
A Lagrangian Reconstruction of GENETKenneth M.F. Choi a Jimmy H.M. Lee a Peter J. Stuckey baDepartment of Computer Science and Engineering, The Chinese University ofHong Kong, Shatin, N.T., Hong Kong SAR, China.b Department of Computer Science and Software Engineering, University ofMelbourne, Parkville 3052, Australia.AbstractGENET is a heuristic repair algorithm which demonstrates impressive e�ciencyin solving some large-scale and hard instances of constraint satisfaction problems(CSPs). In this paper, we draw a surprising connection between GENET and dis-crete Lagrange multiplier methods. Based on the work of Wah and Shang, we pro-pose a discrete Lagrangian-based search scheme LSDL, de�ning a class of searchalgorithms for solving CSPs. We show how GENET can be reconstructed fromLSDL. The dual viewpoint of GENET as a heuristic repair method and a discreteLagrange multiplier method allows us to investigate variants of GENET from bothperspectives. Benchmarking results con�rm that �rst, our reconstructed GENEThas the same fast convergence behavior as the original GENET implementation,and has competitive performance with other local search solvers DLM, WalkSAT,and Wsat(oip), on a set of di�cult benchmark problems. Second, our improvedvariant, which combines techniques from heuristic repair and discrete Lagrangianmethods, is always more e�cient than the reconstructed GENET, and can betterit by an order of magnitude.Key words: Constraint satisfaction problems, Local search, Discrete Lagrangianmethod.1 IntroductionA constraint satisfaction problem (CSP) [1] is a tuple (U;D;C), where U isa �nite set of variables, D de�nes a �nite set Dx, called the domain of x, foreach x 2 U , and C is a �nite set of constraints restricting the combination ofvalues that the variables can take. A solution is an assignment of values fromthe domains to their respective variables so that all constraints are satis�edsimultaneously. CSPs are well-known to be NP-hard in general.Preprint submitted to Elsevier Preprint 30 August 2000

The traditional approach to solving CSPs is a combination of backtrackingtree search and constraint propagation. Various variable and value orderingheuristics are also used to speed up the search process. Another class of so-lution techniques is based on local search, for example GSAT [2] and TabuSearch [3,4]. In the context of constraint satisfaction, local search �rst gener-ates an initial variable assignment (or state) before making local adjustments(or repairs) to the assignment iteratively until a solution is reached. Basedon a discrete stochastic neural network [5], a class of local search techniques,known as heuristic repair methods and exempli�ed by the work reported in [6]and [7], has been shown to be e�ective in solving some large-scale and somecomputationally hard classes of CSPs. Heuristic repair works by performingvariable repairs to minimize the number of constraint violations. As with otherlocal search algorithms, heuristic repair methods can be trapped in a localminimum (or local maximum depending on the optimization criteria), a non-solution state in which no further improvement can be made. To help escapefrom the local minimum, Minton et al. [6] proposed random restart, whileDavenport et al. [7] and Morris [8] proposed modifying the landscape of thesearch surface. Following Morris, we call these breakout methods.While the idea of minimizing con
icts is simple and intuitive, little is knowntheoretically about why and how this class of algorithms work at all andso well, although Minton et al. provide a statistical model and probabilis-tic analysis of the algorithms for random CSPs. In this paper, we show thatGENET [7] is equivalent to a form of Lagrange multiplier method [9], a well-known technique for solving constrained optimization problems with a wealthof literature on its formal properties. We do so by �rst transforming a CSPinto an integer constrained minimization problems and de�ning a Lagrangianfunction of the transformed problem. This result is useful not just in estab-lishing a formal characterization of heuristic repair algorithms. It also allowsus to gain important insights into the various design issues of heuristic repairmethods.Because of the dual viewpoint of GENET as a heuristic repair method anda discrete Lagrange multiplier method, we can explore variants of GENETwhich incorporate modi�cations from either viewpoint. We introduce LSDL,a general scheme de�ning a class of discrete Lagrangian search algorithms forsolving CSPs. We reconstruct GENET as an instantiation (LSDL(genet))of the LSDL scheme and explore variations that arise from considering itas a discrete Lagrange multiplier method. We also show how the lazy con-sistency optimization [10] developed for GENET (considered as a heuristicrepair method) can be transferred to LSDL in a straightforward manner.Thus we gain bene�ts from both viewpoints. Benchmarking results con�rmthat our reconstructed GENET has the same fast convergence behavior asthe original GENET implementation. Second, by exploring the design spaceof LSDL using simple experiments, we are able to de�ne an improved variant2

LSDL(imp), which combines techniques from heuristic repair and discrete La-grangian methods. LSDL(imp) is always more e�cient than the reconstructedGENET, and can better it by an order of magnitude. Third, we demonstratethat LSDL(genet), LSDL(imp), and their lazy versions, are robust acrossour benchmark suite, in the sense that without any tuning for the di�erentproblems, they still have acceptable performance.Wah et al. [11,12] were the �rst to propose a discrete version of the Lagrangiantheory but their framework and implementation has only been applied todealing with SAT problems. Our work is based on their theory, applied tosolving �nite domain CSPs. A main contribution of this paper, however, is inestablishing the connection between Lagrangian-based techniques and existingheuristic repair methods. We show that better algorithms can result fromsuch a dual viewpoint. An important aim of our work is to devise a suitablelocal search solver for embedding in a constraint programming system. We areinterested in algorithms that are good for solving at least an entire class ofproblems without user intervention and �ne tuning. The best LSDL instancesthat we have constructed so far, while e�cient, are also shown to be robustagainst problem variations. In other words, our method, unlike many localsearch solvers does not require tuning of execution parameters, to achieveacceptable performance for di�erent problem classes.The paper, a revised and enhanced version of [13], is organized as follow. TheGENET network is brie
y introduced in Section 2, followed by a description ofthe discrete Lagrangian formulation of CSPs in Section 3. In the same section,we give the LSDL search scheme, which is a result of the discrete Lagrangianformulation. Section 4 discusses the LSDL parameters in details. We showformally that GENET is an instance of LSDL in Section 5 and discuss howwe created an improved instance of the LSDL scheme. In Section 6, we thenbrie
y introduce lazy arc consistency before showing how it can be incorpo-rated in LSDL. Experimental results of the reconstructed GENET and animproved variant are presented in Section 7 before related work in Section 8.In Section 9, we summarize our contributions and shed light on possible futuredirections of research.2 A Brief Overview of GENETThe GENET [7] model consists of two components: a network architecture anda convergence procedure. The former governs the network representation of aCSP, while the latter formulates how the network is updated in the solutionsearching process. While GENET can solve both binary and certain non-binaryconstraints, we limit our attention to only the binary subset of GENET.3

2.1 Network ArchitectureConsider a binary CSP (U;D;C), a GENET network N representing thisCSP consists of a set of label nodes and connections. Each variable i 2 U isrepresented in GENET by a cluster of label nodes hi; ji, one for each valuej 2 Di. Each label node hi; ji is associated with an output Vhi;ji, which is 1 ifvalue j is assigned to variable i, and 0 otherwise. A label node is on if its outputis 1; otherwise, it is o� . A constraint c on variable i1 and i2 is represented byweighted connections between incompatible label nodes in clusters i1 and i2respectively. Two label nodes hi1; j1i and hi2; j2i are connected if i1 = j1^ i2 =j2 violates c. Each connection has a weight , initially set to �1. The input Ihi;jito a label node hi; ji is:Ihi;ji = Xhk;li2A(N ;hi;ji)Whi;jihk;liVhk;li (1)where A(N ; hi; ji) is the set of all label nodes connected to hi; ji and Whi;jihk;liis the weight of the connection between hi; ji and hk; li. A state S of networkN is a pair (~V ; ~W), where ~V = (: : : ; Vhi;ji; : : :) is a vector of outputs for alllabel nodes hi; ji in N and ~W = (: : : ;Whi;jihk;li; : : :) is a vector of weights forevery pair of connected label nodes hi; ji and hk; li. A state is valid if exactlyone label node in each cluster is on. A valid state of a GENET network Ninduces a valid variable assignment to the variables of the CSP correspondingto N . A solution state of a network has the input of all on label nodes beingzero.2.2 Convergence ProcedureThe convergence procedure shown in Figure 1 de�nes how a GENET networkchanges states and connection weights before it reaches a solution state.Initially, a label node in each cluster is selected on randomly; other labelnodes are o�. GENET performs iterative repair by minimizing the number ofconstraint violations using the state update rule. When the network is trappedin a local maximum, 1 the heuristic learning rule is invoked to help the networkescape from the local maximum. A solution is found when all on label nodeshave zero input. In the convergence procedure, a superscript s in a quantityX, as in Xs, denotes the value of X in sth iteration. There are a few pointsto note regarding the convergence procedure.1 When any neighboring state has a total input less than or equal to the currenttotal input. 4

procedure GENET-Convergencebegininitialize the network to a random valid stateloop% State update rulefor each cluster in parallel docalculate the input of each label nodesselect the label node with maximum input to be on nextend forif all label nodes' output remain unchanged thenif the input to all on label nodes is zero thenterminate and return the solutionelse% Heuristic learning ruleupdate all connection weights by W s+1hi;jihk;li = W shi;jihk;li � V shi;jiV shk;liend ifend ifend loopend Fig. 1. The GENET Convergence ProcedureFirst, clusters can be updated in parallel either synchronously or asynchronously.In synchronous update, all clusters calculate their node inputs and performstate update at the same time. In asynchronous update, each cluster performsinput calculation and state update independently. Synchronous update cancause oscillations [7], while, in practice, asynchronous update leads to con-vergence if the network has solutions. In most sequential implementations,asynchronous update can be simulated by updating clusters in sequence in aprede�ned order.Second, there could be more than one label node with the maximum inputduring a state update. To select the next label node to be on, GENET adoptsthe following heuristic rule. Let P be the set of nodes with maximum input.If the label node currently on is in P , it remains on. Otherwise, rand(P) isselected to be on, where rand(Y) is a function returning a random elementfrom a set Y . The state update rule is a direct application of the min-con
ictheuristic [6].Third, we can associate an energy E(N ;S) with every state S for a networkN : E(N ;S) = X(hi;ji;hk;li)2N Vhi;jiWhi;jihk;liVhk;li: (2)E(N ;S) is always non-positive with negative weights. The energy E(N ;S0)5

PSfrag replacementsVariable:Value: { on label node{ o� label node
u1 u2 u3123 (a) State 1

PSfrag replacementsVariable:Value: { on label node{ o� label node
u1 u2 u3123 (b) State 2Fig. 2. Example GENET networkof a solution state S0 is always 0, a global maximum value for E(N ;S). Theconvergence procedure thus carries out an optimization process for the energyfunction E(N ;S).Fourth, an iteration constitutes one pass over the outermost loop. W shi;jihk;lidenotes the weight of connection between label nodes hi; ji and hk; li and V shi;jidenotes the output of label node hi; ji in the sth iteration. Weight update aimsto decrease the energy associated with the local maximum. Thus learning hasthe e�ect of pulling down the local maximum in the search surface. Thislearning rule is similar to the breakout method [8].The CSP, where U = fu1; u2; u3g,Du1 = Du2 = Du3 = f1; 2; 3g and C = fu1 <u2; even(u2+u3)g, gives a GENET network as illustrated in Figure 2(a). Thereare inhibitory connections between any two label nodes which violate one ofthe constraints. For example, there is a connection between hu2; 1i and hu3; 2isince this combination of variable assignment violates even(u2 + u3); henceWhu2;1ihu3;2i = �1 initially. The state illustrated has the label nodes hu1; 3i,hu2; 2i, and hu3; 1i on, representing the assignment u1 = 3; u2 = 2; u3 = 1, andhas energy �2. Updating the u2 cluster of label nodes proceeds by calculatingIhu2;1i = �1, Ihu2;2i = �2 and Ihu2;3i = �1 so that one of hu2; 1i or hu2; 3ishould be selected randomly to be on next. Suppose hu2; 1i is selected andthe resulting state is shown in Figure 2(b). This state has energy �1 and is alocal maximum so that updating any cluster further would result in no statechange. Thus the heuristic learning rule is applied, modifying Whu1;3ihu2;1i tobe �2; hence the energy becomes �2 and the network is no longer in a localmaximum. The state update rule can again be applied, trying to maximizethe energy of the network.As far as we know, the convergence of the GENET procedure is still an openproblem. 6

