a tuple of error values such thgg = ((£97,... &) - -+ (&1, - - . &) and
Va € {0,...,n},Vb € {1,... ko}, &y = e(cfl) if vars(cd) C V and&py = 0 if
vars(cy) ¢ V. Error indicators provide a measure of the “badness” ofatidms with
respect taH.

To explain the meaning of the error indicator of a valuatiea,use the example in
Figure 1 with the trivial error function. B = {z — 2},theng, = ((), (0, 0), (0,0}, (1, 0)).
If 0 = {z— 1,y — 2}, then&y = ({),(1,1),(1,0),(0,0)). If 0 = {z — 2,y —
2,z — 1}, then&y = ({), (1,0), (1,0), (0, 1)).

The comparator predicabetterin the original CH formulation is redefined using a
partial order, denoted by<. We define< to be irreflexive and transitive ovér Hence,
it preserves the meaning bétter. Intuitively, £/ < £ meanst”’ is “better” than£’ in
1. In general < will not provide a total ordering. For convenience, we defiheuch
thatvg’,ﬁ” c [7 5/ =< 5” N (51 = 5//) v (51 _ 5”)-

We can redefinéb in the original formulation as a partial ordet;_; as follows.
Given any two valuation8 ando, and the corresponding error indicatgisandé,,,
<;_p Is defined as:

&0 <i1-» & = 31 > Osuchthati € {0,... 1 — 1},
Vie{l,... ki}, &) =&}
Ada e {1,... .k}, & < &
AVb e {1,... ki}, Ent < &g

The intuitive meaning ofy <;— &, is that valuatiory is locally-betterthan valu-
ationé.

Similarly, we can defing-b <,_, and its instances-s-b <, _ sy, W-C-b <, —c—s,
andl-s-b <;_,_; respectively. Given any two valuatioAsndo, and the corresponding
error indicatorgy and&,:

&9 <y & = > Osuchthawi € {0,...,1 -1},
g(<§9117"' 7§9;cq,>) = g(<€0215"' 7§U;cq,>)
/\g(<§al1a-~- 7§a§cl>) < g(<€9l1a--.)§9§CL>>'

whereg is acombining functiorior error values:

§0 <w—s—b &5 = &0 =90 &0, Whereg (&1, §)) = 25c 1k &
€0 <w—c—b &6 = & <g—b &y Whereg((&1, ..., &) =maxg; [j € {1,... ki}},
i i 2
59 <l—s—b 50 = 59 '<g—b 50’1 Whereg((&ia o 7§;§l>) = Zje{l,m i} f; .
Notice that by definition, all local/global comparators ége constraints in hierarchy

levels greater than or equalto
We are now ready to define the solution Setf a CH with variabled” by:

So = {0 | vars(9) = V,&; = oforalli € {1,... ,k}} and
S={0€Sy|VoeS& A&}

The following lemma gives the monotonicity of the introdd@mmparators, which are
collectively denoted byKpesrerr aNd=pesier in the rest of the paper.

Lemma 1. Given any two error indicator§’ and¢”. If for all a, b we havet”) < &'y,
then£, Sbetter 5”'

Notice that the above lemma lets us compare valuation fdr lmatal and global
comparators (because thg.::.,- order implies all the orders induced from any specific
comparator) and for arbitrary error functions.

We also introduce the notion oftaerarchy problenwhich is a CH augmented with
error information.

Definition 1 (Hierarchy Problem and Error Indicator Store). A hierarchy problem
P = (H,Iy) is a constraint problem, wher® is a CH with variables” and I is a
set containing error indicator stores, _, for all variablesz € V and for alld € D(z).
Each&,—, is used for keeping an estimate (a lower bound) of the errbrsatuations
involving{z — d}.

Definition 2 (Solution of a Hierarchy Problem). A valuation6 is a solutionof P =
(H, Iy)if (1) 0 is a solution ofH and (2)€y <petter Ex—a forall £,—q € Iy.

In other words, solutions oP = (H, Iy) are solutions of which have a “worse”
error than the estimates providediip. By the definition, the solutions aff always
contain those of H, I ;). Equality holds when the error estimates providednfails
to “filter” out any solutions ofH .

