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MSV-Driven Floorplanning
Qiang Ma, Zaichen Qian, Evangeline F.Y. Young, and Hai Zhou

Abstract—Power consumption has become a crucial problem
in modern circuit design. Multiple supply voltage (MSV) design
is introduced to provide higher flexibility in controlling the power
and performance tradeoff. One important requirement of MSV
design is that timing constraints of the circuit must be satisfied
after voltage assignment of the cells. In this article, we develop
two algorithms to solve the voltage assignment problem under
timing constraints, namely, min-cost flow (MCF) and value-
oriented branch-and-bound (VOBB). In the MCF algorithm, the
voltage assignment problem is formulated as a convex cost dual
network flow problem, and can be solved optimally in polynomial
time under certain conditions by calling a MCF solver. The VOBB
algorithm, which is a VOBB-based searching method, solves
the voltage assignment problem optimally in general cases by
employing the MCF algorithm and a linear programming solver
as subroutines. At last, we propose a MSV-driven floorplanning
framework that optimizes power consumption and physical
layout of a circuit simultaneously during the floorplanning stage,
by embedding the MCF algorithm into a simulated annealing-
based floorplanner and applying the VOBB algorithm as a
postprocessing step. We compared our approach with the latest
works on this problem, and the experimental results show that,
using our approach, significant improvement on power saving
can be achieved in much less running time, which confirms the
effectiveness and efficiency of our method.

Index Terms—Algorithms, floorplanning, linear programming,
min-cost flow, multi-supply voltage.

I. Introduction

POWER optimization has become one of the most im-
portant issues to be addressed in modern circuit design

because of the increasing power density and the wide use of
portable systems. Multiple supply voltage (MSV) design [9]
was introduced as an effective mean to reduce both dynamic
and static power. In MSV designs, the timing slacks of the
cells are traded for power saving by assigning appropriate
supply voltage levels to the cells while still satisfying the
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timing constraints. Basically, high voltage level is assigned
to critical cells and low voltage level is assigned to noncrit-
ical cells, so that power can be saved without violating the
timing constraints. Therefore, an effective voltage assignment
method is desirable to minimize power consumption under
timing requirements. Moreover, it is beneficial to consider
the problem of voltage assignment, voltage island generation,
and floorplanning simultaneously under the timing, power,
area, and other physical constraints, since these steps will
significantly affect each other.

A number of previous papers addressed the voltage
assignment and island generation problem in floorplan-
ning and placement. In these previous papers, MSV is
considered at various design stages, including the floor-
planning and placement stages [7], [8], [10], [12], [13],
as well as the post-floorplanning and post-placement
stages [4], [11], [15], [19], [20]. For the latter category, Wu
et al. [19] and Ching et al [4] targeted at minimizing the
number of voltage islands generated, and Mak et al. [15] for-
mulated the voltage assignment and island generation problem
as an integer linear program (ILP), but none of them had taken
timing constraints into consideration explicitly. In [20], Wu
et al. proposed an approximation algorithm based on a zero
slack algorithm to minimize the power cost and to simplify
the power network resource under timing constraints; Lee
et al. [11] tackled the voltage assignment problem using an
ILP-based approach with a set of linear inequalities repre-
senting the timing requirements. An inevitable deficiency of
all these post-floorplanning and post-placement works is that
physical layout and power optimization are done separately,
hence the solution quality is restricted to a certain extent.
Concurrent physical layout and power optimization will be
much more favorable. Hu et al. [7] and Ma et al. [13] con-
sidered this simultaneous voltage assignment, voltage island
generation, and floorplanning problem, however, neither of
them explicitly considered timing in their problem formula-
tion. In one recent paper [10], Lee et al. handled the voltage
assignment problem under timing constraints with a dynamic
programming heuristic, and applies a power network aware
floorplanner afterward. However, physical information is not
taken into account in their voltage assignment step; also, the
length of an interconnect is restricted to stay within a certain
range during floorplanning, which will degrade the solution
quality.

In this paper, we propose two algorithms to solve the voltage
assignment problem under timing constraints, namely, the min-
cost flow (MCF) algorithm and the value-oriented branch-
and-bound (VOBB) algorithm. MCF is a fast approximation
algorithm while VOBB is a slower but optimal algorithm.
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Fig. 1. DP Curve of (a) a vertex and (b) an edge in G.

We then propose a MSV-driven floorplanning framework that
optimizes power consumption and physical layout of a circuit
simultaneously during the floorplanning stage, by embedding
the faster MCF algorithm into a simulated annealing (SA)-
based floorplanner and applying the slower but optimal VOBB
algorithm as a postprocessing step. Our approach is compared
with the most updated previous works, and the results show
that significant improvement on power saving can be achieved
in much less running time.

The remainder of this paper is organized as follows. We
define the multiple voltage assignment (MVA) problem and
the MSV-driven floorplanning problem in Section II. The MCF
algorithm and VOBB algorithm for the MVA problem are
proposed in Sections III and IV, respectively. The SA-based
MSV-driven floorplanning framework that integrates the two
algorithms is introduced in Section V. Our approach is tested
and compared with previous works, and the experimental
results will be reported in Section VI. We conclude our paper
in the last section.

II. Preliminaries and Problem Formulation

We are given a set of n modules m1, m2, . . . , mn with
areas and aspect ratio bounds. Each module mi is given ki

choices of supply voltages v
q
i , for 1 ≤ q ≤ ki, and the power-

delay tradeoff in mi is represented by a delay-power curve
(DP Curve), {(d1

i , p
1
i ), (d2

i , p
2
i ), . . . , (dki

i , p
ki

i )}, where each pair
(dq

i , p
q
i ) is the corresponding delay and power consumption

when mi is operated at v
q
i . Note that each d

q
i is in Z+ (positive

integer set), since the delay of a module is measured in terms
of the number of clock cycles. Fig. 1(a) is an example of a
DP Curve, which contains three choices of supply voltages
for this module. Moreover, we assume that for each module,
power is a convex function of delay when each point (dq

i , p
q
i )

is connected to its neighboring point(s) by a linear segment in
the DP Curve. We are also given a timing requirement Tcycle,
called clock cycle time, of this circuit and require that the
critical path delay is at most Tcycle.

We denote a netlist by a directed acyclic graph (DAG),
G = (V, E). Each vertex i ∈ V denotes a module mi, while
each directed edge e(i, j) ∈ E denotes an interconnect through
which a signal is sent from mi to mj . Fig. 2 is an example
of the DAG representation of a netlist, where each vertex is
associated with a DP Curve, while each edge is attributed with
a wire delay. Thus, both the vertices and the edges have delay.

To facilitate our problem formulation, we desire to associate
delay with only edges, thus we transform G = (V, E) into

Fig. 2. DAG representation of a netlist.

Fig. 3. Transformed DAG Ḡ of the graph G in Fig. 2.