3 A Discrete Lagrangian Formulation of CSPsThe energy perspective of the GENET convergence procedure suggests anoptimization approach to constraint satisfaction. This approach allows us toborrow well-known optimization techniques from the literature. In this section,we show a transformation for converting any binary CSP into an integer con-strained minimization problem. A discrete version of the Lagrange multipliermethod [11] is used to solve the resulting minimization problem.3.1 CSP as Integer Constrained Minimization ProblemAn integer constrained minimization problem consists of a set of integer vari-ables ~z, an objective function f(~z) and a set G of constraints de�ning thefeasible space of the problem. The goal is to �nd a global minimum ~z � in thefeasible space so that the value of f(~z �) is minimized and each constraint ofG is satis�ed. In the following, we present the transformation that converts aGENET network into an integer constrained minimization problem.Given a GENET network N of a binary CSP (U;D;C). Suppose that eachdomain Di for all i 2 U is a set of integers. Each cluster (variable) i of theGENET network (CSP) is represented by an integer variable zi. The value ofthe integer variable zi is equal to j 2 Di if and only if value j is assigned tovariable i. In other words, ~z = (: : : ; zi; : : :) corresponds to a variable assign-ment for (U;D;C).For each connection (hi; ji; hk; li) 2 N , we de�ne an incompatibility functionghi;jihk;li(~z) = 8><>: 1; if zi = j ^ zk = l0; otherwise (3)where ~z = (: : : ; zi; : : :) is a vector of integer variables. The function ghi;jihk;li(~z)returns 1 if value j is assigned to variable i and value l is assigned to variablek, and 0 otherwise. Hence, equating ghi;jihk;li(~z) to 0 is equivalent to forbiddingtwo connected label nodes hi; ji and hk; li in the GENET network to be onat the same time. The incompatibility functions are used as indicators ofconstraint violations.The resultant integer constrained minimization problem has the form,min f(~z) (4)subject to 7

zi 2 Di; 8 i 2 U (5)ghi;jihk;li(~z) = 0; 8 (hi; ji; hk; li) 2 I (6)where ~z = (: : : ; zi; : : :) is a vector of integer variables and I is the set of allincompatible label pairs (hi; ji; hk; li). The constraints de�ned in (5) are usedto enforce valid assignments for the CSP. Since the solution space of a CSP isde�ned entirely by the constraints (5 { 6), it is equal to the feasible space of theassociated integer constrained minimization problem. The objective functionf(~z) serves only to exert additional force to guide solution searching.The objective function f(~z) is de�ned in such a way that every solution ofthe CSP must correspond to a constrained global minimum of the associatedinteger constrained minimization problem (4 { 6). This is called the corre-spondence requirement . In the following, we present two appropriate objectivefunctions that ful�ll the correspondence requirement. The goal of solving aCSP is to �nd an assignment that satis�es all constraints. One possible objec-tive function, adapted from Wah and Chang [14], is to count the total numberof constraint violations. By measuring the total number of incompatible labelpairs (hi; ji; hk; li) in an assignment, the objective function can be expressedas f(~z) = X(hi;ji;hk;li)2I ghi;jihk;li(~z) (7)where ~z = (: : : ; zi; : : :) is a vector of integer variables.Another possibility is the constant objective functionf(~z) = 0: (8)The constant objective function satis�es the correspondence requirement triv-ially. Basically, this trivial objective function does not help in the search ofsolution. We shall show later, however, that this function is related to theGENET model.To illustrate the transformation, consider the binary CSP shown in Figure 2(a).The variables U = fu1; u2; u3g are represented by a vector of integer variables~z = (z1; z2; z3). The domains D become constraints zi 2 f1; 2; 3g; 1 � i � 3.The inhibitory connections are represented by incompatibility functionsghu1;1ihu2;1i(~z)= z1 = 1 ^ z2 = 1;ghu1;2ihu2;1i(~z)= z1 = 2 ^ z2 = 1;ghu1;2ihu2;2i(~z)= z1 = 2 ^ z2 = 2;ghu1;3ihu2;1i(~z)= z1 = 3 ^ z2 = 1; 8

ghu1;3ihu2;2i(~z)= z1 = 3 ^ z2 = 2;ghu1;3ihu2;3i(~z)= z1 = 3 ^ z2 = 3;ghu2;1ihu3;2i(~z)= z2 = 1 ^ z3 = 2;ghu2;2ihu3;1i(~z)= z2 = 2 ^ z3 = 1;ghu2;2ihu3;3i(~z)= z2 = 2 ^ z3 = 3;ghu2;3ihu3;2i(~z)= z2 = 3 ^ z3 = 2:The transformation is completed by choosing either (7) or (8) as the objectivefunction. Hence, solving the CSP now becomes �nding a constrained globalminimum of the associated integer constrained minimization problem.3.2 LSDL: A Discrete Lagrange Multiplier MethodThe Lagrange multiplier method is a well-known technique for solving con-strained optimization problems [9]. It provides a systematic approach for han-dling constraints, while maintaining numerical stability and solution accuracy.Until recently the method has only been applied to real variable problems. Ini-tially we converted the resulting integer problems into real variable constrainedoptimization problems by introducing additional constraints to restrict the realvariables to hold integer values only [15]. Although this approach is possible,handling of the additional constraints incurs costly computation making ituseless in practice.Recently Shang and Wah extended the classical Lagrange multiplier methodto deal with discrete problems [16,11,17]. Consider the integer constrainedminimization problem (4 { 6) transformed from the CSP (U;D;C). Similar tothe classical Lagrange multiplier method [9], the Lagrangian function L(~z; ~�)is constructed asL(~z; ~�) = f(~z) + X(hi;ji;hk;li)2I �hi;jihk;lighi;jihk;li(~z) (9)where ~z = (: : : ; zi; : : :) is a vector of integer variables and ~� = (: : : ; �hi;jihk;li; : : :)is a vector of Lagrange multipliers. Note that the constraints de�ned by (5),which serve only to de�ne valid assignments of CSP, are not included in theLagrangian function. The constraints will be incorporated in the discrete gra-dient discussed below.A constrained minimum of the integer constrained minimization problem (4{ 6) can be obtained by �nding a saddle point of the Lagrangian functionL(~z; ~�). As in the continuous case, a saddle point (~z �; ~��) [16,11,17] of the9

Lagrangian function L(~z; ~�) is de�ned by the conditionL(~z �; ~�) � L(~z �; ~��) � L(~z; ~��) (10)for all (~z �; ~�) and (~z; ~��) su�ciently close to (~z �; ~��). In other words, a saddlepoint (~z �; ~��) of the Lagrangian function L(~z; ~�) is a minimumof L(~z; ~�) in the~z-space and a maximum of L(~z; ~�) in the ~�-space. The relationship between aconstrained minimum of an integer constrained minimization problem and asaddle point of its associated Lagrangian function is established by the discretesaddle point theorem, which is restated as follows.Theorem 1 (Discrete Saddle Point Theorem) [12] A vector of integervariables ~z � is a constrained minimum of the integer constrained minimizationproblem min f(~z)subject to gi(~z) = 0; i = 1; : : : ;mwhere for all i = 1; : : : ;m, gi(~z) is non-negative for all possible values of ~z ifand only if there exist Lagrange multipliers ~�� such that (~z �; ~��) constitutesa saddle point of the corresponding Lagrangian function L(~z; ~�) = f(~z) +Pmi=1 �igi(~z).Note that under the conditions of the above theorem it is easy to show (see [12])that any point (~z �; ~�0) with ~�0 � ~�� is also a saddle point of the Lagrangianfunction L(~z; ~�). This means that there is no requirement to decrease Lagrangemultipliers during the search for a saddle point.The construction of the constrained minimization problem (4 { 6) correspond-ing to a CSP ensures that each incompatibility function ghi;jihk;li(~z), for all(hi; ji; hk; li) 2 I, of the problem (4 { 6) are always non-negative. Hence thediscrete saddle point theorem is applicable.Corollary 2 For a problem of the form (4 { 6) ~z � is a constrained minimumof the problem if and only if there exist Lagrange multipliers ~�� such that(~z �; ~��) is a saddle point of the Lagrangian function L(~z; ~�).A saddle point of the Lagrangian function L(~z; ~�) can be obtained by per-forming descent in the discrete variable space of ~z and ascent in the Lagrangemultiplier space of ~� [18]. Instead of using di�erential equations, the discreteLagrange multiplier method uses di�erence equations [16,11,17]~z s+1=~z s �GD(4~zL(~z s; ~�s); ~z s; ~�s; s) (11)10

~�s+1=~�s + ~g(~z s) (12)where ~xs denotes the value of ~x in the sth iteration,4~z is the discrete gradient ,GD is a gradient descent function and ~g(~z) = (: : : ; ghi;jihk;li(~z); : : :) is a vectorof incompatibility functions.The discrete gradient 4~z can be de�ned as follows. Given a vector of integervariables ~z = (: : : ; zi; : : :), we de�ne the projection operator �i, for all i 2 U ,as �i(~z) = zi; (13)which gives the ith-component of ~z. In other words, �i(~z) returns the integervariable corresponding to variable i in U . Furthermore, letNi(~z) = f~z 0 j (�i(~z 0) 2 Di) ^ (8j 2 U : (j 6= i) ^ (�j(~z 0) = �j(~z)))gbe the neighborhood of a point ~z along the ith direction. The constraintsde�ned in (5) are incorporated in the neighborhood Ni(~z), for all i 2 U , toenforce valid assignment for each integer variable zi. The ith component of thediscrete gradient �i(4~z), for all i 2 U , is de�ned as�i(4~zL(~z; ~�)) = L(~z; ~�)� L(~z 0; ~�) (14)where ~z 0 2 Ni(~z) and L(~z 0; ~�) � L(~z 00; ~�), for all ~z 00 2 Ni(~z). The ith com-ponent of the discrete gradient returns the greatest di�erence in the value ofthe Lagrangian function along the ith direction. If �i(4~zL(~z; ~�)) = 0, then ~zrepresents a minimum of L(~z; ~�) along the ith direction. When 4~zL(~z; ~�) = ~0,either a saddle point or a stationary point has been reached, at which pointthe update of ~z terminates.The gradient descent function GD returns a di�erential vector for updatingthe integer vector ~z according to the discrete gradient 4~z. It returns ~0 when4~zL(~z; ~�) = ~0. In general, the gradient descent function GD is not unique. Itmay depend not only on the discrete gradient, but also the current position(~z; ~�) and possibly the iteration number s. We defer discussion on gradientdescent functions until Section 4.4.The Lagrange multipliers ~� are updated according to the incompatibility func-tions. If an incompatible tuple is violated, its corresponding incompatibilityfunction returns 1 and the Lagrange multiplier is incremented accordingly. Inthis formulation, the Lagrange multipliers ~� are non-decreasing.A generic discrete Lagrangian search procedure LSDL(f; I~z; I~�; GD;U~�) for11

procedure LSDL(f; I~z; I~�; GD;U~�)begins 0(I~z) initialize the value of ~z s(I~�) initialize the value of ~� swhile (f) L(~z s; ~� s)� f(~z s) > 0 (~z s is not a solution) do(GD) ~z s+1 ~z s �GD(4~zL(~z s; ~� s); ~z s; ~� s; s)if (U~�) condition for updating ~� holds then~� s+1 ~� s + ~g(~z s)else~� s+1 ~� send ifs s+ 1end whileend Fig. 3. The LSDL(f; I~z; I~�; GD; U~�) proceduresolving the integer constrained minimization problems transformed from CSPsis given in Figure 3.The LSDL (pronounced as \Lisdal") procedure performs local search usingthe discrete Lagrange multiplier method. LSDL is a specialization of thegeneric discrete Lagrangian method described in [11]. It has �ve degrees offreedom, namely (f) the objective function, (I~z) how the integer vector ~z isinitialized, (I~�) how the Lagrange multipliers ~� are initialized, (GD) the gra-dient descent function, and (U~�) when to update the Lagrange multipliers ~�.Where appropriate, we annotate the algorithm with the parameters in brack-ets to show where the parameters take e�ect. The role of each parameter isdiscussed in the next section.4 Parameters of LSDLLSDL de�nes a general scheme for a class of algorithms based on the discreteLagrange multiplier method. By instantiating LSDL with di�erent parame-ters, di�erent discrete Lagrangian search algorithms with di�erent e�ciencyand behavior are obtained. In this section, we discuss the various parametersof LSDL in details. 12