Theorem 1. Consider a CHH and the associated hierarchy problefh= (H, Iy;),
and denote theolution set®f H and P by Sy and Sp respectively.

— Sp C Sy, and

— Sp = Sy if £€o Spetter Ex=q forall (x — d) € andf € Sy.

In particular, a hierarchy probled¥, I;;) must share the same solution Hsif all
&.—q4 € Iy contain only the error value 0.¢. no error information). This fact is useful
in ensuring the correctness of our local consistency alyorand the completeness of
our branch-and-bound solver later.

4 Local Consistency in CHs

The classical notion dbcal consistency19] characterizes when a constraint problem
contains non-fruitful values. The main purpose of detectital inconsistency is thus
to remove the inconsistent values from the variable domaitsconstraints. Hence,
the problem is “simpler” to solve when the problem is smalidowever, we adopt a
more general notion of local consistency used for SC&Pplying a local consistency
algorithm to a constraint problem means explicitating samelicit constraints, thus
possibly discovering inconsistency at a local levf]. We adapt this general notion
for CH, and defineonstraint hierarchyk-consistencyCH-%-C).

Before defining CHk-C, we need two operationg\i.AX and MZN, on error
indicators. Given a CHH with n non-required levels and any two error indicators,
£o, €, €I, for H. MAX (&9, &,) is defined as

<<ma)(§9(1)a 0'(1))7 MR ma)(ge(]ioafa(]io»a R <ma)(§971L7 ga?)a R ma)(f@znafazn)»

and MZIN (&g, &,) is
<<min(§0(1)a o) m'“(§0k0,5020)>a tee <min(§071Lv fa?)a s ,min(ﬁeznaﬁazn)»

wherek; is the number of constraints in levedf H.

Given two error indicatorsMZN (or M.AX) combines the two indicators by tak-
ing the best (or the worst). ObviousiM . AX and MZA are commutative and associa-
tive. Thus, it makes sense to writel AX {&1, ... , &k} and MZN{&y, ... €k }) for
anyK > 2.

Given a CHH with variablesV. If z € V andd € D(z), we define

approzy(x — d) =
MAX{MIN{&y |vars(0) = {z} VU, (x—d) €0} |UCV,|U| =k—1}

foranyl < k < |V|. We call it k-approximation which provides an estimate of
the “badness” of valuations involving the assignments d for all m-ary constraints
involving = with m < k. Since the error indicators of all valuations involving— d
might not be comparable, we can only give an approximatiod aaproxy|(z — d)
gives an error estimate involving all constraints in thelybean. However, calculating
approx)y|(z +— d) is computationally expensive, angproxy,(z +— d) for some small
k < |V| gives a more practical approximation.

Referring to the same example in Section 2,

approxsa (y = 2) = MAX{MIN{S{x»—»l,y»—»Q}v €{x>—>2,y'—>2}}7
MIN{&{@/'—»Q,ZHI} €{yb—>2 z>—>2}}}
= MAX{MINL((),(1,1),(1,0),(0,0)), ((),
MIN{(), (0,0), (1,0), (0,0)), ((),
= MAX{((), (1,0, (1,0),(0,0)), ((), (0,0),(
— (0 (1,0, (1,0}, (0.0))

The following theorem states thapprox,(xz — d) is monotonically decreasing in

(1,0,
(0,0),
1,0),(

,0),(0,0))},
>1> (1,001}

(1
(1,1),
0,00)}

Y

Theorem 2. If H is a CH with variabled/, x € V andd € D(x), thenapproxy, (x —
d) Zpetter approxy, (x — d), V1 < ky <k < |V

By using Lemma 1 we can show thiatapproximations provide upper bounds for
the error indicators of complete valuations for any comjuasa

Theorem 3. If H is a CH with variablesV, z € V andd € D(z), then&y <petter
approx)y|(z + d) Zpetter approxy(z +— d) forall 1 < k < |V|and alld such that
vars(d) = V and(z — d) € 0, where=.+., represents any locally/globally better
comparator.

