
Efficient Representation of Adhoc Constraints∗

Kenil C.K. Cheng and Jimmy H.M. Lee
Dept of Comp. Sci. & Eng.

The Chinese University of Hong Kong, Hong Kong
{ckcheng,jlee}@cse.cuhk.edu.hk

Peter J. Stuckey
Dept. of Comp. Sci. & Soft. Eng.

University of Melbourne, Australia
pjs@cs.mu.oz.au

1 Introduction
Constraint programming is a promising technique for solving
many difficult combinatorial problems. Since real-life con-
straints can be difficult to describe in symbolic expressions,
or provide very weak propagation from their symbolic repre-
sentation, they are sometimes represented in the form of the
sets of solutions or sets of nogoods. This adhoc represen-
tation provides strong propagation through domain (general-
ized arc) consistency techniques. However, the adhoc repre-
sentation is expensive in terms of memory and computation,
when the adhoc constraint is large.

So there is interest in determining less expensive meth-
ods for building propagators for adhoc constraints[Frühwirth,
1998; Apt and Monfroy, 1999; Abdennadher and Rigotti,
2000; Barták, 2001; Daoet al., 2002].

In this paper, we propose a new language-independent rep-
resentation for adhoc constraints, thebox constraint collec-
tion. The idea is to break up an adhoc constraint into pieces
and cover these pieces usingbox constraints as tiles. This can
be done automatically with a greedy algorithm. With the aid
of constructive disjunction and a suitable choice of constraint
templates in the collection, our new representation achieves
domain consistency.

2 Propagation Based Constraint Solving
In this section we give our terminology for constraint satis-
faction problems, and propagation based constraint solving.

An integer valuation θ is a mapping of variables to integer
values, written{x1 7→ d1, . . . , xn 7→ dn}. We extend the
valuationθ to map expressions and constraints involving the
variables in the natural way. We sometimes treat a valuation
θ = {x1 7→ d1, . . . , xn 7→ dn} as the constraintx1 = d1 ∧
· · · ∧ xn = dn. Let vars be the function that returns the set
of (free) variables appearing in a constraint or valuation.

A domain D is a complete mapping from a fixed (count-
able) set of variablesV to finite sets of integers. A domain
D1 is stronger than a domainD2, written D1 ⊑ D2, if
D1(x) ⊆ D2(x) for all variablesx.

∗We thank the anonymous referees for their constructive com-
ments. The work described in this paper was substantially supported
by a grant from the Research Grants Council of the Hong Kong Spe-
cial Administrative Region (Project no. CUHK4183/00E).

In an abuse of notation, we define a valuationθ to be an
element of a (non-false) domainD, writtenθ ∈ D, if θ(xi) ∈
D(xi) for all xi ∈ vars(θ).

We are also interested in the notion of aninitial domain,
denoted byDinit. The initial domain gives the initial values
possible for each variable.

A constraint c over variablesx1, . . . , xn, written as
c(x1, . . . , xn), restricts the values that each variablexi can
take simultaneously. Anadhoc constraintc(x1, . . . , xn) is
definedextensionally as a set of valuationsθ over the vari-
ablesx1, . . . , xn. We sayθ ∈ c is a solution of c. For any
valuationθ on variablesx1, . . . , xn, with θ 6∈ c, we callθ a
nogood of c.

Often we define constraintsintensionally using some well
understood mathematical syntax. For an intensionally defined
constraintc we have thatθ ∈ c iff vars(θ) = vars(c)∧Z |=θ

c. For example the constraintx1 = x2+1 whereDinit(x1) =
Dinit(x2) = {1, 2, 3} defines the set of solutions{{x1 7→
2, x2 7→ 1}, {x1 7→ 3, x2 7→ 2}}.

A constraint satisfaction problem (CSP) [Tsang, 1993],
consists of a set of constraintsc1, . . . , ck over a set of vari-
ablesx1, . . . , xn, where each variablexi can only take values
from its domainDinit(xi), a set of integers. Solving a CSP
requires finding a value for each variable from its domain so
that no constraint is violated, i.e. all constraints are satisfied.

A propagator f is a monotonically decreasing function
from domains to domains. Thegeneralized arc consistent
propagator for a constraintc is defined asdom(c)(D)(x) =
{θ(x) | θ ∈ D ∧ θ ∈ c} wherex ∈ vars(c), otherwise
dom(c)(D)(x) = D(x). A propagation solver for propa-
gatorsF repeatedly applies propagatorsf ∈ F to a domain
D until no further change inD results.

3 Box Constraint Collections
Adhoc constraints are usually implemented as tabled con-
straints by listing all the solutions or nogoods, incurringspace
and time overhead. Often we represent a constraint in an ad-
hoc manner because it is difficult (or unwieldy) to describe
it using a symbolic expression. However, it may be easier
to find symbolic expressions if we examine part of the so-
lution space. Therefore, we propose representing an adhoc
constraintcadhoc with a set of simple constraints in DNF.

