
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 4, APRIL 2010 607

Multivoltage Floorplan Design
Qiang Ma and Evangeline F. Y. Young

Abstract—Energy efficiency has become a very important
issue to be addressed in today’s system-on-a-chip (SoC) designs.
One way to lower power consumption is to reduce the supply
voltage. Multisupply voltage (MSV) is thus introduced to provide
flexibility in controlling the power and performance tradeoff. In
region-based MSV, circuits are partitioned into “voltage islands”
where each island occupies a contiguous physical space and
operates at one voltage level. These tasks of island partitioning
and voltage level assignment should be done simultaneously in the
floorplanning process in order to take those important physical
information into consideration. In this paper, we consider this
core-based voltage island driven floorplanning problem including
islands with power down mode, and propose a method to
solve it. Given a candidate floorplan solution represented by
a normalized Polish expression, we are able to obtain optimal
voltage assignment and island partitioning (including islands with
power down mode) simultaneously to minimize the total power
consumption. Simulated annealing is used as the basic searching
engine. By using this approach, we can achieve significant power
saving (up to 50%) for all datasets, without any significant
increase in area and wire length. We compared our approach
with the most updated previous work on the same problem, and
results show that our approach is much more efficient and is
able to save more power in most cases. We have also studied two
other approaches to solve the same problem, a simple dynamic
programming approach and a lowest possible power consumption
approach. Experimental results show that ours can perform the
best among these three approaches. Our floorplanner can also be
extended to minimize the number of level shifters, to address a
minVdd version of the problem and to simplify the power routing
step by placing islands close to their corresponding power pins.

Index Terms—Floorplanning, low power, voltage island, voltage
scaling.

I. Introduction

THERE ARE two kinds of power consumption: dynamic
and leakage. Dynamic power is caused by charging and

discharging of the load capacitance during switching, while
leakage power is due to subthreshold currents when a device
is turned off. Energy efficiency is now an important issue

Manuscript received June 16, 2009; revised October 11, 2009. Current
version published March 19, 2010. This work was partially supported by
a grant from the Research Grants Council of the Hong Kong Special Ad-
ministrative Region, China (Project No. 4184/07). The preliminary version of
this article appeared in the Proceedings of the 2007 International Conference
on Computer-Aided Design [6]. This paper was recommended by Associate
Editor, I. Bahar.

Q. Ma is with the Department of Electrical and Computer Engineering,
University of Illinois at Urbana-Champaign, Champaign, IL 61821 USA
(e-mail: qiangma1@illinois.edu).

E. F. Y. Young is with the Department of Computer Science and En-
gineering, Chinese University of Hong Kong, Hong Kong, China (e-mail:
fyyoung@cse.cuhk.edu.hk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2010.2042895

in today’s system-on-a-chip (SoC) designs because of the in-
creasing power density and the popularity of portable systems.
There are many techniques to reduce power consumption.
One of the most effective ways is by lowering the voltage
supply. Multivoltage design is thus introduced to provide “just
enough” power to support different functional operations. Both
dynamic and leakage power consumption can be reduced in
multivoltage designs. For dynamic power, a minor adjustment
to the voltage level can result in a significant reduction in
power consumption, which is proportional to the square of
the voltage. For leakage power, the consumption can be
reduced by powering down some components when they are
inactive.

Multivoltage designs involve partitioning of a chip into
areas called “voltage islands” that can be operated at different
voltage levels, or be turned off when idling. With the use
of voltage islands, the chip design process is becoming more
complicated. We need to solve the problems of island parti-
tioning, voltage assignment, and floorplanning simultaneously
under area, power, timing, and other physical constraints.
These problems must be solved at the same time since
their results will mutually affect each other. Also, there are
other issues to be considered. For example, voltage islands
should be placed close to their corresponding power pins in
order to make power routing easier and to reduce IR drop.
Besides, each island requires level shifters to communicate
with others and overhead in area and delay will be resulted.
These additional issues have created many new challenges in
generating floorplans for multivoltage designs. An example is
shown in Fig. 1. In this example, the possible voltage levels
of each core and groupings of similar inactive periods (to
generate islands with power down mode) are shown on the
right hand side. Assuming that the number of islands is three,
one possible partitioning is to group cores A, B, and C as
one island operating at voltage 1.0-V, core D on its own
as one island at voltage 1.5-V and cores I, K, L, and M as
one island at 1.2-V. Notice that other cores will be operated
at the chip-level voltage. The island containing I, K, L, and
M can be powered down during sleep, as well as the island
containing the single core D. A candidate floorplan solution
for such a partitioning and voltage assignment is shown on the
left.

