
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2012 255

Postgrid Clock Routing for High Performance
Microprocessor Designs

Haitong Tian, Wai-Chung Tang, Evangeline F. Y.
Young, and C. N. Sze

Abstract—Designing a high-quality clock network is very
important in very large-scale integrated designs today, as it is
the clock network that synchronizes all the elements of a chip,
and it is also a major source of power dissipation of a system.
Early study by Pham et al. in 2006 shows that about 18.1% of
the total clock capacitance was due to this postgrid clock routing
(i.e., lower mesh wires plus clock twig wires). In this paper, we
proposed a partition-based path expansion algorithm to solve this
postgrid clock routing problem effectively. Experimental results
on industrial test cases show that our algorithm can improve over
the latest work by Shelar on this problem significantly by reduc-
ing the wire capacitance by 24.6% and the wirelength by 23.6%.

Index Terms—Clock routing, microprocessor design, postgrid.

I. Introduction

For most chips today, data transfer between different func-
tion units is synchronized by a single global clock signals.
Routing the clock signals under some stringent delay/slew
constraints is one of the most important objectives in designing
a chip. For high-performance microprocessors, a global clock
grid [6]–[10] followed by postgrid routing is used to distribute
clock signals to all elements of the chip. Due to the high
complexity of microprocessor design, a subset of routing
tracks has to be reserved for this postgrid clock routing. Early
studies showed that most of the clock power was due to three
major categories of capacitances—clock load, clock twig, and
clock mesh wires, and clock grid buffers. The postgrid clock
routing wires (i.e., lower mesh wires and clock twig wires)
comprises 18.1% of the total capacitance dissipation [7].
Traditionally, this step is done manually and iteratively to
satisfy the constraints, resulting in a long time to market. This
motivates the research of a fast algorithm to resolve this clock
routing problem effectively.

There have been many clock routing algorithms in the lit-
erature, such as H-tree [1], geometric matching algorithm [4],
exact zero skew algorithm [12], and deferred merge embed-
ding [2]. These algorithms are used in the local clock routing
areas, and there are no tracks reserved in this clock routing
problem. In the postgrid clock routing areas, the routing
tracks on different metal layers are given and routing can
only be done where tracks are available. Therefore, it is

Manuscript received June 9, 2011; revised August 15, 2011; accepted
September 7, 2011. Date of current version January 20, 2012. This paper
was recommended by Associate Editor C.-K. Koh.

H. Tian is with the Department of Electrical and Computer Engineering,
University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA (e-mail:
htian3@illinois.edu).

W.-C. Tang and E. F. Y. Young are with the Department of Computer
Science and Engineering, Chinese University of Hong Kong, Shatin, Hong
Kong (e-mail: wctang@cse.cuhk.edu.hk; fyyoung@cse.cuhk.edu.hk).

C. N. Sze is with the IBM Austin Research Laboratory, Austin, TX 78758
USA (e-mail: csze@us.ibm.com).

Digital Object Identifier 10.1109/TCAD.2011.2170688

impossible to directly employ these traditional methods on
this new routing problem. There is a recent work addressing
the same problem by Shelar [9], [10] and a tree growing (TG)
algorithm is proposed to solve the problem with delay and slew
constraints. In our previous work, a path expansion algorithm
was proposed to effectively solve this problem [11], and this
paper serves as an extension to our previous one.

In the following, problem definition is given in Section II
while our approach is presented in Section III. Finally, ex-
perimental results, comparisons, and discussions are shown in
Section IV, followed by a conclusion in Section V.

II. Problem Definition

In this postgrid clock routing problem, we are given:
1) a set of reserved tracks (including the source grid which
is always on the topmost metal layer) on different metal
layers which have alternate routing directions; 2) the locations
and capacitances of n ports P = {P1, P2, . . . , Pn} on some
lower metal layers; and 3) the types of wires (with different
capacitance/resistance tradeoffs) available on each metal layer.
We assume that the clock grid on the topmost layer provides
zero-skew clock signals. The objective of this postgrid clock
routing problem is to connect all the ports to the sources1 by
making use of the reserved tracks and different wire types so
as to satisfy the constraints on maximum delay bound D2 and
to minimize the total wire capacitance.