Theorem 3 suggests thatapproximations can be used as the basis of the notion of
local consistency in CH.
A hierarchy problenP = (H, I) is constraint hierarchys-consistent (CHe-C) if
the error indicator stores ify; explicitly indicate the implicit inconsistency informati
in all m-ary constraints irH wherem < k. Formally, we define CH=C as follows.

Definition 3 (CH k-Consistency (CH+%-C)). Given a hierarchy probler®? = (H, Ij;)
with variablesV. P is CH-k-C if, for all £,—4 € In, €x—d Sbetter approxy(z — d)
for somel < k < |V|.

The CH+%-C condition of P = (H, Iy) imposes that the estimated error infor-
mation of H placed in the error indicator stores Iy is at leastas accurate as that
provided byk-approximations. In addition, explicating the er®Br= (H, Iy) using
k-approximations makeB CH-k-C without changing the solution space@f

Theorem 4. Given a hierarchy problen® = (H, Ij;) with variablesV. If each¢’,—; €
I}, is defined as follows:

5’ —g = a=a ?f &o—d Zpetter approxk(m — d)
= approxy(x — d) if approzi(x v— d) Zpetter Ex=d

whereé,—, € Iy, then the hierarchy probler®’ = (H, Iy) is (1) CH+%-C and (2)
shares the same solution setas

A simple corollary follows directly from Theorems 1 and 4.

Corollary 1. Given a hierarchy problen® = (H, I) with variablesV, and P’ =
(H, Ip) defined so that eactl ., € I}, is:

5' —g = §a=a ?f Ex=d Sbetter APPTOT (:C — d)
= approxy(x — d) if approzi(x — d) Zpetter Ex=d

where¢,—4 € Iy. Denote the solution sets &f, P, and P’ by Sy, Sp, and Sp/
respectively.

Sy =5p < Sy = Sp:

5 A CH-2-C Enforcement Algorithm

Arc-consistency algorithm is a common and practical teghaito detect local incon-
sistency in classical CSPs [2, 15]. We design and implemetigorithm to enforce
CH-2-C. The purpose of the CB-C algorithm is to explicate and place Iy, the im-
plicit error information in a CH that is otherwise not vigblSuch an algorithm is given
in Figure 3. The subroutinehlc pri andch2cpri, in Figures 4 and 5 respectively, are
responsible for handling unary and binary constraintseetygely. The CH2-C algo-
rithm ensures that all error indicator stoggs.; are updated to reachyproxs (x — d).

Consider a general CH of.. labeled constraints with,, number of variables. In
addition, the size of the largest variable domain is:@f The time complexity of the
subroutinechlcpri is simply of O(ng), since the only repeating operations, lines 4 to
6 in Figure 4, are placed inside a single loop. These op&mtoe repeated until each
element in a variable domain is tested. However, the timeptexity of the subroutine
update (Figure 6) is ofO(n4?). Therefore, in the worst case, the time complexity of the
subroutinech2cpri is of O(n4?) as shown in Figure 5. Lines 3 to 5 in the pseudocode
of the CH2-C algorithm are the operations for checking constraintshesvn in Fig-
ure 3. Since these operations should repeat until all thetcints are considered, the
time complexity should be ad(n.n4?).

Algorithm 1: The CH=2-C algorithm.

ch2dH,V, D, Iy)
begin
for <+ 1ton do
for k — 1to|H,| do
let ¢ be thek!™ constraint inH;;
Iy « chlepri(e I, k, D, Ig);
Iy « ch2cpri(e, I, k, D, I);

a b~ W N P

6 return Ig;
end

Fig. 3: The CH2-C algorithm.

Since an error indicator is a tuple which stores error vabfefie corresponding
constraints, the space complexity for each error indicstaf O(n.). The memory

requirement of the CH-C algorithm depends on the number of error indicator stores

in Iy. Therefore, we require,ng error indicators. The space complexity of the @H-
C algorithm is simply oD (n,n4n.) in the worst case.

Notice that some better local consistency algorithms cbaldefined when consid-
ering only a specific comparator (see for instance [4] focBweoperators dealing with
I-b).