There are several previous papers addressing this voltage
island-driven floorplanning problem. One recent work is by
Lee et al. [5]. Given a netlist without reconvergent fanouts,
a voltage assignment (with two voltage levels of VDDL and
VDDH) is first performed on the netlist according to the timing
requirement before the floorplanning step. Level shifters are
then inserted into the nets according to the voltage assignment

0278-0070/$26.00 c© 2010 IEEE

608 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 4, APRIL 2010

result when a VDDL block drives a VDDH block. At the
end, a power-network aware floorplanner is invoked to pack
the blocks such that the power-network resource, estimated
as the sum of the perimeters of the voltage islands, will be
minimized. As a result, blocks in the same voltage island will
be placed close to each other. In their approach, the voltage
assignment step and the floorplanning step are done separately.
Hu et al. [3] have also considered this simultaneous island
partitioning, voltage assignment, and floorplanning problem
in SoC designs. Simulated annealing is used as the basic
searching engine. Given a candidate solution, perturbations are
performed to split an island, change the voltage of an island or
change all the islands of one voltage to another voltage. Chip-
level floorplanning is then performed to find a floorplan in
which compatible islands (islands with the same voltage) are
likely to be adjacent. An island merging process is then applied
to reduce the number of islands. At the end, island-level
floorplanning is done to each newly formed island to shrink
its area. The whole process is repeated until a satisfactory
solution is obtained. Their approach does not consider islands
with power down mode and the search space is large. Mak and
Chen [7] have also addressed this problem on SoC designs.
Given a floorplanning input, the voltage assignment and island
partitioning problem is formulated as a 0–1 integer linear
program. In their approach, a few candidate floorplan solutions
are generated based on metrics like area and interconnect cost,
then voltage assignment and partitioning are performed on
these candidate floorplans using the integer linear program-
ming approach to identify the best candidate solution. A frag-
mentation cost (number of adjacent cores operating at different
voltages) is used to model the power network complexity
but this cost is not related to the number of islands directly.
There are some other previous works which address issues like
reliability [12] and temperature reduction [4] in SoC voltage
island partitioning and floorplanning. For island partitioning,
Wu et al. [11] minimized the number of voltage islands after
placement. Guo et al. [2] addressed the voltage assignment and
voltage island generation problem in placement to minimize
the number of level shifters. Cai et al. [1] proposed a volt-
age island generation flow in standard cell-based designs to
reduce power consumption under performance constraint and
to reduce layout overheads caused by cell clustering to form
islands.

In this paper, we present a floorplanning method for SoC
designs that is tightly integrated with island partitioning and
voltage assignment. A preliminary version of it has appeared
in [6]. Simulated annealing is used with normalized Polish
expression (NPE) [10] as the floorplan representation.1 Our
cost function now considers area, wire length, power, and level
shifter usage.2 NPE is used because the slicing tree structure
is a suitable data structure on which island partitioning and
voltage assignment can be done optimally and efficiently.
In each step of the annealing process, a candidate floorplan
solution is generated on which optimal island partitioning

1Since many input cores have flexibilities in shape at this stage, the restricted
use of slicing floorplan can also give satisfactory results.

2The cost function can be easily extended to consider routability by
including a term on congestion estimation.

and voltage assignment will be performed simultaneously to
compute the smallest possible power consumption for that can-
didate floorplan solution. This is done by dynamic program-
ming with an efficient cost table updating technique. In this
way, we can integrate the three steps closely, and reduce the
searching space (instead of doing voltage assignment by the
“move” operations of the annealing process as in [3]). In this
floorplanning framework, we can also generate islands with
power down mode to optimize the total power consumption
further. We compared our approach with the most updated
previous work [7] on the same problem, and results show that
our approach is much more efficient and is able to save more
power in most cases, while with less area overhead. Similar
to [7], timing is considered according to the assumption that
the given voltage levels of each core are all feasible for
achieving timing closure. To further study this problem, we
have developed two other methods to solve this voltage island-
driven floorplanning problem. One of them is a simplified
version of the dynamic programming approach, and the other
one assumes a lowest possible power consumption for each
core. We compare these two methods with our approach and
experimental results show that our approach can perform the
best. The simplified dynamic programming approach performs
a little bit inferior to our approach in terms of solution quality,
with a 5.37% reduction in running time on average. The lowest
possible power approach consumes less execution time and
achieves maximum power saving, but the number of voltage
islands generated is relatively large, while our approach can
generate a solution of which the power consumption is fairly
close to the lowest possible value, while the number of voltage
islands is much smaller. In addition, we have also extended
our floorplanner to consider the area and power overhead
of level shifters, to solve a minVdd version of this voltage
island driven floorplanning problem (in which each core,
instead of having a set of discrete feasible voltage levels,
has a minimum voltage level above which the core can be
operated properly and achieve timing closure) and to consider
the ease of power network routing (proximity to power pins
and shapes of voltage islands). By using our approach, we
can achieve significant power savings (up to 50%) for all
datasets, without any significant increase in area and wire
length.