Similar to the previous work [10], we do not optimize the
skew directly. This is because the grid-to-ports delay bound
(also upper bound the skew) is very stringent and is set to
be within 5 ps for all the data sets, which is very small
compared with the overall circuit skew budget. Therefore,
it is not necessary to put the skew as another optimizing
objective specifically. We can estimate the slew of signals
using

√
(2.2RC)2 + (Si)2 according to [5], where R and C

denote the resistance and capacitance of the wire segment,
respectively, and Si denotes the input slew. In addition, similar
to [10], we do not consider buffer insertion in this postgrid
clock routing. A very detailed explanation is provided in [10].
In fact, the well-defined grid and reserved tracks make buffer
insertion unnecessary for this postgrid clock routing problem.

III. Our Approach

A graph G is used to model the virtual grid of reserved
routing tracks. The set of vertices contains: 1) the block-
level clock ports (i.e., the sinks); 2) the possible via positions
between reserved tracks on adjacent metal layers; and 3) the
clock sources (which are the vias connecting to the source
grid). The edges in G represent the wire segments on the
reserved tracks connecting ports, vias, or sources.

We devise a partition-based delay-driven path expansion
algorithm to solve this problem. At the very beginning, we
partition the ports into smaller clusters according to some
“boundary lines” of the chip. For each cluster, the ports are

1These sources are vias to the source grid on the topmost metal layer.
2If the clock skew on the grid is nonzero, we can set the delay constraint

D to be the original delay constraint minus the clock skew.

0278-0070/$26.00 c© 2011 IEEE

256 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2012

simultaneously propagated in selected directions. To make
our illustration more clear, we define a new term path in
our approach as follows: a path is a routing between an
intermediate node (a via node or a source node) and a port
along the reserved tracks. During the expansion process, we
always select the path with the smallest Elmore delay (note
that it is the total delay from the last node of the path to
the first node of the path) to be further processed. This path
expansion step are repeated until all the ports are connected,
or no more ports can be connected without violating the delay
constraint. These are the basic steps of our partition-based
delay-driven path expansion algorithm. It is invoked repeatedly
with a preprocessing step to connect up some critical ports
first. Finally, some postprocessing techniques are performed
to further reduce the total wire capacitance. A flow of our
approach is illustrated in Fig. 1.

A. Port Partitioning

In our experiments, we have found that ports rarely connect
to a source grid far from itself in the clock network. With this
observation, we propose a technique to cluster the ports into
several small clusters to speed up the algorithm. The middle
lines of two successive source grids are used as the baselines
to split the chip into smaller partitions. All the ports lie in the
same partition are grouped into one cluster. After grouping the
clusters, we sequentially employ the path expansion algorithm
on those clusters one after another to connect all the ports.

B. Delay-Driven Path Expansion Algorithm

In the delay-driven path expansion algorithm, we propagate
from all the ports in current cluster simultaneously along
the reserved tracks to reach a source. A heap data structure
H is used to store all the currently expanding paths sorted
according to their Elmore delays. At the beginning, the heap
H is initialized with all the ports, which can be regarded as
zero length paths with zero delay.

In each step, we pop up a path p from the heap, which has
the smallest Elmore delay among all the paths in H . If p is not
connected to any source yet, it is expanded vertically up if a
via3 exists at the endpoint last(p) of p or otherwise sideways
(horizontally or vertically, depending on the track direction
of the metal layer the last node of p is lying on) along the
reserved tracks. For these new paths, we will compute their
Elmore delays. Those new paths with Elmore delay smaller
than the delay limit D are inserted into the heap H .

However, if the path p has reached a source, we first check
against the delay constraint. If no violation occurs, p is taken
into our routing solution. Suppose that the path p is expanded
from a port port(p), all the paths originating from port(p) will
be removed from H . Furthermore, we will process every path
q where q intersects with p. All these paths are considered
in a nondecreasing order of their Elmore delays. For each of
these paths q, we check whether connecting q to p lead to

3Note that the capacitance and resistance of the vias are neglected here
for simplicity. The same assumption was made in the previous work [10].
However, the via capacitance and resistance can be easily incorporated into
our framework by considering them when computing the delay of a path.

Fig. 1. Overall flow of our approach.

any delay violation at port(q) or at any port in the current
clock tree. If violation occurs, we just neglect q and consider
the next path. Otherwise, q will be connected to p. We call
these paths which do not come to the top of the heap but are
processed chain paths. Note that once a path is taken into the
routing solution, all the nodes on it are regarded as “sources”
for later expansions, and all the paths originating from the
corresponding port are removed from H .

