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Abstract

GENET is a heuristic repair algorithm which demonstrates impressive efficiency
in solving some large-scale and hard instances of constraint satisfaction problems
(CSPs). In this paper, we draw a surprising connection between GENET and dis-
crete Lagrange multiplier methods. Based on the work of Wah and Shang, we pro-
pose a discrete Lagrangian-based search scheme LSDL, defining a class of search
algorithms for solving CSPs. We show how GENET can be reconstructed from
LSEDL. The dual viewpoint of GENET as a heuristic repair method and a discrete
Lagrange multiplier method allows us to investigate variants of GENET from both
perspectives. Benchmarking results confirm that first, our reconstructed GENET
has the same fast convergence behavior as the original GENET implementation,
and has competitive performance with other local search solvers DLM, WalkSAT,
and WsaT(or1p), on a set of difficult benchmark problems. Second, our improved
variant, which combines techniques from heuristic repair and discrete Lagrangian
methods, is always more efficient than the reconstructed GENET, and can better
it by an order of magnitude.

Key words: Constraint satisfaction problems, Local search, Discrete Lagrangian
method.

1 Introduction

A constraint satisfaction problem (CSP) [1] is a tuple (U, D,C), where U is
a finite set of variables, D defines a finite set D,, called the domain of x, for
each x € U, and C' is a finite set of constraints restricting the combination of
values that the variables can take. A solution is an assignment of values from
the domains to their respective variables so that all constraints are satisfied
simultaneously. CSPs are well-known to be NP-hard in general.
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The traditional approach to solving CSPs is a combination of backtracking
tree search and constraint propagation. Various variable and value ordering
heuristics are also used to speed up the search process. Another class of so-
lution techniques is based on local search, for example GSAT [2] and Tabu
Search [3,4]. In the context of constraint satisfaction, local search first gener-
ates an initial variable assignment (or state) before making local adjustments
(or repairs) to the assignment iteratively until a solution is reached. Based
on a discrete stochastic neural network [5], a class of local search techniques,
known as heuristic repair methods and exemplified by the work reported in [6]
and [7], has been shown to be effective in solving some large-scale and some
computationally hard classes of CSPs. Heuristic repair works by performing
variable repairs to minimize the number of constraint violations. As with other
local search algorithms, heuristic repair methods can be trapped in a local
minimum (or local mazimum depending on the optimization criteria), a non-
solution state in which no further improvement can be made. To help escape
from the local minimum, Minton et al. [6] proposed random restart, while
Davenport et al. [7] and Morris [8] proposed modifying the landscape of the
search surface. Following Morris, we call these breakout methods.

While the idea of minimizing conflicts is simple and intuitive, little is known
theoretically about why and how this class of algorithms work at all and
so well, although Minton et al. provide a statistical model and probabilis-
tic analysis of the algorithms for random CSPs. In this paper, we show that
GENET [7] is equivalent to a form of Lagrange multiplier method [9], a well-
known technique for solving constrained optimization problems with a wealth
of literature on its formal properties. We do so by first transforming a CSP
into an integer constrained minimization problems and defining a Lagrangian
function of the transformed problem. This result is useful not just in estab-
lishing a formal characterization of heuristic repair algorithms. It also allows
us to gain important insights into the various design issues of heuristic repair
methods.

Because of the dual viewpoint of GENET as a heuristic repair method and
a discrete Lagrange multiplier method, we can explore variants of GENET
which incorporate modifications from either viewpoint. We introduce LSDL,
a general scheme defining a class of discrete Lagrangian search algorithms for
solving CSPs. We reconstruct GENET as an instantiation (LSDL(GENET))
of the LSDL scheme and explore variations that arise from considering it
as a discrete Lagrange multiplier method. We also show how the lazy con-
sistency optimization [10] developed for GENET (considered as a heuristic
repair method) can be transferred to LSDL in a straightforward manner.
Thus we gain benefits from both viewpoints. Benchmarking results confirm
that our reconstructed GENET has the same fast convergence behavior as
the original GENET implementation. Second, by exploring the design space
of LSDL using simple experiments, we are able to define an improved variant



LSDL(1MP), which combines techniques from heuristic repair and discrete La-
grangian methods. LSDL(IMP) is always more efficient than the reconstructed
GENET, and can better it by an order of magnitude. Third, we demonstrate
that LSDL(GENET), LSDL(IMP), and their lazy versions, are robust across
our benchmark suite, in the sense that without any tuning for the different
problems, they still have acceptable performance.

Wah et al. [11,12] were the first to propose a discrete version of the Lagrangian
theory but their framework and implementation has only been applied to
dealing with SAT problems. Our work is based on their theory, applied to
solving finite domain CSPs. A main contribution of this paper, however, is in
establishing the connection between Lagrangian-based techniques and existing
heuristic repair methods. We show that better algorithms can result from
such a dual viewpoint. An important aim of our work is to devise a suitable
local search solver for embedding in a constraint programming system. We are
interested in algorithms that are good for solving at least an entire class of
problems without user intervention and fine tuning. The best LSDL instances
that we have constructed so far, while efficient, are also shown to be robust
against problem variations. In other words, our method, unlike many local
search solvers does not require tuning of erecution parameters, to achieve
acceptable performance for different problem classes.

The paper, a revised and enhanced version of [13], is organized as follow. The
GENET network is briefly introduced in Section 2, followed by a description of
the discrete Lagrangian formulation of CSPs in Section 3. In the same section,
we give the LSDL search scheme, which is a result of the discrete Lagrangian
formulation. Section 4 discusses the LS DL parameters in details. We show
formally that GENET is an instance of LSDL in Section 5 and discuss how
we created an improved instance of the LSDL scheme. In Section 6, we then
briefly introduce lazy arc consistency before showing how it can be incorpo-
rated in LSDL. Experimental results of the reconstructed GENET and an
improved variant are presented in Section 7 before related work in Section 8.
In Section 9, we summarize our contributions and shed light on possible future
directions of research.

2 A Brief Overview of GENET

The GENET [7] model consists of two components: a network architecture and
a convergence procedure. The former governs the network representation of a
CSP, while the latter formulates how the network is updated in the solution
searching process. While GENET can solve both binary and certain non-binary
constraints, we limit our attention to only the binary subset of GENET.



2.1 Network Architecture

Consider a binary CSP (U, D, ('), a GENET network N representing this
CSP consists of a set of label nodes and connections. Each variable ¢ € U is
represented in GENET by a cluster of label nodes (i,j), one for each value
J € D;. Each label node (i, j) is associated with an output Vi, ;, which is 1 if
value j is assigned to variable 7, and 0 otherwise. A label node is on if its output
is 1; otherwise, it is off. A constraint ¢ on variable 7; and i, is represented by
weighted connections between incompatible label nodes in clusters 7; and i,
respectively. Two label nodes (i1, j1) and (iz, jo) are connected if 1; = j; Aiy =
J2 violates c. Each connection has a weight, initially set to —1. The input I; ;
to a label node (7, j) is:

Lin= > WapwnVien (1)
(R DYEACN i.7))

where A(N, (i, 7)) is the set of all label nodes connected to (7, j) and W jy
is the weight of the connection between (¢, 5) and (k,[). A state S of network
N is a pair (V,W), where V = (... Viigys---) is a vector of outputs for all
label nodes (i,7) in A/ and W = (- s Wi i)y, - - ) s a vector of weights for
every pair of connected label nodes (i, 7) and (k,[). A state is valid if exactly
one label node in each cluster is on. A valid state of a GENET network A
induces a valid variable assignment to the variables of the CSP corresponding
to N. A solution state of a network has the input of all on label nodes being
7Z€ero.

2.2 Convergence Procedure

The convergence procedure shown in Figure 1 defines how a GENET network
changes states and connection weights before it reaches a solution state.

Initially, a label node in each cluster is selected on randomly; other label
nodes are off. GENET performs iterative repair by minimizing the number of
constraint violations using the state update rule. When the network is trapped
in a local maximum, ! the heuristic learning rule is invoked to help the network
escape from the local maximum. A solution is found when all on label nodes
have zero input. In the convergence procedure, a superscript s in a quantity
X, as in X7, denotes the value of X in sth iteration. There are a few points
to note regarding the convergence procedure.

1 When any neighboring state has a total input less than or equal to the current
total input.



procedure GENET-Convergence
begin
initialize the network to a random valid state
loop
% State update rule
for each cluster in parallel do
calculate the input of each label nodes
select the label node with maximum input to be on next
end for
if all label nodes’ output remain unchanged then
if the input to all on label nodes is zero then
terminate and return the solution
else
% Heuristic learning rule
update all connection weights by Wé:;;(kﬂ = W(Si,j)(k,l) — V<f7j>V<2J>
end if
end if
end loop
end

Fig. 1. The GENET Convergence Procedure

First, clusters can be updated in parallel either synchronously or asynchronously.
In synchronous update, all clusters calculate their node inputs and perform
state update at the same time. In asynchronous update, each cluster performs
input calculation and state update independently. Synchronous update can
cause oscillations [7], while, in practice, asynchronous update leads to con-
vergence if the network has solutions. In most sequential implementations,
asynchronous update can be simulated by updating clusters in sequence in a
predefined order.

Second, there could be more than one label node with the maximum input
during a state update. To select the next label node to be on, GENET adopts
the following heuristic rule. Let P be the set of nodes with maximum input.
If the label node currently on is in P, it remains on. Otherwise, rand(P) is
selected to be on, where rand(Y') is a function returning a random element
from a set Y. The state update rule is a direct application of the min-conflict
heuristic [6].

Third, we can associate an energy E(N,S) with every state S for a network

N:

EWN,S)= " > ViayWeaiwenVien- (2)
(i) (R EN

E(N,S8) is always non-positive with negative weights. The energy FE(N,Sp)



Variable: U1 U3 u3

Value:
($%) (N]

@ — on label node
O — off label node

(a) State 1

Variable: U1 U3 u3

Value:
($%) (N]

@ — on label node
O — off label node

(b) State 2

Fig. 2. Example GENET network

of a solution state Sy is always 0, a global maximum value for E(N,S). The
convergence procedure thus carries out an optimization process for the energy

function E(N,S).

Fourth, an iteration constitutes one pass over the outermost loop. W<5i7j><k7l>
denotes the weight of connection between label nodes (7, j) and (k,[) and Vin
denotes the output of label node (2, j) in the sth iteration. Weight update aims
to decrease the energy associated with the local maximum. Thus learning has
the effect of pulling down the local maximum in the search surface. This
learning rule is similar to the breakout method [8].