Ḡ = (V̄ , Ē) in such a way that each vertex i ∈ V is split into
an input vertex and an output vertex, and the input vertex is
connected to the output vertex by a directed edge. We denote
this set of newly created edges and the set of original edges
by E1 and E2, respectively. Hence, Ē = E1 ∪ E2. Fig. 3
illustrates the resultant DAG of the graph in Fig. 2 after this
transformation, where dashed edges are in E1 and solid edges
are in E2. After this transformation, the DP Curve of a vertex
in G will be associated with its corresponding edge in E1.1

For example, after this transformation, vertex 1 and vertex 6
in Ḡ of Fig. 3 are the input and output vertex of vertex 1
in G of Fig. 2, respectively, thus the DP Curve of vertex 1
in G is now associated with the edge e(1, 6) in Ḡ, and we
will use k1,6 to denote the number of voltage level choices
of this DP Curve. We can assume that each edge e(i, j) ∈ E2

(corresponding to a wire) is also associated with a DP Curve in
which the delay is an integer ranging from the wire’s minimum
delay to the maximum allowed delay Tcycle, and the power
consumption is zero at all points. Fig. 1(b) is an example DP
Curve corresponding to an edge e(i, j) ∈ E2. Therefore, each
edge e(i, j) ∈ Ē of Ḡ is now associated with one and only one
DP Curve, while the vertices in Ḡ simply represent the starting
or ending point of a time interval and are not associated with
any DP Curves. For each edge e(i, j) ∈ Ē, we use dij to
denote the delay on it, and use P̄ij to represent the function
that maps delay to power consumption on edge e(i, j), i.e.,
P̄ij(dq

ij) = p
q
ij for 1 ≤ q ≤ kij if e(i, j) ∈ E1, and P̄ij(dij) = 0

if e(i, j) ∈ E2. Moreover, we use lij and uij to denote the
lower and upper bound of the delay dij on edge e(i, j), i.e.,
lij ≤ dij ≤ uij , ∀e(i, j) ∈ Ē. For each edge e(i, j) ∈ E1, lij = d1

ij

and uij = d
kij

ij . For each edge e(i, j) ∈ E2, uij is Tcycle, while lij
is the minimum wire delay of the corresponding connection
which is estimated by scaling wire length to delay according
to (1) when physical information is available as follows:

lij = δ · wij (1)

where wij is the estimated length of the wire connecting
module i and module j, and δ is a constant scaling factor. In

1We assume that a module has a fixed delay value given a working voltage
level. In practice, there are multi-input and multi-output modules, where
each input–output combination has different delay values. We can extend our
approach to tackle this issue, by splitting the vertex representing a multi-input
multi-output module into more vertices with more sophisticated connections,
instead of splitting the vertex into two connected vertices.
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Fig. 4. DP Curve Pij(dij) of (a) an edge e(i, j) ∈ E1, (b) an edge e(i, j) ∈ E2, and (c) an edge e(i, j) ∈ E3.

our implementation, wij is computed as the Manhattan distance
between module i and module j, which is a commonly used
estimation of interconnection wire length at floorplanning
stage. Let ti ∈ Z+ denote the arrival time at vertex i in V̄ ,
then it follows that

tj − ti ≥ dij, ∀e(i, j) ∈ Ē (2)

0 ≤ ti ≤ Tcycle, ∀i ∈ V̄ . (3)

The static timing constraint and the voltage assignment prob-
lem can be defined as follows.

Definition 1: Static timing constraint: Given a clock cycle
time Tcycle and a DAG, Ḡ = (V̄ , Ē) corresponding to a netlist,
the static timing constraint of the netlist is that the arrival time
ti satisfies (2) and (3), ∀i ∈ V̄ .

Definition 2: MVA: Given a clock cycle time Tcycle and a
DAG, Ḡ = (V̄ , Ē) where each edge e is associated with a DP
Curve, select a delay-power pair for each edge in its DP Curve
such that the sum of power consumption is minimized while
the static timing constraint is satisfied.

Our ultimate goal in this paper is to solve the following
MSV-driven floorplanning problem.

Definition 3: MSV-driven floorplanning: Given a netlist, a
timing constraint, and a set of modules, each of which has
multiple choices of supply voltage, generate a floorplan in
which each module is assigned to work at a specific voltage
level such that the timing constraint is satisfied and a weighted
sum of power consumption, power network resource, area, and
interconnect length is minimized.

III. MCF Algorithm for MVA

Chang and Pedram [3] prove that the MVA problem is
an NP-hard problem, even if each module had only two
voltage choices. In the following, we show that the MVA
problem can be formulated as a convex cost dual network
flow problem, and can be transformed into a MCF problem
by using the Lagrangian relaxation technique. The MCF can
be computed by calling the cost-scaling algorithm, after which
the voltage assignment solution is obtained from the flow value
on the network. When the delay choices of each module are
continuous in the real or integer domain, the resultant voltage
assignment solution is optimal. In general cases when the de-
lay choices are not continuous, we are able to obtain a feasible
voltage assignment with power consumption approximating
the optimal solution.

A. Mathematical Program Formulation for MVA

According to the definitions and notations introduced in
Section II, the MVA problem can be easily formulated into
the following mathematical program.

Problem (1)

Minimize
∑

e(i,j)∈Ē P̄ij(dij) (1a)
Subject to

tj − ti ≥ dij, ∀e(i, j) ∈ Ē (1b)
0 ≤ ti ≤ Tcycle, ∀i ∈ V̄ (1c)
lij ≤ dij ≤ uij, ∀e(i, j) ∈ Ē (1d)

dij ∈ {d1
ij, d

2
ij, . . . , d

kij

ij }, ∀e(i, j) ∈ E1 (1e)
dij ∈ Z+, ∀e(i, j) ∈ E2 (1f)
ti ∈ Z+ ∀i ∈ V̄ . (1g)

Problem (1) without the discrete choice constraint (1e) is
a convex cost integer dual network flow problem (or simply
a dual network flow problem) [1], since its dual can be
transformed to a MCF problem.

B. Simplification of the Mathematical Program

To simplify the problem, we will first make some modifi-
cations to the DP Curves. First of all, we connect each pair
of neighboring points in a DP Curve by a linear segment,
resulting in a piecewise linear convex function of power
versus delay. It can be shown that there always exists an
optimal solution to the dual network flow problem [problem
(1) without (1e)] with integral variables [1]. Therefore, (1f)
and (1g) can be removed.