We will define the problem in Section II, we will then
discuss the methodology used in Section III. The experimental
results will be reported in Section VI before the conclusion
and discussion in the last section.

II. Problem Formulation

In this problem, we are given a set of n cores with
areas A1, A2, . . . , An and aspect ratio bounds [li, ui] for
i = 1, . . . , n. Each core i is associated with a power table
Ti that specifies the legal voltage levels for the core and
the corresponding average power consumption values such
that the cycle time can be achieved. These tables can be
obtained by simulations that try applying different supply
voltages to the core. The power consumption corresponding

MA AND YOUNG : MULTIVOLTAGE FLOORPLAN DESIGN 609

Fig. 1. Example of the voltage island driven floorplanning problem.

to each legal voltage can then be estimated.3 We are also
given a set of m nets {N1, N2, . . . , Nm} and a set of groupings
{G1,G2, . . . ,Gp} between the cores such that the cores in
each group Gi have similar inactive periods and will have a
si% saving in power consumption if they are grouped together
as an island with power down mode. 4

Given a constant K and a chip-level voltage Vc, our goal is
to generate a floorplan F with K rectangular voltage islands so
that the total power consumption is minimized.5 Each island
will be supplied with the lowest possible voltage level common
to all the cores in that island while the remaining cores
not assigned to any island will be operated at the chip-level
voltage. Islands containing blocks all belonging to the same
group Gi can have a further reduction in power consumption
by si% by shutting it down during sleep.6

An alternative scenario of this problem is that each core
i, instead of having a few discrete legal voltage levels, has a
minimum voltage level minVi such that i can operate properly
and achieve timing closure at a voltage level not less than
minVi. We call this the minVdd version of this voltage island-
driven floorplanning problem, and will extend our discussion
on this in a later part of this paper.

A. Groupings of Cores With Similar Inactive Periods

The grouping information can be generated according to the
dynamic behaviors of the cores obtained from a power state
machine (PSM) [8]. A PSM represents all the states a chip
can operate in and the possible transitions between them. Each
state in a PSM describes the operating mode of the cores. For
example, a core can be active, idle or sleep in any particular
state. Each state also has a weight that represents the relative
amount of time the system will remain in that particular state.
The larger the weight, the higher is the chance that the system

3In this paper, we assume that the power cost of a core i operated at voltage
v is v2Ai, i.e., we fill in the table according to this formulation. However, the
use of a power cost table gives us flexibility in specifying the power costs of
a core at different voltage levels.

4Note that this percentage of power saving is computed according to the
amount of time each core can be shut down in comparison with the total
computational time, and the cores with similar inactive periods are grouped
together. Therefore, even if only some cores in a group form an island, there
is still si% saving in power.

5We assume that the given voltage levels of each core can meet timing, so
we do not consider timing explicitly in our formulation.

6This factor si% is the percentage saving compared with the case when the
cores are not shut down at all. Therefore, this is an estimation of the amount
of time (compared with the total operational time) that the computations of
the cores are not needed.

will be in that state within a certain time window. The power to
an island with power down mode must remain active if any of
the cores in it is active. The relative amount of time a group of
cores on the same island will remain inactive can be estimated
from the PSM, and the percentage saving in power can then be
estimated from it. We can exhaust different ways of groupings
in a preprocessing step to find out which grouping is possible,
given an estimate of the overhead cost in energy consumption
and area of the power gating circuitry. Those potentially
beneficial groups will form the Gis in the above formulation.

III. Methodology

Our floorplanner is based on simulated annealing using NPE
as the representation. For each candidate floorplan solution
represented by an NPE, we will perform an optimal island
partitioning and voltage assignment to maximize the total
power saving. The cost function of the annealing process is
to minimize a weighted sum of the area, wire length, and
power. We can also extend our floorplanner to consider level
shifters and proximity to power pins. Details will be given in
the following sections.

A. Optimal Island Partitioning and Voltage Assignment

Given a candidate floorplan solution represented by a NPE,
we can construct the corresponding slicing tree and perform
optimal island partitioning and voltage assignment on it.
This can be done efficiently by dynamic programming. The
pseudocode is shown below.