4.1 Objective FunctionThe objective function f(~z) is one of the degrees of freedom of the LSDLalgorithm. As stated before, any function that satis�es the correspondencerequirement can be used. However, a good objective function can direct thesearch towards the solution region more e�ciently [19]. Two possible objectivefunctions, presented in Section 3.1, are summarized as follows. First, since thegoal of solving a CSP is to �nd an assignment that satis�es all constraints,the objective function, de�ned in (7),f(~z)= X(hi;ji;hk;li)2I ghi;jihk;li(~z)where I is the set of incompatible tuples, re
ects the total number of violatedtuples. Second, the constant objective functionf(~z) = 0can also be used.4.2 Integer Variable InitializationA good initial assignment of the integer variables ~z can speed up search. Asin most local search techniques, the simplest way is to initialize the integervariables ~z randomly in such a way that the constraints (5) are satis�ed.On the other hand, Minton et al. [6] suggest that a greedily generated initialassignment can boost the performance of the search. Morris [8] points out thata greedy initialization can generally shorten the time required to reach the �rstlocal minimum. In this case, the initialization procedure iterates through eachcomponent �i(~z) of the integer vector ~z, and selects the assignment whichcon
icts with the fewest previous selections.4.3 Lagrange Multiplier InitializationSimilar to the initialization of integer variables, the Lagrange multipliers ~�can also be initialized arbitrarily. Since the update of Lagrange multipliers isnon-decreasing, in general, any non-negative number can be used as the initialvalue. One possible way is to initialize all Lagrange multipliers to 1. In thiscase, all incompatible tuples have the same initial penalty. Another possibil-ity is to initialize each Lagrange multiplier di�erently. For example, di�erent13

initial values can be used to re
ect the relative importance of constraints inthe CSP [20]. If a constraint is known to be more important than the others,its associated Lagrange multipliers can be assigned a larger initial value.4.4 Gradient Descent FunctionThe gradient descent function GD, which performs gradient descent in the~z-space, is not unique. One possible gradient descent function, GDsync , can bede�ned as follows. Given the discrete gradient 4~zL(~z; ~�). LetXi = f~x j ~x 2 Ni(~z) ^ L(~z; ~�) � L(~x; ~�) = �i(4~zL(~z; ~�))gbe the set of integer vectors belonging to the neighborhood Ni(~z) which re-duce the Lagrangian function L(~z; ~�) the most. The gradient descent functionGDsync is de�ned as�i(GDsync(4~zL(~z; ~�); ~z; ~�; s)) = 8><>: 0; if �i(4~zL(~z; ~�)) = 0�i(~z)� �i(rand(Xi)); otherwise (15)for all i 2 U (recall that U is the set of variables in the CSP and rand(Y) isa function returning a random element from a set Y). The gradient descentfunction updates all variables synchronously, since each integer variable zi willbe modi�ed to a value which minimizes L(~z; ~�) in the neighbourhood Ni(~z).The function GDsync corresponds to what occurs in GENET with synchronousvariable update.Synchronous update is known to have bad behaviour. A simple form of asyn-chronous gradient descent is to only update each variable one at a time inorder. ThenGDasync(4~zL(~z; ~�); ~z; ~�; s)) = ej �GDsync(4~zL(~z; ~�); ~z; ~�; s)where j = s mod jU j) + 1 (16)where ej is the unit vector in direction j. Since this gradient descent func-tion updates each integer variable one by one, it corresponds to the updatingstrategy used in most sequential implementations of GENET. Note that sincein each iteration only one (�xed) variable is modi�ed, the computation ofGDasync can be restricted to this direction.14

Another possible gradient descent function GDdlm is given as follows. LetX = f~x j 9i 2 U ~x 2 Ni(~z) ^ L(~z; ~�)� L(~x; ~�) = maxj2U �j(4~zL(~z; ~�))gbe the set of integer vectors which reduce the Lagrangian function most insome direction i. We de�ne the gradient descent function Ddlm asGDdlm(4~zL(~z; ~�); ~z; ~�; s) = 8><>:~0; if 4~zL(~z; ~�) = ~0~z � rand(X); otherwise (17)Since each integer vector ~x in the set X can have at most one component�i(~x), for some i 2 U , being di�erent from the current value of ~z, only onevariable of the CSP is updated by this gradient descent function. Hence, thisnew gradient descent function is similar to the one de�ned in DLM [16,11,17]for solving the SAT problems.4.5 Condition for Updating Lagrange MultipliersUnlike the continuous case, the updating frequency of the Lagrange multipliers~� can a�ect the performance of the discrete Lagrange multipliermethod [16,11,17].Thus, the condition for updating the Lagrange multipliers is left unspeci�edin LSDL. For example the Lagrange multipliers can be updated either (1) ateach iteration of the outermost while loop, (2) after each jU j iterations, or(3) when 4~zL(~z; ~�) = ~0. Note that the �rst condition is a direct applicationof the strategy used in the continuous case while condition (3) corresponds toMorris's breakout method [8]. Condition (2) makes sense with asynchronousgradient descent, since in jU j iterations all variables have been updated once.5 GENET ReconstructedIn this section, we show how we can reconstruct GENET using our discreteLagrangian approach and then discuss how we improved upon the resultingLSDL implementation by changing design parameters.5.1 LSDL(genet)Given a binary CSP (U;D;C). The transformation described in Section 3.1 es-tablishes a one-one correspondence between the GENET network of (U;D;C)15

and the associated integer constrained minimization problem of (U;D;C). TheGENET convergence procedure can be obtained by instantiating LSDL withproper parameters. This instance of LSDL, denoted by LSDL(genet), hasthe following parameters:� f : the constant objective function de�ned in (8),� I~z: the integer vector ~z is initialized randomly, provided that the initialvalues correspond to a valid state in GENET,� I~�: the values of Lagrange multipliers ~� are all initialized to 1,� GD: the gradient descent function GDasync de�ned in (16), and� U~�: the Lagrange multiplier ~� are updated when 4~zL(~z; ~�) = ~0.In the following, we prove the equivalence between LSDL(genet) and theGENET convergence procedure. Recall that a state S of a GENET networkN is a tuple (~V ; ~W), where ~V = (: : : ; Vhi;ji; : : :) is a vector of outputs forall label nodes hi; ji in N and ~W = (: : : ;Whi;jihk;li; : : :) is a vector of weightsfor all connections (hi; ji; hk; li) in N . Since, in any GENET state S, eachcluster i can have at most one on label node, we de�ne ~v = (: : : ; vi; : : :) as thevariable assignment of a GENET state S such that Vhi;vii = 1 for all i 2 U .Based on the state update rule of the convergence procedure of GENET andthe de�nition of the gradient descent function (16), we derive the followinglemma.Lemma 3 Consider a binary CSP (U;D;C), and its corresponding GENETnetwork N and integer constrained minimization problem. Suppose both GENETand LSDL(genet) use the same random selection function rand(Y), and, inthe sth iteration, ~v s = ~z s and ~W s = �~�s. Then~v s+1 = ~z s+1Proof: In the sth iteration only a single variable i = (s mod jU j) + 1 isupdated. The remaining variables are unchanged. We show thatvs+1i = j , zs+1i = jConsider updating cluster i of the GENET network N from the sth to the(s+ 1)st iteration. Let A(N ; hi; ji) be the set of all label nodes connected tohi; ji in GENET network N , and Li be the set of all label nodes in cluster iin GENET network N . Furthermore, let ~z sijj be the integer variable vector inthe sth iteration with zsi = j and zsl unchanged for all l 6= i 2 U .vs+1i = j,V s+1hi;ji = 1 and V s+1hi;ki = 0;8k 6= j 2 Di16

, Ishi;ji � Ishi;ki; 8k 6= j 2 Di, Xhu;vi2A(N ;hi;ji)W shi;jihu;viV shu;vi � Xhu;vi2A(N ;hi;ki)W shi;kihu;viV shu;vi; 8k 6= j 2 Di, 1� Xhu;vi2A(N ;hi;ji)W shi;jihu;viV shu;vi + Xl6=j2Di 0@0 � Xhu;vi2A(N ;hi;li)W shi;lihu;viV shu;vi1A+ X(ha;bi;hc;di)2Nha;bi;hc;di62Li V sha;biW sha;bihc;diV shc;di �1� Xhu;vi2A(N ;hi;ki)W shi;kihu;viV shu;vi + Xl6=k2Di 0@0 � Xhu;vi2A(N ;hi;li)W shi;lihu;viV shu;vi1A+ X(ha;bi;hc;di)2Nha;bi;hc;di62Li V sha;biW sha;bihc;diV shc;di; 8k 6= j 2 Di, 1� Xhu;vi2A(N ;hi;ji)��shi;jihu;viV shu;vi + Xl6=j2Di 0@0 � Xhu;vi2A(N ;hi;li)��shi;lihu;viV shu;vi1A+ X(ha;bi;hc;di)2Nha;bi;hc;di62Li V sha;bi(��sha;bihc;di)V shc;di �1� Xhu;vi2A(N ;hi;ki)��shi;kihu;viV shu;vi + Xl6=k2Di0@0 � Xhu;vi2A(N ;hi;li)��shi;lihu;viV shu;vi1A+ X(ha;bi;hc;di)2Nha;bi;hc;di62Li V sha;bi(��sha;bihc;di)V shc;di; 8k 6= j 2 Di,L(~z sijj; ~�s) � L(~z sijk; ~�s); 8k 6= j 2 Di,�i(4~zL(~z s; ~�s)) = L(~z s; ~�s)� L(~z sijj; ~�s),~z sijj 2 XiSince both GENET and LSDL(genet) use the same random selection func-tion rand(Y), by the gradient descent function (16), we havevs+1i = j , zs+1i = j 2The relation between the weights ~W of the GENET network N and the La-grange multipliers ~� of LSDL(genet) is given by the following lemma.Lemma 4 Consider a binary CSP (U;D;C), and its corresponding GENETnetwork N and integer constrained minimization problem. Suppose, in the sth17

iteration, ~v s = ~z s, ~W s = �~�s, and, in the (s+ 1)st iteration, ~v s+1 = ~z s+1.~W s+1 = �~�s+1:Proof: We consider two cases. First, if ~v s+1 6= ~v s and ~z s+1 6= ~z s, the con-ditions for updating the weights ~W and the Lagrange multiplier ~� are false.Therefore, ~W s+1 = ~W s = �~�s = �~�s+1:Second, if ~v s+1 = ~v s and ~z s+1 = ~z s, then, for each (hi; ji; hk; li) 2 N ,W s+1hi;jihk;li=W shi;jihk;li � V shi;jiV shk;li=��shi;jihk;li � V shi;jiV shk;li=��shi;jihk;li � ghi;jihk;li(~z s)=� ��shi;jihk;li + ghi;jihk;li(~z s)�=��s+1hi;jihk;liCombining these two cases, we get ~W s+1 = �~�s+1. 2Now, a simple application of Lemma 3 and Lemma 4 results in the follow-ing theorem, which establishes the equivalence of the GENET convergenceprocedure and LSDL(genet).Theorem 5 Consider a binary CSP (U;D;C), and its corresponding GENETnetwork N and integer constrained minimization problem. Suppose both GENETand LSDL(genet) use the same random selection function rand(Y) and theyshare the same initial state. For all iteration s, ~v s = ~z s and ~W s = �~�s.Proof: The proof is by induction on iterations. Initially, at s = 0, since bothGENET and LSDL(genet) share the same initial state,~v 0 = ~z 0:Furthermore, since ~W 0 = �~1 and ~�0 = ~1,~W 0 = �~�0:Therefore, the theorem is true at s = 0.18