In the second step of simplification, the lower and upper
bounds on variables dij and ti in (1c) and (1d) are eliminated.
We first eliminate bounds on dij by defining a new power delay
function for each edge e(i, j) ∈ Ē as follows:

Pij(dij) =

⎧⎨
⎩

P̄ij(uij) + M × (dij − uij), if dij > uij

P̄ij(dij), if lij ≤ dij ≤ uij

P̄ij(lij) − M × (dij − lij), if dij < lij

where M is a sufficiently large number, and here, we set
M = D + 1, where D =

∑
e(i,j)∈E1

P̄ij(lij) − ∑
e(i,j)∈E1

P̄ij(uij).
Actually, M can be viewed as a penalty for violating the
lower and upper bounds of the variables, and we set the
penalty to be large enough to guarantee that a solution with
variables violating the bounds is impossible to be an optimal
one, if a feasible solution of problem (1) exists. Therefore,
by replacing P̄ij(dij) with Pij(dij), we can remove (1c) and
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(1d) with variables in the optimal feasible solution guaranteed
to stay in the range specified by (1c) and (1d). An example
transformed DP Curve of an edge in E1 and that of an edge
in E2 are illustrated in Fig. 4(a) and (b), respectively.

Similarly, we define Bi(ti) as follows and put it into the
objective function so that the lower and upper bounds on ti
can also be eliminated as follows:

Bi(ti) =

⎧⎨
⎩

M × (ti − Tcycle), if ti > Tcycle

0, if 0 ≤ ti ≤ Tcycle

−M × (ti), if ti < 0.

After all the above simplifications, problem (1) without
(1e) can be transformed into problem (2) as follows.

Problem (2)

Minimize
∑

e(i,j)∈Ē Pij(dij) +
∑

i∈V̄ Bi(ti) (2a)

Subject to tj − ti ≥ dij, ∀e(i, j) ∈ Ē. (2b)

In the following section, problem (2) is further simplified
by using the Lagrangian relaxation technique.

C. Lagrangian Relaxation

The Lagrangian relaxation technique is useful to eliminate
difficult constraints. Here, we want to eliminate the constraints
tj − ti ≥ dij in (2b). We apply the Lagrangian relaxation tech-
nique to problem (2), by introducing a nonnegative Lagrangian
multiplier vector �x, the corresponding Lagrangian subproblem
is to compute

L(�x) = min
d,t

∑
e(i,j)∈Ē

Pij(dij) +
∑
i∈V̄

Bi(ti) −
∑

e(i,j)∈Ē

(tj − ti − dij)xij

where xij is the nonnegative Lagrangian multiplier associated
with the constraint tj − ti ≥ dij . Note that∑

e(i,j)∈Ē

(ti − tj)xij =
∑
i∈V̄

(
∑

j:e(i,j)∈Ē

xij −
∑

j:e(j,i)∈Ē

xji)ti.

We define

x0i =
∑

j:e(i,j)∈Ē

xij −
∑

j:e(j,i)∈Ē

xji, ∀i ∈ V̄ .

Then we can rewrite L(x) as follows:

L(�x) = min
d,t

∑
e(i,j)∈Ē

(Pij(dij) + xijdij) +
∑
i∈V̄

(Bi(ti) + x0iti).

In order to convert this problem to a network flow problem,
we add an extra vertex 0 into Ḡ, and add an edge e(0, i) for
each vertex i ∈ V̄ . Let us denote this set of newly added
edges by E3 and denote the resultant DAG by G∗ = (V ∗, E∗),
so that V ∗ = {0} ∪ V̄ and E∗ = E1 ∪ E2 ∪ E3. Particularly,
for each newly added edge e(0, i), we put d0i = ti, l0i = 0,
u0i = Tcycle, and P0i = Bi. The delay power curve Pij(dij) of an
edge e(i, j) ∈ E3 is shown in Fig. 4(c). Upon these notations,
the Lagrangian subproblem can be restated as problem (3).

Problem (3)

L(�x) = min
d

∑
e(i,j)∈E∗

{Pij(dij) + xijdij} (3a)

Fig. 5. Left slope s− and right slope s+ at (dq

ij, Pij(dq

ij)) in a DP Curve.

subject to∑
j:e(i,j)∈E∗

xij −
∑

j:e(j,i)∈E∗
xji = 0 ∀i ∈ V ∗ (3b)

xij ≥ 0, ∀e(i, j) ∈ E1 ∪ E2. (3c)

Since each Pij(dij) is a piecewise linear convex function,
Pij(dij) + xijdij is also a convex function of dij for a given
value of xij . It is important to note that, for a given value of
the vector �x, each term mindij

{Pij(dij)+xijdij} can be optimized
separately, since dij is now independent of each other among
all the edges e(i, j) ∈ E∗. We define function Hij(xij) for each
e(i, j) ∈ E∗ as follows:

Hij(xij) = min
dij

{Pij(dij) + xijdij.}

Then problem (3) can be rewritten as to compute

L(�x) =
∑

e(i,j)∈E∗
Hij(xij) subject to (3b) and (3c).

The Lagrange dual problem is to determine �x∗ as follows.

Problem (4)

L(�x∗) = max
�x

L(�x) = max
�x

∑
e(i,j)∈E∗

Hij(xij) (4a)

subject to

∑
j:e(i,j)∈E∗

xij −
∑

j:e(j,i)∈E∗
xji = 0 ∀i ∈ V ∗ (4b)

xij ≥ 0, ∀e(i, j) ∈ E1 ∪ E2. (4c)

The following well-known theorem [2] establishes a connec-
tion between problems (2) and (4) as follows:

Theorem 1: Let �x∗ be a solution to the Lagrange dual
problem, then L(�x∗) equals the optimal objective value of the
original convex dual network flow problem.

D. Transformation into MCF Problem

We first derive an explicit expression for Hij(xij). As shown
in Fig. 5, Pij(dij) is a piecewise linear convex function. Let
(dq

ij, Pij(dq
ij)) be a break point (where the slope changes) on this

function, and let s− and s+ denote the left slope and the right
slope at this point, respectively. We can have the following
two lemmas.

Lemma 1: Hij(xij) = Pij(dq
ij) + xijd

q
ij , if −s+ ≤ xij ≤ −s−.
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Proof: When dij ≤ d
q
ij , let f (dij) = s−dij +c (c is a constant)

be the equation of the straight line on the left-hand side of d
q
ij

(with slope s−). Due to the convexity of Pij , Pij(dij) ≥ f (dij),
for dij ≤ d

q
ij . Thus Pij(dij)+xijdij ≥ f (dij)+xijdij = (s−+xij)dij+

c. Note that s− + xij ≤ 0, so (s− + xij)dij + c is monotonically
decreasing. Therefore, for dij ≤ d

q
ij , Pij(dij) + xijdij ≥ (s− +

xij)dij + c ≥ (s− + xij)dq
ij + c = Pij(dq

ij) + xijd
q
ij . Similarly, when

dij ≥ d
q
ij , let f (dij) = s+dij +c′ (c′ is a constant) be the equation

of the straight line on the right-hand side of d
q
ij (with slope

s+). Then Pij(dij) + xijdij ≥ f (dij) + xijdij = (s+ + xij)dij + c′.
Since s+ +xij ≥ 0, (s+ +xij)dij +c′ is monotonically increasing.
Therefore, Pij(dij) + xijdij ≥ (s+ + xij)dij + c′ ≥ (s+ + xij)dq

ij +
c′ = Pij(dq

ij) + xijd
q
ij , for dij ≥ d

q
ij . Combining the two cases

completes the proof. �
Lemma 2: Hij(xij) = −∞ if xij < −M or xij > M.
Proof: Consider the DP Curve Pij(dij) of an edge e(i, j) in