Pseudocode TreePart(u, k)
// Partition the subtree under node u into k subtrees to
// minimize the total power consumption such that the cores
// (leaf nodes) in each of these k subtree will form one

island
// operated at one common voltage possibly with power

down
// mode while the remaining cores not belonging to any of
// these k subtrees will be operated at chip-level voltage Vc

1. min cost = ∞
2. If k is 0, return(power(u)).
3. If cost table[u][k] is updated, return(cost table[u][k]).
4. If k is 1,
5. C1 = TreePart(lchild(u), 1) + power(rchild(u))
6. C2 = TreePart(rchild(u), 1) + power(lchild(u))
7. C3 = nonSubtree(u, 1)
8. C4 = cost({u})
9. min cost = min{C1, C2, C3, C4}
10. Store min cost into cost table[u][1].
11. Return (min cost).
12. Else
13. min cost = nonSubtree(u, k)
14. For i = 0 to k
15. C = TreePart(lchild(u), i)+

TreePart(rchild(u), k − i)
16. If min cost > C, min cost = C
17. Store min cost into cost table[u][k].
18. Return(min cost).

610 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 4, APRIL 2010

At the beginning, TreePart(root, k) is called to obtain an
optimal island partitioning and voltage assignment of the
whole floorplan, where root is the root of the slicing tree
corresponding to the NPE under consideration and k is the
number of voltage islands we want to produce. When k is zero
(line 2), no voltage island is formed in the subtree of u, so the
power consumption power(u) will be computed as (Vc)2A{u},
where Vc is the chip-level voltage and A{u} is the total area
of the cores in the subtree of u. For nonzero k, we will first
check whether this optimal cost has been computed before and
is available in the table for immediate return (line 3). If this
value is not available, we will consider the situations when k
is one and when k is larger than one separately. When k is
one (line 4), there are four cases.

1) Case 1 (line 5), we continue to search for a voltage
island in the left subtree of u and let the right subtree
operates at the chip-level voltage Vc.

2) Case 2 (line 6), similarly, we look for a voltage island
in the right subtree of u and let all the cores in the left
subtree work at Vc.

3) Case 3 (line 7), use the function nonSubtree() to group
the cores across a number of subtrees along the left tree
branches of u into a voltage island (details will be given
in the next section).

4) Case 4 (line 8), the entire subtree u is regarded as one
voltage island and the power consumption cost({u}) will
be computed as

cost({u}) = (v{u})2A{u}

where v{u} is the smallest common voltage among all
the cores in the subtree rooted at u and A{u} is the total
area of the cores in the subtree rooted at u.

We will compute the costs of the four cases, respectively, and
the smallest one will be returned and recorded in the table
for future use. When k is more than one (line 12), we will
recursively call the procedure TreePart() to exhaust all the
possible partitionings of the subtree of u, including both inter-
subtree partitionings (line 13) and intra-subtree ones (lines 14–
16). The minimum one will be returned and recorded in the
table.

1) Voltage Islands in nonSubtrees: Notice that a voltage
island (a rectangular region) may be formed by a set of
contiguous right subtrees linked by internal nodes of the same
type. An example is shown in Fig. 2. Therefore, we need
the procedure nonSubtree() to enumerate these cases. The
pseudocode of nonSubtree() is shown in the following. In
this procedure, we exhaust all the cases of forming one island
with two or more contiguous right subtrees and the one with
the smallest power consumption will be returned. On line 7,
we compute the cost of grouping the right subtrees in S as
one island and having the remaining k − 1 islands in the last
left subtree (subtree D in the example of Fig. 2).

Pseudocode nonSubtree(u, k)
// Exhaust the cases of forming one island by a number
// of contiguous right subtrees, while the remaining k − 1
// islands are formed in the remaining left subtree.

Fig. 2. Example of forming island across subtrees.

1. min cost = ∞
2. S = rchild(u)
3. op = operator(u)
4. While operator(lchild(u)) is op
5. u = lchild(u)
6. S = S ∪ rchild(u)
7. C = TreePart(lchild(u), k − 1) + cost(S)
8. If min cost > C, min cost = C
9. Return(min cost).

2) Proof of Optimality: The procedure TreePart() will
give the optimal partitioning to minimize the total power
consumption. Given a candidate floorplan solution represented
by a normalized slicing tree rooted at u and the number of
voltage islands required k, TreePart() will exhaust all the
possible cases recursively and return the best solution. When
k is zero, there is only one case that all the cores in the tree
rooted at u (called Tu) are operated at the chip voltage. When
k is one, there is only one voltage island among all the cores in
Tu. The first three cases are obvious: 1) the island is in the left
subtree of u; 2) the island is in the right subtree; and 3) all the
cores in Tu form one island. There is still a case that the island
is formed between the left and right subtrees of u. This may
happen only when two consecutive internal nodes are of the
same type (both “+” or both “*”). In a normalized slicing tree,
an internal node will not be of the same type as its right child,
so this will happen only along the left branch. nonSubtree()
will exhaust this last case of forming one island by a set of
contiguous right subtrees along the left branch rooted at u.
When k is larger than one, the cases are similar to those when
k is one and TreePart() will exhaust all different ways of
distributing the k islands between the left and right subtrees
of u and the case of having an island lying between the two
subtrees. Since TreePart() has exhausted all different cases of
forming k islands in a given candidate floorplan, the solution
returned by TreePart() is optimal.