The CSP, where U = {uy,uz, us}, Dy, = Dy, = Dy, ={1,2,3}and C = {u; <
ug, even(ustus)}, gives a GENET network as illustrated in Figure 2(a). There
are inhibitory connections between any two label nodes which violate one of
the constraints. For example, there is a connection between (usg, 1) and (us, 2)
since this combination of variable assignment violates even(us + us); hence
Wi 1)us,2) = —1 initially. The state illustrated has the label nodes (uy,3),
(u2,2), and (us, 1) on, representing the assignment u; = 3,us = 2,us = 1, and
has energy —2. Updating the us cluster of label nodes proceeds by calculating
Toyny = =1, Ly = —2 and I, 3y = —1 so that one of (uy,1) or (us,3)
should be selected randomly to be on next. Suppose (uz, 1) is selected and
the resulting state is shown in Figure 2(b). This state has energy —1 and is a
local maximum so that updating any cluster further would result in no state
change. Thus the heuristic learning rule is applied, modifying Wy, 3)(u,,1) to
be —2; hence the energy becomes —2 and the network is no longer in a local
maximum. The state update rule can again be applied, trying to maximize
the energy of the network.

As far as we know, the convergence of the GENET procedure is still an open
problem.



3 A Discrete Lagrangian Formulation of CSPs

The energy perspective of the GENET convergence procedure suggests an
optimization approach to constraint satisfaction. This approach allows us to
borrow well-known optimization techniques from the literature. In this section,
we show a transformation for converting any binary CSP into an integer con-
strained minimization problem. A discrete version of the Lagrange multiplier
method [11] is used to solve the resulting minimization problem.

3.1  CSP as Integer Constrained Minimization Problem

An integer constrained minimization problem consists of a set of integer vari-
ables Z, an objective function f(Z) and a set GG of constraints defining the
feasible space of the problem. The goal is to find a global minimum Z* in the
feasible space so that the value of f(Z*) is minimized and each constraint of
(i is satisfied. In the following, we present the transformation that converts a
GENET network into an integer constrained minimization problem.

Given a GENET network A of a binary CSP (U, D, (). Suppose that each
domain D; for all ©+ € U is a set of integers. Each cluster (variable) i of the
GENET network (CSP) is represented by an integer variable z;. The value of
the integer variable z; is equal to y € D; if and only if value j is assigned to
variable i. In other words, Z = (..., z;,...) corresponds to a variable assign-

ment for (U, D, C).

For each connection ({7, 5}, (k,l)) € N, we define an incompatibility function

1, ifZi:j/\Zk:l
i (k) (7) = (3)

0, otherwise

where = (..., z;,...) is a vector of integer variables. The function g jy,1y(2)
returns 1 if value j is assigned to variable ¢ and value [ is assigned to variable
k, and 0 otherwise. Hence, equating g jy(x(7) to 0 is equivalent to forbidding
two connected label nodes (7, j) and (k,[) in the GENET network to be on
at the same time. The incompatibility functions are used as indicators of
constraint violations.

The resultant integer constrained minimization problem has the form,

min f(Z) (4)
subject to



L eD,Yiel (5)
g(i,ﬂ(k,l)(g) = 07 v (<Z7]>7 <k7l>) S (6)

where Z = (..., z,...) is a vector of integer variables and Z is the set of all
incompatible label pairs ((¢,7), (k,{)). The constraints defined in (5) are used
to enforce valid assignments for the CSP. Since the solution space of a CSP is
defined entirely by the constraints (5 — 6), it is equal to the feasible space of the
associated integer constrained minimization problem. The objective function
f(2) serves only to exert additional force to guide solution searching.

The objective function f(Z) is defined in such a way that every solution of
the CSP must correspond to a constrained global minimum of the associated
integer constrained minimization problem (4 — 6). This is called the corre-
spondence requirement. In the following, we present two appropriate objective
functions that fulfill the correspondence requirement. The goal of solving a
CSP is to find an assignment that satisfies all constraints. One possible objec-
tive function, adapted from Wah and Chang [14], is to count the total number
of constraint violations. By measuring the total number of incompatible label
pairs ((i,7),(k,l)) in an assignment, the objective function can be expressed
as

G = 2 diawn(®) (7)

where 2= (..., z;,...) is a vector of integer variables.

Another possibility is the constant objective function

f(Z)=0. (8)

The constant objective function satisfies the correspondence requirement triv-
ially. Basically, this trivial objective function does not help in the search of
solution. We shall show later, however, that this function is related to the

GENET model.

To illustrate the transformation, consider the binary CSP shown in Figure 2(a).
The variables U = {uy, uq, uz} are represented by a vector of integer variables
Z = (21,22, 23). The domains D become constraints z; € {1,2,3},1 < < 3.
The inhibitory connections are represented by incompatibility functions

Gy )(Z) =21 =1 Az =1,
Gl 2y )(Z) =21 =2 N 23 = 1,
Gl 2y (un2)(Z) =21 = 2N 23 = 2,
G 3y (Z) =21 =3 ANz = 1,



Glur 3)(us,2)(Z) =21 = 3N\ 25 = 2,
Glur 3)(us,3)(Z) =21 = 3N\ 25 = 3,
Glus Y us,2)(Z) =22 = 1 A 253 = 2,
Glus,2)(us ) Z) =22 = 2N 25 = 1,
Glus,2)(us,3)(Z) = 22 = 2\ 23 = 3,
Gz 3)us,2)(Z) =22 = 3N 23 = 2.

The transformation is completed by choosing either (7) or (8) as the objective
function. Hence, solving the CSP now becomes finding a constrained global
minimum of the associated integer constrained minimization problem.

3.2 LSDL: A Discrete Lagrange Multiplier Method

The Lagrange multiplier method is a well-known technique for solving con-
strained optimization problems [9]. It provides a systematic approach for han-
dling constraints, while maintaining numerical stability and solution accuracy.
Until recently the method has only been applied to real variable problems. Ini-
tially we converted the resulting integer problems into real variable constrained
optimization problems by introducing additional constraints to restrict the real
variables to hold integer values only [15]. Although this approach is possible,
handling of the additional constraints incurs costly computation making it
useless in practice.

Recently Shang and Wah extended the classical Lagrange multiplier method
to deal with discrete problems [16,11,17]. Consider the integer constrained
minimization problem (4 — 6) transformed from the CSP (U, D, ). Similar to
the classical Lagrange multiplier method [9], the Lagrangian function L(Z, X)
is constructed as

LEZN = D)+ D Mijrn g (?) (9)
(i) (R ET

where 2= (..., z;,...) is a vector of integer variables and X = (s Ay ety - )
is a vector of Lagrange multipliers. Note that the constraints defined by (5),
which serve only to define valid assignments of CSP, are not included in the
Lagrangian function. The constraints will be incorporated in the discrete gra-
dient discussed below.

A constrained minimum of the integer constrained minimization problem (4
— 6) can be obtained by finding a saddle point of the Lagrangian function
L(Z,X). As in the continuous case, a saddle point (Z*,X*) [16,11,17] of the



Lagrangian function L(Z, X) is defined by the condition

(

*

t~
>

Y

JN) < L(Z5 ) < L(ZX) (10)

for all (27, X) and (Z, X*) sufficiently close to (27, X*) In other words, a saddle
point (%, X*) of the Lagrangian function L(Z, X) is a minimum of L(Z, X) in the
Z-space and a maximum of L(Z, X) in the X—space. The relationship between a
constrained minimum of an integer constrained minimization problem and a
saddle point of its associated Lagrangian function is established by the discrete
saddle point theorem, which is restated as follows.

Theorem 1 (Discrete Saddle Point Theorem) [12] A vector of integer
variables Z* is a constrained minimum of the integer constrained minimization
problem

min f(Z)
subject to ¢(2)=0, i=1,....m

where for all i = 1,...,m, ¢;(Z) is non-negative for all possible values of Z' if
and only if there exist Lagrange multipliers X* such that (Z*,X*) constitutes
a saddle point of the corresponding Lagrangian function L(Z, X) = f(2) +
>imy Aigi(Z).

Note that under the conditions of the above theorem it is easy to show (see [12])
that any point (z%, X’) with X > X is also a saddle point of the Lagrangian
function L(Z, X) This means that there is no requirement to decrease Lagrange
multipliers during the search for a saddle point.

The construction of the constrained minimization problem (4 — 6) correspond-
ing to a CSP ensures that each incompatibility function g jyrn(7), for all
((1,7),(k, 1)) € Z, of the problem (4 — 6) are always non-negative. Hence the
discrete saddle point theorem is applicable.

Corollary 2 For a problem of the form (4 — 6) Z* is a constrained minimum

of the problem if and only if there exist Lagrange multipliers X such that
(2%, X%) is a saddle point of the Lagrangian function L(Z,X).

A saddle point of the Lagrangian function L(Z, X) can be obtained by per-
forming descent in the discrete variable space of Z and ascent in the Lagrange

multiplier space of X [18]. Instead of using differential equations, the discrete
Lagrange multiplier method uses difference equations [16,11,17]

Zotl _ 75 GD(A;L(;S, )_\’5)7557 XS,S) (11)
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X=X 4 g(2) (12)

where 7* denotes the value of & in the sth iteration, Az is the discrete gradient,
GD is a gradient descent function and §(Z) = (..., gy (Z), . . .) is a vector
of incompatibility functions.

The discrete gradient Az can be defined as follows. Given a vector of integer
variables Z = (..., z,...), we define the projection operator m;, for all i € U,
as

Wz(g) = Zi, (13)

which gives the ith-component of Z. In other words, m;(Z) returns the integer
variable corresponding to variable ¢ in U. Furthermore, let

Ni(2) ={7" [ (m(Z") € D)) AN(Vj € U= (j # 1) A (mi(Z) = m3(2)))}

be the neighborhood of a point Z along the ith direction. The constraints
defined in (5) are incorporated in the neighborhood N;(Z), for all ¢ € U, to
enforce valid assignment for each integer variable z;. The ¢th component of the
discrete gradient m;(Az), for all © € U, is defined as

7 AzL(ZN) = L(Z,X) — L(Z',X) (14)

where Z/ € N;(Z) and L(Z’,X) < L(Z”,X), for all Z” € N;(Z). The ith com-
ponent of the discrete gradient returns the greatest difference in the value of
the Lagrangian function along the ith direction. If m;(AzL(Z, X)) = 0, then 2
represents a minimum of L(Z, X) along the ith direction. When AzL(Z, X) =0,
either a saddle point or a stationary point has been reached, at which point
the update of Z' terminates.

The gradient descent function G'D returns a differential vector for updating
the integer vector Z according to the discrete gradient Az. It returns 0 when
AzL(Z, X) = 0. In general, the gradient descent function GG'D is not unique. It
may depend not only on the discrete gradient, but also the current position
(7, X) and possibly the iteration number s. We defer discussion on gradient
descent functions until Section 4.4.

The Lagrange multipliers X are updated according to the incompatibility func-
tions. If an incompatible tuple is violated, its corresponding incompatibility
function returns 1 and the Lagrange multiplier is incremented accordingly. In
this formulation, the Lagrange multipliers X are non-decreasing.