E∗. If xij < −M, Pij(dij) + xijdij is minimum (with a value of
−∞) when dij tends to ∞ since xijdij dominates Pij(dij) when
dij tends to ∞ (the slope of the rightmost segment of Pij is
M). Similarly, if xij > M, Pij(dij) + xijdij is minimum (with a
value of −∞) when dij approaches −∞ since xijdij dominates
Pij(dij) as dij tends to −∞ (the slope of the leftmost segment
of Pij is −M). Therefore, Hij(xij) = mindij

{Pij(dij) + xijdij} =
−∞, if xij < −M or xij > M. �

Recall that the objective of the Lagrange dual problem is
to maximize

∑
e(i,j)∈E∗ Hij(xij) over �x, so we can safely add

the constraint −M ≤ xij ≤ M ∀e(i, j) ∈ E∗, according to
Lemma 2.

Note that, for the function Hij(xij) corresponding to an
edge e(i, j) ∈ E1, the Lagrangian multiplier xij must be
nonnegative, therefore, it can be further bounded as 0 ≤ xij ≤
M ∀e(i, j) ∈ E1. Together with Lemma 1 and the DP Curve
in Fig. 4(a), we are able to express Hij(xij) of each edge
e(i, j) ∈ E1 as follows:

Hij(xij) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pij(d
kij

ij ) + d
kij

ij xij, 0 ≤ xij ≤ bij(kij)

Pij(d
kij−1
ij ) + d

kij−1
ij xij, bij(kij) ≤ xij ≤ bij(kij−1)

...
Pij(dq

ij) + d
q
ijxij, bij(q + 1) ≤ xij ≤ bij(q)

...
Pij(d1

ij) + d1
ijxij, bij(2) ≤ xij ≤ M

where bij(q) =
Pij(dq−1

ij
)−Pij(dq

ij
)

d
q

ij
−d

q−1
ij

. Note that it directly follows from

the convexity of Pij(dij) that bij(q + 1) ≤ bij(q).
Similarly, the constraint 0 ≤ xij ≤ M can also be added

for each function Hij(xij) that corresponds to an edge e(i, j) ∈
E2, since the variable xij of an edge e(i, j) ∈ E2 is also a
nonnegative Lagrangian multiplier. According to Lemma 1 and
the power delay curve Pij(dij) in Fig. 4(b), the corresponding
Hij(xij) of an edge e(i, j) ∈ E2 can be written as follows:

Hij(xij) = lijxij, 0 ≤ xij ≤ M.

Note that this is because the slope of the DP Curve of an edge
e(i, j) ∈ E2 from lij to uij is 0.

For the function Hij(xij) corresponding to an edge e(i, j) ∈
E3, the variable xij is not a Lagrangian multiplier, and it

Fig. 6. Function Hij(xij) of (a) an edge in E1, (b) an edge in E2, and (c)
an edge in E3.

is bounded by −M ≤ xij ≤ M, according to Lemma 2.
According to Lemma 1 and the DP Curve in Fig. 4(c), the
corresponding function Hij(xij) can be written as follows:

Hij(xij) =

{
Tcyclexij, −M ≤ xij ≤ 0
0, 0 ≤ xij ≤ M.

Similarly, this is because the slope of the DP Curve of an
edge e(i, j) ∈ E3 from lij to uij is 0. Note that unlike the
above cases, the variable xij for an edge e(i, j) ∈ E3 is not a
Lagrangian multiplier, thus it can be negative.

Fig. 6 shows the bounds and shapes of all these functions
Hij(xij). It is easy to observe that these functions Hij(xij) are
piecewise linear concave. Then, we let Cij(xij) = −Hij(xij),
so that Cij(xij) is a piecewise linear convex function. We can
subsequently transform problem (4) into problem (5) as shown
below, by replacing Hij(xij) with −Cij(xij).

Problem (5)

Minimize
∑

e(i,j)∈E∗ Cij(xij) (5a)

Subject to

∑
j:e(i,j)∈E∗

xij−
∑

j:e(j,i)∈E∗
xji = 0, ∀i ∈ V ∗ (5b)

−M ≤ xij ≤ M ∀e(i, j) ∈ E3 (5c)

0 ≤ xij ≤ M ∀e(i, j) ∈ E1 ∪ E2. (5d)

E. Cost-Scaling Algorithm

Problem (5) is a convex cost flow problem in which the
cost associated with the flow on an edge e(i, j) is a piecewise
linear convex function containing a number of linear segments.
We can transform problem (5) into a MCF problem in an
expanded network G′ = (V ′, E′), and solve it using a cost-
scaling algorithm [5].

In the transformation from G∗ to G′, each edge e(i, j) in
G∗ will be replaced by one or more edges, depending on
the number of linear segments in the corresponding function
Cij(xij). There are three categories of edges to consider,
namely, E1, E2, and E3.

1) Edge in E1: An edge in E1 represents an input and out-
put relationship of a module. For each edge e(i, j) ∈ E1,
k = ki,j edges are inserted into G′, with one edge
corresponding to one linear segment in the cost function
Cij . These edges have costs of −dk

ij , −dk−1
ij , −dk−2

ij ,
. . . , −d1

ij , upper capacities of bij(k), bij(k − 1) − bij(k),
bij(k − 2) − bij(k − 1), . . . , M − bij(2), respectively, and
lower capacities of zero for all of them.

2) Edge in E2: An edge in E2 represents an interconnect.
Each edge e(i, j) ∈ E2 is directly copied to G′, with
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Fig. 7. Paths in the proof of Lemma 3. (a) The “only if” direction of the
proof. (b) The “if” direction of the proof.

its cost, lower and upper capacity set as −lij , 0 and M,
respectively.

3) Edge in E3: Edges belonging to this category emanate
from vertex 0 in G∗. For each of them, two edges are
introduced in G′. The cost, lower capacity, and upper
capacity are −Tcycle, −M and 0 for one edge, and 0, 0,
and M for the other edge, respectively.

It is well known that solving the convex cost flow prob-
lem in G∗ is equivalent to solving the MCF problem in
G′.2 We can directly apply the cost-scaling algorithm ([5]
and [6]) on G′ to find a MCF. The time complexity of
using cost-scaling algorithm to solve our MVA problem is
O(nk(m + nk)log(k2n2/m)log(knTcycle)).