3) Handling Island With Power Down Mode: Islands with
power down mode can be easily handled in our framework.
When computing the power consumption of an island formed
with the cores in the set of subtrees rooted at a node in set X by
calling cost(X) in the procedure TreePart() and nonSubtree(),
we only need to check if all the cores belong to one group Gi

MA AND YOUNG : MULTIVOLTAGE FLOORPLAN DESIGN 611

for some i = 1, . . . , p. If this is true, the island formed can be
shut down during sleep and have an additional power saving
of si%.7 Notice that an island containing just one single core
can also be shut down during sleep mode if the core belongs
to some idle state group. In this way, our floorplanner can give
optimal island partitioning and voltage assignment taking into
account islands with power down mode given any candidate
floorplan solution.

4) Speedup in Implementation and Complexity: A table
cost table[v][j] for j = 1, . . . , K is kept at each internal node
v of the slicing tree to record the optimal power consumption
of partitioning the cores in the subtree rooted at v into j

islands. This data structure can help to minimize the number
of recursive calls and to avoid repetitive computations. It can
be seen from the procedure TreePart() that whenever we want
to find the optimal power saving at a node u with k voltage is-
lands, we will first check whether this is computed before and
the required information is available from cost table[u][k].
If it is available, the optimal value is returned immediately
(line 3). Otherwise, it is computed recursively and the com-
puted value will be saved in the cost table to be used in some
later steps (lines 10 and 17). After a move in the annealing
process, only a small part of the whole slicing tree will be
changed and we only need to update the tables of the affected
nodes once. The affected nodes will be those lying on the
paths from the modified parts of the tree to the root. For those
affected nodes, the corresponding cost tables will be flagged
as “not updated” and will be updated during the recursive
calls.

The size of the cost table is O(nK) where n is the number
of cores and K is the number of voltage islands, because each
internal node v has K entries in the table, cost table[v][j]
for j = 1, . . . , K, and there are n internal nodes in total. For
each affected node v, we need to update all the K entries
of its table once. Since each entry is just updated once,
the time complexity will be the same as that of updating
all the affected nodes in a bottom-up fashion from the leaves to
the root. If the nodes were updated from the leaves to the root,
the time taken to update a table at a node v was O(K2), be-
cause there were K entries and each entry took O(K) time (the
tables of v’s children have already been updated). Therefore
the total time to perform all the updates in each iteration is
(number of affected nodes) ×O(K2). This is O(K2n) in the
worst case, and is (K2 log n) on average.

B. Annealing Schedule

In our annealing engine, the temperature is set to 105 at the
beginning and will drop at a rate of 0.95. At each temperature,
30∗n random moves are performed, where n is the number of
blocks in the dataset. The annealing process stops either when
less than 0.5 percent random moves are accepted at a certain
temperature, or when the temperature falls below 10−5.

7Even if some cores in the group are not in the island, we assume that there
is still si% saving in power since this percentage saving is computed based
on the amount of time each core can be shut down in comparison with the
total computational time. However, the way to calculate this saving in power
can be modified for different problem formulations.

C. Moves

There are three kinds of moves to change the NPE of
a candidate floorplan solution during annealing. This set of
moves has been proven to be complete to change any arbitrary
solution to any other arbitrary solution.

1) Swap: Swap two adjacent blocks.
2) Complement: Complement a chain of operators.
3) SwapOp: Swap a block with its adjacent operator.

D. Cost Function

We use the cost function ψ = A + λwW + λpP to evaluate
a floorplan where A is the area of the floorplan, W is the
total wire length estimated by the half perimeter bounding
box and P is the total power consumption. The parameters
λw and λp are the weights which will be set at the beginning
of the annealing process by random walks to make the three
terms similar in weighting. Note that this cost function can be
modified to consider routability (by having an additional term
on congestion estimation) or the fixed-outline constraint (by
replacing the area term A by λ∞(max{0, w−W ′}+max{0, h−
H ′}) where λ∞ is a large positive constant, w and h are the
width and height of the candidate floorplan solution, and W ′

and H ′ are the fixed width and height required for the final
floorplan design).