6 A Branch-and-Bound Finite Domain CH Solver

The simplest way to find the solution set of a CH is to constthetcomplete search
tree for the problem, so that we can calculate and compamrtbevalues of each val-
uation. However, traversing the complete search tree anghbadng all the valuations
are tedious and time-consuming. We propose to combine the-Ctand the branch-
and-bound algorithms so as to prune non-fruitful branclitiseosearch tree.

The input to our solver is a hierarchy problétn= (H, I;), in which Iy contains
no error information. In other words, the error indicator s®in g contain only the
error value 0. The backbone of our solver is a standard brandhbound algorithm,
since CH-solving is an optimization problem. A branch-dmdnd algorithm always
maintains the set of potential best solutions collectedasoTihe idea is to invoke the
CH-2-C algorithm at each node in the search tree, hoping thatwaghead in the CH-
2-C algorithm can be more than compensated by the pruning#matake place. The
correctness and completeness of this step is ensured bylapih so that maintaining
CH-2-C will not change the solution space of the hierarchy pnwbénd the associ-

ated CH. At each CH-C tree node, before search proceeds down a selected branch

corresponding to a variable assignment, say» d, the solver tries to verify i€,_,
in Iy of that tree node is not worse than the error indicator of gextlntial solution.
If that is the case, search proceeds; otherwise, there igindtp explore the selected

chlcpri(e, i, k, D, Iy)
begin
if lvars(c)| =1 then
let {z} = vars(c);
for eachd € D(z) do
let = {x — d};
Ieté‘ =&s=a € In;
if ¢ < e(ch) then &L — e(ch);

@ U1 A W N P

7 return Ig;
end

Fig. 4: A subroutine to check unary constraints.

branch any further, and search is backtracked to try anbttagrch. When a leaf node
is reached, we compare the error indicagasf the valuation associated with the leaf
node against the error indicators of all the collected smhst If the error indicator of
any collected solution is worse thgnthen the collected solution will be replaced by
the current valuation.

Our CH-2-C algorithm ensures that each error indicatoegor ; is approxs (x —
d). By Theorem 3, the error indicator of every complete vabraihvolving assignment
x +— d must be worse thaapprozs(z — d). If at a search nodé&,,—, is worse than
the error indicators of each potential solution colleciedbs, there is no point to search
on since all the possible valuations down that branch mustdsee than the potential
solutions. The details of our finite domain CH solver is shawtrigure 7, which is
a simple adaptation of a basic branch-and-bound solver théhCH=2-C algorithm.
The numbered lines give the backbone of the algorithm, whigeunnumbered lines
are new additions to enable CHE enforcement. The algorithm use as parameters the
constraints ind and and the stores ify, the variabled” and the domairD. It also
needs the set of assignmestssatisfying constraints i/, and the corresponding set
of error indicatorsls,. The algorithm is also parametric w.r.t. the type of compmara
we want to use-€pester)-

Although CH2-C encompasses also crisp notions of node and arc consistesc
employ classical algorithms [19] for processing the reggiitonstraints itH (lines 1)
for performance reasons. Lines 5 to 13 deal with the case eéfarlode. Here there
is a call to subroutineal_error _value that computes the errafcf) for eachd. The
CH-2-C algorithm is invoked between lines 13 and 14. Lines 14 tqéiform the
basic variable instantiation (or searching) recursivélye call to the subroutingo
determines whether the error indicator store of the vagiaBsignment of the selected
branch inly of the current node is not worse than the error indicator cheazf the
collected solutions so far.

ch2cpri(e, I, k, D, Iy)
begin
1 if lvars(c)| = 2 then
2 let {z,y} = vars(c);
Update eaclf ,—q, € Iy
3 Iy < update(z, y, ¢, I, k, D, Iy);
Update eacl§,—q, € In
4 Iy «— update(y, x, ¢, I, k, D, Ig);
5 return Iy;
end

Fig. 5: A subroutine to check binary constraints.