A generic discrete Lagrangian search procedure LSDL(f, Iz, Iz, GD,Uy) for

11



procedure LSDL(f, Iz I;,GD,Us)
begin
50
(Iz) initialize the value of Z*
(I3) initialize the value of xe
while (f) L(ZS,XS) — f(Z%) > 0 (Z* is not a solution) do
(GD) 257 25 — GD(A:L(Z5, 1), 25, X%, s)
if (Us) condition for updating X holds then
Nt Xo 4 g(29)
else
Pax! o N
end if
s+ s+1
end while
end

Fig. 3. The LSDL(f, Iz, I3, GD,Us) procedure

solving the integer constrained minimization problems transformed from CSPs
is given in Figure 3.

The LSDL (pronounced as “Lisdal”) procedure performs local search using
the discrete Lagrange multiplier method. LSDL is a specialization of the
generic discrete Lagrangian method described in [11]. It has five degrees of
freedom, namely (f) the objective function, (/z) how the integer vector Z' is
initialized, (/y) how the Lagrange multipliers X are initialized, (GD) the gra-
dient descent function, and (Uy) when to update the Lagrange multipliers X.
Where appropriate, we annotate the algorithm with the parameters in brack-
ets to show where the parameters take effect. The role of each parameter is
discussed in the next section.

4 Parameters of LSDL

LSDL defines a general scheme for a class of algorithms based on the discrete
Lagrange multiplier method. By instantiating LSDL with different parame-
ters, different discrete Lagrangian search algorithms with different efficiency
and behavior are obtained. In this section, we discuss the various parameters

of LSDL in details.

12



4.1 Objective Function

The objective function f(Z) is one of the degrees of freedom of the LSDL
algorithm. As stated before, any function that satisfies the correspondence
requirement can be used. However, a good objective function can direct the
search towards the solution region more efficiently [19]. Two possible objective
functions, presented in Section 3.1, are summarized as follows. First, since the
goal of solving a CSP is to find an assignment that satisfies all constraints,
the objective function, defined in (7),

A= > gpwn®)

((Ga)s (kD)) €T

where 7 is the set of incompatible tuples, reflects the total number of violated
tuples. Second, the constant objective function

f(Z)=0

can also be used.
4.2 Integer Variable Initialization

A good initial assignment of the integer variables Z can speed up search. As
in most local search techniques, the simplest way is to initialize the integer
variables Z randomly in such a way that the constraints (5) are satisfied.
On the other hand, Minton et al. [6] suggest that a greedily generated initial
assignment can boost the performance of the search. Morris [8] points out that
a greedy initialization can generally shorten the time required to reach the first
local minimum. In this case, the initialization procedure iterates through each
component 7;(Z) of the integer vector Z, and selects the assignment which
conflicts with the fewest previous selections.

4.3 Lagrange Multiplier Initialization

Similar to the initialization of integer variables, the Lagrange multipliers X
can also be initialized arbitrarily. Since the update of Lagrange multipliers is
non-decreasing, in general, any non-negative number can be used as the initial
value. One possible way is to initialize all Lagrange multipliers to 1. In this
case, all incompatible tuples have the same initial penalty. Another possibil-
ity is to initialize each Lagrange multiplier differently. For example, different

13



initial values can be used to reflect the relative importance of constraints in
the CSP [20]. If a constraint is known to be more important than the others,
its associated Lagrange multipliers can be assigned a larger initial value.

4.4 Gradient Descent Function

The gradient descent function GGD, which performs gradient descent in the
Z-space, is not unique. One possible gradient descent function, G Dy, can be

defined as follows. Given the discrete gradient AzL(Z, X) Let

Xi={Z|Z€ N(2) A L(Z,X) — L(Z,X) = m(A:L(Z, X))}

be the set of integer vectors belonging to the neighborhood N;(Z) which re-
duce the Lagrangian function L(Z, ) the most. The gradient descent function

G Dgype 1s defined as

. 0, if m(AzL(Z, X)) =0
Ti(GDgyne (AzL(Z,X), 2, X, 8)) = B (15)

mi(Z) — mi(rand(X;)), otherwise

for all « € U (recall that U is the set of variables in the CSP and rand(Y') is
a function returning a random element from a set Y'). The gradient descent
function updates all variables synchronously, since each integer variable z; will
be modified to a value which minimizes L(Z, X) in the neighbourhood N;(%).
The function G Dy, corresponds to what occurs in GENET with synchronous

variable update.

Synchronous update is known to have bad behaviour. A simple form of asyn-
chronous gradient descent is to only update each variable one at a time in

order. Then

GDasyne(D2L(Z,0), 20, 8)) = € - GDyyne (N:L(Z,X), 2,0, 8)  (16)
where j = s mod |U]) 4+ 1

where e; is the unit vector in direction j. Since this gradient descent func-
tion updates each integer variable one by one, it corresponds to the updating
strategy used in most sequential implementations of GENET. Note that since
in each iteration only one (fixed) variable is modified, the computation of
G Dgsyne can be restricted to this direction.

14



Another possible gradient descent function G'Dyy,, is given as follows. Let

X={7|3JeUTeN(Z) N L(ZX) — L(Z,X) = max m;(AsL(Z,\)}

JEU

be the set of integer vectors which reduce the Lagrangian function most in
some direction 1. We define the gradient descent function Dy, as

e o 0, if AZL(Z,X) =10
GDaim (DzL(Z,X0), 2, A, 8) = (17)

Z —rand(X), otherwise

Since each integer vector ¥ in the set X can have at most one component
m;(Z), for some ¢ € U, being different from the current value of Z, only one
variable of the CSP is updated by this gradient descent function. Hence, this
new gradient descent function is similar to the one defined in DLM [16,11,17]
for solving the SAT problems.

4.5  Condition for Updating Lagrange Multipliers

Unlike the continuous case, the updating frequency of the Lagrange multipliers
X can affect the performance of the discrete Lagrange multiplier method [16,11,17].
Thus, the condition for updating the Lagrange multipliers is left unspecified
in LSDL. For example the Lagrange multipliers can be updated either (1) at
each iteration of the outermost while loop, (2) after each |U]| iterations, or
(3) when AzL(Z, X) — 0. Note that the first condition is a direct application
of the strategy used in the continuous case while condition (3) corresponds to
Morris’s breakout method [8]. Condition (2) makes sense with asynchronous
gradient descent, since in |U] iterations all variables have been updated once.

5 GENET Reconstructed

In this section, we show how we can reconstruct GENET using our discrete
Lagrangian approach and then discuss how we improved upon the resulting
LSDL implementation by changing design parameters.

5.1 LSDL(GENET)

Given a binary CSP (U, D, (). The transformation described in Section 3.1 es-
tablishes a one-one correspondence between the GENET network of (U, D, (')
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and the associated integer constrained minimization problem of (U, D, C'). The
GENET convergence procedure can be obtained by instantiating LSDL with
proper parameters. This instance of LSDL, denoted by LSDL(GENET), has
the following parameters:

e f: the constant objective function defined in (8),
e [z the integer vector 7 is initialized randomly, provided that the initial
values correspond to a valid state in GENET,

I5: the values of Lagrange multipliers X are all initialized to 1,

G'D: the gradient descent function GG Dygyn. defined in (16), and
o Us: the Lagrange multiplier A are updated when AzL(Z, ) = 0.

In the following, we prove the equivalence between LSDL(GENET) and the
GENET convergence procedure. Recall that a state S of a GENET network
N is a tuple (‘7, W), where V = (... Viijys--+) is a vector of outputs for
all label nodes (i,7) in A/ and W = (- s Wi jykay, - - ) 1s a vector of weights
for all connections ({7,7),(k,l)) in N. Since, in any GENET state S, each
cluster ¢ can have at most one on label node, we define ¢ = (..., v;,...) as the
variable assignment of a GENET state & such that Vi;,,) = 1 for all 2 € U.
Based on the state update rule of the convergence procedure of GENET and
the definition of the gradient descent function (16), we derive the following
lemma.

Lemma 3 Consider a binary CSP (U, D,C), and its corresponding GENET
network N and integer constrained minimization problem. Suppose both GENET
and LSDL(GENET) use the same random selection function rand(Y'), and, in
the sth iteration, v° = Z° and We = —X°. Then

175+1 — 554—1

Proof: In the sth iteration only a single variable i = (s mod |U]) + 1 is
updated. The remaining variables are unchanged. We show that

vtl=j & 2t =

K3

Consider updating cluster ¢ of the GENET network A" from the sth to the
(s + 1)st iteration. Let A(N, (7, 7)) be the set of all label nodes connected to
(1,7) in GENET network NV, and L; be the set of all label nodes in cluster i
in GENET network . Furthermore, let Zj; be the integer variable vector in
the sth iteration with z = 5 and z} unchanged for all [ # ¢ € U.

s+1 _ -
v =17

S Vit =land Vi3 =0,k # j € D;
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S Y WoneaVem = X W Ve Yk#i €D

(uv) €A (i,5)) (u ) EA(N(5,k))
elx 3 WinuaVim+ 2 (OX > Wé,lxu,@‘/@,@)
(uw) AN (i,5)) I£5€D; (uw)EA(N,(5,1))

+ > VieoWameayVieay 2

((a,b),(c,d)) EN
(a,b),(c,d)EL;

L x Z W@,k><u,u>V<Z,U> + Z (0 X Z W(i’,zxu,@ V(Z,@)
(uw) EA(N (i) I£keD; (uw) EA(N (i1))

+ D VeaWhea Vi, Yk#jeDi

((a,b),(c,d)) EN
(a,b),(c,d)EL;

elx > ANipunVeg + 2 (0X< >Z —Afm><u,v>v<5,v>)
u,v) €

(uw) AN (i,5)) I£5€D; AN (0,0))
+ > Veu(FAanea)\Vin 2

((a,b),(c,d)) EN
(a,b),(c,d)EL;

1 x Z —)\?z’,kﬂu,v)‘/(iﬂ - Z (0 : (u,v) Z _)\?LD(%@V(ZM)

(uwyEA(N (i,k)) I#£keD; EAN,(5,1))
+ Z V(S,b)(_)‘fa,bxc,d))v(id)a Vk#j €D

((a,b),(c,d)) EN
(a,b),(c,d)&Ll‘

& L(Z5, ) < L5, X), Yk #j €D
e m(AL(27,X0) = L(27,X%) = L(Z;, X
Sz € X,

Since both GENET and LSDL(GENET) use the same random selection func-
tion rand(Y'), by the gradient descent function (16), we have

s+1 _ - s+1 _ -
v, =) e 5 =)

The relation between the weights W of the GENET network A" and the La-
grange multipliers A of LSDL(GENET) is given by the following lemma.