IV. Extension to Basic Methodology

Based on the framework discussed in the above Section III,
the methodology can be modified to handle the following
varied versions of the problem, minVdd optimization and
adjustable background voltage.

A. MinVdd Optimization

As discussed in the problem formulation section, an alter-
native scenario of this problem is that each core i, instead
of having a few discrete legal voltage levels, has a minimum
voltage minVi such that i can operate properly and achieve
timing closure at a voltage level not less than minVi. Our
general framework can be readily modified to address this
minVdd version of the problem. The major modification made
to the dynamic programming is that when we get down to
the base case that the whole subtree forms only one island,
instead of finding the lowest voltage level legal to all cores
in the island, we should compute the highest minVi among
all the cores i in the island and take that as the voltage level
being used in that island. We can achieve this by computing
the function cost({u}) of a subtree u as follows:

cost({u}) = A{u} × max
core i∈u

minV 2
i .

Notice that since we can control the number of volt-
age islands by adjusting the parameter k in the procedure
TreePart(root, k), the floorplanning process will not end up
with getting more voltage levels than desired. That means,
the algorithm has already taken into account the maximum
number of voltage levels allowed to find an optimal way of
partitioning and voltage assignment such that the total power
consumption is minimized.

612 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 4, APRIL 2010

TABLE I

Datasets

Data Block Net Groups
No. No.

n10 10 118 3 (30%)
n30 30 349 5 (30%), 5 (20%)
n50 50 485 5 (50%), 5 (30%), 5 (20%)
n100 100 885 10 (70%), 5 (50%), 6 (40%)
n200 200 1585 10 (50%), 10 (40%), 9 (30%), 9 (20%)
n300 300 1893 15 (60%), 15 (50%), 15 (40%), 15 (30%)

B. Adjustable Background Voltage

In the problem formulation, it is assumed that a background
chip-level voltage Vc is given. Our framework can also be
used to address an extended version of the problem in which
the background voltage is not fixed yet.8 The final chip-level
voltage is determined by the minimum (or maximum) feasible
voltage level among all the cores which are not grouped into
any voltage island. To achieve this, we need to expand the
table at each node L times where L is the total number
of possible voltage levels among all the cores. In this case,
each entry cost table[v][j][Vl] will be the optimal power
consumption of partitioning the cores in the subtree rooted
at v into j islands when the background chip-level voltage is
Vl where 1 ≤ l ≤ L. Notice that some Vl where 1 ≤ l ≤ L

may be impossible to be used as the background voltage in
some cases and we can use a very large cost value to denote
these cases. Besides the changes made to cost table, the
procedures power(), TreePart(), and nonSubtree() will also
be modified to return an array of L values corresponding to
the L cases of using a different background voltage. Steps 9–
10 and steps 15–17 in the pseudocode TreePart(u, k) will all
become array operations treating the L different choices of
background voltages separately and correspondingly.

All entries in the tables corresponding to different back-
ground voltages can be updated simultaneously during the
recursive calls and the run time is thus only linearly scaled
up by L. This is very affordable in practice since the number
of possible voltage levels L is usually small. The memory size
of such expanded cost table will be O(nKL).

V. Alternatives to Solve the Problem

To further study the problem, we have developed two other
methods to solve the same voltage island-driven floorplanning
problem. One of them is a simplified version of the dynamic
programming approach described in Section III-A, and the
other one assumes a lowest possible power consumption for
each module.

A. Simplified Dynamic Programming Approach

In this simplified dynamic programming approach, the is-
lands formed across the left and right subtrees are not taken
into account, i.e., step 7 and step 13 in the pseudocode of

8This feature may be useful when this floorplanning tool is used as
a prototype floorplanner during the front-end designing stages when the
background voltage is not fixed yet.

TABLE II

Comparisons with a Previous Work [7]

Dataset Power Saving Dead Run Time*
(%) Space(%) (s)

Ours [7] Ours [7] Ours [7]
apte 51.64 53.78 2.341 3.422 1.457 5.482
xerox 40.45 22.85 3.667 5.259 1.335 7.079
hp 41.34 25.37 3.855 5.700 1.570 122.9
ami33 48.69 44.12 4.376 5.784 19.43 89.39
ami49 47.21 41.13 4.840 6.440 68.78 90.46
2xerox 43.68 33.53 5.136 3.765 10.63 74.75
2hp 39.58 17.47 4.880 5.650 9.55 26.86
ami75 47.95 39.06 6.552 6.330 166.9 316.5
ami99 46.33 41.16 8.630 7.666 298.5 684.4
ami200 42.68 41.90 9.110 10.88 1722 3851
ami300 41.85 40.69 10.90 12.02 3061 7380
Average 44.67 36.46 5.844 6.655 487.4 1150

*[7] is run on a Linux with a 2.1 GHz CPU and 4 GB RAM.

