
Reducing Search Space in Local Search for Constraint Satisfaction

H. Fang∗ and Y. Kilani† and J.H.M. Lee† and P.J. Stuckey‡

Abstract

Typically local search methods for solving constraint satis-
faction problems such as GSAT, WalkSAT and DLM treat the
problem as an optimization problem. Each constraint con-
tributes part of a penalty function in assessing trial valua-
tions. Local search examines the neighbours of the current
valuation, using the penalty function to determine a “better”
neighbour valuations to move to, until finally a solution which
satisfies all constraints is found.
In this paper we investigate using some of the constraints,
rather than as part of a penalty function, as “hard” constraints,
that are always satisfied by every trial valuation visited. In
this way the constraints reduce the possible neighbours in
each move and also the overall search space.
The treating of some constraints as hard requires that the
space of valuations that are satisfied is connected in order
to guarantee that a solution can be found from any starting
position within the region. Treating some constraints as hard
also provides difficulties for the search mechanism since the
search space becomes more jagged, and there are more deep
local minima. A new escape strategy is needed.
We show in this paper how, for DIMACS translations of
binary CSPs, treating some constraints as hard can signifi-
cantly improve search performance of the DLM local search
method.

Keywords: SAT, local search, binary CSP.

Introduction
A constraint satisfaction problem (CSP) (Mackworth 1977)
is a tuple(Z, D, C), whereZ is a finite set of variables,
D defines a finite setDx, called thedomain of x, for each
x ∈ Z, andC is a finite set of constraints restricting the com-
bination of values that the variables can take. Asolution is
an assignment of values from the domains to their respective

∗Department of Computer Science Yale University New Haven,
CT 06520-8285 USA. Email:hai.fang@yale.edu

†Department of Computer Science and Engineering, The Chi-
nese University of Hong Kong, Shatin, N.T., Hong Kong, China.
Email:{ykilani,jlee}@cse.cuhk.edu.hk

‡Department of Computer Science and Software Engineer-
ing, University of Melbourne, Parkville 3052, Australia. Email:
pjs@cs.mu.oz.au
Copyright c© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

variables so that all constraints are satisfied simultaneously.
CSPs are well-known to be NP-hard in general.

Local search techniques, for example GSAT (Selman,
Levesque, & Mitchell 1992), WalkSAT (Selman & Kautz
1993; Selman, Kautz, & Cohen 1994), DLM (Wu & Wah
1999; 2000), the min-conflicts heuristic (Mintonet al.
1992), and GENET (Davenportet al. 1994), have been suc-
cessful in solving large constraint satisfaction problems. In
the context of constraint satisfaction, local search first gen-
erates an initial variable assignment (or state) before mak-
ing local adjustments (or repairs) to the assignment itera-
tively until a solution is reached. Local search algorithms
can be trapped in alocal minimum, a non-solution state in
which no further improvement can be made. To help es-
cape from the local minimum, GSAT and the min-conflicts
heuristic use random restart, while Davenportet al. (1994),
Morris (1993), and DLM modify the landscape of the search
surface. Following Morris, we call thesebreakout methods.
WalkSAT introduces noise into the search procedure so as to
avoid and escape from local minima.

Local search algorithms traverse the search surface of a
usually enormous search space to look for solutions using
some heuristic function. The efficiency of a local search al-
gorithm depends on three things: (1) the size of the search
space (the number of variables and the size of the domain of
each variable), (2) the search surface (the structure of each
constraint and the topology of the constraint connection),
and (3) the heuristic function (the definition of neighbour-
hood and how a “good” neighbour is picked). We propose
the Island Confinement Method which aims to reduce the
size of the search space. The method is based on a simple
observation: a solution of a CSPP must lie in the inter-
section of the solution space of all constraints ofP . Solv-
ing a CSP thus amounts to locating this intersection space,
which could be either points or regions scattered around in
the entire search space. In addition, the solution space of
any subset of constraints inP must enclose all solutions of
P . The idea of our method is thus to identify a suitable sub-
set of constraints inP so that the solution space of the subset
is “connected,” and then restrict our search in only this re-
gion for solutions. By connectedness, we mean the ability
to move from one point to any other point within the region
without moving out of the region. Therefore, we are guaran-
teed that searching within this confined space will not cause

28 AAAI-02

us to miss any solutions. The entire search space is trivially
such a region but we would like to do better.