After a path p is taken into the routing solution, all the paths
that intersect with p are also processed. Denote the partial tree
constructed by path p as Tp. First of all, we initialize a set
chain(p) with all the paths in H that intersect with p. The paths
in chain(p) are sorted in a nondecreasing order according their
Elmore delays. We then do the following steps recursively until
the set chain(p) becomes empty. First, we pop up a path p1

from chain(p) that has the smallest Elmore delay and check
whether connecting p1 to Tp violate the delay constraint for
port(p1) as well as for all the ports in Tp. If yes, p1 is neglected
and the next path in chain(p) is tried. Otherwise, p1 is added
into Tp and all the paths originating from port(p1) are removed
from H . Furthermore, all the paths in H that intersect with p1

are added into chain(p) recursively.

C. Preprocessing to Critical Port Connection

The path expansion algorithm does not guarantee connect-
ing all the ports to the sources successfully, especially when
the user-specified delay constraint is too stringent. If there are
critical ports (far away from sources or with very large port
capacitance) which are harder to satisfy the requirement, it
is better to generate smaller trees for them first before han-
dling others. Therefore, our postgrid clock routing algorithm
involves iterations of the path expansion algorithm and will
identify critical ports that fail to be connected to a source in
the previous iteration.

TIAN et al.: POSTGRID CLOCK ROUTING FOR HIGH PERFORMANCE MICROPROCESSOR DESIGNS 257

We create a set of critical ports Pc which is initialized as
empty φ. We first invoke the path expansion algorithm on
the set of ports in Pc before employing the algorithm on the
remaining ports P − Pc. This gives the critical ports a higher
priority to be routed to the sources. Note that these remaining
ports may also be connected to the trees constructed for the
critical ports. After that, all the ports that cannot be routed to a
source in this round are added to Pc. Priorities also exist in Pc

in which a higher priority is given to those most recently added
ports. We repeat these steps until all the ports are connected
or the number of iterations exceeds a user-defined limit K.4

D. Postprocessing for Capacitance Reduction

For all test cases, there are two types of wires on each layer
with capacitance and resistance tradeoffs.5 The first type has
higher capacitance but lower resistance per unit length, while
the second type has lower capacitance but higher resistance
per unit length. The per unit length delay of type-one wire
is less than that of type-two wire on all layers. In our path
expansion algorithm, we first use type-one wire on all layers
to optimize delay as much as possible. A postprocessing step is
then performed to reduce the total wire capacitance as long as
the delay constraint is maintained by replacing the wire types.
Two techniques, wire replacement and topology refinement,
are invoked in this postprocessing step.

1) Wire Replacement: This refinement process is employed
on all trees in the clock network one after another with the
following steps. First, all the terminal ports in the current
tree are stored in a pool Px in which they are sorted in a
nondecreasing order of their Elmore delays, and the port Pl

with the largest delay in the tree is recorded. The ports in Px

are sequentially processed. Without loss of generality, let us
assume that the currently processing port is Pi, and the node
Pj is the parent node of Pi in the tree. We use e(Pi) to denote
the edge connecting Pi and Pj . We first check whether any
violation occurs if e(Pi) is replaced by the second type of
wire. If not, we replace it with the second type of wire and
set Pi = Pj . This step is repeated until the delay constraint is
violated at any port in the current tree, or when Pi becomes an
ancestor of the node Pl (since we do not want to increase the
largest delay in this tree). Port Pl is processed after all other
ports in the tree have been explored. In our implementation,
this process is repeated three times, as we find that running
more iterations of this wire replacement process brings little
or no capacitance reduction.

2) Topology Refinement: In the path expansion algorithm,
we expand a path p upward if the end node of p is a via
connecting the upper layer. Besides, chain paths are greedily
processed as long as the delay bound is maintained. Thus,
there are chances to bring down the capacitance by changing
the topology of the initially clock network. To achieve this,
we employ a topology refinement step on all terminal ports as
follows. First, all the ports that are terminal nodes in the trees
are sorted in a nonincreasing order of their Elmore delays in

4In this case, the algorithm fails to converge to a feasible solution. Note
that this may happen when the delay constraint is too stringent.