Lemma 4 Consider a binary CSP (U, D,C), and its corresponding GENET

network N and integer constrained minimization problem. Suppose, in the sth
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iteration, v* = Z°, W = —X*, and, in the (s + 1)st iteration, ¢t = 71,

Ws—l—l _ _Xs—l—l

Proof: We consider two cases. First, if 75t # ¢ and Z5T! # 7% the con-
ditions for updating the weights W and the Lagrange multiplier A are false.
Therefore,

Ws—l—l — Ws — _Xs — _Xs—l—l‘
Second, if 0*t! = ¢¢ and Z*t! = 7| then, for each ({1, 5), (k,l)) € N,

s+1 _ s s s
Wewn =Wiawy = Vian Vi
== Ay~ Vi Vi
= =Nyt — Gy (27
=~ (Mpen + 9ien(2)

_ s+1
= =G

Combining these two cases, we get Wetl = Yot O

Now, a simple application of Lemma 3 and Lemma 4 results in the follow-
ing theorem, which establishes the equivalence of the GENET convergence
procedure and LSDL(GENET).

Theorem 5 Consider a binary CSP (U, D, ('), and its corresponding GENET

network N and integer constrained minimization problem. Suppose both GENET
and LSDL(GENET) use the same random selection function rand(Y') and they
share the same initial state. For all iteration s, 9° = Z° and W?* = —)°.

Proof: The proof is by induction on iterations. Initially, at s = 0, since both
GENET and LSDL(GENET) share the same initial state,

70 = 20

Furthermore, since W= —Tand X° = f,

Wo = -)°
Therefore, the theorem is true at s = 0.
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Now, suppose at s = ¢, 7' = Z* and Wt = —Xt. By Lemma 3 and Lemma 4,
we have

FHL= 2 and W = )

at s =14+ 1.

By induction, the theorem is true for all iterations s. a

Based on this theorem, we get the following two corollaries. The first corollary
states the relation between the energy of GENET and the Lagrangian function
of LSDL(GENET), while the second corollary gives the terminating properties
of GENET and LSDL(GENET).

Corollary 6 Consider a binary CSP (U, D,C), and its corresponding GENET

network N and integer constrained minimization problem. We have

E(N,S) = —L(Z,X)

where E(N,S) is the energy of GENET and L(Z, X) is the Lagrangian function
of LSDL(GENET).

Proof: Consider the GENET network A and its associated integer con-
strained minimization problem. Let Z be the set of all incompatible tuples.

EWN,S) = > VipWeaimn Vi
(i) (R ET

= > Vi (5Maaen) Vies
(i (ki) ET

=— > Mapendaiwn(?)
(i (ki) ET
=—L(Z,X)

Corollary 7 Consider a binary CSP (U, D,C), and its corresponding GENET
network N and integer constrained minimization problem. GENET terminates
if and only if LCSDL(GENET) terminates.

Proof: Consider the GENET network A and its associated integer con-
strained minimization problem. Let O(N',S) be the set of all on label nodes
of the GENET network A in a state S.
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GENET terminates< I;; jy =0, V(i,7) € O(N,S)
S EWN,8)=0
SL(ZN) =0
& LSDL(GENET) terminates

Similar results can be proven if, in LSDL, we use instead the objective func-
tion f(Z) defined in (7) and initialize A to 0. If, however, we use f(Z) defined
in (7) and initialize A to 1, the Lagrangian function becomes

LiZN) = > gupen@+ D Mg en(?)
(g (FI)ET (g ) (RD)ET

= 2 (T Aanwen) g (?) (18)
(i) (k1)) €T

where 7 is the set of all incompatible tuples. As a result, we have

W=—(T+2). (19)

This version of LSDL is equivalent to GENET with all connection weights
initialized to —2 instead of —1.

5.2 Improving on LSDL(GENET)

LSDL is a generic framework defining a class of local search algorithms based
on the discrete Lagrange multiplier method. By choosing suitable parameters,
different heuristic repair methods can be modeled. The design parameter space
for LSDL is enormous, and in fact can encompass many existing local search
algorithms.

In order to search for a better discrete Lagrangian search algorithm for CSPs,
we have ran a number of different LS DL instances on a set of benchmark
problems to explore the parameter space of LSDL [21]. In each experiment,
different LSDL instances were constructed as follows. A single design pa-
rameter under test was varied in the LSDL implementation. Other design
parameters remained the same as in LSDL(GENET).

Each new variant was tested on a set of N-queens problems, a set of hard
graph-coloring problems from the DIMACS archive [22], and a set of randomly
generated CSPs (different from the ones we use in Section 7) are used. These
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substantial and comprehensive experiments, although by no means exhaustive,
help us to select a good combination of LSDL parameters.

Collecting together all the choices for each single design parameter which led
to the best performance defined our improved LSDL variant which we denote
by LSDL(1MP). The parameters are:

e f: the one defined in (7),

e [z the integer vector 7 is initialized using the greedy algorithm described
in [6],

I5: the values of Lagrange multipliers X are all initialized to 1,

G'D: the gradient descent function GG Dygyn. defined in (16), and

Us: the Lagrange multiplier X are updated after every |U| iterations, where

U is the set of variable in the CSP.

Except the hard graph-coloring instances, the problems we use for explor-
ing the LSDL design parameters were different from the benchmarks used in
Section 7. In this exploration, we only tested the behavior of individual pa-
rameters. In Section 7, we confirm the improved performance of LSDL(IMP)
across a different set of benchmark problems.

6 Extending £LSDL

In the previous discussion, we establish a surprising connection between LSDL
and the GENET model. This connection also suggests a dual viewpoint of
GENET: as a heuristic repair method and as a discrete Lagrange multiplier
method. Hence, we can improve GENET by exploring the space of parameters
available in the LSDL framework. Alternatively, techniques developed for
GENET can be used to extend our LSDL framework.

Arc consistency [1] is a well known technique for reducing the search space of a
CSP. A CSP (U, D,C) is arc consistent if and only if for all variables x,y € U
and for each value u € D, there exists a value v € D, such that the constraint
¢ on variables = and y is satisfied. In the terminology of GENET, a CSP, or
a GENET network A, is arc consistent if and only if for all clusters i,j € U
and for all label nodes (i, k) € A there exists a label node (j,1) € N such that
there is no connection between (i, k) and (j,[) [23,24,10]. Obviously, values
which are arc inconsistent cannot appear in any solution of CSP. Hence, we
are guaranteed that any solution of the original CSP is a solution of the corre-
sponding arc consistent CSP. We say that the original CSP and its associated
arc consistent CSP are equivalent.

Arc consistency gives us a way to remove useless values from the domains
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procedure input(N,S,7)
begin
if inconsistent(z) then
N N — {0l i)} — ({821}, (1,0)) | (6(S,) (s ) € '}
end if
for each cluster j # 1 do
possibly_inconsistent(j) < true
end for
for each label node (i, k) € A" do
for each cluster j # 1 do
if ((1,k),0(S,7)) € N then
Ligy = Lty + Weiskyots.g)
else
possibly_inconsistent(j) < false
end if
end for
end for
for each cluster j # 1 do
inconsistent(j) « inconsistent(j) V possibly_inconsistent(y)
end for
end

Fig. 4. Modified GENET input calculation procedure for lazy arc consistency

of variables. Algorithms, such as AC-3 [1], are usually combined with back-
tracking tree search to increase the efficiency. Similar algorithms can be used
to preprocess a given GENET network N to produce an equivalent arc con-
sistent network. However, since arc consistency is in general a fairly expen-
sive operation, it is beneficial only if the improvement in efficiency is greater
than the overhead of the arc consistency preprocessing phase. Stuckey and
Tam [23,24,10] develop lazy arc consistency for the GENET model to avoid
the preprocessing phase and instead only remove inconsistent values that are

relevant to the GENET search.

Let o(S, 1) be the on label node of cluster ¢ in state S of a GENET network
N. A GENET network A in a state S is lazy arc consistent if and only if
for all clusters i,7 € U there exists a label node (j,k) € N such that there is
no connection between o(S,7) and (j, k) [23,24,10]. Since lazy arc consistency
only enforces arc consistency for the current on label nodes, it can readily be
incorporated in the convergence procedure of GENET.

Figure 4 gives a modified input calculation procedure for cluster i of the
GENET network A in a state S [23,24,10]. The algorithm detects lazy arc
inconsistency during the calculation of inputs of each cluster. When an in-
consistency for the current value of variable ¢ is detected the global variable
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Variable: U1 U3 U3

1,2,3
w L1
=
Uy < Ug E 2
3
@ Uy < Us @
{1,2,3} {1,2,3} @ on label node
(a) The CSP O — off label node

(b) The GENET network

Fig. 5. An arc inconsistent CSP and its corresponding GENET network

“inconsistent(¢)” is set to true. When the variable ¢ is next updated its current
value is removed from its domain.

For example, consider the arc inconsistent CSP and its corresponding GENET
network shown in Figure 5. When calculating the inputs of cluster u;, we
find that each of the label nodes (uy,1), (u1,2) and (uy,3) is connected to
label node (us, 1), the current on label node of cluster us. Hence, value 1 for
variable ug is arc inconsistent with variable wu;, and thus the node (uq, 1) and
its associated connections should be removed from the GENET network.

Since lazy arc consistency is targeted at values that are actually selected dur-
ing the search, which may be much fewer than the entire search space, its
overhead is much smaller than that of arc consistency. Experiments show that
lazy arc consistency improves GENET substantially for CSPs which are arc
inconsistent and does not degrade the performance significantly for problems
which are already arc consistent [23,24,10].

Lazy arc consistency can be incorporated in LSDL in a similar manner. Let
T be the set of all incompatible tuples ((i,7), (k,{)). The modified discrete
Lagrangian search algorithm Lazy-LSDL is shown in Figure 6. Similar to
GENET, the procedure for detecting lazy arc inconsistency can be integrated
in the gradient descent function GGD. For example, lazy arc inconsistency can
be detected during the evaluation of the discrete gradient A z. We state explic-
itly (enclosed in the box) the detection procedure in Lazy-LSDL outside of
G D to show that lazy arc consistency is independent of the gradient descent
function used. In other words, any gradient descent function G'D defined for
LSEDL could be used in Lazy-LSDL without any special modification.

The detection of lazy arc inconsistency, as appeared in Figure 6, is costly. In

our actual implementation, the detection procedure is performed during the
evaluation of the discrete gradient Az. When calculating the ith component
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procedure Lazy-LSDL(N, Iz 13, GD,Us)
begin

s+ 0

(Iz) initialize the value of Z*

([X) initialize the value of X*

while (f) L(ZS,XS) — f(Z%) > 0 (Z* is not a solution) do

for each variable 1 € U do
if Vj #i € U Ak € D; such that ((i,27)),(j,k)) € T then
end if

end for

(GD) 2541 « 75 — GD(AL(Z%,X%), 25, X, s)

if (Us) condition for updating X holds then
Nt Xo 4 g(29)

else
Nl o X

end if

s+ s+1

end while
end

Fig. 6. The Lazy-LSDL(N, Iz, 1;,GD, Us) procedure

of the discrete gradient m;(Az), if we find that all domain values of variable i
are incompatible with the current assignment of integer variable 7;(Z), then
we can remove 7;(Z) from the domain D; of variable j.