In this paper we illustrate one method for choosing a sub-
set of the problem constraints which defines an island of
connected solutions. We then show how, on encodings of
binary CSPs into SAT problems, we can use this method to
define an island that incorporates many of the problem con-
straints.

The introductions of island constraints complicates the
search procedure because it may defeat the local minima
escaping strategy of the underlying search procedure. We
show how to modify DLM, a very competitive local search
procedure for SAT problems so that it handles island con-
straints, and give empirical results showing where the island
confinement method can give substantial improvements in
solving some classes of SAT problems.

Background and Definitions
Given a CSP(Z, D, C). We usevar(c) to denote the set
of variables that occur in constraintc ∈ C. If |var(c)| = 2
thenc is abinary constraint. In abinary CSP each constraint
c ∈ C is binary. Avaluation for variable set{x1, . . . , xn} ⊆
Z is a mapping from variables to values denoted{x1 �→
a1, . . . , xn �→ an} whereai ∈ Dxi .

A state of problem(Z, D, C) (or simplyC) is a valuation
for Z (whereZ = ∪c∈Cvar(c)). A states is a solution
of a constraintc if s makesc true. A states is a solution
of a CSP(Z, D, C) if s is a solution to all constraints inC
simultaneously.

SAT
SAT problems are a special case of CSPs. A(propositional)
variable can take the value of either 0 (false) or 1 (true). A
literal is either a variablex or its complement̄x. A literal l is
true if l assumes the value 1;l is false otherwise. Aclause is
adisjunction of literals, which is true when one of its literals
is true. For simplicity we assume that no literal appears in a
clause more than once, and no literal and its negation appear
in a clause (which would then be trivial). Asatisfiability
problem (SAT) consists of a finite set of clauses (treated as a
conjunction). Letl denote the complement of literall: l = x̄
if l = x, andl = x if l = x̄. Let L = {l | l ∈ L} for a literal
setL.

Since we are dealing with SAT problems we will often
treat states as sets of literals. A state{x1 �→ a1, . . . , xn �→
an} corresponds to the set of literals{xj | aj = 1} ∪
{x̄j | aj = 0}.

Local Search
A local search solver moves from one state to another using
a local move. We define theneighbourhood n(s) of a state
s to be all the states that are reachable in a single move from
states. The neighbourhood states are meant to represent all
the states reachable in one move, independent of the actual
heuristic function used to choose which state to move to.

For the purpose of this paper, where we are interested in
SAT problems, we assume the neighbourhood functionn(s)
returns the states which are at a Hamming distance of 1 from

the starting states. The Hamming distance between states
s1 ands2 is defined as

dh(s1, s2) = |s1 − (s1 ∩ s2)| = |s2 − (s1 ∩ s2)|.
In other words, the Hamming distance measures the num-
ber of differences in variable assignment ofs1 ands2. This
neighbourhood reflects the usual kind of local move in SAT
solvers:flipping a variable. In abuse of terminology we will
also refer to flipping a literall which simply means flipping
the variable occurring in the literal.

A local move from states is a transition,s ⇒ s′, from s
to s′ ∈ n(s). A local search procedure consists of at least
the following components:

• aneighbourhood functionn for all states;

• a heuristic functionb that determines the “best” possible
local moves ⇒ s′ for the current states; and

• possibly an optional “breakout” procedure to help escape
from local minima.

We note that the notion of noise that has appeared in
some solvers, such as WalkSAT (Selman & Kautz 1993;
Selman, Kautz, & Cohen 1994), can be incorporated into the
heuristic functionb. We also decouple the notion of neigh-
bourhood from the heuristic function since they are orthog-
onal to each other, although they are mixed together in the
description of a local move in GSAT, WalkSAT, and others.