5Our algorithm can also handle the case that multiple types of wire are
available on each layer.

a port pool Py. These ports are sequentially processed in the
algorithm. By using this order, we can work on the port with
longer delays first before processing other relatively easier
ones. For any port Pi being processed, we first disconnect
Pi from the tree it is currently connecting to, and record the
total wire capacitance Cb of the removed path pi. A new
path expansion algorithm is invoked at Pi which is different
from the previous path expansion algorithm that: a) only
the second type of wire is used during the path expansion;
b) paths are expanded in all possible directions; and c) the path
with the minimum wire capacitance (instead of the minimum
wire delay) are always selected and processed first. New paths
with wire capacitance less than Cb are inserted into the heap.
Once a path reaches a source or a tree (note that all trees are
connected to sources now), we check whether delay violation
occurs if the new path is taken. This new path is taken if no
violation occurs. Otherwise, we continue the modified path
expansion algorithm until another path reaches a source or
a tree, or when all the paths are exhausted. If all the paths
are explored but no path is successfully connected, we simply
restore the original path pi. The above steps are repeated three
times in our implementation.

E. Extension to Handle Large Load Capacitances

In practice, there are cases in which a small number of ports
have exceptionally large capacitances that even its shortest
connection to the source will have a delay exceeding the limit
D. To handle these special cases, we extend our algorithm to
first connect those problematic ports by a nontree structure to
bring down the delay to be within the limit D.

To identify problematic ports, we sequentially expand each
port toward all directions to find a path connecting to a source
with the smallest Elmore delay. This Elmore delay is the lower
bound delay one can achieve using any tree structures. If it
is larger than the delay limit D, the port is classified as a
problematic port. This step is used to identify all problematic
ports. Consider a particular problematic port Pe, after we make
a shortest path connection p1 for port Pe, we will do the
following steps to create a nontree structure. We expand from
the first node nl of p1 in the opposite direction to find another
nearest source. Let p2 be the new path. p2 will be taken into
the routing solution if it helps in reducing the delay of Pe.
All the crosslinks between p1 and p2 (note that crosslinks can
only exist at locations with reserved tracks) are recorded and
examined. The computational model in [3] is used to calculate
the delays when crosslinks exist. All the crosslinks that can
reduce the delay of Pe are taken into the routing solution
one by one until the delay constraint is met, or when all the
crosslinks are exhausted. If the delay is still violated after
adding all the crosslinks, we will set nl = parent(nl) and repeat
the above steps recursively with one edge up the original path
p1 to find more sources and crosslinks.

After handling all the problematic ports, other ports will be
handled. Note that we also allow other ports to connect to
the nontree structures, as long as the delay constraint is not
violated and the computational model in [3] is used to check
the delay constraints.

258 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2012

TABLE I

Comparisons with TG

Test No. k Capacitance WL Delay Runtime
Cases Sinks (pf) (mm) (ps) (s)

TG Ours1 Improve Ours TG Ours1 Improve Ours TG Ours1 Ours
x1 x2

x1−x2
x1

% y1 y2
y1−y2

y1
%

test1 300 5 3.3 2.6 (2.8) 20.9 (16.0) 2.3 12.6 10.0 (10.6) 20.1 (15.5) 10.6 0.45 0.02 0.24 0.20

test2 1846 96 13.7 9.7 (10.8) 29.2 (21.1) 5.0 42.9 32.3 (35.6) 24.8 (17.2) 33.7 1.15 0.10 1.39 1.54

test3 836 33 8.1 5.1 (5.8) 36.7 (28.2) 4.2 32.2 20.6 (23.1) 36.7 (28.4) 22.4 0.80 1.35 2.66 2.47

test4 502 26 5.3 4.0 (4.5) 23.8 (14.5) 1.6 12.4 9.5 (11.0) 22.8 (10.8) 9.9 1.35 0.03 1.51 1.62

test5 137 11 1.4 1.1 (1.2) 21.0 (16.3) 0.5 3.4 2.7 (3.1) 19.4 (10.6) 2.8 1.10 0.01 0.08 0.09

test6 724 16 7.9 5.7 (6.1) 27.0 (21.8) 2.5 18.8 14.2 (15.5) 24.6 (17.5) 14.6 1.25 0.05 0.48 0.57

test7 981 11 9.9 7.5 (8.2) 23.8 (17.2) 3.0 23.2 17.9 (19.9) 22.9 (14.0) 17.9 1.45 0.05 0.61 0.76