A box B =
∏n

i=1
[ai..bi] is ann-dimensional hyper-cube,

where[ai..bi] is a (closed)interval of integersai andbi. If

c(x1, . . . , xn) is a constraint on variablesx1, . . . , xn, then∧n

j=1
aij ≤ xj ≤ bij ∧ c(x1, . . . , xn) is a box constraint,

which we write asB ⇒ c. We restrict the form of constraints
c(x1, . . . , xn) to certaintemplates. A box constraint collec-
tion (BCC) is simply a disjunction of box constraints.

The idea is thus to use box constraints in a collection as
“tiles” to cover the solution space of an adhoc constraint. The
template definingc in a box constraintB ⇒ c determines the
shape of the tile. Triangles and rectangular boxes are good
tile shapes for filling grids. Ifc is true, thenB ⇒ c is simply
the boxB. If c is of the form

∑n

j=1
ajxj ≤ a0, then we call

B ⇒ c a triangle.

Lemma 1 Let

cadhoc(x1, . . . , xn) ≡

m∨

i=1

Bi ⇒ ci(x1, . . . , xn)

and suppose each constraint ci is implemented by a gener-
alized arc consistent propagator, then using constructive dis-
junction on this representation achieves generalized arc con-
sistency for cadhoc.

X1 2 3 4 5

1

2

3

4

5

Y

Figure 1: An adhoc constraintctri made of two triangles

Example 1 A box constraint collection representation of the
constraintctri shown in Figure 1 is

[1..3]× [1..3] ⇒ X + Y ≥ 4∨ [3..5]× [3..5] ⇒ X + Y ≤ 8

2

Due to space limitation, we cannot show how box con-
straint collections can be compiled into indexicals directly
and efficiently.

4 Experiments
We compare the propagation efficiency amongbox (indexi-
cal BCCs for boxes only),tri-box (indexical BCCs for trian-
gles and boxes) andrel (the built-inrelation/3 for binary
adhoc constraints) on randomly generated cubic inequalities
of the formd1X

3 + d2X
2Y + d3XY 2 + d4Y

3 + d5X
2 +

d6XY +d7Y
2 +d8X +d9Y ≤ d10. The coefficients are ran-

domly chosen between[−9..9]. The domain size is 100. For
each variableX andY , we repeatM times picking a subset
S ⊆ Dinit(x) where|S| = W , and adding the constraints
x 6= v for eachv ∈ S. These constraint additions are then re-
moved and the next setS picked. We do our implementation
with SICStus Prolog 3.9.1 on a Sun Blade 1000 workstation.

Table 1 summarizes some results.N is the number of
solutions. B andT are the number of boxes and triangles.
tri-box generates no boxes (B = 0) in all 3 instances.gen
is the generation time.rel andprop (for box andtri-box)
are the time they spend on the propagation testM = 5000
andW = 30. tri-box is the fastest because it compactly rep-
resents the non-linear constraints with 1 or 2 triangles.box,
although is faster thanrel, it takes a long time to generate be-
cause every box covers only a few solutions, and many boxes
are needed.

box tri-boxN rel
B gen prop T gen prop

5601 33.78 87 19.17 14.07 2 2.25 6.04
7187 23.58 57 20.97 10.92 1 3.05 3.95
2050 11.59 40 3.43 5.11 2 0.95 4.70

Table 1: Performance comparisons on non-linear constraints

5 Conclusion
We have proposed a new language-independent representa-
tion, box constraint collection, for adhoc constraints. With
constructive disjunction, our new representation achieves
generalized arc consistency, if all constraints inside thecol-
lection do.

Future work includes improving the current greedy BCC
generation algorithm, and optimizing the indexicals of a box
constraint collection.

References
[Abdennadher and Rigotti, 2000] S. Abdennadher and

C. Rigotti. Automatic generation of propagation rules for
finite domains. InCP00, pages 18–34, 2000.

[Apt and Monfroy, 1999] K.R. Apt and E. Monfroy. Auto-
matic generation of constraint propagation algorithms for
small finite domains. InCP99, pages 58–72, 1999.

[Barták, 2001] R. Barták. Filtering algorithms for tabular
constraints. InCICLOPS 2001, pages 168–182, 2001.

[Daoet al., 2002] T.B.H. Dao, A. Lallouet, A. Legtchenko,
and L. Martin. Indexical-based solver learning. InCP02,
pages 541–555, September 2002.

[Frühwirth, 1998] T. Frühwirth. Theory and practice of con-
straint handling rules. Journal of Logic Programming,
37(1–3):95–138, October 1998.

[Tsang, 1993] E. Tsang.Foundations of Constraint Satisfac-
tion. Academic Press, 1993.