Island Constraints
We introduce the notion of island constraints, the solution
space of which is connected in the following sense. Central
to a local search algorithm is the definition of the neighbour-
hood of a state since each local move can only be made to a
state in the neighbourhood of the current state. We say that
a constraint is anisland constraint if we can move between
any two states in the constraint’s solution space using a finite
sequence of local moves without moving out of the solution
space.

Let sol(C) denote the set of all solutions to a set of con-
straintsC, in other words thesolution space of C. A set
of constraintsC is anisland if, for any two statess0, sn ∈
sol(C), there exist statess1, . . . , sn−1 ∈ sol(C) such that
si ⇒ si+1 for all i ∈ {0, . . . , n − 1}. That is we can
move from any solution ofC to any other solution using
local moves that stay within the solution space ofC.

We give a simple sufficient condition for when a setC of
clauses results in an island. Letlit(c) denote the set of all
literals of a clausec. Let lit(C) = ∪c∈C lit(c). A setC of
clauses isnon-conflicting if there does not exist a variablex
such thatx, x̄ ∈ lit(C).

Theorem 1 A non-conflicting set C of clauses forms an is-
land.

Proof: SinceC is non-conflictinglit(C) can be extended
to a state (it does not have both a literal and its comple-
ment). Any states ⊇ lit(C) clearly satisfiesC. We show
by induction that for any states0 satisfyingC there is a path
s0 ⇒ s1 ⇒ · · · ⇒ sn = s where eachsi satisfiesC. Since
apath is reversible, there is a path between any two solutions

AAAI-02 29

s0 ands′0 of C via s and henceC is an island. Letl be an
arbitrary literal wheresi ands differ, that isl ∈ si andl ∈ s.
Thenl 	∈ lit(C) and clearlysi+1 = si − {l} ∪ {l} satisfies
C sincel does not occur inC and hence cannot be the only
literal satisfying one of the clauses ofC. �

We can map any CSP(Z, D, C) to a SAT problem,
SAT (Z,D,C). We illustrate the method for binary CSPs,
which we will restrict our attention to, as follows.

• Every CSP variablex ∈ Z is mapped to a set of
propositional variables{xa1 , . . . , xan} where Dx =
{a1, . . . , an}.

• For everyx ∈ Z, SAT (Z, D, C) contains the clause
xa1 ∨ · · · ∨ xan

, which ensures that the any solution to
the SAT problem gives a value tox.

• Each binary constraintc ∈ C with var(c) = {x, y} is
mapped to a series of clauses. If{x �→ a∧y �→ a′} is not a
solution ofc we add the clausēxa∨ȳa′ toSAT (Z, D, C).
This ensures that the constraintc holds in any solution to
the SAT problem.

The above formulation allows the possibility that in a solu-
tion, some CSP variablex is assigned two values. Choosing
either value is guaranteed to solve the original CSP. This
method is used in the encoding of CSPs into SAT in the DI-
MACS archive.

When a binary CSP(Z, D, C) is translated to a SAT prob-
lem SAT (Z,D,C) each clause has the form̄x ∨ ȳ except
for a single clause for each variable inZ. The first class of
clauses forms a non-conflicting set trivially.

The Island Confinement Method in DLM
DLM (Wu & Wah 1999) is a discrete Lagrange-multiplier-
based local-search method for solving SAT problems, which
are first transformed into a discrete constrained optimiza-
tion problem. Experiments confirm that the discrete La-
grange multiplier method is highly competitive with other
SAT solving methods.

We will consider a SAT problem as a vector of clauses�c
(which we will often also treat as a set). Each clausec is
treated as a penalty function on states, soc(s) = 0 if state
s satisfies constraintc, andc(s) = 1 otherwise. DLM per-
forms a search for a saddle point of the Lagrangian function

L(s,�λ) = �λ · �c(s) (that isΣiλi × ci(s))

where�λ are Lagrange multipliers, one for each constraint,
which give the “penalty” for violating that constraint. The
saddle point search changes the state to decrease the La-
grangian function, or increase the Lagrange multipliers.