Now, suppose at s = t, ~v t = ~z t and ~W t = �~�t. By Lemma 3 and Lemma 4,we have ~v t+1 = ~z t+1 and ~W t+1 = �~�t+1at s = t+ 1.By induction, the theorem is true for all iterations s. 2Based on this theorem, we get the following two corollaries. The �rst corollarystates the relation between the energy of GENET and the Lagrangian functionof LSDL(genet), while the second corollary gives the terminating propertiesof GENET and LSDL(genet).Corollary 6 Consider a binary CSP (U;D;C), and its corresponding GENETnetwork N and integer constrained minimization problem. We haveE(N ;S) = �L(~z; ~�)where E(N ;S) is the energy of GENET and L(~z; ~�) is the Lagrangian functionof LSDL(genet).Proof: Consider the GENET network N and its associated integer con-strained minimization problem. Let I be the set of all incompatible tuples.E(N ;S)= X(hi;ji;hk;li)2I Vhi;jiWhi;jihk;liVhk;li= X(hi;ji;hk;li)2I Vhi;ji ���hi;jihk;li�Vhk;li=� X(hi;ji;hk;li)2I �hi;jihk;lighi;jihk;li(~z)=�L(~z; ~�) 2Corollary 7 Consider a binary CSP (U;D;C), and its corresponding GENETnetwork N and integer constrained minimization problem. GENET terminatesif and only if LSDL(genet) terminates.Proof: Consider the GENET network N and its associated integer con-strained minimization problem. Let O(N ;S) be the set of all on label nodesof the GENET network N in a state S.19

GENET terminates, Ihi;ji = 0; 8hi; ji 2 O(N ;S),E(N ;S) = 0,L(~z; ~�) = 0,LSDL(genet) terminates 2Similar results can be proven if, in LSDL, we use instead the objective func-tion f(~z) de�ned in (7) and initialize ~� to ~0. If, however, we use f(~z) de�nedin (7) and initialize ~� to ~1, the Lagrangian function becomesL(~z; ~�)= X(hi;ji;hk;li)2I ghi;jihk;li(~z) + X(hi;ji;hk;li)2I �hi;jihk;lighi;jihk;li(~z)= X(hi;ji;hk;li)2I �1 + �hi;jihk;li� ghi;jihk;li(~z) (18)where I is the set of all incompatible tuples. As a result, we have~W = � �~1 + ~�� : (19)This version of LSDL is equivalent to GENET with all connection weightsinitialized to �2 instead of �1.5.2 Improving on LSDL(genet)LSDL is a generic framework de�ning a class of local search algorithms basedon the discrete Lagrange multiplier method. By choosing suitable parameters,di�erent heuristic repair methods can be modeled. The design parameter spacefor LSDL is enormous, and in fact can encompass many existing local searchalgorithms.In order to search for a better discrete Lagrangian search algorithm for CSPs,we have ran a number of di�erent LSDL instances on a set of benchmarkproblems to explore the parameter space of LSDL [21]. In each experiment,di�erent LSDL instances were constructed as follows. A single design pa-rameter under test was varied in the LSDL implementation. Other designparameters remained the same as in LSDL(genet).Each new variant was tested on a set of N -queens problems, a set of hardgraph-coloring problems from the DIMACS archive [22], and a set of randomlygenerated CSPs (di�erent from the ones we use in Section 7) are used. These20

substantial and comprehensive experiments, although by no means exhaustive,help us to select a good combination of LSDL parameters.Collecting together all the choices for each single design parameter which ledto the best performance de�ned our improved LSDL variant which we denoteby LSDL(imp). The parameters are:� f : the one de�ned in (7),� I~z: the integer vector ~z is initialized using the greedy algorithm describedin [6],� I~�: the values of Lagrange multipliers ~� are all initialized to 1,� GD: the gradient descent function GDasync de�ned in (16), and� U~�: the Lagrange multiplier ~� are updated after every jU j iterations, whereU is the set of variable in the CSP.Except the hard graph-coloring instances, the problems we use for explor-ing the LSDL design parameters were di�erent from the benchmarks used inSection 7. In this exploration, we only tested the behavior of individual pa-rameters. In Section 7, we con�rm the improved performance of LSDL(imp)across a di�erent set of benchmark problems.6 Extending LSDLIn the previous discussion, we establish a surprising connection betweenLSDLand the GENET model. This connection also suggests a dual viewpoint ofGENET: as a heuristic repair method and as a discrete Lagrange multipliermethod. Hence, we can improve GENET by exploring the space of parametersavailable in the LSDL framework. Alternatively, techniques developed forGENET can be used to extend our LSDL framework.Arc consistency [1] is a well known technique for reducing the search space of aCSP. A CSP (U;D;C) is arc consistent if and only if for all variables x; y 2 Uand for each value u 2 Dx there exists a value v 2 Dy such that the constraintc on variables x and y is satis�ed. In the terminology of GENET, a CSP, ora GENET network N , is arc consistent if and only if for all clusters i; j 2 Uand for all label nodes hi; ki 2 N there exists a label node hj; li 2 N such thatthere is no connection between hi; ki and hj; li [23,24,10]. Obviously, valueswhich are arc inconsistent cannot appear in any solution of CSP. Hence, weare guaranteed that any solution of the original CSP is a solution of the corre-sponding arc consistent CSP. We say that the original CSP and its associatedarc consistent CSP are equivalent .Arc consistency gives us a way to remove useless values from the domains21

procedure input(N ;S; i)beginif inconsistent(i) thenN N � fo(S; i)g � f(o(S; i); hu; vi) j (o(S; i); hu; vi) 2 Ngend iffor each cluster j 6= i dopossibly inconsistent(j) trueend forfor each label node hi; ki 2 N doIhi;ki 0for each cluster j 6= i doif (hi; ki; o(S; j)) 2 N thenIhi;ki Ihi;ki +Whi;kio(S;j)elsepossibly inconsistent(j) falseend ifend forend forfor each cluster j 6= i doinconsistent(j) inconsistent(j) _ possibly inconsistent(j)end forendFig. 4. Modi�ed GENET input calculation procedure for lazy arc consistencyof variables. Algorithms, such as AC-3 [1], are usually combined with back-tracking tree search to increase the e�ciency. Similar algorithms can be usedto preprocess a given GENET network N to produce an equivalent arc con-sistent network. However, since arc consistency is in general a fairly expen-sive operation, it is bene�cial only if the improvement in e�ciency is greaterthan the overhead of the arc consistency preprocessing phase. Stuckey andTam [23,24,10] develop lazy arc consistency for the GENET model to avoidthe preprocessing phase and instead only remove inconsistent values that arerelevant to the GENET search.Let o(S; i) be the on label node of cluster i in state S of a GENET networkN . A GENET network N in a state S is lazy arc consistent if and only iffor all clusters i; j 2 U there exists a label node hj; ki 2 N such that there isno connection between o(S; i) and hj; ki [23,24,10]. Since lazy arc consistencyonly enforces arc consistency for the current on label nodes, it can readily beincorporated in the convergence procedure of GENET.Figure 4 gives a modi�ed input calculation procedure for cluster i of theGENET network N in a state S [23,24,10]. The algorithm detects lazy arcinconsistency during the calculation of inputs of each cluster. When an in-consistency for the current value of variable i is detected the global variable22

PSfrag replacementsVariable:Value:{ on label node{ o� label node123 u1u2 u3f1; 2; 3gf1; 2; 3g f1; 2; 3gu1 < u2u2 < u3(a) The CSP
PSfrag replacementsVariable:Value: { on label node{ o� label node123 u1 u2 u3f1; 2; 3gu1 < u2u2 < u3 (b) The GENET networkFig. 5. An arc inconsistent CSP and its corresponding GENET network\inconsistent(i)" is set to true. When the variable i is next updated its currentvalue is removed from its domain.For example, consider the arc inconsistent CSP and its corresponding GENETnetwork shown in Figure 5. When calculating the inputs of cluster u1, we�nd that each of the label nodes hu1; 1i, hu1; 2i and hu1; 3i is connected tolabel node hu2; 1i, the current on label node of cluster u2. Hence, value 1 forvariable u2 is arc inconsistent with variable u1, and thus the node hu2; 1i andits associated connections should be removed from the GENET network.Since lazy arc consistency is targeted at values that are actually selected dur-ing the search, which may be much fewer than the entire search space, itsoverhead is much smaller than that of arc consistency. Experiments show thatlazy arc consistency improves GENET substantially for CSPs which are arcinconsistent and does not degrade the performance signi�cantly for problemswhich are already arc consistent [23,24,10].Lazy arc consistency can be incorporated in LSDL in a similar manner. LetI be the set of all incompatible tuples (hi; ji; hk; li). The modi�ed discreteLagrangian search algorithm Lazy-LSDL is shown in Figure 6. Similar toGENET, the procedure for detecting lazy arc inconsistency can be integratedin the gradient descent function GD. For example, lazy arc inconsistency canbe detected during the evaluation of the discrete gradient4~z. We state explic-itly (enclosed in the box) the detection procedure in Lazy-LSDL outside ofGD to show that lazy arc consistency is independent of the gradient descentfunction used. In other words, any gradient descent function GD de�ned forLSDL could be used in Lazy-LSDL without any special modi�cation.The detection of lazy arc inconsistency, as appeared in Figure 6, is costly. Inour actual implementation, the detection procedure is performed during theevaluation of the discrete gradient 4~z. When calculating the ith component23

procedure Lazy-LSDL(N; I~z; I~�; GD;U~�)begins 0(I~z) initialize the value of ~z s(I~�) initialize the value of ~� swhile (f) L(~z s; ~� s)� f(~z s) > 0 (~z s is not a solution) dofor each variable i 2 U doif 8j 6= i 2 U @k 2 Dj such that (hi; zsi)i; hj; ki) 62 I thenDi Di � fzsi gend ifend for(GD) ~z s+1 ~z s �GD(4~zL(~z s; ~� s); ~z s; ~� s; s)if (U~�) condition for updating ~� holds then~� s+1 ~� s + ~g(~z s)else~� s+1 ~� send ifs s+ 1end whileend Fig. 6. The Lazy-LSDL(N; I~z; I~�; GD; U~�) procedureof the discrete gradient �i(4~z), if we �nd that all domain values of variable iare incompatible with the current assignment of integer variable �j(~z), thenwe can remove �j(~z) from the domain Dj of variable j.7 ExperimentsWe constructed severalLSDL instances for experimentation.They areLSDL(genet),LSDL(imp), Lazy-LSDL(genet), Lazy-LSDL(imp). In the following, wecompare the e�ciency of these instances on �ve sets of problems: a set ofhard graph-coloring problems from the DIMACS archive [22], a set of per-mutation generation problems, a set of quasigroup completion problems, aset of randomly generated tight binary CSPs with arc inconsistencies, and aset of randomly generated binary CSPs close to the phase transition. Weaim to demonstrate the e�ciency and robustness of the LSDL instancesusing these benchmarks. The LSDL(genet) implementation has two pur-poses. First, LSDL(genet) serves to verify if LSDL(genet) has the samefast convergence behavior of GENET as reported in the literature. Second,LSDL(genet) serves as a control in our setup to compare against its vari-ants. 24

In order to have some feeling for the relative e�ciency of the LSDL solverswith respect to other local search techniques, we also show results of DLM [11],WalkSAT (an improved version of GSAT) [25,26], Wsat(oip) [27] solving thesame problems, running on the same machine. Each of these local search tech-niques solve only SAT problems or over-constrained linear integer program-ming problems rather than CSPs directly, hence the benchmarks need to betransformed into appropriate encodings for these solvers (see Section 7.1).Additionally each of these solvers are designed to have execution parameterstuned for each problem class they are applied to in order to obtain the bestpossible results. For these reasons the comparison with LSDL is not meant tobe de�nitive, but rather indicative that the LSDL solvers have competitiveperformance.We use the best available implementations of DLM, WalkSAT, and Wsat(oip)obtained from the original authors by FTP and execute the implementationson the same hardware platform (SUN SPARCstation 10/40 with 32M of mem-ory) as the LSDL implementations. All implementations are executed usingtheir default parameters as they are originally received, described as follows.WalkSAT usually
ips a variable in a randomly selected unsatis�ed clausewhich maximizes the total number of satisfying clauses. In every 50 out of100
ips, however, it chooses a variable in an unsatis�ed clause randomly.DLM uses a tabu list of length 50, a
at move limit of 50 and the Lagrangemultipliers � are reset to �=1:5 in every 10000 iterations. Wsat(oip) setsthe probability of random move if no improving move is possible to 0.01, theprobability of initializing a variable with zero to 0.5. It is also equipped witha history mechanism to avoid
ipping the same variable in the near future,and uses a tabu memory of size 1.Benchmark results of all LSDL implementations are taken on a SUN SPARC-station 10/40 with 32M of memory. We execute each problem 10 times. Theexecution limit of the graph-coloring problems is set to 5 million iterations (1million iterations for Wsat(oip) since it takes too long to run), the executionlimit of the phase transition random CSPs is set to 5 million iterations, andthe execution limit of the other problems is set to 1 million iterations. Forsome problems some solvers do not succeed in �nding a solution within thepreset execution limit. In such cases, we add a superscript (x=10) besides thetiming �gures to indicate that only x out of the ten runs are successful. In eachcell, the unbracketed and the bracketed timing results represent respectivelythe CPU time for the average and median of only the successful runs. We usea question mark (?) to indicate that the execution results in a memory fault.Unless otherwise speci�ed, all timing results are in seconds and are given to anaccuracy of 3 signi�cant �gures. Following the practice in the literature, thetiming results represent only the search time and exclude the problem setuptime (such as reading in the problem speci�cation from a �le).25