F. Solution Transformation

The convex cost-scaling algorithm upon termination gives
an optimal flow x∗ and the corresponding optimal node
potentials π∗. Both the solutions x∗ and π∗ may be non-
integer. Since all the edge costs are integers, there always
exist integral optimal vertex potentials π. To determine them,
we construct G′(x∗) and determine the shortest path distance
sd(i) from vertex 0 to every other vertex i ∈ V ′. Since
all edge costs in G′(x∗) are integers, each sd(i) is also an
integer. Then π(i) = −sd(i) for each i ∈ V ′ gives an integral
optimal set of vertex potentials for problem (5). According
to [1], an optimal solution to problem (2) can be obtained
by first assigning ti = πi, then set dij = tj − ti for each
e(i, j) ∈ E1. Note that we do not need to assign the value
of dij for each e(i, j) ∈ E2, since the power consumption on a
wire is zero, and the timing constraints will be automatically
satisfied if there exists a feasible solution to the original
voltage assignment problem [problem (1)]. If no feasible
solutions of the voltage assignment problem exist, the total
flow passing through vertex 0 will be larger than D, as stated
in the following lemma.

Lemma 3: Given an instance of the MVA problem, there
exists a feasible solution to this instance if and only if the flow
value through vertex 0 in the min-cost network flow problem
in G′ as constructed above is such that f0 ≤ D, where D =
M − 1 =

∑
e(i,j)∈E1

P̄ij(lij) − ∑
e(i,j)∈E1

P̄ij(uij).
Proof: (Only if part:) Suppose a feasible solution exists

for the voltage assignment problem. Let C be the total cost
of the flow network. Initially, C = 0 when the flow on each
edge is zero, and this is automatically the MCF if there is no
negative cycle. Note that every negative cycle must pass vertex

2There is a constant difference of
∑

e(i,j)∈E1
Pij(uij) between the cost of

the MCF in G∗ and the cost of the MCF in G′.

0, since the original netlist is a DAG. Now suppose, without
loss of generality, the edge e(0, u), the path from vertex u

to vertex v (denoted by p(u, v)) and the edge e(v, 0) form
a negative cycle, as shown if Fig. 7(a). Recall that the edge
cost are all integers, thus the cost through p(u, v) [denoted by
Cp(u,v)] must be integral, i.e., Cp(u,v) ≤ −Tcycle − 1, otherwise
the above-mentioned negative cycle cannot be formed. This
yields that one unit flow through vertex 0 will decrease the
total cost C by at least one, and hence C ≤ −f0, where f0

denotes the flow value through vertex 0. Note that the optimal
objective value of the Lagrange dual problem [problem (4)]
L(x∗) = (−C) +

∑
e(i,j)∈E1

P̄ij(uij). If f0 > D, then C < −D,
thus L(x∗) > D +

∑
e(i,j)∈E1

P̄ij(uij) =
∑

e(i,j)∈E1
P̄ij(lij).

According to Theorem 1, L(x∗) equals the optimal objec-
tive value of problem (2) (the dual network flow problem),
so the objective value of problem (2) is also greater than∑

e(i,j)∈E1
P̄ij(lij), which corresponds to the highest possible

total power consumption of all the modules. This is impossible
and we can thus conclude that no feasible solutions exist for
the original voltage assignment problem exists, contradictory
to our original assumption.

(If part:) Suppose the flow through vertex 0 is less than or
equal to D, i.e., f0 ≤ D. Again, we prove by contradiction. If
there is no feasible solution to the original voltage assignment
problem, it means that the timing constraint Tcycle will be
violated by some critical path p(u, v) even if each module
on p(u, v) is assigned to work at its highest legal voltage
level. Given this, there must be at least one module with
its input vertex as i and output vertex as j in the expanded
network G′, such that all the edges between vertex i and vertex
j are saturated, since a negative cycle will be formed with
vertex 0 otherwise [as shown in Fig. 7(b), all the red edges
are saturated]. Note that the sum of the capacities of these
thickened red edges is M = D + 1 and the flow through these
edges must go through vertex 0. Therefore, we can conclude
that f0 > D, contradictory to our original assumption. �

If the flow through vertex 0 is not more than D, we can
construct a feasible solution for the original problem [prob-
lem (1)] with discretization constraint (1e) from this optimal
solution of problem (2), by taking the largest possible delay
choice d

q
ij smaller than or equal to dij for each edge e(i, j) ∈ E1

(this is the legalization step of the voltage assignment). It can
be easily shown that this solution is feasible to our original
problem, and we can see from the experimental results that
this transformation method can approximate the optimal power
consumption well and gives large power savings.

G. Handling Level Shifters

Whenever there is a net through which a signal is sent from
a module at a low voltage level to a module at a high voltage
level, a level shifter will be inserted into this net. Each level
shifter is associated with a fixed delay and power values, and
will affect the timing and power consumption of the whole
circuit. In order to take level shifters into consideration, we
extend our approach in a conservative way. When the DAG
representation of the input netlist is given, we will first com-
pute the longest path L (in terms of the number of edges on a
path) from a primary input to a primary output in the DAG. It
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is trivial that at most L level shifters will be inserted on any
path of the DAG after voltage assignment. This indicates that
after level shifter insertion, the delay of the whole circuit will
be increased by L·dls units in the worst case where dls denotes
the delay of a level shifter. Therefore, in order to guarantee
that the timing constraint can still be satisfied after level shifter
insertion, we simply put Tcycle −L ·dls as the timing constraint
of the circuit while solving the voltage assignment problem,
after which the necessary level shifters are inserted.

H. Summary of the MCF Algorithm

Algorithm MCF (MVA Instance S).

1) Construct DAG G = (V, E) for the input netlist.
2) Compute longest path L of G.
3) T ′

cycle ← Tcycle − L · dls.
4) Compute the capacity bound M.
5) Convert G = (V, E) into flow network G′ = (V ′, E′).
6) Assign capacity and cost to each edge e ∈ E′ of G′.
7) Run cost-scaling algorithm on G′ = (V ′, E′).
8) Transform the flow into voltage assignment.
9) Legalize the voltage assignment for each module.

IV. VOBB Algorithm for MVA

The MCF algorithm proposed in the last section is a
polynomial time algorithm, however, it may not produce the
optimal voltage assignment solution in general cases when the
delay choices on each edge are not continuous. In this section,
we present a branch-and-bound-based searching method called
VOBB that is able to obtain the optimal voltage assignment for
a candidate floorplan. This VOBB algorithm employs the MCF
algorithm as a subroutine, and is used to further optimize the
voltage assignment solution on a candidate floorplan generated
by the MCF algorithm. However, there is no guarantee that
this searching based method will terminate within polynomial
time, which makes it inappropriate to be embedded into a SA
procedure. It will thus be used as a postprocessing step in our
MSV-driven floorplanning framework.