test8 538 16 5.9 4.4 (4.8) 24.6 (17.9) 1.8 14.1 10.8 (12.3) 23.8 (13.1) 10.8 1.80 0.04 0.37 0.45

test9 1915 21 19.9 14.3 (15.7) 28.3 (21.3) 5.2 46.1 33.1 (37.1) 28.0 (19.4) 32.6 2.75 0.13 2.04 2.44

test10 1134 21 10.7 8.6 (9.3) 19.6 (12.5) 3.2 25.8 20.1 (22.1) 22.2 (14.6) 19.6 1.90 0.09 7.15 7.44

test11 724 11 6.6 4.9 (5.4) 25.0 (18.0) 1.8 13.5 10.5 (11.4) 23.3 (15.5) 10.4 1.05 0.04 1.76 1.87

test12 225 11 2.5 2.0 (2.1) 20.1 (13.8) 0.8 6.3 4.9 (5.4) 21.9 (13.7) 4.9 1.30 0.01 0.14 0.17

test13 859 16 9.5 7.2 (7.6) 24.1 (19.3) 3.2 24.1 18.8 (20.4) 22.2 (15.3) 19.0 1.10 0.06 0.62 0.75

test14 366 11 3.9 3.1 (3.3) 20.7 (15.9) 1.3 9.5 7.8 (8.5) 18.3 (10.7) 8.0 0.95 0.04 0.25 0.29

Average 792 7.7 5.7 (6.3) 24.6 (18.1) 2.6 20.4 15.2 (16.9) 23.6 (15.5) 15.5 0.14 1.38 1.48

Both TG and Ours1 use just type one wire on every layer.
“Ours” represents our regular approach of possibly using both types of wire on each layer.
The figures inside the brackets denote the results before the postprocessing techniques.
k denotes the number of partitions in the test case.

IV. Experimental Results

The path expansion algorithm is implemented in C++ and all
the experiments are carried out on a Linux machine with 4 GB
RAM and a Pentium 4 microprocessor running at 3.2 GHz.
We also implemented the TG approach in [10] using C++ for
comparisons. In the experiments, we assume that the slew of
the source signals is 10 ps. The first three test cases (test1–
test3) are provided by industry. The remaining 11 test cases
are modified from the benchmarks used in the ISPD 2010
clock tree synthesis contest, with the grid set according to the
conventions used in the first three industrial test cases, and
with tracks added regularly across the whole chip area.

A. Comparisons with the TG Approach

Since the approach in [10] considers only one type of wire
on each layer, we compare the results of our approach using
just the first type of wire on every layer (without the wire
replacement step and use only type one wire in all steps)
with the results of [10] using the first type of wire on every
layer. In these experiments, we first get the lowest achievable
delays of TG empirically on all the test cases and use these
delays as our delay bounds. The results are shown in Table I.
Columns 3 and 7 show the total wire capacitance and the
total wirelength (WL) of TG. The results of our approach
are shown in columns 4 and 8. On average, our approach
provides a 24.6% improvement in the total wire capacitance
and a 23.6% improvement in the total WL compared with TG,
respectively (without postprocessing, the figures are 18.1%
and 15.5%, respectively). The runtimes of both algorithm are
shown in the last two columns. As we can see that though
our approach is slower, the runtimes are still very practical.
For all the test cases, the runtimes of our approach are within
seconds. On average, the major path expansion algorithm, the
topology refinement step, and the wire replacement step take
44%, 31%, and 25% of the total runtime, respectively.

TABLE II

Nontree Algorithm

Test C WL D T k Dmin Improve
Cases (pf) (mm) (x ps) (s) k (y ps) (y−x

y
%)

ntest1 2.4 11.1 0.45 0.1 3 0.68 33.8

ntest2 6.5 36.7 0.45 1.0 3 0.71 36.6

ntest3 5.1 25.2 0.60 3.3 3 0.51 −18.5

ntest4 2.0 11.3 1.00 1.0 3 1.26 20.8

ntest5 0.7 3.2 1.03 0.1 3 1.29 20.3

ntest6 3.5 17.6 0.66 0.5 3 1.25 47.0

ntest7 3.3 20.0 1.35 0.8 3 2.02 33.3

ntest8 2.1 12.5 1.30 0.2 3 1.98 34.4

ntest9 6.2 38.0 2.00 3.5 3 2.42 17.4

ntest10 3.6 22.1 1.80 3.1 3 2.33 22.6

ntest11 2.3 12.1 0.80 3.2 3 1.24 35.4

ntest12 0.9 5.5 1.70 0.1 3 1.65 −3.0

ntest13 3.5 20.7 1.25 0.4 3 1.35 7.2

ntest14 1.8 9.5 0.58 0.3 3 0.98 40.8

Ave. 3.1 17.5 1.3 3 23.4

k denotes the number of problematic ports in the test case.