The core of the DLM algorithm can be extracted from
Figure 1, by considering only lines without the “|” mark
in addition to three slight modifications. First, the input
to DLM is simply a set of clauses�c. Second, in the sec-
ond line, s should be initialized to any random valuation
for var(�c). Third, all occurrences of�cr and �λr should be
changed to�c and�λ respectively. Although DLM does not ap-
pear to examine all the neighbours at Hamming distance 1 in

each move, this is an artifact of mixing of the description of
neighbourhood and the heuristic functions. Since only liter-
als appearing in unsatisfied clauses (unsat) can decrease the
Lagrangian function, (the heuristic function of) the DLM al-
gorithm chooses to always ignore/discard neighbours result-
ing from flipping a variable not in one of these literals. We
say such neighbours areinvalid. The full DLM algorithm
also includes a tabu list and methods for updating Lagrange
multipliers; see (Wu & Wah 2000) for details.

Handling island constraints is simple at first glance.
Given a problem defined by a set of clauses�ci ∧ �cr par-
titioned into island constraints�ci and remaining clauses
�cr, we simply modify the algorithm to treat the remaining
clauses as penalty functions and give an initial valuations
which is a solution of�ci. For SAT (Z, D, C), �ci consists
of clauses of the form̄x ∨ ȳ. An arbitrary extension of
lit(�ci) to all variables can always be such an initial valu-
ation. We exclude literalsl ∈ unsat from flipping when
s′ = s − {l} ∪ {l} does not satisfy�ci. Hence we only
examine states that are adjacent tos and satisfy�ci. Let
n(s,�ci) = {s′ ∈ n(s) | s′ ∈ sol(�ci)}. The rest of the
algorithm remains unchanged.A new problem arises.

Example 1 Suppose we have the following clauses, where
�ci = (c1, c2, c3) and�cr = (c4, c5).

c1 : x̄1 ∨ x̄4 c4 : x1 ∨ x2 ∨ x3

c2 : x̄2 ∨ x̄5 c5 : x4 ∨ x5

c3 : x̄3 ∨ x̄5

and the current state is{x1, x2, x̄3, x̄4, x̄5}, which satisfies
c1, c2, c3 andc4. Three neighbours satisfy the island clauses
c1, c2 andc3: {x̄1, x2, x̄3, x̄4, x̄5}, {x1, x̄2, x̄3, x̄4, x̄5}, and
{x1, x2, x3, x̄4, x̄5}, all of which are invalid. Whatever the
Lagrange multipliers forc4 andc5 is, none of the neighbours
will be better than the current state. Hence DLM will always
remain in this state no matter how the Lagrange multipliers
are updated (in fact it will never consider the invalid moves),
and cannot escape from this local minima. We call this an
island trap. �

More formally anisland trap for a problem�ci∧�cr is a state
s such that for all statess′ ∈ n(s,�ci) whatever the value of
the Lagrange multipliers�λr no neighbour would be better
thans, i.e. ∀s′ ∈ n(s,�ci) ∀�λr > 0 L(s′, �λr) ≥ L(s,�λr).
This holds if and only if{c ∈ �cr | s ∈ sol({c})} ⊇ {c ∈
�cr | s′ ∈ sol({c})} for all s′ ∈ n(s,�ci).

In order to escape from an island trap, we need to flip
some variable(s) to make uphill or flat move(s). We aim to
stay as close to the current valuation as possible, but change
to a states′ where at least one variablex, which cannot be
flipped in the current states since it would go outside of the
island, can now be flipped ins′.

Let makes(l, s,�ci) = {c ∈ �ci | (s − {l} ∪ {l}) 	∈
sol({c})} be the island constraints that are satisfied in the
current valuations only by the literall. If makes(l, s,�ci)
is non-empty then we cannot flip the literall in the current
state without going outside the island.

Let freeme(l, s,�ci) = {l′ | (l∨ l′) ∈ makes(l, s,�ci)} be
the set of literals that need to be made true in order that we
can flip literall to l, and stay within the island.