A. Integer Program for MVA

In order to facilitate the presentation of the optimal algo-
rithm, we first introduce some extra notations. Consider the
DAG Ḡ = (V̄ , Ē) transformed from the DAG G = (V, E)
representing the netlist of a circuit, where each vertex v ∈ V

is split into an input vertex and an output vertex, and the input
vertex is connected to the output vertex by a directed edge
(refer to Figs. 2 and 3 for illustration). Recall that Ē = E1∪E2,
where E1 denotes the set of newly added edges and E2 denotes
the set of original edges in G. Each edge e(i, j) ∈ E1 is as-
sociated with a DP Curve {(d1

ij, p
1
ij), (d2

ij, p
2
ij), . . . , (d

kij

ij , p
kij

ij )},
where each pair (dq

ij, p
q
ij) (for q = 1, 2, . . . , kij) is the delay and

power consumption when the corresponding module of e(i, j)
operates at the qth working voltage level (in the following,
we denote this voltage level by v

q
ij). We assign a set of binary

variables {xij(1), xij(2), . . . , xij(kij)} to each edge e(i, j) ∈ E1,
such that x

q
ij = 1 if the module corresponding to e(i, j) operates

at the qth working voltage level, and x
q
ij = 0 otherwise. There-

fore,
∑kij

q=1 xij(q) = 1. Each edge e(i, j) ∈ E2 corresponds to an
interconnection wire and is attributed with an interconnection
delay dij . The interconnection delay is calculated as dij = δ·wij ,
where δ is a constant scaling factor, and wij is the estimated
wire length. Note that on an edge e(i, j) ∈ E2, a level shifter
needs to be inserted if the working voltage level at the source
is lower than the working voltage level at the sink. Let the
binary variable yij denote whether a level shifter is needed to
be inserted on edge e(i, j): yij = 1 if a level shifter is needed,
and yij = 0 otherwise. We use ϕ and ρ to denote the power
consumption and delay of a level shifter, respectively. We use
ti to denote that arrival time at vertex i and use Tcycle to denote
the clock cycle time. In addition, for each edge e(i, j) ∈ E1,
we say that vertex i is the predecessor of vertex j (denoted by
pred(j)), and we say that vertex j is the successor of vertex i

(denoted by succ(i)). Note that each edge e(i, j) ∈ E1 comes
from the splitting of an original vertex in G, so vertex i is
the unique predecessor of vertex j and vertex j is the unique
successor of vertex i.

The objective of the MVA problem is to select a delay-
power pair for each module such that the total power con-
sumption is minimized while the static timing constraint is
satisfied. Using the notations above, the MVA problem can
be formulated into an integer program as stated in problem
(6). The objective function (6a) is the sum of all modules’
and level shifters’ power consumption. Constraints (6b)–(6d)
are to ensure that the timing requirement is satisfied, while
(6e) and (6f) make sure that exactly one working voltage
level is selected for each module. Constraint (6g) specifies
the values of the variables representing the level shifters:
∀e(i, j) ∈ E2, a level shifter needs to be inserted (yij = 1) if the
module at the source works at a lower voltage level than the

module at the sink, i.e.,
∑kpred(i),i

q=1 v
q

pred(i),i
× xpred(i),i(q) ≤∑kj,succ(j)

q=1 v
q

j,succ(j) ×x
j,succ(j)(q); otherwise, there is no need

to insert a level shifter.
Problem (6)

Minimize
∑

e(i,j)∈E1

kij∑
q=1

p
q
ijxij(q) +

∑
e(i,j)∈E2

yij · ϕ (6a)

Subject to

tj − ti ≥
kij∑
q=1

d
q
ijxij(q), ∀e(i, j) ∈ E1 (6b)

tj − ti ≥ dij + yij · ρ, ∀e(i, j) ∈ E2 (6c)

0 ≤ ti ≤ Tcycle, ∀i ∈ V̄ (6d)
kij∑
q=1

xij(q) = 1, ∀e(i, j) ∈ E1 (6e)

xij(q) ∈ {0, 1}, q = 1, 2, . . . , kij, ∀e(i, j) ∈ E1 (6f)

yij =

⎧⎪⎪⎨
⎪⎪⎩

1,
∑kpred(i),i

q=1 v
q

pred(i),i
× xpred(i),i(q) ≤∑kj,succ(j)

q=1 v
q

j,succ(j) × x
j,succ(j)(q)

0, otherwise
∀e(i, j) ∈ E2. (6g)
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B. VOBB-Based Search

In this section, we will show how to solve the MVA problem
optimally. We will first describe the basic VOBB algorithm
and then explain how to compute the upper and lower bounds.
The branch-and-bound approach solves problems by searching
successive partitions of the solution space. As usual, we will
describe the searching process by a search tree in which an
internal node represent a set of solutions while a leaf node
represent a single solution.

1) Branching Rules: In our searching approach, we visit
different parts of the solution space by confining the values
of some selected variables. We use the set of binary variables
{xi(1), xi(2), . . . , xi(ki)} to denote the voltage assignment for
module mi. In each iteration, we may select a module mi

(we will describe the selection criteria in the following) and
branch to ki children nodes, which represent the solution space
of ki different subproblems where ki is the number of supply
voltage choices of module mi. Without loss of generality, we
assume that we choose m1 in the first iteration and choose m2

in the second iteration. We branch into the first subproblem
by assigning m1 to operate at its first working voltage level,
so the subproblem is obtained by adding the set constraints to
problem (6) as follows:

x1(1) = 1, x1(2) = 0, . . . , x1(k1) = 0.

Similarly, we branch into the subproblem in the next level by
assigning m2 to operate at its first working voltage level, so this
subproblem is obtained by adding another set of constraints
as follows:

x2(1) = 1, x2(2) = 0, . . . , x2(k2) = 0.

In this way, we will branch out to many subproblems and
search the whole solution space of the original problem. Next,
we will discuss selection criteria for the branching steps. Given
a candidate floorplan, we first solve the MVA problem using
the approach in Section III (without the legalization step) and
obtain a solution {(d∗

1 , p∗
1), (d∗

2 , p∗
2), . . . , (d∗

n, p
∗
n)} for module

m1, m2, . . . , mn, we will check starting from i = 1 to n whether
module mi can work at (d∗

i , p
∗
i ), and select the first module

whose solution is infeasible to branch out to the children
nodes. After selecting one module mi, we will construct ki

subproblems with additional constraints to confine the voltage
level of mi where ki is the number of voltage choices for mi.

2) Upper Bounds and Lower Bounds Computation: For
a branch-and-bound-based algorithm, tight upper and lower
bounds are important for efficiency. A good upper bound
can be obtained by solving the MVA problem with the MCF
algorithm. The sum of the power consumptions of modules
and the level shifters gives the upper bound. This is a good
upper bound as our experiments show that the number of cells
with infeasible voltage assignments before the legalization step
of the MCF algorithm is relatively small. The lower bound
can be easily obtained by solving a linear relaxation of the
problem (6) (the detail is omitted). Note that we will do the
upper bound and lower bound computations whenever a new
node in the search tree is visited.