Fig. 3. One resultant floorplan of n100 with four voltage islands.

Fig. 4. One resultant floorplan of playout with some blocks operated at very
low voltages.

the procedure TreePart(u, k) in Section III-A are removed.
This approach is clearly suboptimal for a candidate floor-
plan,9 since the solutions that contain islands formed across
subtrees are neglected. However, the solution quality may
not be significantly degraded by this simplification, since the
potentially optimal grouping of some cores across subtrees
in one candidate floorplan is very likely to be generated in

9This approach is suboptimal in terms of power saving with respect to
a particular candidate floorplan, but the overall simulated annealing-based
optimization using this simplified approach may sometimes produce a better
solution due to the randomness of the annealing process.

MA AND YOUNG : MULTIVOLTAGE FLOORPLAN DESIGN 613

TABLE III

Experimental Results with Idle Islands

Data K Total Power Dead Wire No. of Run Data K Total Power Dead Wire No. of Run
Power Saving Space Length Idle Time Power Saving Space Length Idle Time

(%) (%) (×10) Islands (s) (%) (%) (×10) Islands (s)
(x1) (x2) (x3) (x4) (x1) (x2) (x3) (x4)

n10 0 498 778 0.000 0.394 1185 0 3.12 n100 0 403 877 0.000 0.638 13 028 0 427.86
1 393 660 21.075 0.296 1288 0 3.81 1 332 093 17.774 0.827 12 997 0 409.72
2 334 853 32.865 0.748 1314 1 4.32 2 303 367 24.886 0.600 13 435 0 416.05
3 277 862 44.291 0.748 1554 1 2.99 3 256 686 36.445 4.530 13 576 0 475.06
4 267 263 46.416 1.561 1350 1 5.41 4 232 262 42.492 1.599 14 310 0 508.93
5 267 263 46.416 0.487 1277 2 3.62 5 231 121 42.774 3.138 13 882 1 572.86
6 267 263 46.416 0.407 1358 2 4.36 6 224 879 44.320 3.364 14 309 1 597.98

n30 0 469 330 0.000 0.732 3341 0 32.73 n200 0 395 316 0.000 0.808 29 421 0 1600.22
1 312 071 33.507 0.848 3477 0 42.30 1 341 132 13.706 6.063 31 139 0 1762.17
2 221 819 52.737 0.729 3629 1 37.43 2 309 471 21.716 1.490 30 480 0 1770.16
3 242 060 48.424 0.760 3836 2 46.22 3 259 555 34.342 3.154 30 820 0 1814.28
4 221 819 52.737 4.136 3803 2 43.69 4 246 987 37.522 5.704 32 004 0 2080.43
5 221 819 52.737 4.107 4006 2 59.83 5 261 257 33.912 3.426 30 720 1 2036.82
6 216 165 53.942 0.701 3823 2 57.28 6 247 342 37.432 0.892 32 668 1 2058.11

n50 0 446 803 0.000 0.744 8001 0 97.72 n300 0 614 632 0.000 2.527 49 839 0 3295.63
1 267 143 40.210 3.629 8347 0 110.85 1 541 437 11.910 1.975 49 289 0 3499.20
2 246 592 44.810 6.623 8348 0 138.71 2 494 289 19.580 2.166 50 565 0 3398.88
3 224 870 49.671 2.141 8888 1 128.57 3 436 625 28.960 1.961 51 298 0 3576.74
4 202 117 54.764 1.750 8296 2 140.25 4 457 999 25.484 3.514 50 383 0 3931.90
5 227 838 49.007 0.775 8604 1 138.53 5 379 049 38.329 1.151 50 636 0 3843.81
6 200 281 55.175 0.878 8299 3 135.08 6 386 475 37.120 2.677 52 048 1 4077.38

TABLE IV

Experimental Results for Simplified Dynamic Programming Approach

Data K Total Power Dead Wire No. of Run Data K Total Power Dead Wire No. of Run
Power Saving Space Length Idle Time Power Saving Space Length Idle Time