7.1 Problem TranslationSince none of the solvers we compare against handle CSPs directly they needto be translated to SAT, for WalkSat and DLM, and integer linear problemsfor Wsat(oip).We consider two schemes to translate CSPs into SAT. We call the schemeadopted for encoding graph-coloring problems in the DIMACS archive theDIMACS translation. Given a binary CSP (U;D;C) and its correspondingGENET network.We associate each label node hi; ji of GENET with a Booleanvariable bhi;ji. A Boolean variable bhi;ji is true if its associated label node hi; jiis on and false otherwise. Each connection (hi; ji; hk; li) of GENET is repre-sented by a clause Chi;jihk;li = :bhi;ji _ :bhk;li;which states that the label nodes hi; ji and hk; li cannot be both on simulta-neously. In addition, there is a clauseCi = bhi;j1i _ � � � _ bhi;jni;where fj1; : : : ; jng = Di, for each cluster i of GENET to ensure that at leastone label node in each cluster i is on. The resultant SAT problem is to �nd atruth assignment that satis�es the Boolean formulaî2U Ci ^ ^(hi;ji;hk;li)2IChi;jihk;li;where I is the set of all incompatible label pairs (hi; ji; hk; li).Consider the CSP shown in Figure 2(a). According to the above translation,the CSP is transformed into the following SAT problem,(bhu1;1i _ bhu1;2i _ bhu1;3i) ^ (bhu2;1i _ bhu2;2i _ bhu2;3i)^ (bhu3;1i _ bhu3;2i _ bhu3;3i) ^ (:bhu1;1i _ :bhu2;1i) ^ (:bhu1;2i _ :bhu2;1i)^ (:bhu1;2i _ :bhu2;2i) ^ (:bhu1;3i _ :bhu2;1i) ^ (:bhu1;3i _ :bhu2;2i)^ (:bhu1;3i _ :bhu2;3i) ^ (:bhu2;1i _ :bhu3;2i) ^ (:bhu2;2i _ :bhu3;1i)^ (:bhu2;2i _ :bhu3;3i) ^ (:bhu2;3i _ :bhu3;2i);where bhu1;1i, bhu1;2i, bhu1;3i, bhu2;1i, bhu2;2i, bhu2;3i, bhu3;1i, bhu3;2i and bhu3;3i are theBoolean variables corresponding to the label nodes of the GENET network.Note that the DIMACS translation allows a variable of CSP to be assigned26

with more than one value since no clauses are used to enforce valid variableassignment. Thus, the DIMACS translation is inexact.An exact translation can be obtained by augmenting the results of a DIMACStranslation with the following clausesCijl = :bhi;ji _ :bhi;li;for each pair j; l 2 Di, to enforce valid assignments for variable i of the CSP.In other words, the resultant SAT problem given by the exact translation isî2U Ci ^ î2U ^j;l2DiCijl ^ ^(hi;ji;hk;li)2IChi;jihk;li;where I is the set of all incompatible label pairs (hi; ji; hk; li). For example,the same CSP shown in Figure 2(a) is translated to the SAT problem abovewith the addition of the constraints(:bhu1;1i _ :bhu1;2i) ^ (:bhu1;2i _ :bhu1;3i) ^ (:bhu1;3i _ :bhu1;1i)^ (:bhu2;1i _ :bhu2;2i) ^ (:bhu2;2i _ :bhu2;3i) ^ (:bhu2;3i _ :bhu2;1i)^ (:bhu3;1i _ :bhu3;2i) ^ (:bhu3;2i _ :bhu3;3i) ^ (:bhu3;3i _ :bhu3;1i)While the relative e�ciency of these two translations is outside the scope ofthe paper, we ran our experiments on both encodings. In the benchmarksthat we use, the WalkSAT and DLM solvers always performed better on theproblems obtained using the DIMACS translation.To obtain problem speci�cations for Wsat(oip), we further translate the re-sultant clauses into equalities and inequalities as follows. Each clause of theform Chi;jihk;li = :bhi;ji _ :bhk;liis translated to inequality Ehi;jihk;liEhi;jihk;li : bhi;ji + bhk;li � 1for both DIMACS and exact translation. On the other hands, the clauses Ciand Cijk are translated di�erently. For the DIMACS translation scheme, eachclause of the form Ci = bhi;j1i _ � � � _ bhi;jni27

is translated to inequality EDIMACSiEDIMACSi : bhi;j1i + � � �+ bhi;jni � 1:For the exact transaction, each clause Ci = bhi;j1i _ � � � _ bhi;jni together withclauses Cijl = :bhi;ji _ :bhi;li, for each pair i; j 2 Di is translated to equationEexacti Eexacti : bhi;j1i + � � �+ bhi;jni = 1:Again, we applied Wsat(oip) to both versions of the problems. As opposed toWalkSAT and DLM, Wsat(oip) consistently performed better on problemsobtained using the exact translation.In what follows we only report the results for the faster translation: DIMACSfor WalkSAT and DLM, and exact for Wsat(oip).7.2 Hard Graph-Coloring ProblemsTo compare the LSDL implementation of GENET versus the original GENETimplementation and other methods, we investigate its performance on a setof hard graph-coloring problems. Since this set of benchmarks is well studiedwe give published results for local search solvers GENET, GSAT and DLM.The importance of execution parameter tuning for DLM and WalkSAT washighlighted to us by these results since we were unable to match the publishedresults using the default parameter settings.Table 7.2 shows the experimental results for GENET as described in [7] alongwith those for LSDL(genet) and LSDL(imp). Table 7.2 shows the resultsfor DLM, GSAT, Wsat(oip) on the same set of hard graph-coloring prob-lems encoded using the DIMACS translation. The �gures for DLM and GSATare published results [11] (the results for GSAT are also quoted from [11] aspersonal communications) while those for Wsat(oip) are obtained using theWsat(oip) implementation running on the same hardware as LSDL. We omitthe timing for the lazy versions of LSDL since there is no arc inconsistency inthe problems and the performance is similar to that of the non-lazy versions.Since the published results are obtained from di�erent hardware platforms, wespecify the platforms as well as the platforms' SPECint92 2 rating, which is away of estimating a machine's computing power. The timing results of GENET2 SPECint92 is derived from the results of a set of integer benchmarks, and can beused to estimate a machine's single-tasking performance on integer code.28

Table 1GENET and LSDL on hard graph-coloring problemsGENET LSDL(genet) LSDL(imp)Problem Median Average (Median) Average (Median)CPU Time CPU Time CPU TimePlatform SPARC Classic SPARCstation 10/40 SPARCstation 10/40SPECInt92 26.4 50.2 50.2g125.17 2.6 hrs 4.7 (3.7) mins 3.2 (2.6) minsg125.18 23 s 4.5 (2.9) s 1.1 (0.925) sg250.15 4.2 s 0.418 (0.408) s 0.328 (0.325) sg250.29 1.1 hrs 14.6 (15.7) mins 11.3 (12.6) minsTable 2DLM, GSAT and Wsat(oip) on hard graph-coloring problemsDLM GSAT Wsat(oip)Problem Average Average Average (Median)CPU Time CPU Time CPU TimePlatform SGI Challenge SPARCstation 10/51 SPARCstation 10/40SPECInt92 � 62:4 65.2 50.2g125.17 23.2 mins 4.4 mins(7=10) 57.8 (57.8) mins(1=10)g125.18 3.2 s 1.9 s 32.8 (30.5) sg250.15 2.8 s 4.41 s 1.2 (1.2) hrsg250.29 20.3 mins(9=10) 20.3 mins(9=10) 61.4 (61.4) hrs(1=10)represent the median of 10 runs collected on a SPARC Classic with SPECint92rating of 26.4, which is about 2 to 3 times slower than a SPARCstation 10/40with SPECint92 rating of 50.2. The results for GSAT and DLM are averages of10 runs on a SPARCstation 10/51 with SPECint92 rating of 65.2 and a SGIChallenge (model unknown but the SPECint92 rating of the slowest modelSGI Challenge R4400 is 62.4) respectively.Clearly LSDL(genet) improves substantially on the original GENET im-plementation. LSDL(imp) gives the best timing results across all implemen-tations (normalized by SpecInt92). This experiment also demonstrates therobustness of the LSDL instances, which always �nd a solution.29

7.3 Permutation Generation ProblemsThe permutation generation problem is a combinatorial theory problem sug-gested by J.L. Lauriere. As described in [28], given a permutation p on theintegers from 1 to n, we de�ne the vector of monotonies m of size n� 1 asmi = 8><>: 1; if pi+1 > pi0; otherwisefor all 1 � i � n� 1. We also de�ne a vector of advances a of size n� 1 asai = 8><>: 1; if pj 6= pi + 1 ^ pi 6= n for all 1 � j � i� 10; if pj 6= pi + 1 for all i+ 1 � j � nfor all 1 � i � n � 1. The aim is to construct a permutation of integers1 to n satisfying conditions of monotonies and advances. The problem canbe modeled as a CSP with n variables, u1; u2; : : : ; un, each has a domainf1; 2; : : : ; ng. The constraints ui 6= ujfor all i 6= j and 1 � i; j � n speci�ed that the variables u1; u2; : : : ; un forma permutation of n. The condition of monotonies m is represented by theconstraintsui+1 > ui; if mi = 1ui+1 � ui; if mi = 0for all 1 � i � n� 1. Similarly, the constraints8 1 � j � i� 1 uj 6= ui + 1 ^ ui 6= n; if ai = 18 i+ 1 � j � n uj 6= ui + 1; if ai = 0for all 1 � i � n � 1 denote the condition of advances a. These problemsinvolve arc inconsistency.We experiment with two sets of permutation generation problems. The �rstconsiders the special case of generating an increasing permutation. This prob-lem is trivial for a complete search method with arc consistency, but di�cult30