30 AAAI-02

The base island trap escaping strategy we propose is thus:
choose the literall in an unsatisfied clause in�cr according
to states such that|freeme(l, s,�ci)| > 0 and minimal in
size, and flip all literals infreeme(l, s,�ci) and then con-
tinue. Note that we do not actually flip the literall. Weonly
move to a state wherel can be flipped. In this state, however,
we may find it preferable to flip another literal.

Example 2 Continuing Example 1, we find that in state
s = {x1, x2, x̄3, x̄4, x̄5}, the unsatisfied clause isx4 ∨ x5.
Now makes(x̄4, s,�ci) = {c1}, and makes(x̄5, s,�ci) =
{c2}. In addition freeme(x̄4, s,�ci) = {x̄1}, and
freeme(x̄5, s,�ci) = {x̄2}. Suppose we choose randomly
to freex̄4, then we flip all the literals in its freeme set (x̄1)
obtaining the new state{x̄1, x2, x̄3, x̄4, x̄5}. We can now
flip x̄4 while staying in the island and also arriving at the
solution{x̄1, x2, x̄3, x4, x̄5}. �

Unfortunately the simple strategy of simply flipping the
minimal number of literals to make a currently unflippable
literal (since it would go outside the island) flippable is not
enough. It is easy for the local search to end up back in the
same state, by choosing to reverse all the flips made to es-
cape the trap. In order to prevent this we add an additional
tabu list,tabulit, of length 1, to cope with the most common
case thatfreeme is of size 1. Unlike the regular tabu list,
the literal intabulit is not allowed to be flipped under any
circumstances (variables in the DLM tabu list can be flipped
if the move is downhill). In order to get out of very deep
traps, we occasionally need to flip many variables. To make
this happen we add a parameterP which gives the probabil-
ity of picking a literal to free which requires more than the
minimal number of flips to free.

The DLM algorithm modified for islands (DLMI) is
shown in Figure 1. Lines beginning in “|” are either differ-
ent from their counterparts in the original DLM algorithm
or new additions. For DLMI there are only Lagrange multi-
pliers�λr for the non-island clauses�cr. A random valuation
that satisfies the island clauses�ci is chosen (since�ci is non-
conflicting this is straightforward). The candidate literals for
flipping are restricted to those that maintain satisfiability of
the island clauses and are not the literal intabulit. If there
are candidates then we proceed as in DLM; otherwise we are
in an island trap. Note thattabulit has introduced another
kind of island trap where no flip will satisfy more clauses ex-
cept flipping the literal intabulit, which is disallowed. This
trap is handled identically to the original island trap.

In an island trap we consider the literals (free) in the un-
satisfied clauses which could not be flipped without breaking
an island constraint. Note thatfree 	= ∅ otherwise we have
asolution. We separate these into those requiring 1 other lit-
eral to be flipped to free them (free 1), and those requiring
two or more (free 2). If the random number is greater than
parameterP we choose a literal infree 2 to free, and flip
all the variables required to free it. Otherwise we choose,
if possible, a variable infree 1 whosefreeme is not the
literal in tabulit and flip the literal in that set.

Note that in both cases, the selection ofl, the literal to
free, may fail. In the first case whenfree 2 is empty, in
which case we perform nothing relying on randomness to

DLMI(�ci,�cr)
| let s ∈ sol(�ci) be a random valuation forvar(�ci ∪ �cr)

�λr = 1 %% a vector of 1s
| tabulit := ∅

while (L(s,�λr) > 0)
unsat := ∪{lit(c) | c ∈ �cr, s 	∈ sol({c})}

| candidate := {l ∈ unsat | (s − {l} ∪ {l}) ∈ sol(�ci)}
| if (candidate − tabulit 	= ∅)