3) Pruning Rules and Value-Oriented Searching Rules:
With the upper and lower bounds obtained above, we can
construct our pruning rules. Some nodes with their subtrees
together will never contribute an optimal solution, and good
pruning rules help to find such nodes to reduce runtime. If
a node is infeasible, i.e., we cannot find a feasible solution
satisfying the timing constraint even assuming a continuous
domain for the module voltages (this can be verified by
invoking the MCF algorithm), it will be pruned. Besides, if
a node’s lower bound is greater than or equal to the global
upper bound, it will also be pruned. This is correct since we
can never find a better solution by traversing into its subtree.

With the above bounds and pruning rules, we can search
the solution space faster. Our VOBB searching algorithm is
divided into rounds. In each round, we set a target which is
used as a threshold to decide whether a node should be visited
in this round. For example, in the first round, the target will
be computed as follows:

target = α(Oub + Olb)

where 0 ≤ α ≤ 1 is a constant (set to 0.6 in our experiments),
and Oub and Olb are the upper and lower bounds of the
original problem. When we reach a node S, we will check
whether Slb ≤ target where Slb is the lower bound at S. If
so, we will continue to visit the subtree of S; otherwise, this
node S will be marked and will not be visited in this round
(may be visited in the following rounds). After one round,
the value of target will be updated as target + C where C

is a constant (set to 5% of Oub in our experiments). Note
that a subtree which is explored in a previous round will not
be repeatedly visited in any subsequent rounds. In general,
this value-oriented searching strategy will search nodes with
smaller lower bounds in earlier rounds and we can upper
bound the deviation of a solution obtained from such value-
oriented search from the optimal solution. This idea is derived
from the target-oriented branch-and-bound algorithm in [17].
Actually, this searching scheme is general and is independent
of how the upper and lower bounds are computed, i.e., other
upper and lower bounds computation methods can be applied
and integrated into this searching scheme.

In our VOBB algorithm, there are two conditions under
which we can stop searching.

1) A feasible solution is found at a node of which the
objective function value is equal to the smallest lower
bound (obtained by the linear relaxation) ever seen
during the search.

2) Current round is finished and the global upper bound
Oub is less than or equal to target.

3) All possible nodes are visited and searched.

V. MSV-Driven Floorplanning Framework

We integrate the MCF algorithm and the VOBB algorithm
with a SA-based floorplanner to develop a MSV-driven floor-
planning framework. This framework can be divided into two
stages: floorplanning stage and postprocessing stage.
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A. Floorplanning Stage
In the floorplanning stage, the MCF algorithm for voltage

assignment is embedded into a SA-based FAST-SP [18] floor-
planner to explore the solution space. After each random move,
the length of some interconnects may be changed which will
cause changes in the minimum delay of the corresponding
wires. Thus, the operating voltage level of each module is re-
assigned by solving the updated dual network flow problem,
after which the necessary level shifters are inserted and the
total power consumption is calculated. The power network
resource is evaluated afterwards. When the annealing process
terminates, the best found solution will be returned.

We use the cost function to evaluate a candidate floorplan
as follows:

ψ = A + λwW + λpn	 + λpP. (4)

In this function, A is the area of the floorplan, W is the total
wire length estimated by the half perimeter bounding box
method, 	 represents the power network resource, which is
estimated as the sum of half-perimeters of the bounding boxes
of the blocks working at the same voltage levels (the blocks
assigned with the same voltage level are preferred to stay close
with this term), P denotes the total power consumption, and
particularly, P is set to a large number to give a heavy penalty
when the candidate floorplan violates timing. The parameters
λw, λpn, and λp can be used to adjust the relative weighting
between the contributing factors, and they are determined in a
random walk with 1000 random moves before the annealing
process starts, in such a way that the four factors, area,
wire length, power network resource, and power cost, are
contributing similarly to the cost function. This cost function
can be modified to consider the fixed-outline constraint by
replacing the area term A (since we are not minimizing the
area) by λ∞(max{0, w − W ′} + max{0, h − H ′}) where λ∞ is
a large positive constant, w and h are the width and height of
the candidate floorplan solution, and W ′ and H ′ are the fixed
width and height required for the final floorplan design.

B. Postprocessing Stage

We use the VOBB voltage assignment algorithm as a
postprocessing step. After an initial floorplan is generated by
the SA-based floorplanner with MCF algorithm, we perform
our VOBB algorithm to obtain the optimal voltage assignment.
However, the resultant power network routing resources may
be worsened, as the modules assigned with the same working
voltage level may not stay together. Thus, we apply an ordinary
SA-based floorplanner whose objective function is a weighted
sum of area, wire length, and power network routing resources
(the voltage assignment for the modules are fixed). After this
fast floorplanning step, the VOBB algorithm is performed once
again to assign a final working voltage to each module to
ensure that the timing constraint is satisfied.

VI. Experimental Results

In this section, we perform several sets of experiments to
validate our proposed approach. We first compare the perfor-
mance of the MCF algorithm and the VOBB algorithm, we
then compare VOBB with an existing ILP-based approach [11]

TABLE I

Voltage Assignment Comparisons of MCF and VOBB

Test Power Ratio Runtime (s) No.
Cases MCF (x) VOBB (y) y/x (%) MCF VOBB Difference
n10 202 709 185 270 91.4 1.09 1.2 1.7
n30 162 534 155 853 95.9 9.31 12.1 2.9
n50 166 931 157 163 94.1 25.34 35.0 7.8
n100 137 608 126 855 92.2 121.6 600 9.9

TABLE II

Results of Our Fixed-Outline Version SA-Based Floorplanner

with MCF Algorithm

Data Power Cost Power No. Runtime Success
Set with LS Saving (%) LS (s) Rate (%)
n10 189 942 12.40 4 1.13 100
n30 151 483 26.34 25 8.45 100
n50 152 684 21.76 34 23.23 100
n100 120 450 33.09 77 123.2 100
n200 130 537 26.52 134 435.5 100
n300 159 431 41.71 87 1045.2 80

Average 150754.5 26.97 60 272.8 96.67

TABLE III

Comparisons Between VOBB and Previous Work [11]

Test Power Runtime
Cases MCF VOBB [11] MCF VOBB [11]
n10 189 942 169 058 169 058 1.09 s 1.2 s 0.0 s
n30 153 526 143 460 143 460 9.31 s 12.1 s 10 h
n50 152 684 138 983 138 983 25.34 s 35.0 s 11.1 m

n100 120 450 113 231 117 761∗ 121.6 s 10.0 m 10 h
n200 135 250 119 229∗ 116 341∗ 454.6 s 10 h 10 h
n300 188 113 142 641 143 041∗ 1027 s 32.4 m 10 h