Table 3Increasing permutations generation problemsLSDL(genet) Lazy-LSDL(genet) LSDL(imp) Lazy-LSDL(imp)n CPU Time Del CPU Time CPU Time Del CPU Time10 0.033 (0.033) 29.1 0.008 (0.008) 0.017 (0.017) 56.3 0.008 (0.008)20 1.07 (1.08) 233 0.213 (0.208) 0.865 (0.867) 204 0.108 (0.117)30 8.32 (7.80) 618 1.30 (1.33) 6.97 (6.75) 447 0.440 (0.375)40 36.3 (35.6) 1220 5.44 (5.37) 26.8 (25.9) 783 1.93 (2.29)50 107 (106) 1996 14.8 (14.9) 85.6 (86.1) 1291 3.84 (2.90)Table 4Random permutation generation problemsLSDL(genet) Lazy-LSDL(genet) LSDL(imp) Lazy-LSDL(imp)n CPU Time Del CPU Time CPU Time Del CPU Time50 0.052 (0.050) 0.6 0.065 (0.067) 0.053 (0.050) 1.7 0.063 (0.058)60 0.098 (0.092) 1.2 0.107 (0.100) 0.075 (0.067) 2.4 0.095 (0.092)70 0.138 (0.117) 0.2 0.157 (0.150) 0.180 (0.167) 1.8 0.215 (0.208)80 0.398 (0.383) 0.5 0.543 (0.483) 0.408 (0.392) 2.1 0.522 (0.508)90 0.813 (0.800) 0.6 0.902 (0.842) 0.782 (0.733) 1.1 0.800 (0.808)100 1.19 (1.22) 1.0 1.17 (1.17) 1.04 (1.01) 2.9 1.06 (1.05)for local search solvers. In the second set of problems, the monotonies and ad-vances are randomly generated, and much more di�cult for complete solvers.Tables 3 and 4 show the results for the two sets of problems and give the CPUtimes for the alternate LSDL implementations as well as average number ofdomain values deleted by the lazy arc consistency versions.Clearly the addition of lazy arc consistency substantially improves LSDLwhen the problems involve a large amount of arc inconsistency (the �rst set ofproblems), for both LSDL(genet) and LSDL(imp). By reducing the searchspace as computation proceeds we can reduce the computation time by anorder of magnitude. Note that, since the more e�cient LSDL(imp) searchesless of the space, it prunes less values. This illustrates the targeted natureof lazy arc inconsistency, which works best when large amount of searchingcovering much search space is needed.Problems in the second set are relatively easy for LSDL, all implementationscan solve the problems almost instantly. The fast convergence also implies thatlittle search e�ort is performed and few values are pruned. Thus, not much isgained from the incorporation of the lazy arc consistency technique. In this31

Table 5DLM, WalkSAT, and Wsat(oip) on increasing permutations generation problemsn WalkSAT DLM Wsat(oip)10 0.275 (0.208) 0.085 (0.067) 0.300 (0.000)20 21.9 (21.8)(8=10) 3.17 (3.33) 8.00 (5.50)30 >83.1(0=10) 49.7 (41.4) 185 (131)40 >115(0=10) >218(0=10) 968 (856)(9=10)50 >144(0=10) >305(0=10) 3276 (3276)(2=10)Table 6DLM, WalkSAT, Wsat(oip) on random permutation generation problemsn WalkSAT DLM Wsat(oip)50 1.29 (1.21) 2.38 (2.36) 170 (169)60 2.20 (2.08) 4.81 (4.67) 3004 (2969)70 3.89 (3.81) 8.04 (7.87) 9239 (9291)80 5.03 (5.04) 12.4 (12.2) 20131 (19707)90 8.11 (7.73) 20.5 (19.3) 36860 (36515)100 24.3 (24.3) 36.4 (33.3) ?case, the number of values pruned in both lazy implementations become tooinsigni�cant to be compared meaningfully. But note that the overhead of thelazy consistency method is low, even when it provides little or no advantage.We give the results of WalkSAT, DLM and Wsat(oip) on the encoded versionsof the same problems in Tables 7.3 and 7.3 for comparison.7.4 Random CSPsTables 7.4 and 7.4 show the results of the LSDL implementations for a set oftight random CSPs which involve arc inconsistency, ranging from 120 to 170variables with domains of size 10 and tightness parameters p1 = 0:6 and p2 =0:75. As pointed out by Achlioptas et al. [29] for random CSPs of this formthere are likely to be many
awed values (their terminology for arc inconsistentvalues) which may be discovered by lazy arc consistency. As in our previousexperimentsLSDL(imp) consistently improves over LSDL(genet). The lazyversions are always substantially better than the non-lazy counterparts onthese problems with signi�cant arc inconsistency.Table 9 shows results of the lazy versions on insoluble random CSPs. For32

Table 7LSDL(genet) on tight random CSPsLSDL(genet) Lazy-LSDL(genet)Problem CPU Time Pruned CPU Timercsp-120-10-60-75 5.93 (7.08) 1009.1 2.88 (2.90)rcsp-130-10-60-75 9.14 (9.14) 1097.8 3.39 (3.40)rcsp-140-10-60-75 9.69 (9.71) 1181.7 3.96 (3.95)rcsp-150-10-60-75 12.6 (12.7) 1267.7 4.60 (4.61)rcsp-160-10-60-75 14.2 (13.9) 1347.8 5.48 (5.51)rcsp-170-10-60-75 21.8 (22.2) 1443.1 8.34 (8.37)Table 8LSDL(imp) on tight random CSPsLSDL(imp) Lazy-LSDL(imp)Problem CPU Time Pruned CPU Timercsp-120-10-60-75 5.95 (6.53) 406.1 1.31 (0.208)rcsp-130-10-60-75 6.98 (7.25) 998.8 3.19 (3.53)rcsp-140-10-60-75 8.20 (9.62) 1066.5 3.69 (4.06)rcsp-150-10-60-75 10.2 (11.4) 1283.2 4.78 (4.78))rcsp-160-10-60-75 9.57 (12.7) 1242.4 5.25 (5.74)rcsp-170-10-60-75 20.1 (20.2) 1311.1 7.71 (8.45)Table 9Lazy-LSDL on random insoluble CSPsLazy-LSDL(genet) Lazy-LSDL(imp)Problem Pruned CPU Time Pruned CPU Timercsp-100-10-70-90 934.6 2.35 (2.34) 907.8 2.35 (2.34)rcsp-110-10-70-90 1025.5 2.84 (2.84) 1000.6 2.86 (2.85)rcsp-120-10-70-90 1116.4 3.39 (3.38) 1093.0 3.43 (3.43)these problems LSDL(genet) and LSDL(imp) (as well as most local searchmethods) always terminate unsuccessfully when the iteration limit is reached,since there is no solution. Lazy arc consistency allows the detection of theinsolubility of the problem (when a variable domain becomes empty) and thusquickly terminates the search.Again, we give the results of WalkSAT, DLM and Wsat(oip) on the encoded33

Table 10DLM, WalkSAT, Wsat(oip) on tight random CSPsProblem WalkSAT DLM Wsat(oip)rcsp-120-10-60-75 5.62 (5.69) 69.6 (81.7) 15772 (16187)rcsp-130-10-60-75 6.61 (6.44) 106 (150) 19295 (13730)rcsp-140-10-60-75 6.41 (6.07) 493 (472) 23413 (15963)rcsp-150-10-60-75 7.00 (6.18) 1118 (700) 42035 (33858)rcsp-160-10-60-75 7.24 (6.37) 1832 (1163)(7=10) 54275 (46533)rcsp-170-10-60-75 10.4 (8.48) 1742 (6.92)(3=10) 45638 (51148)versions of the same problems in Table 7.4 for comparison.7.5 Phase Transition Random CSPsA set of randomly generated binary CSPs close to the phase transition is usedto further verify the e�ciency and robustness of our LSDL instances. Thephase transition random CSPs are generated as follows. According to Smithand Dyer [30], the expected number of solutions of a randomly generatedbinary CSP is given by E(N) = mn(1� p2)n(n�1)p1=2where n is the number of variables, m is the number of values in the domainof each variable, p1 is the constraint density and p2 is the constraint tightness.Following Smith and Dyer [30], we set E(N) to 1 to compute a predictor, p̂2,of the crossover point. We get p̂2 = 1�m�2=((n�1)p1)which is a good prediction of the constraint tightness giving a CSP in thephase transition region. By �xing m to 10 and p1 to 0.6, we get the following34

Table 11LSDL(genet) on phase transition CSPsProblem LSDL(genet) Lazy-LSDL(genet)rcsp-120-10-60-5.9 28.7 (28.7)(1=10) 287 (287)(2=10)rcsp-130-10-60-5.5 >1454(0=10) >1665(0=10)rcsp-140-10-60-5.0 110 (110)(1=10) 1106 (1106)(1=10)rcsp-150-10-60-4.7 >1676(0=10) >1893(0=10)rcsp-160-10-60-4.4 >1753(0=10) >1969(0=10)rcsp-170-10-60-4.1 164 (164)(1=10) >2119(0=10)values of p̂2 for binary CSPs with variables ranging from 120 to 170.n m p1 p2120 10 0.6 0.063130 10 0.6 0.058140 10 0.6 0.054150 10 0.6 0.050160 10 0.6 0.047170 10 0.6 0.044We then randomly generate binary CSPs based on the above parameters and�lter out the insoluble ones. Since the problem size is large, it is not practical toperform an exhaustive search on these problems. We do the insoluble problems�ltering using DLM. If DLM fails to �nd a solution within the execution limit,we generate another problem by reducing the value of p2 by 0.001. This processcontinues until a soluble problem close to phase transition is obtained.Tables 7.5 and 7.5 show the results of di�erent LSDL instances, WalkSAT,DLM and Wsat(oip) on the phase transition random CSPs. Each problemrcsp-n-m-p1-p2 in the table represents a binary CSP with n variables, a uniformdomain size of m, a constraint density of p1% and a constraint tightness ofp2%. In fact these problems were so hard, even for DLM, that very few runsfound a solution, making it di�cult to make any meaningful comparison.To get slightly less di�cult problems, we reduced p2 by 0.001 from the �rstsoluble problem found, and generated random problems until DLM detectedsatis�ability. The results are shown in Tables 7.5, 7.5 and 7.5. For this setof problems LSDL(genet) and LSDL(imp) are approximately equally suc-cessful in �nding solutions, while LSDL(genet) requires less execution time35

Table 12LSDL(imp) on phase transition CSPsProblem LSDL(imp) Lazy-LSDL(imp)rcsp-120-10-60-5.9 >1677.915(0=10) 87.6 (87.6)(1=10)rcsp-130-10-60-5.5 >1971.850(0=10) 205 (205)(1=10)rcsp-140-10-60-5.0 >1992.902(0=10) 2082 (2082)(1=10)rcsp-150-10-60-4.7 >2305.597(0=10) >2570(0=10)rcsp-160-10-60-4.4 >2410.570(0=10) 1842 (1842)(1=10)rcsp-170-10-60-4.1 >2549.323(0=10) 882 (419)(3=10)Table 13WalkSAT, DLM and Wsat(oip) on phase transition CSPsProblem WalkSAT DLM Wsat(oip)rcsp-120-10-60-5.9 >953(0=10) 243 (243)(1=10) 5765 (5765)(1=10)rcsp-130-10-60-5.5 >980(0=10) >1064(0=10) 7558 (7556)(1=10)rcsp-140-10-60-5.0 >978(0=10) 561 (730)(3=10) >3995(0=10)rcsp-150-10-60-4.7 >1001(0=10) >1097(0=10) 4259 (4259)(1=10)rcsp-160-10-60-4.4 >1012(0=10) >1108(0=10) >7647(0=10)rcsp-170-10-60-4.1 >1018(0=10) 921 (921)(1=10) >7626(0=10)Table 14LSDL(genet) on slightly easier phase transition CSPsProblem LSDL(genet) Lazy-LSDL(genet)rcsp-120-10-60-5.8 133 (117)(4=10) 504 (504)(2=10)rcsp-130-10-60-5.4 >1381(0=10) >1569(0=10)rcsp-140-10-60-4.9 115 (50.4)(8=10) 313 (208)(5=10)rcsp-150-10-60-4.6 168 (179)(4=10) 317 (364)(7=10)rcsp-160-10-60-4.3 471 (370)(6=10) 718 (701)(3=10)rcsp-170-10-60-4.0 137 (98.4)(10=10) 158 (96.4)(8=10)to acheive this success. Lazy-LSDL(genet) and Lazy-LSDL(imp) are worsethan their non-lazy counterparts, since lazy arc consistency failed to detectany inconsistencies in all our executions. As we can con�rm from the resultsof DLM, WalkSAT, and Wsat(oip), this set of problems are di�cult for localsearch solvers. The LSDL instances are comparable with the other state ofthe art solvers. DLM is better able to �nd solutions, which is not surprisinggiven it was used to �lter the problems in the �rst place.36