7 Experimental Results

We compare the performance of our proposed solver with gémend-test, basic branch-
and-bound, and the reified constraint approach by Lua (tlaéslsolver hereafter) [16].
DeltaStar is only a theoretical framework [11], and clp(§P¢annot in the current
implementation deal with hierarchies. Since both Lua'saolnd ours are based on a
branch-and-bound backbone, we firstimplement a solveneisgi which searches us-
ing ILOG’s defaultgoal definition, in ILOG Solver 4.4 in a generate-and-test fashio
In order to provide a basic Branch-and-Bound solver (witl@@id-2-C enforcement) for
comparison, we define an alternative ILOG goal to obinOur proposed solves,.

is obtained by implementing additional functions and aerathtivegoal definitionG.

in S,. While the input to our solvers is a CH, the input to Lua’s soly, (“r” stands
for “reified constraint”) is a CSP with reified constraints foplementing a specific
comparator and error function. Our comparison ensfaiesesssince all four solvers
share the same backbone.

Our experiments are conducted on Sun Ultra 5/400 worksisitigth 256MB RAM.
We record the execution time taken By, Sy, S., andS,. to find the solution set of each
problem instance using a particular comparator, denofiege timings,, ¢, t., andt,..
For each problem instance and comparator, we compute taties:t,/t., t,/t., and
t,/t.. Each number in the following tables corresponds to thesmeeof the same type
of ratios for fifteen problem instances in a particular pesblsetP; and a particular
comparator. The columns on the left comp&geandS., while the ones in the middle
compareS, and S., and the ones on the right compa$e and S, (only for global
comparators). Our 3-part experiments test the effeeadgible domain sizenumber of
variables andnumber of hierarchy levelsn the performance of our proposed solver.
In each part, four sets of CH#,, P,, Ps, and Py, each of which contains 15 problem
instances, are generagethdomly All problem instances have no hard constraints to
make them more “difficult” to solve.

update(z, y, ¢, I, k, D, Ig)
begin
let &,,.:n be an error value;
for eachd, € D(x) do
g'min «— 00;
for eachd, € D(y) do
let0 = {z — dy,y— dy};
L if e(cl) < &min then & — e(ch);
let 6 = €x:dw S IH!
8 L if €]l§ < fmin then €]l§ — €7rLi7L;
9 return Iy;
end

@ 01 A W N B

~

Fig. 6: A subroutine to update error indicator stores.

In the first part, the number of variables and the number o&hddy levels are fixed
(V| =5, H = {Ho, H1, H2}, |[Ho| = 0, and|H;| = |H| = 5) across all instances,
while problems in the same set share a specific domainBjdgas domains of siz&)i
forie {1,2,3,4}.

I 1 to/te Mean) [t/tc Mean) [t./tc (Mean) |
|CHSw-s-Hw-c-bll-s-b] I-b [|w-s-Hw-c-bfI-s-b[I-b[|w-s-Hw-c-HI-s-b]]
P 8 5 7 |10]| 6 4 6 |7 5 4 5
Py || 36 | 15 | 37 |13|| 18 | 22 [19|19 9 19| 9
Ps || 267 | 67 |261|171| 121 | 47 |123|31| 113| 42 |115
P, || 385 72 |342| 76| 37 | 35 | 39|23|| 17 | 27 | 18

In the second part, the variable domain size and the numbeecdrchy levels are
fixed (D(x)| = 5 for all variablesz, H = {Hy, H1, H2}, |Ho| = 0, and|H;| =
|H>| = 5) across all instances, while problems in the same set shepedfic number
of variables:P; has2(i + 1 variables fori € {1,2,3,4}.

