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1 Introduction In an abuse of notation, we define a valuatibto be an

element of a (non-false) domain, writtend € D, if 6(x;) €
D(xz;) for all z; € vars(0).
We are also interested in the notion of iatial domain,

Constraint programming is a promising technique for sa@vin
many difficult combinatorial problems. Since real-life eon
stralnts_ can be difficult to desqube In symbohc EXPression yanoted byD;..:. The initial domain gives the initial values
or provide very weak propagation from their symbolic repre- ible f h variabl
sentation, they are sometimes represented in the form of t gossible for cach vanavle. ;

' A congtraint ¢ over variableszq,...,z,, written as

sets of solutions or sets of nogoods. This adhoc represerg(x1 z,,), restricts the values that each variablecan

tation provides strong propagation through domain (génera, . ' sim,ulﬁalﬁeously. Amdhoc constraintc(zy, . .., x,) is

ized afc) consistency technlques. However, the adhoc*e.p"aeﬁned@densionalIy as a set of valuation& over the vari-

sentation is expensive in terms of memory and computatlor}jlblesig1 . We sayf € ¢ is asolution of ¢. For any
yee s Ty .

when the ad_hop constrgmt IS Iargg._ . valuationd on variablesey, . .., z,, with 0 & ¢, we callf a
So there is interest in determining less expensive memﬁogood of c.

ods for building propagators for adhoc constrajftgihwirth, Often we define constraintatensionall i
: ‘ L y using some well
%9981 Apt'in(; Monfroy, }9%9* Abdennadher and Rigottl, nqerstood mathematical syntax. For an intensionally defin
000; Bartak, 2001; Daet ., 2003. constraint: we have tha ¢ c¢iff vars(f) = vars(c)AZ =g

In this_paper, we propose a new Ianguage-in_dependent rep: For example the constraint = -+ 1 whereD; it (1) =
resentation for adhoc constraints, thex constraint collec-  p (2) = {1,2,3} defines the set of solutiongz;

init

tion. The idea is to break up an adhoc constraint into piece§7x2 1}, {z1 — 3,20 — 2} .

and cover these pieces usinak constraintsas tiles. This can A constraint satisfaction problem (CSP)[Tsang, 1998
be done automatically with a greedy algorithm. With the aidyqnsists of a set of constraints, . . . , ¢; over a set of vari-

of construc_tive disjunctic_)n and a suitable choice (_)f ccarist_r ablesz,, . .., x,, where each variable, can only take values

templgtes in _the collection, our new representation aelsiev fom its domainD;,i:(z;), a set of integers. Solving a CSP

domain consistency. requires finding a value for each variable from its domain so
that no constraint is violated, i.e. all constraints arésfiat.

2 Propagation Based Constraint Solving A propagator f is a monotonically decreasing function

. . . . ) . from domains to domains. Thgeneralized arc consistent

In this section we give our terminology for constraint satis propagator for a constraint is defined aslom (c)(D)(z) =

faction problems, and propagation based constraint splvin {6(z) | 0 € DAG € ct wherez € vars(c), otherwise
An integer valuation ¢ is a mapping of variables to integer g, (¢)(D)(z) = D(z). A propagation solver for propa-

values, written{zy — dy,...,z, — dn}. We extend the gatorsF repeatedly applies propagatgis= F to a domain
valuationf to map expressions and constraints involving thep, yntil no further change i results.

variables in the natural way. We sometimes treat a valuation

0 = {Il — dl; e, Ty, dn} as the ConStraiml = d1 A 3 BOX Constralnt Collectlons
-+ ANz, = d,. Let vars be the function that returns the set

of (free) variables appearing in a constraint or valuation. ~ Adhoc constraints are usually implemented as tabled con-

A domain D is a complete mapping from a fixed (count- straints by listing all the solutions or nogoods, incurrépgce
able) set of variable® to finite sets of integers. A domain and time overhead. Often we represent a constraint in an ad-

D, is stronger than a domainD,, written D, T Dy, if hoc manner because it is difficult (or unwieldy) to describe
D1 (z) C Dso(z) for all variablesr ' = ' it using a symbolic expression. However, it may be easier
- ' to find symbolic expressions if we examine part of the so-

“We thank the anonymous referees for their constructive comlution space. Therefore, we propose representing an adhoc
ments. The work described in this paper was substantigiigatied ~ CONstraint,an,. With a set of simple constraints in DNF.
by a grant from the Research Grants Council of the Hong Koreg Sp A box B = [}, [a;..b;] is ann-dimensional hyper-cube,
cial Administrative Region (Project no. CUHK4183/00E). wherela;..b;] is a (closed)nterval of integersa; andb;. If



c(x1,...,2,) is a constraint on variables,, ..., z,, then Table 1 summarizes some result®y is the number of
n

Nj=1 aij < xj < bij A c(z,...,2z,) is abox constraint,  solutions. B andT are the number of boxes and triangles.
which we write asB = ¢. We restrict the form of constraints tri- box generates no boxe®(= 0) in all 3 instancesgen
c(z1,...,r,) to certaintemplates. A box constraint collec-  is the generation timerel andprop (for box andtri- box)
tion (BCC) is simply a disjunction of box constraints. are the time they spend on the propagation fgst= 5000

The idea is thus to use box constraints in a collection agndW = 30. tri- box is the fastest because it compactly rep-
“tiles” to cover the solution space of an adhoc constraihie T resents the non-linear constraints with 1 or 2 triangles:,
template defining in a box constrainB = ¢ determines the although is faster tharel, it takes a long time to generate be-
shape of the tile. Triangles and rectangular boxes are godeRuse every box covers only a few solutions, and many boxes
tile shapes for filling grids. It is true, thenB = cis simply ~ are needed.
the boxB. If cis of the form}~""_, a;z; < ao, then we call

B = catriangle. N rel box tri- box
B gen prop | T gen prop

Lemma 1 Let , 5601] 33.78| 87 10.17 14.07 2 225 604
Uy 7187 | 2358| 57 20.97 1092 1 3.05 3.95
Cadnoe(@1 - wn) = \[ Bi = e, ) 2050| 11.59| 40 343 511| 2 095 4.70

=1
and suppose each constraint ¢; is implemented by a gener-
alized arc consistent propagator, then using constructive dis-
junction on this representation achieves generalized arc con-
sistency for cognoc-

Table 1: Performance comparisons on non-linear conssgraint

5 Conclusion

Y We have proposed a new language-independent representa-
tion, box constraint collection, for adhoc constraints. ttwi

1 constructive disjunction, our new representation actsieve
2 generalized arc consistency, if all constraints insidectble
lection do.
3 Future work includes improving the current greedy BCC
4 generation algorithm, and optimizing the indexicals of & bo
constraint collection.
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