7 Experiments

We constructed several LSDL instances for experimentation. They are LSDL(GENET),
LSDL(MP), Lazy-LSDL(GENET), Lazy-LSDL(IMP). In the following, we
compare the efficiency of these instances on five sets of problems: a set of
hard graph-coloring problems from the DIMACS archive [22], a set of per-
mutation generation problems, a set of quasigroup completion problems, a
set of randomly generated tight binary CSPs with arc inconsistencies, and a
set of randomly generated binary CSPs close to the phase transition. We
aim to demonstrate the efficiency and robustness of the LSDL instances
using these benchmarks. The LSDL(GENET) implementation has two pur-
poses. First, LSDL(GENET) serves to verify if LSDL(GENET) has the same
fast convergence behavior of GENET as reported in the literature. Second,
LSDL(GENET) serves as a control in our setup to compare against its vari-
ants.
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In order to have some feeling for the relative efficiency of the LSDL solvers
with respect to other local search techniques, we also show results of DLM [11],
WalkSAT (an improved version of GSAT) [25,26], WSAT(0IP) [27] solving the
same problems, running on the same machine. Fach of these local search tech-
niques solve only SAT problems or over-constrained linear integer program-
ming problems rather than CSPs directly, hence the benchmarks need to be
transformed into appropriate encodings for these solvers (see Section 7.1).
Additionally each of these solvers are designed to have execution parameters
tuned for each problem class they are applied to in order to obtain the best
possible results. For these reasons the comparison with L& DL is not meant to
be definitive, but rather indicative that the LSDL solvers have competitive
performance.

We use the best available implementations of DLM, WalkSAT, and WSAT(OIP)
obtained from the original authors by FTP and execute the implementations
on the same hardware platform (SUN SPARCstation 10/40 with 32M of mem-
ory) as the LSDL implementations. All implementations are executed using
their default parameters as they are originally received, described as follows.
WalkSAT usually flips a variable in a randomly selected unsatisfied clause
which maximizes the total number of satisfying clauses. In every 50 out of
100 flips, however, it chooses a variable in an unsatisfied clause randomly.
DLM uses a tabu list of length 50, a flat move limit of 50 and the Lagrange
multipliers A are reset to A/1.5 in every 10000 iterations. WSAT(OIP) sets
the probability of random move if no improving move is possible to 0.01, the
probability of initializing a variable with zero to 0.5. It is also equipped with
a history mechanism to avoid flipping the same variable in the near future,
and uses a tabu memory of size 1.

Benchmark results of all LSDL implementations are taken on a SUN SPARC-
station 10/40 with 32M of memory. We execute each problem 10 times. The
execution limit of the graph-coloring problems is set to 5 million iterations (1
million iterations for WSAT(OIP) since it takes too long to run), the execution
limit of the phase transition random CSPs is set to 5 million iterations, and
the execution limit of the other problems is set to 1 million iterations. For
some problems some solvers do not succeed in finding a solution within the
preset execution limit. In such cases, we add a superscript (x/10) besides the
timing figures to indicate that only = out of the ten runs are successful. In each
cell, the unbracketed and the bracketed timing results represent respectively
the CPU time for the average and median of only the successful runs. We use
a question mark (?7) to indicate that the execution results in a memory fault.
Unless otherwise specified, all timing results are in seconds and are given to an
accuracy of 3 significant figures. Following the practice in the literature, the
timing results represent only the search time and exclude the problem setup
time (such as reading in the problem specification from a file).
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7.1  Problem Translation

Since none of the solvers we compare against handle CSPs directly they need
to be translated to SAT, for WalkSat and DLM, and integer linear problems
for WsaT(oIP).

We consider two schemes to translate CSPs into SAT. We call the scheme
adopted for encoding graph-coloring problems in the DIMACS archive the
DIMACS translation. Given a binary CSP (U, D,C) and its corresponding
GENET network. We associate each label node (1, j) of GENET with a Boolean
variable b; ;. A Boolean variable b, ;) is true if its associated label node (7, j)
is on and false otherwise. Each connection ({7, j), (k,[)) of GENET is repre-
sented by a clause

Cligyky = 7bizy V =buy,

which states that the label nodes (7, j) and (k,[) cannot be both on simulta-
neously. In addition, there is a clause

C; = b(Z ]1> -V b<i7]‘n>,

where {j1,...,j.} = D;, for each cluster i of GENET to ensure that at least
one label node in each cluster 7 is on. The resultant SAT problem is to find a
truth assignment that satisfies the Boolean formula

A Ci A A Clgyens

€U ((i,j>,<k,l>)€f

where T is the set of all incompatible label pairs ((i,7), (k,()).

Consider the CSP shown in Figure 2(a). According to the above translation,
the CSP is transformed into the following SAT problem,

(Ofur 1y V biur2) V 0(ur3) A (Blua,1y V b 2) V b 3))

(b (ua,1) V b (us,2) V b(us 3)) A (_'b(uhl) Vv _'b(uml)) A (_'b(uh?) Vv _'b(uml))
(_'b (ur,2) V 7 b(u2 2)) A (_'b(u173> Vv _'b(uml)) A (_'b(u173> Vv _'b(um?))
(Tbgur3) V by 8) A (Tbuyay V mbus ) A (T0gu2) V Tbius 1))

( bus.2))

)
> - u3,2 2

_|b u2 2 _‘b<u3 3>) /\ (_|b<u2,3 \/

-

A
A
A
A

where by, 1y, bruy,2)s Oguy 35 Blus1)s Blus,2)s Ofus,3)s Ous 1) bpus 2y and byy, 3y are the
Boolean variables corresponding to the label nodes of the GENET network.
Note that the DIMACS translation allows a variable of CSP to be assigned
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with more than one value since no clauses are used to enforce valid variable
assignment. Thus, the DIMACS translation is inexact.

An ezact translation can be obtained by augmenting the results of a DIMACS
translation with the following clauses

Ciji = =b 5y V =gy,

for each pair 7,1 € D;, to enforce valid assignments for variable 2 of the CSP.
In other words, the resultant SAT problem given by the exact translation is

ANC N~ NN Ca A A Clgw,

€U i€l jleD; ((6,3), (k1)) €T

where 7 is the set of all incompatible label pairs ({7, j), (k,[)). For example,
the same CSP shown in Figure 2(a) is translated to the SAT problem above
with the addition of the constraints

(0gur, 1) V 70y 2)) A (Tbuy2) V Tbuy ) A (50 3y V g 1)
A(Tbguyay V 7y 2y) A (Fbuy2) V 7y 3y) A (Tbgu, 3y V g, 1))
A(=bgus 1y V =g 2y) A (Fbgus 2y V s sy) A (Tbgus 3y V g 1)

While the relative efficiency of these two translations is outside the scope of
the paper, we ran our experiments on both encodings. In the benchmarks
that we use, the WalkSAT and DLM solvers always performed better on the
problems obtained using the DIMACS translation.

To obtain problem specifications for WSAT(0IP), we further translate the re-
sultant clauses into equalities and inequalities as follows. Each clause of the
form

Cliyikty = 7bigy V —beey

is translated to inequality L jy,n
Ei gy + 0tig) + by < 1
for both DIMACS and exact translation. On the other hands, the clauses C;

and C;;, are translated differently. For the DIMACS translation scheme, each
clause of the form



is translated to inequality EZ»DIMACS

EPIMACS:, by + -+ by > 1.

For the exact transaction, each clause Cs = b(; j,y V < -+ V by ;) together with
clauses Cij; = =by; jy V —bgipy, for each pair ¢, 7 € D; is translated to equation

exact
Ei

E?Md . b<27]1> _I_ Cee _|_ b<27]n> = 1

Again, we applied WSAT(OIP) to both versions of the problems. As opposed to
WalkSAT and DLM, WSAT(0IP) consistently performed better on problems
obtained using the exact translation.

In what follows we only report the results for the faster translation: DIMACS
for WalkSAT and DLM, and exact for WSAT(O1P).

7.2 Hard Graph-Coloring Problems

To compare the LSDL implementation of GENET versus the original GENET
implementation and other methods, we investigate its performance on a set
of hard graph-coloring problems. Since this set of benchmarks is well studied
we give published results for local search solvers GENET, GSAT and DLM.
The importance of execution parameter tuning for DLM and WalkSAT was
highlighted to us by these results since we were unable to match the published
results using the default parameter settings.

Table 7.2 shows the experimental results for GENET as described in [7] along
with those for LSDL(GENET) and LSDL(IMP). Table 7.2 shows the results
for DLM, GSAT, WSAT(0IP) on the same set of hard graph-coloring prob-
lems encoded using the DIMACS translation. The figures for DLM and GSAT
are published results [11] (the results for GSAT are also quoted from [11] as
personal communications) while those for WSAT(OIP) are obtained using the
WSAT(OIP) implementation running on the same hardware as LSDL. We omit
the timing for the lazy versions of LS DL since there is no arc inconsistency in
the problems and the performance is similar to that of the non-lazy versions.

Since the published results are obtained from different hardware platforms, we
specify the platforms as well as the platforms’ SPECint92? rating, which is a
way of estimating a machine’s computing power. The timing results of GENET

2 SPECint92 is derived from the results of a set of integer benchmarks, and can be
used to estimate a machine’s single-tasking performance on integer code.
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Table 1

GENET and £SDL on hard graph-coloring problems

GENET LSDL(GENET) LSDL(1mP)

Problem Median Average (Median) Average (Median)

CPU Time CPU Time CPU Time
Platform | SPARC Classic | SPARCstation 10/40 | SPARCstation 10/40

SPECInt92 26.4 50.2 50.2
g125.17 2.6 hrs 4.7 (3.7) mins 3.2 (2.6) mins
g125.18 23 s 4.5 (2.9) s 1.1 (0.925) s
£250.15 125 0.418 (0.408) s 0.328 (0.325) s
£250.29 1.1 hrs 14.6 (15.7) mins 11.3 (12.6) mins
Table 2
DLM, GSAT and WsaT(o1p) on hard graph-coloring problems
DLM GSAT Wsar(o1p)

Problem Average Average Average (Median)

CPU Time CPU Time CPU Time
Platform | SGI Challenge | SPARCstation 10/51 | SPARCstation 10/40

SPECInt92 > 62.4 65.2 50.2

g125.17 23.2 mins 4.4 mins(7/19) 57.8 (57.8) mins(1/10)
£125.18 325 1.98 32.8 (30.5) &
£250.15 2.8s 441 s 1.2 (1.2) hrs
£250.29 | 20.3 mins(%/10) 20.3 mins(%/10) 61.4 (61.4) hrs(1/10)

represent the median of 10 runs collected on a SPARC Classic with SPECint92
rating of 26.4, which is about 2 to 3 times slower than a SPARCstation 10/40
with SPECint92 rating of 50.2. The results for GSAT and DLM are averages of
10 runs on a SPARCstation 10/51 with SPECint92 rating of 65.2 and a SGI
Challenge (model unknown but the SPECint92 rating of the slowest model

SGI Challenge R4400 is 62.4) respectively.