If we allow both types of wires on each layer, further
reduction in wire capacitance can be obtained and the results
are shown in column 6, 10, and 14 of Table I. We can see
that our approach can make good use of the availability of
different wire types to further reduce the capacitance.

B. Runtime Improvement with Acceleration Techniques

To demonstrate the effectiveness of our proposed partition-
based path expansion algorithm, we also compare its results
with the algorithm without the partition technique. The results
are shown in Table III.

We can see that our proposed partition-based acceleration
technique can further improve the runtime by 26.1% on
average while maintaining approximately the same solution
quality. The largest run time improvement is over 48% while
the average improvement is 26.1%. These results clearly show
the effectiveness of this technique.

TIAN et al.: POSTGRID CLOCK ROUTING FOR HIGH PERFORMANCE MICROPROCESSOR DESIGNS 259

TABLE III

Runtime Comparisons

Test Capacitance Runtime Delay
Cases (pf) (s) (ps)

PE* PE
PE* PE Improvement
x1 x2

x1−x2
x1

%

test1 2.61 2.61 0.27 0.24 9.8 0.45

test2 9.68 9.67 2.72 1.39 48.9 1.15

test3 5.16 5.12 3.01 2.67 11.5 0.80

test4 4.01 4.00 2.89 1.51 48.0 1.35

test5 1.09 1.09 0.09 0.08 11.8 1.10

test6 5.73 5.73 0.68 0.48 29.2 1.25

test7 7.50 7.51 1.00 0.61 38.8 1.45

test8 4.45 4.45 0.50 0.37 25.2 1.80

test9 14.28 14.26 3.27 2.04 37.7 2.75

test10 8.60 8.59 6.92 7.15 −3.4 1.90

test11 4.93 4.92 2.95 1.76 40.5 1.05

test12 1.98 1.98 0.17 0.14 16.0 1.30

test13 7.20 7.19 0.93 0.62 33.0 1.10

test14 3.10 3.10 0.30 0.25 17.8 0.95

Ave. 5.74 5.73 1.84 1.38 26.1

PE* denotes the original algorithm without partitioning technique.

C. Results of the Nontree Extension

To validate the effectiveness of our proposed nontree algo-
rithm, we further generate 14 test cases from the original ones
(the new test cases have their names starting with an “n”).
These new test cases are generated as follows. We first sort
the ports according to their minimum Elmore delays, which
is the delay when a port is connected to its nearest source
directly. Then we increase the capacitances of the first three
ports in the list so that their minimum delays increase by at
least 50%. Detailed results are shown in Table II.

Total capacitance, total WL, delay limits, runtime, and
the number of problematic ports are shown in columns
2–5, respectively. The delay limit D is got empirically for all
test cases. The second last column Dmin in Table II shows the
minimum delay of the problematic ports when they are con-
nected to the nearest source directly. Therefore, these are the
lower bound delays achievable using a tree structure. We can
see that our nontree approach can further reduce the delay by
23.4% on average. This clearly demonstrates the effectiveness
of our proposed nontree algorithm.

D. Reducing Routing Resources

We want to see what happens when routing resources are
reduced in the test cases. We reduce half of the routing tracks
on metal layer 4 in test2 and run our algorithm on the new
test case. The delay limit of this test case is 1.15 ps. Our
algorithm can satisfy the delay limit at the expense of a higher
capacitance usage. The capacitance usage is 10.6 pf while it
is 9.7 pf for the original test case. In general, if the test case
has less routing resources, our approach can construct a clock
network at the expense of higher capacitance usage.