Table 15LSDL(imp) on slightly easier phase transition CSPsProblem LSDL(imp) Lazy-LSDL(imp)rcsp-120-10-60-5.8 387 (387)(1=10) 327 (39.9)(3=10)rcsp-130-10-60-5.4 >1896(0=10) >2117(0=10)rcsp-140-10-60-4.9 194 (48.9)(5=10) 149 (114)(7=10)rcsp-150-10-60-4.6 321 (327)(7=10) 386 (145)(6=10)rcsp-160-10-60-4.3 266 (266)(2=10) 811 (811)(2=10)rcsp-170-10-60-4.0 400 (308)(6=10) 467 (255)(10=10)Table 16WalkSAT, DLM and Wsat(oip) on slightly easier phase transition CSPsProblem WalkSAT DLM Wsat(oip)rcsp-120-10-60-5.8 >934(0=10) 431 (331)(6=10) 6333 (6333)(1=10)rcsp-130-10-60-5.4 >964(0=10) >1045(0=10) >7405(0=10)rcsp-140-10-60-4.9 >963(0=10) 283 (277)(10=10) 2595 (2619)(4=10)rcsp-150-10-60-4.6 >980(0=10) 567 (782)(5=10) 3314 (3314)(2=10)rcsp-160-10-60-4.3 >991(0=10) 389 (349)(4=10) 1457 (1457)(2=10)rcsp-170-10-60-4.0 >994(0=10) 235 (231)(10=10) 2201 (1980)(8=10)7.6 Quasigroup Completion ProblemsThe quasigroup completion problem [31] is a recently proposed CSP thatcombines features of both random problems and highly structured problems.A quasigroup is an ordered pair (Q; �), where Q is a set and (�) is a binaryoperation on Q such that the equations a � x = b and y � a = b are uniquelysolvable for every pair of elements a; b in Q. The constraints on a quasigroupare such that its multiplication table forms a Latin square. This means thatin each row and each column of the table, each element of the set Q occursexactly once. The order N of the quasigroup is the cardinality of the set Q.An incomplete or partial Latin square P is a partially �lled N �N table suchthat no symbol occurs twice in a row or a column. The quasigroup completionproblem (QCP) is the problem of determining whether the remaining entriesof a partial Latin square P can be �lled in such a way that we can obtain acomplete Latin square. The pre-assigned values can be seen as a perturbationto the structure of the original problem of �nding an arbitrary Latin square.A natural formulation of a QCP as a CSP is to model each cell in the N �Nmultiplication table as a variable, each of which has the same domain Q. Pre-37

Table 17LSDL on Latin square problemsProblem LSDL(genet) LSDL(imp)magic-10 0.008 (0.008) 0.008 (0.008)magic-15 0.073 (0.067) 0.035 (0.033)magic-20 0.195 (0.183) 0.098 (0.100)magic-25 0.418 (0.392) 0.257 (0.250)magic-30 1.94 (1.84) 1.32 (1.29)magic-35 6.01 (5.48) 3.82 (3.93)Table 18WalkSAT, DLM and Wsat(oip) on Latin square problemsProblem WalkSAT DLM Wsat(oip)magic-10 0.395 (0.325) 0.125 (0.133) 0.600 (1.00)magic-15 66.7 (65.7)(2=10) 0.985 (0.942) 4.00 (4.00)magic-20 >211(0=10) 6.26 (6.37) 201 (202)magic-25 >295(0=10) 29.4 (29.3) 11218 (11234)magic-30 >396(0=10) 103 (103) 40581 (40698)magic-35 >2100(0=10) ? ?assigned cells have the domains of their corresponding variables �xed to thepre-assigned values. We use disequality constraints (6=) to disallow repetitionof values in the same row or column. We experiment with both Latin squareproblems (or QCPs with no pre-assigned cells) and di�cult QCPs at phasetransitions.Tables 7.6 and 7.6 show the results of solving Latin square problems of sizesranging from N = 10 to N = 35 in steps of 5.LSDL(genet) and LSDL(imp) solve the problems with little di�culty. Again,results of the Lazy-LSDL implementations are not shown since there is noarc inconsistencies in the problems. The results for WalkSAT, DLM, andWsat(oip) are given for comparison.Gomes and Selman [31] identi�es phase transition phenomenon for QCPs withcosts peak occurring roughly around 42% of pre-assignment for di�erent valuesof N . A completely random pre-assignment generates problems that are eithertrivially soluble or trivially insoluble. We randomly choose a variable until agiven percentage of variables is selected. For each selected variable, we ran-domly select a value from its domain. Similar to Meseguer and Walsh [32], if38

Table 19LSDL(genet) on quasigroup completion problemsLSDL(genet) Lazy-LSDL(genet)Problem CPU Time Pruned CPU Timeqcp-15 1.34 (1.18) 1108.4 0.608 (0.592)qcp-16 1.23 (1.32) 1394.6 0.948 (0.958)qcp-17 1.80 (1.91) 1722.8 1.50 (1.54)qcp-18 2.29 (2.16) 2024.8 1.98 (2.10)qcp-19 4.12 (3.95) 2503.5 2.96 (3.03)qcp-20 5.28 (5.62) 2912.9 3.55 (3.53)Table 20LSDL(imp) on quasigroup completion problemsLSDL(imp) Lazy-LSDL(imp)Problem CPU Time Pruned CPU Timeqcp-15 0.472 (0.483) 926.2 0.415 (0.425)qcp-16 0.462 (0.433) 1070.7 0.583 (0.558)qcp-17 0.862 (0.858) 1284.9 0.733 (0.842)qcp-18 0.848 (0.708) 1206.7 0.688 (0.658)qcp-19 2.12 (1.68) 1627.4 1.14 (0.975)qcp-20 1.84 (2.05) 1774.3 1.22 (1.48)the selected value is incompatible with previous assignments or would wipe outthe domain of some other variables using constraint propagation, we select theanother random value from its domain. This process continue until a compati-ble assignment is obtained. Tables 7.6, 7.6 and 7.6 give respectively the resultsof LSDL and others in solving QCPs of orders ranging from 15 to 20 with42% of pre-assignment. This class of problems is harder than their counterpartswithout pre-assignment but it is still relatively easy for all LSDL instances.Since pre-assignment induces arc inconsistency, we include also the results ofLazy-LSDL implementations which again improved the results. Again, theresults for WalkSAT, DLM, and Wsat(oip) are provided for comparison.We note that this class of problems can be more e�ciently solved by systematicsearch methods enforcing generalized arc consistency on the alldifferentglobal constraint [33,34]. The purpose of our experiment is two-fold. First, weshow that LSDL instances and local search methods in general are capableof solving this class of problems encoded using disequality constraints (6=).Second, we use the problems to observe and demonstrate the scaling behaviour39

Table 21DLM, WalkSAT, Wsat(oip) on quasigroup completion problemsProblem WalkSAT DLM Wsat(oip)qcp-15 >82.5(0=10) 1.16 (1.08) 212 (244)(6=10)qcp-16 33.5 (31.4)(4=10) 0.885 (0.758) 133 (129)qcp-17 >96.9(0=10) 1.66 (1.85) 235 (263)(6=10)qcp-18 >103(0=10) 1.97 (2.03) 282 (270)qcp-19 >110(0=10) 2.31 (2.27) 283 (303)(9=10)qcp-20 >116(0=10) 3.21 (3.17) 363 (347)and robustness of our algorithms.8 Related WorkIn recent years, many local search methods have been developed for solvingCSPs and SAT. In the following, we brie
y review some of these methods thatare related to our research.8.1 DLMDLM [11] is a new discrete Lagrange-multiplier-based global-search method forsolving SAT problems, which are �rst transformed into a discrete constrainedoptimization problem. The new method encompasses new heuristics for apply-ing the Lagrangian methods to traverse in discrete space. Experiments con�rmthat the discrete Lagrange multiplier method generally outperforms the bestexisting methods.The LSDL algorithm is closely related to DLM. Although both DLM andLSDL apply discrete Lagrange multiplier methods, there are substantial dif-ferences between them. First, the LSDL procedure consists of �ve degrees offreedom. For example, any objective functions that satisfy the correspondencerequirement can be used, and each Lagrange multiplier can be initialized dif-ferently. On the other hand, DLM does not emphasize this kind of freedom.It always chooses the total number of unsatis�ed clauses of the SAT problemas the objective function, and always initializes the Lagrange multipliers witha �xed value. In addition, DLM employs, on top of the discrete Lagrangiansearch, a number of di�erent tuning heuristics for di�erent problems. For in-stance, it uses an additional tabu list to remember states visited, and resetsthe Lagrange multipliers after a number of iterations.40

Second, LSDL searches on a smaller search space than DLM. Since LSDLis targeted for solving CSPs, the set of constraints, which restrict valid as-signments for CSPs, is incorporated in the discrete gradient. Thus, only validassignments are searched in LSDL. On the contrary, DLM lacks this kindof restriction. Any possible assignments, including those which are invalid forCSPs, are considered. As a result, the e�ciency of DLM is a�ected.Third, the two algorithms use di�erent gradient descent procedures to per-form saddle point search. In DLM, the gradient descent procedure considersall Boolean variables of the SAT problem as a whole and modi�es one Booleanvariable in each update. However, in LSDL, all integer variables can be up-dated at the same time. In addition, the gradient descent procedure of DLMuses the hill-climbing strategy to update the Boolean variables. In this strat-egy, the �rst assignment which leads to a decrease in the Lagrangian functionis selected to update the current assignment. In LSDL, the gradient descentprocedure always modi�es the integer variables such that there is a maximumdecrease in the Lagrangian function.In summary, since the LSDL framework exploits the structure of CSPs, it canbe regarded as a specialization of DLM for solving CSPs.8.2 GSATGSAT [2] is a greedy local search method for solving SAT problems. The al-gorithm begins with a randomly generated truth assignment. It then
ips theassignment of variables to maximize the total number of satis�ed clauses. Theprocess continues until a solution is found. Similar to the min-con
icts heuris-tic [35], GSAT can be trapped in a local minimum. In order to overcome thisweakness, GSAT simply restarts itself after a prede�ned maximum number of
ips are tried.GSAT has been found to be e�cient on hard SAT problems and on someCSPs, such as theN -queens problems and graph-coloring problems [2]. Variousextensions to the basic GSAT algorithm include mixing GSAT with a randomwalk strategy [25,26], clause weight learning [25,36], averaging in previousassignments [25] and tabu-like move restrictions [37]. These modi�cations areshown to boost the performance of GSAT on certain kinds of problems. Latterenhanced implementations of GSAT are known as WalkSAT.41

8.3 WsatAlthough local search algorithms have been successful in solving certain hardSAT problems, many combinatorial problems do not have concise proposi-tional encoding and hence an e�cient SAT problem solver, such as GSAT, can-not be applied. On the other hand, many of these problems, such as schedul-ing, sequencing and time-tabling, can be modeled by linear pseudo-Booleanconstraints, which are linear inequalities with Boolean variables. Walser [38]extended WalkSAT, a successor of GSAT, for handling this kind of pseudo-Boolean constraint systems. Similar to WalkSAT, the resultant algorithm,called Wsat(PB), performs local search on linear pseudo-Boolean constraints.It continues to
ip Boolean variables according to a randomized greedy strat-egy until a satisfying assignment is found or a prede�ned execution limit isreached. However, unlike the SAT problems,
ipping a single Boolean variableis not guaranteed to satisfy a pseudo-Boolean constraint. Therefore, a score isde�ned for each assignment to measure its distance from the solution. In eachmove, Wsat(PB) tries to
ip the variable which decreases the score most.In addition, a history mechanism is implemented to avoid randomness. Whenthere is a tie in variable selection, this history mechanism is activated to re-solve it. Wsat(PB) is also equipped with a tabu memory to avoid
ippingthe same variable in the near future.Various problems, such as the radar surveillance problem and the progressiveparty, are used to evaluate the performance of Wsat(PB). Experiments showthat Wsat(PB) is more e�cient than existing techniques for these domains.Furthermore, handling pseudo-Boolean constraints does not incur much over-head over the propositional case.Walser et al. [27] also generalize Wsat(PB) from handling Boolean variablesto �nite domain integer variables. They introduce Wsat(oip) for solvingover-constrained integer problems. Experiments on the capacitated produc-tion planning show that Wsat(oip) gives better performance than existingcommercial mixed integer programming branch-and-bound solver.8.4 Simulated AnnealingSimulated annealing [39] is an optimization technique inspired by the anneal-ing process of solids. It can escape from local minima by allowing a certainamount of worsening moves. Consider an optimization problem, every possiblestate of the problem is associated with an energy E. In each step of simulatedannealing, the algorithm displaces from current state to a random neighboringstate and computes the resulting change in energy 4E. If 4E � 0, the new42