Clearly LSDL(GENET) improves substantially on the original GENET im-
plementation. LSDL(IMP) gives the best timing results across all implemen-
tations (normalized by SpecInt92). This experiment also demonstrates the

robustness of the LSDL instances, which always find a solution.
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7.8  Permutation Generation Problems

The permutation generation problem is a combinatorial theory problem sug-
gested by J.L. Lauriere. As described in [28], given a permutation p on the
integers from 1 to n, we define the vector of monotonies m of size n — 1 as

1, lf Pi+1 > Di
m; =

0, otherwise

forall 1 <:<n — 1. We also define a vector of advances a of size n — 1 as

L, ifp;#pi+1 ApiF#Fnforalll <j<1-1
a; =

0, ifpj#p+1lforalli+1<7<n

for all 1 < ¢ < n — 1. The aim is to construct a permutation of integers
1 to n satisfying conditions of monotonies and advances. The problem can
be modeled as a CSP with n variables, uy,us,...,u,, each has a domain
{1,2,...,n}. The constraints

u; # U

for all 7 # 5 and 1 < 1,5 < n specified that the variables uy, us,...,u, form
a permutation of n. The condition of monotonies m is represented by the
constraints

Uigp1 > uz,lf m; = 1
uipr < ug,if my =0
for all 1 <¢ <n — 1. Similarly, the constraints
V1<j<i—1 uj#u+1 A w #n,ifa; =1
Vi+l1<j<n u #Fu+1, ifa, =0

for all 1 <7 < n — 1 denote the condition of advances a. These problems
involve arc inconsistency.

We experiment with two sets of permutation generation problems. The first
considers the special case of generating an increasing permutation. This prob-
lem is trivial for a complete search method with arc consistency, but difficult
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Table 3
Increasing permutations generation problems

LSDL(GENET) | Lazy-LSDL(GENET) | LSDL(1vmP) | Lazy-LSDL(1mp)
n CPU Time Del CPU Time CPU Time Del CPU Time
10 | 0.033 (0.033) | 29.1 | 0.008 (0.008) | 0.017 (0.017) | 56.3 | 0.008 (0.008)
20 1.07 (1.08) 233 | 0.213 (0.208) | 0.865 (0.867) | 204 | 0.108 (0.117)
30 8.32 (7.80) 618 1.30 (1.33) 6.97 (6.75) 447 | 0.440 (0.375)
40 36.3 (35.6) 1220 | 5.44 (5.37) 26.8 (25.9) 783 1.93 (2.29)
50 107 (106) 1996 | 14.8 (14.9) 85.6 (86.1) | 1291 | 3.84 (2.90)
Table 4
Random permutation generation problems
LSDL(GENET) | Lazy-LSDL(GENET) | LSDL(1mpP) | Lazy-LSDL(1mP)
n CPU Time Del CPU Time CPU Time | Del | CPU Time
50 0.052 (0.050) | 0.6 | 0.065 (0.067) | 0.053 (0.050) | 1.7 | 0.063 (0.058)
60 0.098 (0.092) | 1.2 | 0.107 (0.100) | 0.075 (0.067) | 2.4 | 0.095 (0.092)
70 0.138 (0.117) | 0.2 | 0.157 (0.150) | 0.180 (0.167) | 1.8 | 0.215 (0.208)
80 0.398 (0.383) | 0.5 | 0.543 (0.483) | 0.408 (0.392) | 2.1 | 0.522 (0.508)
90 0.813 (0.800) | 0.6 | 0.902 (0.842) | 0.782 (0.733) | 1.1 | 0.800 (0.808)
100 1.19 (1.22) 1.0 1.17 (1.17) 1.04 (1.01) | 2.9 | 1.06 (1.05)

for local search solvers. In the second set of problems, the monotonies and ad-
vances are randomly generated, and much more difficult for complete solvers.
Tables 3 and 4 show the results for the two sets of problems and give the CPU
times for the alternate LSDL implementations as well as average number of
domain values deleted by the lazy arc consistency versions.

Clearly the addition of lazy arc consistency substantially improves LSDL
when the problems involve a large amount of arc inconsistency (the first set of
problems), for both LSDL(GENET) and LSDL(IMP). By reducing the search
space as computation proceeds we can reduce the computation time by an
order of magnitude. Note that, since the more efficient LSDL(IMP) searches
less of the space, it prunes less values. This illustrates the targeted nature
of lazy arc inconsistency, which works best when large amount of searching
covering much search space is needed.

Problems in the second set are relatively easy for LSDL, all implementations
can solve the problems almost instantly. The fast convergence also implies that
little search effort is performed and few values are pruned. Thus, not much is
gained from the incorporation of the lazy arc consistency technique. In this
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Table 5

DLM, WalkSAT, and WsAT(01P) on increasing permutations generation problems

n WalkSAT DLM WsaTt(o1p)
10 | 0.275 (0.208) | 0.085 (0.067) | 0.300 (0.000)
20 | 21.9 (21.8)(3/19) | 3,17 (3.33) 8.00 (5.50)
30 | >83.1(9/10) 49.7 (41.4) 185 (131)
40 >115(0/10) >218(0/10) 1 968 (856)(9/10)
50 >144(0/10) >3050/19) | 3276 (3276)(2/10)
Table 6
DLM, WalkSAT, WsaT(o1p) on random permutation generation problems
n | WalkSAT DLM Wsat(orp)
50 | 1.29 (1.21) | 2.38 (2.36) | 170 (169)
60 | 2.20 (2.08) | 4.81 (4.67) | 3004 (2969)
70 | 3.89 (3.81) | 8.04 (7.87) | 9239 (9291)
80 | 5.03 (5.04) | 12.4 (12.2) | 20131 (19707)
90 | 8.11 (7.73) | 20.5 (19.3) | 36860 (36515)
100 | 24.3 (24.3) | 36.4 (33.3) ?

case, the number of values pruned in both lazy implementations become too
insignificant to be compared meaningfully. But note that the overhead of the
lazy consistency method is low, even when it provides little or no advantage.

We give the results of WalkSAT, DLM and WSAT(0IP) on the encoded versions

of the same problems in Tables 7.3 and 7.3 for comparison.

7.4 Random CSPs

Tables 7.4 and 7.4 show the results of the LSDL implementations for a set of
tight random CSPs which involve arc inconsistency, ranging from 120 to 170
variables with domains of size 10 and tightness parameters p; = 0.6 and p, =
0.75. As pointed out by Achlioptas et al. [29] for random CSPs of this form
there are likely to be many flawed values (their terminology for arc inconsistent
values) which may be discovered by lazy arc consistency. As in our previous
experiments LSDL(IMP) consistently improves over LSDL(GENET). The lazy
versions are always substantially better than the non-lazy counterparts on
these problems with significant arc inconsistency.

Table 9 shows results of the lazy versions on insoluble random CSPs. For
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Table 7

LSDL(GENET) on tight random CSPs

LSDL(GENET) | Lazy-LSDL(GENET)

Problem CPU Time Pruned | CPU Time
resp-120-10-60-75 5.93 (7.08 1009.1 | 2.88 (2.90)
resp-130-10-60-75 9.14 (9.14 1097.8 | 3.39 (3.40)
resp-140-10-60-75 9.69 (9.71 1181.7 | 3.96 (3.95)
resp-150-10-60-75 12.6 (12.7 1267.7 | 4.60 (4.61)
resp-160-10-60-75 14.2 (13.9 1347.8 | 5.48 (5.51)
resp-170-10-60-75 21.8 (22.2 1443.1 | 8.34 (8.37)

Table 8

LSDL(1MP) on tight random CSPs

LSDL(1mP) Lazy-LSDL(1mp)

Problem CPU Time | Pruned | CPU Time
resp-120-10-60-75 | 5.95 (6.53) 406.1 | 1.31 (0.208)
resp-130-10-60-75 | 6.98 (7.25) 998.8 | 3.19 (3.53)
resp-140-10-60-75 | 8.20 (9.62) | 1066.5 | 3.69 (4.06)
resp-150-10-60-75 | 10.2 (11.4) | 1283.2 | 4.78 (4.78))
resp-160-10-60-75 | 9.57 (12.7) | 1242.4 | 5.25 (5.74)
resp-170-10-60-75 | 20.1 (20.2) | 1311.1 | 7.71 (8.45)

Table 9
Lazy-LSDL on random insoluble CSPs
Lazy-LSDL(GENET) | Lazy-LSDL(1mP)

Problem Pruned | CPU Time | Pruned | CPU Time
resp-100-10-70-90 | 934.6 | 2.35 (2.34) | 907.8 | 2.35 (2.34)
resp-110-10-70-90 | 1025.5 | 2.84 (2.84) | 1000.6 | 2.86 (2.85)
resp-120-10-70-90 | 1116.4 | 3.39 (3.38) | 1093.0 | 3.43 (3.43)

these problems LSDL(GENET) and LSDL(IMP) (as well as most local search
methods) always terminate unsuccessfully when the iteration limit is reached,
since there is no solution. Lazy arc consistency allows the detection of the
insolubility of the problem (when a variable domain becomes empty) and thus

quickly terminates the search.

Again, we give the results of WalkSAT, DLM and WSAT(OIP) on the encoded
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Table 10
DLM, WalkSAT, WsaT(o1p) on tight random CSPs

Problem WalkSAT DLM WsaTt(o1p)
resp-120-10-60-75 | 5.62 (5.69) 69.6 (81.7) 15772 (16187)
resp-130-10-60-75 | 6.61 (6.44) 106 (150) 19295 (13730)
resp-140-10-60-75 | 6.41 (6.07) 493 (472) 23413 (15963)
resp-150-10-60-75 | 7.00 (6.18) 1118 (700) 42035 (33858)
resp-160-10-60-75 | 7.24 (6.37) | 1832 (1163)(7/10) | 54275 (46533)
resp-170-10-60-75 | 10.4 (8.48) | 1742 (6.92)(3/10) | 45638 (51148)

versions of the same problems in Table 7.4 for comparison.