E. Simulation Results

We validate our results using HSPICE simulation. The slew
of the input signals is set to be 10 ps. The slew of a circuit is
estimated using

√
(2.2RC)2 + (Si)2 according to [5], where RC

is replaced by the largest Elmore delay of the circuit. Detailed

results are not shown due to page limit. The delay and slew
we calculated are very close to the simulation results. For both
tree and nontree structures, the correlation coefficient is over
99% between the simulated delay and calculated delay while
it is over 96% between the simulated slew and calculated slew.
This verifies the correctness of our method.

V. Conclusion

In this paper, we presented an efficient algorithm using
the heap data structure to construct a postgrid clock network
on reserved multilayer metal tracks. We have compared our
approach with the state-of-the-art algorithm and showed that
our algorithm can significantly improve over the previous
work with a 24.6% reduction in wire capacitance and 23.6%
reduction in WL on average while maintaining very practical
runtimes. We have also extended the algorithm to allow
nontree structures in order to handle the existence of ports
with exceptionally large load capacitances and verified our
results using HSPICE simulation. Our algorithm is expected
to bring reduced energy consumption and improve grid-to-port
delay in real postgrid clock networks.

References

[1] H. Bakoglu, J. Walker, and J. Meindl, “A symmetric clock-distribution
tree and optimized high-speed interconnection for reduced clock skew
in ULSI and WSI circuits,” in Proc. IEEE Int. Conf. Comput. Des., Oct.
1986, pp. 118–122.

[2] K. Boese and A. Kahng, “Zero-skew clock routing trees with minimum
wirelength,” in Proc. 5th Annu. IEEE Int. ASIC Conf. Exhibit., Sep.
1992, pp. 17–21.

[3] P. Chan and K. Karplus, “Computing signal delay in general RC
networks by tree/link partitioning,” IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst., vol. 9, no. 8, pp. 898–902, Aug. 1990.

[4] A. Kahng, J. Cong, and G. Robins, “High-performance clock routing
based on recursive geometric matching,” in Proc. 28th Des. Autom.
Conf., 1991, pp. 322–327.

[5] C. Kashyap, C. Alpert, F. Liu, and A. Devgan, “Closed-form expressions
for extending step delay and slew metrics to ramp inputs for RC trees,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 23, no. 4,
pp. 509–516, Apr. 2004.

[6] M. Mori, H. Chen, B. Yao, and C. Cheng, “A multiple level network
approach for clock skew minimization with process variations,” in Proc.
Asia South Pacific Des. Autom. Conf., 2004, pp. 263–268.

[7] D. Pham, T. Aipperspach, D. Boerstler, M. Bolliger, R. Chaudhry, D.
Cox, P. Harvey, P. M. Harvey, H. P. Hofstee, C. Johns, J. Kahle, A.
Kameyama, J. Keaty, Y. Masubuchi, M. Pham, J. Pille, S. Posluszny, M.
Riley, D. L. Stasiak, M. Suzuoki, O. Takahashi, J. Warnock, S. Weitzel,
D. Wendel, and K. Yazawa, “Overview of the architecture, circuit design,
and physical implementation of a first-generation cell processor,” IEEE
J. Solid-State Circuits, vol. 41, no. 1, pp. 179–196, Jan. 2006.

[8] P. J. Restle, T. G. McNamara, D. A. Webber, P. J. Camporese, K. F. Eng,
K. A. Jenkins, D. H. Allen, M. J. Rohn, M. P. Quaranta, D. W. Boerstler,
C. J. Alpert, C. A. Carter, R. N. Bailey, J. G. Petrovick, B. L. Krauter,
and B. D. McCredie, “A clock distribution network for microprocessors,”
IEEE J. Solid-State Circuits, vol. 36, no. 5, pp. 792–799, May 2001.

[9] R. Shelar, “An algorithm for routing with capacitance/distance con-
straints for clock distribution in microprocessors,” in Proc. Int. Symp.
Phys. Des., 2009, pp. 141–148.

[10] R. Shelar, “Routing with constraints for post-grid clock distribution in
microprocessors,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.,
vol. 29, no. 2, pp. 245–249, Feb. 2010.

[11] H. Tian, W. Tang, E. Young, and C. Sze, “Grid-to-ports clock routing
for high performance microprocessor designs,” in Proc. Int. Symp. Phys.
Des., 2011, pp. 21–28.

[12] R.-S. Tsay, “An exact zero-skew clock routing algorithm,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. 12, no. 2, pp. 242–249,
Feb. 1993.