%% not an island trap
min := L(s,�λr)
best := {s}

| sold := s
| foreach literall ∈ candidate − tabulit

s′ := s − {l} ∪ {l}
if (L(s′, �λr) < min)

min := L(s′, �λr)
best := {s′}

else if (L(s′, �λr) = min)
best := best ∪ {s′}

s := a randomly chosen element ofbest
| %% a singleton set
| tabulit := (s = sold ? tabulit : sold − s)
| else %% island trap
| free := unsat − candidate
| free 1 := {l ∈ free | |freeme(l, s,�ci)| = 1}
| free 2 := free − free 1
| r := random number between 0 and 1
| if (free 1 = ∅ or r < P)
| %% free arbitrary literal
| l := a randomly chosen element offree 2
| s := s − freeme(l, s,�ci) ∪ freeme(l, s,�ci)
| tabulit := ∅
| else if (free 1 	= ∅ and
| ∪l∈free 1freeme(l, s,�ci) = tabulit)
| %% fixed value detected
| fix the value of the variable intabulit
| else %% free literal requiring single flip
| l := a randomly chosen element offree 1
| wherefreeme(l, s,�ci) 	= tabulit

| s := s − freeme(l, s,�ci) ∪ freeme(l, s,�ci)
| tabulit := freeme(l, s,�ci)

if (Lagrange multipliers update condition holds)
�λr := �λr + �cr(s)

returns

Figure 1: DLMI

eventually choose the other case. In the second case it may
be thatevery literal in free 1 has its freeme set equal to
tabulit. In this case we have detected thattabulit must
hold, and we can eliminate the variable involved by unit res-
olution. In our code this is performed, we could avoid it
by simplifying the original SAT formulation so that all such
occurrences are removed, using SAT simplification methods
such as (Brafman 2000).

AAAI-02 31

Example 3 Modifying clausec2 in Example 1 slightly.

c1 : x̄1 ∨ x̄4 c4 : x1 ∨ x2 ∨ x3

c2 : x̄1 ∨ x̄5 c5 : x4 ∨ x5

c3 : x̄3 ∨ x̄5

Weare in states = {x1, x2, x̄3, x̄4, x̄5} andtabulit is{x̄1}.
The literals in unsatisfied clauses areunsat = {x4, x5},
and candidate = ∅ since neither literal can be flipped.
Hencefree = {x4, x5}. Both of these literals are placed
in free 1, sincefreeme(x̄4, s,�ci) = freeme(x̄5, s,�ci) =
{x̄1}. The selection of a literall in free 1 will fail. This
provides a proof that{x̄1} must hold in any solution of�ci∧�c.
We havex4 ∨ x5 ∈ �c andx̄1 ∨ x̄4 andx̄1 ∨ x̄5 in �ci, then
by resolution we obtain̄x1. In the context of CSP,x1 cor-
responds to a value in the domain of a CSP variable (sayu)
which is incompatible with the two (all) values in the do-
main of the other CSP variable (sayv). That is why the
domain value ofu corresponding tox1 is arc inconsistent
with respect to the constraint involvingu andv. Fixing x1

to 0 means removing the value from the domain ofu. �

Experiments
We implemented DLMI by modifying the code of distribu-
tion of SAT-DLM-2000,1 maintaining all the extra parts such
as the tabu list, and penalty updating methods unchanged.
Wecompare DLMI with DLM using the best parameter set-
tings for DLM of the five (Wu & Wah 2000) included in the
distribution. For the additional parameterP which we intro-
duce, we use the setting0.3 which performs the best overall.
The results presented were obtained using a PC with Pen-
tium III 800 Mhz and 256 MB memory.

Table 1 shows the comparison of DLM and DLMI onN -
queens problems and a suite of binary CSPs from (Choi,
Lee, & Stuckey 2000). We first transform the problem in-
stances into SAT. Of the clauses in all instances, over 99%
are island clauses. For each set of benchmark instances, we
give the parameter settings (PS) from SAT-DLM-2000 used
for DLM and also DLMI. Runs failing to find solution in
one hour are aborted. The table shows number of variables
(Vars), and number of clauses (Cls) in the SAT formulation,
then the success ratio, average solution time (in seconds) and
average flips on solved instances for DLM and DLMI.