7.5 Phase Transition Random CSPs

A set of randomly generated binary CSPs close to the phase transition is used
to further verify the efficiency and robustness of our LSDL instances. The
phase transition random CSPs are generated as follows. According to Smith
and Dyer [30], the expected number of solutions of a randomly generated
binary CSP is given by

E(N) = mn(l — pz)n(n—l)pl/Q

where n is the number of variables, m is the number of values in the domain
of each variable, p; is the constraint density and ps is the constraint tightness.
Following Smith and Dyer [30], we set E(N) to 1 to compute a predictor, ps,
of the crossover point. We get

by = 1 — m=2/(n=1p)

which is a good prediction of the constraint tightness giving a CSP in the
phase transition region. By fixing m to 10 and p; to 0.6, we get the following
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Table 11
LSDL(GENET) on phase transition CSPs

Problem LSDL(GENET) | Lazy-LSDL(GENET)
resp-120-10-60-5.9 | 28.7 (28.7)(1/19) | 287 (287)(2/10)
resp-130-10-60-5.5 | >1454(0/10) >1665(0/10)
resp-140-10-60-5.0 | 110 (110)1/19 | 1106 (1106)1/10)
resp-150-10-60-4.7 | >1676(°/10) ~1893(0/10)
resp-160-10-60-4.4 | >1753(0/10) >1969(0/10)
resp-170-10-60-4.1 | 164 (164)(1/10) ~2119(0/10)

values of py for binary CSPs with variables ranging from 120 to 170.

nogmop P2

120 | 10 | 0.6 | 0.063
130 | 10 | 0.6 | 0.058
140 | 10 | 0.6 | 0.054
150 | 10 | 0.6 | 0.050
160 | 10 | 0.6 | 0.047
170 { 10 | 0.6 | 0.044

We then randomly generate binary CSPs based on the above parameters and
filter out the insoluble ones. Since the problem size is large, it is not practical to
perform an exhaustive search on these problems. We do the insoluble problems
filtering using DLM. If DLM fails to find a solution within the execution limit,
we generate another problem by reducing the value of py by 0.001. This process
continues until a soluble problem close to phase transition is obtained.

Tables 7.5 and 7.5 show the results of different LSDL instances, WalkSAT,
DLM and WSAT(OIP) on the phase transition random CSPs. Each problem
resp-n-m-pp-py in the table represents a binary CSP with n variables, a uniform
domain size of m, a constraint density of p;% and a constraint tightness of
p2%. In fact these problems were so hard, even for DLM, that very few runs
found a solution, making it difficult to make any meaningful comparison.

To get slightly less difficult problems, we reduced py by 0.001 from the first
soluble problem found, and generated random problems until DLM detected
satisfiability. The results are shown in Tables 7.5, 7.5 and 7.5. For this set
of problems LSDL(GENET) and LSDL(IMP) are approximately equally suc-
cessful in finding solutions, while LSDL(GENET) requires less execution time
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Table 12

LSDL(1MP) on phase transition CSPs

Problem

LSDL(1mP)

Lazy-LSDL(1mp)

resp-120-10-60-5.9

>1677.915(0/10)

87.6 (87.6)(1/19)

resp-130-10-60-5.5

>1971.850(0/10)

205 (205)(1/10)

resp-140-10-60-5.0

>1992.902(0/10)

2082 (2082)(1/10)

resp-150-10-60-4.7

>2305.597(0/10)

>2570(0/10)

resp-160-10-60-4.4

>2410.570(0/10)

1842 (1842)(1/10)

resp-170-10-60-4.1

>2549.323(0/10)

882 (419)3/10)

Table 13
WalkSAT, DLM and Wsat(o1p) on phase transition CSPs
Problem WalkSAT DLM WsaTt(o1p)

resp-120-10-60-5.9 | >953(0/10) | 243 (243)(1/10) | 5765 (5765)(1/10)
resp-130-10-60-5.5 | >980(/10) | >1064(0/10) | 7558 (7556)(1/10)
resp-140-10-60-5.0 | >978(0/19) | 561 (730)(3/10) >3995(0/10)
resp-150-10-60-4.7 | >10010/10) | >1097(0/10) | 4959 (4259)1/10)
resp-160-10-60-4.4 | >1012(%/10) | 571108(0/10) >7647(0/10)
resp-170-10-60-4.1 | >1018(9/10) | 921 (921)(1/10) >7626(0/10)

Table 14

LSDL(GENET) on slightly easier phase transition CSPs

Problem

LSDL(GENET)

Lazy-LSDL(GENET)

resp-120-10-60-5.8

133 (117)(#/10)

504 (504)(2/10)

resp-130-10-60-5.4 | >1381(0/10) >1569(0/10)

resp-140-10-60-4.9 | 115 (50.4)(8/10) 313 (208)(3/10)
resp-150-10-60-4.6 | 168 (179)(4/10) 317 (364)(7/10)
resp-160-10-60-4.3 | 471 (370)(6/10) 718 (701)(/10)
resp-170-10-60-4.0 | 137 (98.4)(10/10) 158 (96.4)(8/10)

to acheive this success. Lazy-LSDL(GENET) and Lazy-LSDL(IMP) are worse
than their non-lazy counterparts, since lazy arc consistency failed to detect
any inconsistencies in all our executions. As we can confirm from the results
of DLM, WalkSAT, and WSAT(OIP), this set of problems are difficult for local
search solvers. The LSDL instances are comparable with the other state of
the art solvers. DLM is better able to find solutions, which is not surprising

given it was used to filter the problems in the first place.
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Table 15
LSDL(1MP) on slightly easier phase transition CSPs

Problem LSDL(vP) | Lazy-LSDL(1mP)

resp-120-10-60-5.8 | 387 (387)(1/10) | 327 (39.9)(3/10)

resp-130-10-60-5.4 | >1896(0/10) >2117(0/10)

resp-140-10-60-4.9 | 194 (48.9)/19) | 149 (114)(7/10)
( ) (7/10) 386 (145)(6/10)
resp-160-10-60-4.3 | 266 (266)(2/10) | 811 (811)(2/10)
(308)

resp-150-10-60-4.6 | 321 (327

resp-170-10-60-4.0 | 400 (308)(6/10) | 467 (255)(10/10)
Table 16
WalkSAT, DLM and Wsat(o1p) on slightly easier phase transition CSPs
Problem WalkSAT DLM Wsat(orp)

resp-120-10-60-5.8 | >934(0/19) | 431 (331)(6/19) | 6333 (6333)(1/10)

resp-130-10-60-5.4 | >964(0/10) | 571045(0/10) >7405(0/19)

resp-140-10-60-4.9 | >963(0/10) | 283 (277)(19/10) | 9595 (2619)(4/10)

(2/10)

resp-150-10-60-4.6 | >980(9/10) | 567 (782)(3/19) | 3314 (3314

1980)(8/10)

)
(3314)
resp-160-10-60-4.3 | >991(0/19) | 389 (349)(4/19) | 1457 (1457)(2/10)
resp-170-10-60-4.0 | >994(/10) | 235 (231)(19/10) | 2201 (1980)

7.6 Quasigroup Completion Problems

The quasigroup completion problem [31] is a recently proposed CSP that
combines features of both random problems and highly structured problems.
A quasigroup is an ordered pair (@Q,-), where ) is a set and (-) is a binary
operation on () such that the equations @ - * = b and y - @ = b are uniquely
solvable for every pair of elements a,b in (). The constraints on a quasigroup
are such that its multiplication table forms a Latin square. This means that
in each row and each column of the table, each element of the set () occurs
exactly once. The order N of the quasigroup is the cardinality of the set ().
An incomplete or partial Latin square P is a partially filled N x N table such
that no symbol occurs twice in a row or a column. The quasigroup completion
problem (QCP) is the problem of determining whether the remaining entries
of a partial Latin square P can be filled in such a way that we can obtain a
complete Latin square. The pre-assigned values can be seen as a perturbation
to the structure of the original problem of finding an arbitrary Latin square.

A natural formulation of a QCP as a CSP is to model each cell in the N x N
multiplication table as a variable, each of which has the same domain (). Pre-
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Table 17
LSEDL on Latin square problems

Problem | LSDL(GENET) | LSDL(1mP)
magic-10 | 0.008 (0.008) | 0.008 (0.008)
magic-15 | 0.073 (0.067) | 0.035 (0.033)
magic-20 | 0.195 (0.183) | 0.098 (0.100)
magic-25 | 0.418 (0.392) | 0.257 (0.250)
magic-30 | 1.94 (1.84) 1.32 (1.29)

magic-35 | 6.01 (5.48) 3.82 (3.93)

Table 18

WalkSAT, DLM and WsaT(o1p) on Latin square problems
Problem WalkSAT DLM WsaTt(o1p)
magic-10 | 0.395 (0.325) | 0.125 (0.133) | 0.600 (1.00)
magic-15 | 66.7 (65.7)(2/19) | 0.985 (0.942) | 4.00 (4.00)
magic-20 >211(0/10) 6.26 (6.37) 201 (202)
magic-25 >295(0/10) 29.4 (29.3) | 11218 (11234)
magic-30 >396(0/10) 103 (103) | 40581 (40698)
magic-35 | >2100(0/10) ? ?

assigned cells have the domains of their corresponding variables fixed to the
pre-assigned values. We use disequality constraints (#) to disallow repetition
of values in the same row or column. We experiment with both Latin square
problems (or QCPs with no pre-assigned cells) and difficult QCPs at phase
transitions.

Tables 7.6 and 7.6 show the results of solving Latin square problems of sizes
ranging from N =10 to N = 35 in steps of 5.

LSDL(GENET) and LSDL(IMP) solve the problems with little difficulty. Again,
results of the Lazy-LSDL implementations are not shown since there is no
arc inconsistencies in the problems. The results for WalkSAT, DLM, and
WSAT(OIP) are given for comparison.