state is accepted. Otherwise, the new state is accepted with a Boltzmann prob-ability e�4E=T where T is a temperature parameter of the process. At hightemperature T , the Boltzmann probability approaches 1 and the algorithmsearches randomly. As the temperature decreases, movements which improvethe quality of the search are favored. The temperature usually decreases grad-ually according to an annealing schedule. If the annealing schedule cools slowlyenough, the algorithm is guaranteed to �nd a global minimum. However, thistheoretical result usually requires an in�nite amount of time.Some work has been carried out on using simulated annealing to solve CSP's.Johnson et al. [22] investigated the feasibility of applying simulated anneal-ing for solving graph-coloring problems. Selman and Kautz [40] compared theperformance of simulated annealing and that of GSAT on the SAT problems.Since much e�ort expended by simulated annealing in the initial high tem-perature phase is wasted, simulated annealing usually takes a longer time toreach a solution.9 Concluding RemarksThe contribution of this paper is three-fold. First, based on the theoreticalwork of Wah and Shang [11], we de�ne LSDL, a discrete Lagrangian searchscheme for CSPs. Second, we establish a surprising connection between con-straint satisfaction and optimization by showing that the GENET conver-gence procedure, a representative repair-based local search method, is an in-stance of LSDL, denoted LSDL(genet). Third, using the dual viewpointof the GENET as a Lagrangian method and a heuristic repair method weconstruct variant of LSDL(genet). We empirically study these variants andshow improvements of up to 75% and an average improvement of 36% overLSDL(genet). By adding the lazy arc consistency method to LSDL we canachieve additional improvements of almost an order of magnitude for caseswith arc inconsistency, without incurring much overhead for cases withoutarc inconsistency. While demonstrating competitive performance with otherlocal search solvers, the LSDL instances are shown to be robust across thebenchmarks that we test.Local search has always been considered just a heuristic. Results in this papergive the mathematics of local search and represent a signi�cant step forward tothe understanding of heuristic repair algorithms. The gained insight allows usto design more e�cient variants of the algorithms. We conclude the paper witha few interesting directions for future research. First, on the theoretical side, atleast one question remains unanswered: under what condition(s) do the algo-rithms always terminate, if at all? The importance of the question should notbe underestimated although in our experience GENET has always terminated43

for solvable CSPs. Second, the �ve parameters of LSDL suggest ample possi-bilities to experiment with new and better algorithms. It is also interesting toinvestigate if there are other possible parameters for LSDL. Third, it is worth-while to investigate if LSDL can be extended straight-forwardly for e�cientnon-binary constraint-solving along the line of research of E-GENET [41,20].Non-binary constraints are needed for modeling complex real-life applications.Although any non-binary CSP can be transformed to a binary CSP in theory,the resulting CSP is usually too large to be e�ectively and e�ciently solved inpractice. Indeed we have already obtained encouraging preliminary results inextending LSDL for solving non-binary CSPs [21]. Fourth, we can investigatethe extension of LSDL to include other modi�cations of the GENET approachincluding lazy constraint consistency [10] and improved asynchronous variableorderings [42].AcknowledgementsThe work described in this paper was substantially supported by a grant fromthe Research Grants Council of the Hong Kong Special Administrative Region(Project No. CUHK 4302/98E). We are grateful to the fruitful discussions andcomments from Benjamin Wah and Yi Shang. We would like to thank theanonymous reviewers for their comments which undoubtedly helped improvethe paper. Finally, we also thank Yousef Kilani for helping with some lastminute benchmarking needs.References[1] A. K. Mackworth, Consistency in networks of relations, AI Journal 8 (1) (1977)99{118.[2] B. Selman, H. Levesque, D. G. Mitchell, A new method for solving hardsatis�ability problems, in: Proceedings of the Tenth National Conference onArti�cial Intelligence (AAAI-92), AAAI Press/MIT Press, 1992, pp. 440{446.[3] F. Glover, Tabu search part I, Operations Research Society of America (ORSA)Journal on Computing 1 (3) (1989) 109{206.[4] F. Glover, Tabu search part II, Operations Research Society of America (ORSA)Journal on Computing 2 (1) (1989) 4{32.[5] H. M. Adorf, M. D. Johnston, A discrete stochastic neural network algorithmfor constraint satisfaction problems, in: Proceedings of the International JointConference on Neural Networks, San Diego, CA, 1990.44

[6] S. Minton, M. D. Johnston, A. B. Philips, P. Laird, Minimizing con
icts: aheuristic repair method for constraint satisfaction and scheduling problems,Arti�cial Intelligence 58 (1992) 161{205.[7] A. Davenport, E. Tsang, C. Wang, K. Zhu, GENET: A connectionistarchitecture for solving constraint satisfaction problems by iterativeimprovement, in: Proceedings of the Twelfth National Conference on Arti�cialIntelligence (Seattle, WA), 1994, pp. 325{330.[8] P. Morris, The breakout method for escaping from local minima, in: Proceedingsof the Eleventh National Conference on Arti�cial Intelligence (Washington,DC), 1993, pp. 40{45.[9] D. M. Simmons, Nonlinear Programming for Operations Research, Prentice-Hall, Englewood Cli�s, NJ, 1975.[10] P. J. Stuckey, V. Tam, Extending E-GENET with lazy constraint consistency,in: Proceedings of the Ninth IEEE International Conference on Tools withArti�cial Intelligence (ICTAI'97), 1997, pp. 248{257.[11] Y. Shang, B. W. Wah, A discrete Lagrangian-based global-search method forsolving satis�ability problems, Journal of Global Optimization 12 (1) (1998)61{100.[12] Z. Wu, The discrete Lagrangian theory and its application to solve nonlineardiscrete constrained optimization problems, MSc thesis, Department ofComputer Science, University of Illinois (1998).[13] K. Choi, J. Lee, P. Stuckey, A Lagrangian reconstruction of a class of localsearch methods, in: Proceedings of the 10th IEEE International Conference onTools with Arti�cial Intelligence, Taipei, Taiwan, ROC, 1998, pp. 166{175.[14] B. W. Wah, Y. J. Chang, Trace-based methods for solving nonlinear globaloptimization and satis�ability problems, Journal of Global Optimization 10 (2)(1997) 107{141.[15] Y. J. Chang, B. W. Wah, Lagrangian techniques for solving a class of zero-one integer linear problems, in: Proceedings of International Conference onComputer Software and Applications, IEEE, 1995, pp. 156{161.[16] B. W. Wah, Y. Shang, A discrete Lagrangian-based global-search methodfor solving satis�ability problems, in: D.-Z. Du, J. Gu, P. Pardalos (Eds.),Proceedings of DIMACS Workshop on Satis�ability Problem: Theory andApplications, American Mathematical Society, 1997, pp. 365{392.[17] Y. Shang, Global search methods for solving nonlinear optimization problems,Ph.D. thesis, Department of Computer Science, University of Illinois (1997).[18] J. Platt, A. Barr, Constrained di�erential optimization, in: Proceedings ofNeural Information Processing System Conference, 1987.45

[19] B. W. Wah, T. Wang, Y. Shang, Z. Wu, Improving the performance ofweighted Lagrange-multiplier methods for nonlinear constrained optimization,in: Proceedings of the Ninth International Conference on Tools with Arti�cialIntelligence, IEEE, 1997, pp. 224{231.[20] J. H. M. Lee, H. F. Leung, H. W. Won, Towards a more e�cient stochasticconstraint solver, in: Proceedings of the Second International Conference onPrinciples and Practice of Constraint Programming, Springer-Verlag, LNCS1118, Cambridge, Massachusetts, USA, 1996, pp. 338{352.[21] K. M. F. Choi, A Lagrangian reconstruction of a class of local search methods,Master's thesis, Department of Computer Science and Engineering, The ChineseUniversity of Hong Kong (1998).[22] D. Johnson, C. Aragon, L. McGeoch, C. Schevon, Optimization by simulatedannealing: an experimental evaluation; part 2 graph coloring and numberpartitioning, Operations Research 39 (3) (1991) 378{406.[23] P. J. Stuckey, V. Tam, Extending GENET with lazy arc consistency, Tech. rep.,Department of Computer Science, University of Melbourne (1996).[24] P. J. Stuckey, V. Tam, Extending GENET with lazy arc consistency, IEEETransactions on Systems, Man, and Cybernetics 28 (5) (1998) 698{703.[25] B. Selman, H. Kautz, Domain-independent extensions to GSAT: Solvinglarge structured satis�ability problems, in: Proceedings of the ThirteenthInternational Joint Conference on Arti�cial Intelligence (IJCAI-93), 1993, pp.290{295.[26] B. Selman, H. A. Kautz, B. Cohen, Noise strategies for improving local search,in: Proceedings of the Twelfth National Conference on Arti�cial Intelligence(AAAI-94), AAAI Press/MIT Press, 1994, pp. 337{343.[27] J. P. Walser, R. Iyer, N. Venkatasubramanyan, An integer local search methodwith application to capacitated production planning, in: Proceedings of theFifteenth National Conference on Arti�cial Intelligence (AAAI-98), AAAIPress/MIT Press, 1998, pp. 373{379.[28] P. V. Hentenryck, Constraint Satisfaction in Logic Programming, The MITPress, 1989.[29] D. Achliptas, L. M. Kirousis, E. Kranakis, D. Krizanc, M. S. O. Molloy,C. Stamatiou, Random constraint satisfaction: a more accurate picture, in:Proceedings of the Third International Conference on Principles and Practiceof Constraint Programming, Springer-Verlag, 1997, pp. 107{120.[30] B. M. Smith, M. E. Dyer, Locating the phase transition in binary constraintsatisfaction problems, Arti�cial Intelligence 81 (1996) 155{181.[31] C. Gomes, B. Selman, Problem structure in the presence of perturbations, in:Proceedings of the AAAI-97 National Conference, 1997, pp. 221{226.46

[32] P. Meseguer, T. Walsh, Interleaved and discrepancy based search, in:Proceedings of ECAI-98, 1998.[33] P. Shaw, K. Stergiou, T. Walsh, Arc consistency and quasigroup completion,in: Proceedings of the ECAI-98 Workshop on Non-Binary Constraints, 1998.[34] K. Stergiou, T. Walsh, The di�erence all-di�erence makes, in: Proceedings ofthe IJCAI-99, 1999, pp. 414{419.[35] S. Minton, M. D. Johnston, A. B. Philips, P. Laird, Solving large-scale constraintsatisfaction and scheduling problems using a heuristic repair method, in:Proceedings of the Eighth National Conference on Arti�cial Intelligence, AAAIPress/The MIT Press, 1990, pp. 17{24.[36] J. Frank, P. Cheeseman, J. Allen, Weighting for godat: Learning heuristicsfor GSAT, in: Proceedings of the Thirteenth National Conference on Arti�cialIntelligence (AAAI-96), AAAI Press/MIT Press, 1996, pp. 338{343.[37] I. P. Gent, T. Walsh, Towards an understanding of hill-climbing procedures,in: Proceedings of the Eleventh National Conference on Arti�cial Intelligence(AAAI-93), AAAI Press/MIT Press, 1993, pp. 28{33.[38] J. P. Walser, Solving linear pseudo-boolean constraint problems with localsearch, in: Proceedings of the Fourteenth National Conference on Arti�cialIntelligence (AAAI-97), AAAI Press/MIT Press, 1997, pp. 269{274.[39] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, Optimization by simulated annealing,Science 220 (4598) (1983) 671{680.[40] B. Selman, H. Kautz, An empirical study of greedy local search for satis�abilitytesting, in: Proceedings of the Eleventh National Conference on Arti�cialIntelligence (AAAI-93), 1993, pp. 46{51.[41] J. H. M. Lee, H. F. Leung, H. W. Won, Extending GENET for non-binaryCSP's, in: Proceedings of the Seventh IEEE International Conference on Toolswith Arti�cial Intelligence, IEEE Computer Society Press, Washington D.C.,USA, 1995, pp. 338{343.[42] P. Stuckey, V. Tam, Improving GENET and EGENET by new variable orderingstrategies, in: H. Selvaraj, B. Verna (Eds.), Proceedings of InternationalConference on Computational Intelligence and Multimedia Applications, 1998,pp. 107{112.
47