I 1 te/teMean) | ty/tc Mean) [t-/t. (Mean) ||
|CHS]|w-s-Hw-c-HI-s-b[I-b [|w-s-Hw-c-HI-s-b[I-b [| w-s-Hw-c-HI-s-b]
P 12(09|1311.2/ 12|13 15|14 11|11 |14
P> 6 3 6 |5 5 3 514 5 3 5
Ps 7 3 7|4 5 4 513 4 4 4
Py || 24 8 | 24|26|| 3 7 3 (5|14 6 |14

In the third part, the number of variables and the variablmaio size are fixed
(IV| = 5, |D(x)| = 20 for all variablesz, and|Hy| = 0) across all instances, while
problems in the same set share a specific number of hieraeslis! P, hasi + 1
non-required levels each with 5 constraintsfer {1, 2, 3,4}.

w

© 0 N o 0 b

11

12
13

14
15
16

17

18

Algorithm 2: A Branch-and-bound CH Solver with Pruning

bb_soM(H, I, V, D, Sp,inout Is,, <petter)

begin

Any classical arc consistency algorithm

D « arc_consisten{Hy, D);

if D contains an empty variable domaimen
| return Sy;

else if D contains all singleton variable domathen
let # be the valuation corresponding &
let £y be the error indicator correspondingéip
&y + cal_error valueqH, 9, &);
for eacho € Sy do

if 50 <better 59 then

L So <« So—{o}i Isy — Is, —{&s}
else if€y <perter €5 then return Sy;

So +— S U {9}, ISO — ISO U {59},
| return Sgp;
for each§,—; € Iy do
if d ¢ D(x) then
| Ig —Ig —{&z=a};

Iy — ChZC(H, V,D, IH);
choosevariablex € V for which |D(z)| > 2;
W «— D(z);
for eachd € W do
L if 90(§2=a, So, Isys <petter) then
|_ So — bb_SOIV({HO ANx=d, Hy,... ,Hn}, Iy, V,D, Sy, ISO, '<bette'r);

return Sy;
end

Fig. 7: A Branch-and-bound CH Solver with Pruning

I [to/te Mean) | t/tc (Mean) [t./t. (Mean) ||
|CHS]|w-s-Hw-c-HI-s-b] I-b [[w-s-Hw-c-BI-s-b[I-b | w-s-Hw-c-HI-s-b]
P || 146 | 108 |151|122| 44 | 44 | 44 |32|| 37 | 39 | 39
P, || 209 | 130 |212|116| 51 | 116 | 50 |34 38 | 104 | 39
Ps || 232| 168 |219|50|| 42 | 121 | 44 |21|| 31 | 113 | 29
Py || 122 | 154 |124| 75| 58 | 132 | 60 |26|| 51 | 128 | 52

The CH2-C algorithm incurs overhead in the branch-and-bound kedfor the
larger problems inP;, P, and Py, the extra effort paid by the CB-C algorithm at
each search node is demonstrated worthwhile. This resuitlise with the behavior
of embedding classical consistency techniques in basécstearch in solving classical
CSPs.

The Lua’s solver relies on classical constraint propageticenforce the semantics
and the operations of the comparators via reified conssaivhile the approach, based
on existing technology, is clever and clean, the pruningqrost reified constraints is
relatively weak. On the other hanfl, executes a dedicated algorithm for maintaining
CH-2-C to help pruning and solution filtering, thus attaining gher efficiency. In
particular,S, performs the worst on the-c-b comparator, since therror combining
constraintis implemented using thicMax constraint in ILOG Solver 4.4, which is
again weak in propagation.

8 Related Work

Many efficient algorithms have been proposed to solve CHsh i3 DeltaBlue [12],
SkyBlue [22], DETAIL [18], Indigo [6], Generalized Local ®pagation [17], and Ultra-
violet[7], apply Local Propagation [24]. Besides, Cassgveand QOCA algorithms [9],
adapting the Simplex algorithm [21], can also solve CHs ieffitty. However, they are
designed for the real number domain. We focus on finite dor@&is solving tech-
niques; we can categorize the techniques into four difteapproaches.