Gomes and Selman [31] identifies phase transition phenomenon for QCPs with
costs peak occurring roughly around 42% of pre-assignment for different values
of N. A completely random pre-assignment generates problems that are either
trivially soluble or trivially insoluble. We randomly choose a variable until a
given percentage of variables is selected. For each selected variable, we ran-
domly select a value from its domain. Similar to Meseguer and Walsh [32], if
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Table 19
LSDL(GENET) on quasigroup completion problems

LSDL(GENET) | Lazy-LSDL(GENET)
Problem CPU Time Pruned | CPU Time
qcp-15 1.34 (1.18) 1108.4 | 0.608 (0.592)
qcp-16 1.23 (1.32) 1394.6 | 0.948 (0.958)
qcp-17 1.80 (1.91) 1722.8 1.50 (1.54)
qcp-18 2.29 (2.16) 2024.8 1.98 (2.10)
qcp-19 4.12 (3.95) 2503.5 | 2.96 (3.03)
qcp-20 5.28 (5.62) 2912.9 | 3.55 (3.53)

Table 20
LSDL(1MP) on quasigroup completion problems

LSDL(1mP) Lazy-LSDL (1mP)
Problem CPU Time | Pruned CPU Time

qcp-19 2.12 (1.68) 1627.4 | 1.14 (0.975)

qep-15 | 0.472 (0.483) | 926.2 | 0.415 (0.425)
qep-16 | 0.462 (0.433) | 1070.7 | 0.583 (0.558)
qep-17 | 0.862 (0.858) | 1284.9 | 0.733 (0.842)
qep-18 | 0.848 (0.708) | 1206.7 | 0.688 (0.658)
(
(

qcp-20 1.84 (2.05) 1774.3 1.22 (1.48)

the selected value is incompatible with previous assignments or would wipe out
the domain of some other variables using constraint propagation, we select the
another random value from its domain. This process continue until a compati-
ble assignment is obtained. Tables 7.6, 7.6 and 7.6 give respectively the results
of LSDL and others in solving QCPs of orders ranging from 15 to 20 with
42% of pre-assignment. This class of problems is harder than their counterparts
without pre-assignment but it is still relatively easy for all LSDL instances.
Since pre-assignment induces arc inconsistency, we include also the results of
Lazy-LSDL implementations which again improved the results. Again, the
results for WalkSAT, DLM, and WSAT(OIP) are provided for comparison.

We note that this class of problems can be more efficiently solved by systematic
search methods enforcing generalized arc consistency on the alldifferent
global constraint [33,34]. The purpose of our experiment is two-fold. First, we
show that LSDL instances and local search methods in general are capable
of solving this class of problems encoded using disequality constraints (#).
Second, we use the problems to observe and demonstrate the scaling behaviour
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Table 21
DLM, WalkSAT, WsaT(0o1pP) on quasigroup completion problems

Problem WalkSAT DLM WsaTt(o1p)
qep-15 >82.5(0/10) 1.16 (1.08) | 212 (244)(6/19)
qcp-16 | 33.5 (31.4)(/10) | 0.885 (0.758) 133 (129)
qep-17 >96.9(0/10) 1.66 (1.85) | 235 (263)(6/19)
qep-18 >103(0/10) 1.97 (2.03) 282 (270)
qep-19 >110(0/10) 2.31 (2.27) | 283 (303)(9/10)
qcp-20 >116(0/10) 3.21 (3.17) 363 (347)

and robustness of our algorithms.

8 Related Work

In recent years, many local search methods have been developed for solving
CSPs and SAT. In the following, we briefly review some of these methods that
are related to our research.

81 DLM

DLM [11] is a new discrete Lagrange-multiplier-based global-search method for
solving SAT problems, which are first transformed into a discrete constrained
optimization problem. The new method encompasses new heuristics for apply-
ing the Lagrangian methods to traverse in discrete space. Experiments confirm
that the discrete Lagrange multiplier method generally outperforms the best
existing methods.

The LSDL algorithm is closely related to DLM. Although both DLM and
LSEDL apply discrete Lagrange multiplier methods, there are substantial dif-
ferences between them. First, the LSDL procedure consists of five degrees of
freedom. For example, any objective functions that satisfy the correspondence
requirement can be used, and each Lagrange multiplier can be initialized dif-
ferently. On the other hand, DLM does not emphasize this kind of freedom.
It always chooses the total number of unsatisfied clauses of the SAT problem
as the objective function, and always initializes the Lagrange multipliers with
a fixed value. In addition, DLM employs, on top of the discrete Lagrangian
search, a number of different tuning heuristics for different problems. For in-
stance, it uses an additional tabu list to remember states visited, and resets
the Lagrange multipliers after a number of iterations.
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Second, LSDL searches on a smaller search space than DLM. Since LSDL
is targeted for solving CSPs, the set of constraints, which restrict valid as-
signments for CSPs, is incorporated in the discrete gradient. Thus, only valid
assignments are searched in LSDL. On the contrary, DLM lacks this kind
of restriction. Any possible assignments, including those which are invalid for
CSPs, are considered. As a result, the efficiency of DLM is affected.

Third, the two algorithms use different gradient descent procedures to per-
form saddle point search. In DLM, the gradient descent procedure considers
all Boolean variables of the SAT problem as a whole and modifies one Boolean
variable in each update. However, in LSDL, all integer variables can be up-
dated at the same time. In addition, the gradient descent procedure of DLM
uses the hill-climbing strategy to update the Boolean variables. In this strat-
egy, the first assignment which leads to a decrease in the Lagrangian function
is selected to update the current assignment. In LSDL, the gradient descent
procedure always modifies the integer variables such that there is a maximum
decrease in the Lagrangian function.

In summary, since the LSDL framework exploits the structure of CSPs, it can
be regarded as a specialization of DLM for solving CSPs.

8.2 GSAT

GSAT [2] is a greedy local search method for solving SAT problems. The al-
gorithm begins with a randomly generated truth assignment. It then flips the
assignment of variables to maximize the total number of satisfied clauses. The
process continues until a solution is found. Similar to the min-conflicts heuris-
tic [35], GSAT can be trapped in a local minimum. In order to overcome this
weakness, GSAT simply restarts itself after a predefined maximum number of
flips are tried.

GSAT has been found to be efficient on hard SAT problems and on some
CSPs, such as the N-queens problems and graph-coloring problems [2]. Various
extensions to the basic GSAT algorithm include mixing GSAT with a random
walk strategy [25,26], clause weight learning [25,36], averaging in previous
assignments [25] and tabu-like move restrictions [37]. These modifications are

shown to boost the performance of GSAT on certain kinds of problems. Latter
enhanced implementations of GSAT are known as WalkSAT.
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8.3 WSAT

Although local search algorithms have been successful in solving certain hard
SAT problems, many combinatorial problems do not have concise proposi-
tional encoding and hence an efficient SAT problem solver, such as GSAT, can-
not be applied. On the other hand, many of these problems, such as schedul-
ing, sequencing and time-tabling, can be modeled by linear pseudo-Boolean
constraints, which are linear inequalities with Boolean variables. Walser [38]
extended WalkSAT, a successor of GSAT, for handling this kind of pseudo-
Boolean constraint systems. Similar to WalkSAT, the resultant algorithm,
called WSAT(PB), performs local search on linear pseudo-Boolean constraints.
It continues to flip Boolean variables according to a randomized greedy strat-
egy until a satisfying assignment is found or a predefined execution limit is
reached. However, unlike the SAT problems, flipping a single Boolean variable
is not guaranteed to satisfy a pseudo-Boolean constraint. Therefore, a score is
defined for each assignment to measure its distance from the solution. In each
move, WSAT(PB) tries to flip the variable which decreases the score most.
In addition, a history mechanism is implemented to avoid randomness. When
there is a tie in variable selection, this history mechanism is activated to re-
solve it. WSAT(PB) is also equipped with a tabu memory to avoid flipping
the same variable in the near future.

Various problems, such as the radar surveillance problem and the progressive
party, are used to evaluate the performance of WSAT(PB). Experiments show
that WSAT(PB) is more efficient than existing techniques for these domains.
Furthermore, handling pseudo-Boolean constraints does not incur much over-
head over the propositional case.

Walser et al. [27] also generalize WSAT(PB) from handling Boolean variables
to finite domain integer variables. They introduce WSAT(0IP) for solving
over-constrained integer problems. Experiments on the capacitated produc-
tion planning show that WSAT(OIP) gives better performance than existing
commercial mixed integer programming branch-and-bound solver.

8.4 Simulated Annealing

Simulated annealing [39] is an optimization technique inspired by the anneal-
ing process of solids. It can escape from local minima by allowing a certain
amount of worsening moves. Consider an optimization problem, every possible
state of the problem is associated with an energy K. In each step of simulated
annealing, the algorithm displaces from current state to a random neighboring
state and computes the resulting change in energy AFE. If AF < 0, the new
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state is accepted. Otherwise, the new state is accepted with a Boltzmann prob-
ability e=2F/T where T' is a temperature parameter of the process. At high
temperature 7', the Boltzmann probability approaches 1 and the algorithm
searches randomly. As the temperature decreases, movements which improve
the quality of the search are favored. The temperature usually decreases grad-
ually according to an annealing schedule. If the annealing schedule cools slowly
enough, the algorithm is guaranteed to find a global minimum. However, this
theoretical result usually requires an infinite amount of time.

Some work has been carried out on using simulated annealing to solve CSP’s.
Johnson et al. [22] investigated the feasibility of applying simulated anneal-
ing for solving graph-coloring problems. Selman and Kautz [40] compared the
performance of simulated annealing and that of GSAT on the SAT problems.
Since much effort expended by simulated annealing in the initial high tem-
perature phase is wasted, simulated annealing usually takes a longer time to
reach a solution.

9 Concluding Remarks

The contribution of this paper is three-fold. First, based on the theoretical
work of Wah and Shang [11], we define LSDL, a discrete Lagrangian search
scheme for CSPs. Second, we establish a surprising connection between con-
straint satisfaction and optimization by showing that the GENET conver-
gence procedure, a representative repair-based local search method, is an in-
stance of LSDL, denoted LSDL(GENET). Third, using the dual viewpoint
of the GENET as a Lagrangian method and a heuristic repair method we
construct variant of LSDL(GENET). We empirically study these variants and
show improvements of up to 75% and an average improvement of 36% over
LSDL(GENET). By adding the lazy arc consistency method to LSDL we can
achieve additional improvements of almost an order of magnitude for cases
with arc inconsistency, without incurring much overhead for cases without
arc inconsistency. While demonstrating competitive performance with other
local search solvers, the LSDL instances are shown to be robust across the
benchmarks that we test.

Local search has always been considered just a heuristic. Results in this paper
give the mathematics of local search and represent a significant step forward to
the understanding of heuristic repair algorithms. The gained insight allows us
to design more efficient variants of the algorithms. We conclude the paper with
a few interesting directions for future research. First, on the theoretical side, at
least one question remains unanswered: under what condition(s) do the algo-
rithms always terminate, if at all¥ The importance of the question should not
be underestimated although in our experience GENET has always terminated
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for solvable CSPs. Second, the five parameters of LSDL suggest ample possi-
bilities to experiment with new and better algorithms. It is also interesting to
investigate if there are other possible parameters for LSDL. Third, it is worth-
while to investigate if LSDL can be extended straight-forwardly for efficient
non-binary constraint-solving along the line of research of E-GENET [41,20].
Non-binary constraints are needed for modeling complex real-life applications.
Although any non-binary CSP can be transformed to a binary CSP in theory,
the resulting CSP is usually too large to be effectively and efficiently solved in
practice. Indeed we have already obtained encouraging preliminary results in
extending LSDL for solving non-binary CSPs [21]. Fourth, we can investigate
the extension of LSDL to include other modifications of the GENET approach
including lazy constraint consistency [10] and improved asynchronous variable
orderings [42].
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