Average 156 661 137 767 138 107 – – –
Difference 1.0 0.879 0.882 – – –

∗Indicates that the test case is not finished within the 10 h time limit.

for voltage assignment. Finally, we evaluate our MSV-driven
floorplanning framework by comparing with the best previous
paper [10] on this problem. Throughout the experiments, we
use six test cases which are obtained from the authors of [10].
The number of blocks is ranging from 10 to 300, and some of
the blocks are soft blocks. These test cases are based on the
GSRC benchmarks, with power and delay specifications added
for each block. Every block has two legal working voltage
levels, namely, VDDH and VDDL, each of which is associated
with a power consumption value and a delay value. In our
test cases, VDDH is 1.5 V and VDDL is 1.0 V. The power
consumption associated with VDDH (VDDL) is high (low),
and the delay value associated with VDDH (VDDL) is low
(high). The values of power consumption and delay values are
approximately proportional to the area of the corresponding
block. For example, for block b1 (with area of 24 045-unit)
in test case n10, the delay value and power consumption
are 21 640-unit and 24 045-unit at VDDH, respectively, while
the delay value and power consumption are 57 706-unit and
10 686-unit at VDDL, respectively. For block b1 (with area
of 432-unit) in test case n300, the delay value and power
consumption are 388-unit and 432-unit at VDDH, respectively,
while the delay value and power consumption are 1034-unit
and 192-unit at VDDL, respectively. In general, the area of the
blocks in the test cases is ranging from 150 to 40 000. In our
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TABLE IV

Comparison Between Our MSV-Driven Floorplanning Framework and Previous Work [10]

Data Power Cost Power Saving Power Network Level Shifter Dead Space Runtime
Set with LS (%) Routing Resources No. (%)

Ours [10] Ours [10] Ours [10] Ours [10] Ours [10] Ours (MCF+VOBB) [10]

n10 169 058 216 841 22.04 0 1373 965 8 0 2.12 4.87 4.49 s (1.09 s+3.4 s) 6.001 s

n30 143 460 190 717 30.24 7.26 1354 1369 21 57 7.05 9.03 41.84 s (9.31 s+32.53 s) 115.069 s

n50 138 983 172 884 28.78 11.40 1662 1514 32 119 10.82 21.10 120.18 s (25.34 s+94.84 s) 569.360 s

n100 113 231 179 876 37.10 0.10 1446 1671 50 92 9.59 34.07 1424.77 s (121.6 s+1303.17 s) 1768 s

n200∗ 121 222 174 818 31.76 1.58 1626 2040 94 399 14.30 46.52 20.7 h (454.6 s+20.5 h) 4212 s

n300 142 641 219 492 47.85 19.75 1690 2147 30 452 12.52 44.10 5710.11 s (1027 s+4683.11 s) 4800 s

Average 138 099 192 438 32.96 6.68 1525 1618 39 186 9.46 26.61 – –

∗Indicates that the corresponding test case is not finished within the 10 h time limit.

experiments, the clock cycle time Tcycle for each test case is set
to be 1.5 times of the critical path delay when all the modules
are working in VDDH, and the delay of a level shifter dls is
set to be 200-unit. Our algorithms are implemented in the C
programming language and all the experiments are performed
on a Linux machine with a 3.20 GHz CPU and 2 GB RAM.

We found that the voltage assignment solution produced
by the MCF algorithm was fairly close to the optimal one
(by VOBB), which can be verified by the following set of
experiments. We randomly generate ten floorplans for each
benchmark and compare the two algorithms in terms of
average power consumption and the number of modules with
different voltage assignments. Results show that, for each
test case, only about 10% of the modules are assigned with
different voltage levels by the two algorithms (see Table I).
Note that the runtime for MCF is the execution time of the SA
process that integrates the MCF algorithm (a single iteration
of the MCF algorithm terminates in less than 1 s).

As we mentioned before, our SA-based floorplanner with
MCF algorithm can be easily adapted to consider fixed-outline
constraints by modifying the cost function. In the following,
we test the fixed-outline version of our SA-based floorplanner.
The fixed-outline is set to be W ×H in our experiment, where
W = H and W × H equals 1.2 times the total area of all
the modules. The results are listed in Table II. We can see
that our MCF algorithm works well within the fixed-outline
context. An average of 26.97% power saving can be achieved.
The fixed-outline floorplanner is performed ten times on each
test case, and the success rate is also reported in Table II.

Besides, we further demonstrated the effectiveness of the
MCF approach by performing another set of experiments in
which the same set of circuits is used but the number of legal
working voltage levels for each module is augmented to either
three or four. The resultant floorplans are displayed in Fig. 8.
An average of 28.62% power saving can be achieved.

We then compare our VOBB algorithm for the MVA
problem with the latest previous paper [11] that also tried to
solve the voltage assignment problem on a candidate floorplan.
Reference [11] is an ILP-based approach. The results are
shown in Table V-B. The runtime limit for each data set is
10 h, and the “∗” indicates that the program does not run to
the end after 10 h (so, the solution is suboptimal). VOBB can
obtain optimal solutions in a reasonable amount of time for
most of the test cases and has out-performed [11] quite a
lot. The results obtained by the SA-based floorplanner with

Fig. 8. Resultant floorplans with more working voltage levels. (a) n10
(Deadspace: 4.08%). (b) n30 (Deadspace: 16.80%). (c) n50 (Deadspace:
10.66%). (d) n100 (Deadspace: 8.98%). (e) n200 (Deadspace: 11.16%). (f)
n300 (Deadspace: 12.83%).
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MCF algorithm is also listed for comparison. Compared with
the MCF approach, we can see that VOBB contributes 12.1%
improvement on power saving on average, while [11] improves
the power saving by 11.8%. During the experiments, we found
that the runtime depends more on the complexity of the circuit
rather than the number of modules. The word “complexity”
refers to the total number of constraints. We can see that the
runtime for n200 is even longer than that for n300.

At last, we report the results of a comparison between
our MSV-driven floorplanning framework (as described in
Section V) and the previous paper [10]. The results are
displayed in Table V-B. Again, the runtime limit for each
attempt of the VOBB procedure is 10 h, and “∗” indicates that
the VOBB procedure does not finish within this time limit. We
can see that our approach achieves much more power saving
(an average of 32.96% versus 6.68% by [10]) with much less
level shifters (an average of 39 versus 186 by [10]).

VII. Conclusion

In this paper, we proposed two algorithms to solve the
voltage assignment problem under timing constraints, namely,
MCF and VOBB. The two algorithms are integrated into
a MSV-driven floorplanning framework that simultaneously
optimizes power consumption and physical layout of a circuit
during the floorplanning stage. We compared our approach
with the latest previous papers, and the experimental results
show that, using our approach, significant improvement on
power saving can be achieved in less running time, which
confirms the effectiveness and efficiency of our proposed
approach.
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