DLMI shows substantial improvement over DLM using
the same parameter set on the test suite. Generally DLMI
traverses a smaller search space and needs to do less main-
tenance for island clauses and this is a significant saving. In
many cases DLMI is one to two orders of magnitude better
than DLM. DLMI is bettered marginally by DLM only in
the hard graph coloring problem g125n-17c. DLMI is also
slightly less robust in success rate with the phase transition
random CSPs. This occurs because the search surface is now
considerably more jagged. DLMI might appear to use more
flips than DLM in a few cases, but many flips are used in es-
caping from island traps, and these are considerably cheaper
since they do not require any computation of the Lagrangian
function values.

1Downloadable fromhttp://www.manip.crhc.uiuc.edu/
Wah/programs/SAT DLM 2000.tar.gz.

Conclusion
The island concept can significantly reduce the search space
of a local search procedure, by treating some constraints as
“hard” so that they are never violated during search process.
We have shown one instance where we can define an island
which encompasses a large part of the constraints in a prob-
lem: SAT formulations of binary CSPs. Interestingly in this
case it corresponds to a local search on the original CSP
where some CSP variables may not have values, but all con-
straints are always satisfied. We believe there is plenty of
scope for using the island concept to improve other local
search algorithms, such as WalkSAT and others. The diffi-
culty lies in building an adequate island trap escaping strat-
egy.

Acknowledgements
We thank the anonymous referees for constructive com-
ments. The work described in this paper was substantially
supported by a grant from the Research Grants Council of
the Hong Kong Special Administrative Region (Project no.
CUHK4204/01E).

References
Brafman, R. I. 2000. A simplifier for propositional formu-
las with many binary clauses. Technical report, Dept. of
Computer Science, Ben-Gurion University.
Choi, K.; Lee, J.; and Stuckey, P. 2000. A Lagrangian
reconstruction of GENET.AI 123:1–39.
Davenport, A.; Tsang, E.; Wang, C.; and Zhu, K. 1994.
GENET: A connectionist architecture for solving con-
straint satisfaction problems by iterative improvement. In
Proc. AAAI-94, 325–330.
Mackworth, A. K. 1977. Consistency in networks of rela-
tions. AI 8(1):99–118.
Minton, S.; Johnston, M. D.; Philips, A. B.; and Laird,
P. 1992. Minimizing conflicts: a heuristic repair method
for constraint satisfaction and scheduling problems.AI
58:161–205.
Morris, P. 1993. The breakout method for escaping from
local minima. InProcs. of AAAI-93, 40–45.
Selman, B., and Kautz, H. 1993. Domain-independent
extensions to GSAT: Solving large structured satisfiability
problems. InProcs. of IJCAI-93, 290–295.
Selman, B.; Kautz, H. A.; and Cohen, B. 1994. Noise
strategies for improving local search. InProcs. of AAAI-
94, 337–343. AAAI Press/MIT Press.
Selman, B.; Levesque, H.; and Mitchell, D. G. 1992. A
new method for solving hard satisfiability problems. In
Procs. of AAAI-92, 440–446. AAAI Press/MIT Press.
Wu, Z., and Wah, B. W. 1999. Trap escaping strategies in
discrete lagrangian methods for solving hard satisfiability
and maximum satisfiability problems. InProcs. of AAAI-
99, 673–678.
Wu, Z., and Wah, B. W. 2000. An efficient global-search
strategy in discrete lagrangian methods for solving hard
satisfiability problems. InProcs. of AAAI-2000, 310–315.