First, the Incremental Hierarchical Constraint SolverGls) [20] proposes to trans-
form a given constraint hierarchy into a sethafst configurationéa set of constraints).
Therefore, a given CH can be transformed into a set of clalsSiPs. However, it can
only find I-b solutions using the trivial error function. The second apgh is to trans-
form CHs into ordinary constraint systems basedadfred constraint propagatiofi6].
This approach can only find solutions fgiobal comparatorgw-s-hy w-c-b, andl-s-b).
The third approach exploits the fact that CH is an instande@BSCSP framework [5].
Bistarelliet al. [4] show how a c-semiring can be constructed to model albimsts of
globally-better In addition, only thew-c-b can enjoy semiring-based arc-consistency
techniques [5] supported in clp(FD,S) [14]. The clp(FD,8sr, however, limits the
size of the semiring to only 32 elements, making it difficoltrhodel any practically
sized problems. The last is the refining approach used baBelt [13]. It is a generic
finite domain CH solver which can find solutions for arbitragmparators in theory.
However, it recomputes the solution in each recursive stegiog significant overhead.
Hence, it is used only as a general and theoretical framefeodolution, from which
efficient algorithms, such as DeltaBlue (only equality ¢omiats) and Cassowary (a
very restricted finite domain subsolver), are inspired aesighed for some subset of
the general problem [11].

This paper is also related to many work in soft constraintessing aiming to
show how information gained through local consistency khmerduring preprocessing
can be used to enhance branch-and-bound search using émpltations as global
bounds. In fact, when dealing with Constraint Hierarchi@h wnly 2 levelsw-s-band
w-I-b correspond to weighted CSPs amdt-bto fuzzy CSPs. Some work, similar to our,
already appear (see for example Weighted CSPs [25], aned&$Ps[23, 10]). The
bounds computed by these works are better then ours wherstwietreur computations
to only 2-level, and to a specific comparator.

Our results are somewhat more general. We are able to corbputeds for CH
with any number of leveland without fixing a priori a comparatarTo reach better
bounds we can easily fix a comparator and define a spegificox . (« — d) function.
Bistarelli et al.[4]defined such operators for the specific casklf

9 Conclusion

We formally define constraint hierarckyconsistency (CHe-C), based on errorindica-
tors. Incorporating a CK-C enforcement algorithm in a branch-and-bound algorithm,
we obtain a general finite domain CH solver, which works fdnitaary comparators.
Search space is pruned by utilizing the error informatiomegated by the CK2-C al-
gorithm. Experiments confirm the efficiency of our reseandiqiype, which brings us
one step towards practical finite domain CH solving.

There is room for future research. First, our implementasind even the C-C
algorithm are hardly optimized. They have much scope forgwgment. Second, we
test our solver only on random problems. Experiments on stouetured problems and
real-life problems are needed. Third, our consistencythasd Lua’s reified constraint
approaches do not compete. It would be interesting to stiuthe itwo methods can be
combined to produce more pruning. Fourth, the efficiencyrafhbh-and-bound algo-
rithms can be sensitive to variable and value orderings. Warthwhile to investigate
good ordering heuristics specific to the @Hz and the branch-and-bound algorithms.
Fifth, the current proposal of our solver guarantees theectmess of local and global
comparators. In addition, it is easy to check that our sategr support regional com-
parator [26],regionally-bettercomparator. The existing comparators, although rigor-
ously and mathematically defined, might be too general fpeaiic real-life situation.

It would be interesting to introduce new comparators thathbe of particular rele-
vance to real-life problems and applicable to our solver.

References

[1] G.J. Badros, A. Borning, and P.J. Stuckey. The Cassowmear arithmetic constraint
solving algorithm. ACM Transactions on Computer-Human Interacti@t4):267—306,
2001.

[2] C.Bessiére, E.C. Freuder, and J.C. Régin. Using émfee to reduce arc consistency com-
putation. InProceedings of IJCAI9%ages 592-598, 1995.

[3] S.Bistarelli, P. Codognet, H.K.C. Hui, and J.H.M. Le®\8ng finite domain constraint hi-
erarchies by local consistency and tree searcftolappear) Proceedings of the Eighteenth
International Joint Conference on Atrtificial Intelligengeage (2 pages), 2003.

[4] S. Bistarelli, Y. Georget, and J.H.M. Lee. Capturing Zfy) constraint hi-
erarchies in semiring-based constraint satisfaction. ubhghed Manuscript,
http://www.sci.unich.it-bista/drafts/soft-fuzzyCH.pdf, 1999.