32 AAAI-02

DLM DLMI
Instance Vars Cls Succ Time Flip Succ Time Flip

N queens problem: PS = 2
10queen 100 1480 100/100 0.01 413 100/100 0.00 110
20queen 400 12560 100/100 0.03 300 100/100 0.01 116
50queen 2500 203400 100/100 4.68 1471 100/100 0.12 175
100queen 10000 1646800 100/100 154.18 5482 100/100 0.88 244

Random permutation generation problems: PS = 4
pp50 2475 159138 20/20 4.75 1496 20/20 0.13 204
pp60 3568 279305 20/20 12.75 2132 20/20 0.24 308
pp70 4869 456129 20/20 28.33 2876 20/20 0.36 323
pp80 6356 660659 20/20 54.97 3607 20/20 0.49 308
pp90 8059 938837 20/20 98.87 4486 20/20 0.73 311
pp100 9953 1265776 20/20 164.6 5378 20/20 0.94 269

Increasing permutation generation problems: PS = 3
ap10 121 671 20/20 0.54 38620 20/20 0.03 6446
ap20 441 4641 20/20 563.75 14369433 20/20 33.39 3266368
ap30 961 14911 0/20 — — 0/20 — —
ap40 1681 34481 0/20 — — 0/20 — —
ap50 2601 66351 0/20 — — 0/20 — —

Latin square problems: PS = 4
magic-10 1000 9100 20/20 0.05 899 20/20 0.02 401
magic-15 3375 47475 20/20 2.75 3709 20/20 0.11 1706
magic-20 8000 152400 20/20 24.19 14218 20/20 0.52 6824
magic-25 15625 375625 * * * 20/20 2.53 25240
magic-30 27000 783900 * * * 20/20 60.23 513093
magic-35 42875 1458975 * * * 3/20 723.42 3773925

Hard graph-coloring problems: PS = 3
g125n-18c 2250 70163 20/20 5.06 7854 20/20 0.81 15314
g250n-15c 3750 233965 20/20 15.96 2401 20/20 0.47 2815
g125n-17c 2125 66272 20/20 146.93 797845 20/20 188.61 4123124
g250n-29c 7250 454622 20/20 331.91 334271 20/20 128.81 867396

Tight random CSPs: PS = 4
rcsp-120-10-60-75 1200 331445 20/20 9.73 4857 20/20 1.33 2919
rcsp-130-10-60-75 1300 389258 20/20 12.52 5420 20/20 1.30 2528
rcsp-140-10-60-75 1400 451702 20/20 16.07 6125 20/20 2.08 3682
rcsp-150-10-60-75 1500 518762 20/20 20.21 6426 20/20 1.44 2102
rcsp-160-10-60-75 1600 590419 20/20 25.75 7575 20/20 2.33 3306
rcsp-170-10-60-75 1700 666795 20/20 28.68 6760 20/20 2.56 3435

Phase transition CSPs: PS = 3
rcsp-120-10-60-5.9 1200 25276 20/20 158.03 1507786 19/20 28.71 1909746
rcsp-130-10-60-5.5 1300 27670 20/20 875.67 7304724 16/20 103.92 6445009
rcsp-140-10-60-5.0 1400 29190 20/20 109.89 888545 20/20 14.07 850886
rcsp-150-10-60-4.7 1500 31514 20/20 613.62 3966684 19/20 90.71 5273978
rcsp-160-10-60-4.4 1600 33581 20/20 382.84 2244334 19/20 31.129 1695978
rcsp-170-10-60-4.1 1700 35338 20/20 293.8 1383200 19/20 24.17 131357

Slightly easier phase transition CSPs: PS = 3
rcsp-120-10-60-5.8 1200 24848 20/20 47.67 443665 18/20 9.61 641175
rcsp-130-10-60-5.4 1300 27168 20/20 155.75 1242907 19/20 16.82 1062060
rcsp-140-10-60-4.9 1400 28605 20/20 43.68 319386 20/20 3.28 195881
rcsp-150-10-60-4.6 1500 30843 20/20 60.5 422370 20/20 8.47 499480
rcsp-160-10-60-4.3 1600 32818 20/20 112.58 554154 20/20 10.36 574386
rcsp-170-10-60-4.0 1700 34476 20/20 46.73 244413 19/20 3.74 197758

Table 1: Comparative empirical results DLM versus DLMI: “*” indicates a segmentation fault, and bold entries show when
DLM betters DMLI.

AAAI-02 33

	Return to Main Menu
	================
	Next Page
	Previous Page
	================
	Search CD-ROM
	Search Results
	Print