5]

6

—

[7

—_—

(8]
9]

(10]

(11]
(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]
(20]

(21]

(22]

(23]

(24]
(25]

(26]

S. Bistarelli, U. Montanari, and F. Rossi. Semiring-bagonstraint solving and optimiza-
tion. Journal of the ACM44(2):201-236, 1997.

A. Borning, R. Anderson, and B. Freeman-Benson. Indiytocal propagation algorithm
for inequality constraints. IRroceedings of the 1996 ACM Symposium on User Interface
Software and Technologpages 129-136, 1996.

A. Borning and B. Freeman-Benson. Ultraviolet: A coastt satisfaction algorithm for
interactive graphicsConstraints: An International JournaB(1):9—-32, 1998.

A. Borning, B. Freeman-Benson, and M. Wilson. ConstrhierarchiesLisp and Symbolic
Computation5(3):223-270, 1992.

A. Borning, K. Marriott, P. Stuckey, and Y. Xiao. Solvinmear arithmetic constraints
for user interface applications. FProceedings of the ACM Symposium on User Interface
Software and Technologpages 87-96, 1997.

Martin C. Cooper. Reduction operations in fuzzy or eaconstraint satisfactiorzuzzy
Sets and Systenk34(3):311-342, mar 2003.

B. Freeman-Benson. Efficiency of DeltaStar. Privaten@ainication, April 2002.

B. Freeman-Benson, J. Maloney, and A. Borning. An ineatal constraint solveCom-
munications of the ACMB3(1):54-63, 1990.

B. Freeman-Benson, M. Wilson, and A. Borning. DeltaS#ageneral algorithm for incre-
mental satisfaction of constraint hierarchiesThe 11th Annual IEEE Phoenix Conference
on Computers and Communicatiomages 561-568, 1992.

Y. Georget and P. Codognet. Compiling semiring-basettraints with clp(FD,S). IRro-
ceedings of the Fourth International Conference on Pritespand Practice of Constraint
Programming 1998.

S.A. Grant and B.M. Smith. The phase transition behaefanaintaining arc consistency.
In Proceedings of ECAI9fpages 175-179, 1996.

Martin Henz, Yun Fong Lim, Seet Chong Lua, Xiao Ping ShiPaul Walser, and Roland
H. C. Yap. Solving hierarchical constraints over finite damsa In Sixth International
Symposium on Atrtificial Intelligence and Mathematieart Lauderdale, Florida, 2000.

H. Hosobe, S. Matsuoka, and A. Yonezawa. Generalizeal loropagation: A framework
for solving constraint hierarchies. Proceedings of the Second International Conference
on Principles and Practice of Constraint Programmjmgges 237-251, 1996.

H. Hosobe, K. Miyashita, S. Takahashi, S. Matsuoka, Andonezawa. Locally simulta-
neous constraint satisfaction. froceedings of PPCP9pages 51-62, 1994.

A.K. Mackworth. Consistency in networks of relatiossl. Journal 8(1):99-118, 1977.

F. Menezes, P. Barahona, and P. Codognet. An increinaetarchical constraint solver.
In First Workshop on Principle and Practice of Constraint Pessing 1993.

J.A. Nelder and R. Mead. A simplex method for functiomimization. The Computer
Journal 7:308-313, 1965.

M. Sannella. The SkyBlue constraint solver and its eggplons. In V.A. Saraswat and
P.V. Hentenryck, editord2roceedings of the First Workshop on Principles and Practt
Constraint ProgrammingMIT Press, 1994.

Thomas Schiex. Arc consistency for soft constraimg?roc. 6th International Conference
on Principles and Practice of Constraint Programming (CB@J) volume 1894, pages
411-424. Springer, 2000.

G.L. Steele and G.J. Sussman. ConstraintsAPh conference proceedings partdages
208-225, 1979.

Richard J. Wallace. Directed arc consistency premsiog. InConstraint Processing,
Selected Papersolume 923, pages 121-137. Springer, 1995.

M. Wilson and A. Borning. Hierarchical constraint legorogramming.Journal of Logic
Programming 16:277-318, 1993.