(%) (%) (×10) Islands (s) (%) (%) (×10) Islands (s)
(y1) (y2) (y3) (y4) (y1) (y2) (y3) (y4)

n10 0 498 778 0.000 0.394 1185 0 3.08 n100 0 403 877 0.000 0.638 13 028 0 424.38
1 393 660 21.075 0.345 1337 0 3.36 1 293 126 27.422 1.289 12 973 0 454.97
2 334 853 32.865 5.801 1422 1 3.12 2 274 892 31.937 1.081 13 855 0 413.25
3 297 459 40.362 1.320 1573 1 3.89 3 283 353 29.842 3.358 13 827 0 511.74
4 267 263 46.416 0.759 1467 1 4.26 4 244 486 39.465 0.695 14 161 0 433.60
5 267 263 46.416 0.875 1451 1 4.90 5 239 411 40.722 4.899 14 305 1 510.97
6 267 263 46.416 1.566 1301 1 4.29 6 225 095 44.266 2.687 147 35 1 474.18

n30 0 469 330 0.000 0.732 3341 0 32.47 n200 0 395 316 0.000 0.808 29 421 0 1588.19
1 312 071 33.507 0.993 3543 0 33.94 1 325 408 17.684 6.124 33 170 0 1707.47
2 231 225 50.733 2.224 3690 1 39.28 2 324 624 17.883 3.271 31 690 0 1673.27
3 243 983 48.015 1.159 3905 1 35.10 3 306 767 22.399 7.035 31 673 0 1667.41
4 215 589 54.065 6.933 3892 1 42.56 4 251 292 36.433 3.809 33 361 0 1727.21
5 209 498 55.362 0.815 3702 2 44.39 5 264 266 33.151 3.292 32 422 1 1957.23
6 213 404 54.530 2.909 3995 3 51.93 6 261 002 33.976 5.786 34 124 1 2036.72

n50 0 446 803 0.000 0.744 8001 0 96.94 n300 0 614 632 0.000 2.527 49 839 0 3298.97
1 265 290 40.625 0.940 8402 0 102.77 1 538 237 12.429 5.138 51 053 0 3473.72
2 248 471 44.389 2.010 8390 0 112.04 2 487 268 20.722 1.134 49 992 0 3270.86
3 247 515 44.603 2.544 8593 0 111.37 3 454 473 26.057 2.877 51 498 0 3373.43
4 214 415 52.011 1.679 8024 2 130.33 4 435 452 29.152 2.246 51 824 0 3154.60
5 206 536 53.775 3.166 8660 2 123.92 5 395 715 35.620 2.449 51 507 0 3951.88
6 197 507 55.795 7.718 8702 3 141.29 6 407 159 33.750 4.654 53 000 1 4042.81

another one in which these cores are lying in the same subtree,
due to the stochastic property of simulated annealing.

B. Lowest Possible Power Approach

In this lowest possible power approach, each core is set to
operate at its lowest legal working voltage level, so that the
largest possible power saving (without power down mode) can
be achieved. The dynamic programming procedure in this ap-
proach then simply need to count the number of voltage islands
required for each candidate floorplan, and this number will
replace the power consumption term in the cost function of

the annealing process. This counting can be done recursively
and the pseudocode is shown below. The variables Llevel
and Rlevel are used for possibly merging of two neighboring
islands of the same voltage level, which are separated into
two subtrees of one parent node in the slicing tree. We can
easily see that the run time complexity is O(n) where n is the
number of cores, and this complexity is the smallest possible.

Pseudocode IslandCount (u, Llevel, Rlevel)
// Assume that each core i is already assigned a voltage
// level vi. This procedure counts the number of voltage

614 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 4, APRIL 2010

// islands in the subtree rooted at u. Llevel and Rlevel
// are variables to be set and passed out of the procedure.

1. If u contains a single core i
2. Llevel = Rlevel = vi
3. return(1)
4. Else
5. op = operator(u)
6. a = IslandCount(lchild(u), L1, R1)
7. b = IslandCount(rchild(u), L2, R2)
8. If a is 1
9. x = R1 // In this case, L1 = R1

10. Llevel = L1

11. Else
12. If operator(lchild(u)) equals op
13. x = R1

14. Llevel = L1

15. Else
16. x = 0
17. Llevel = 0
18. If b is 1
19. y = L2 // In this case, L2 = R2

20. Rlevel = R2

21. Else
22. If operator(rchild(u)) equals op
23. y = L2

24. Rlevel = R2

25. Else
26. y = 0
27. Rlevel = 0
28. If x �= 0 and y �= 0 and x equals y
29. return(a + b− 1)
30. Else
31. return(a + b)

VI. Experimental Results

We have done experiments on the GSRC floorplanning
benchmarks. Since no voltage information is provided in
those benchmarks, we have randomly generated the voltage
levels for each block from the set {1.0-V, 1.1-V, 1.2-V, 1.3-V,
1.5-V} and 1.5-V is assumed to be the chip-level voltage.
In each dataset, groups of blocks with similar inactive periods
are also randomly generated. Table I shows the details of each
dataset, the fourth column indicates the grouping information
of similar inactive periods, e.g., for n30, there are two groups:
one contains five cores with 30% power saving if being
grouped together, and the other one contains five cores with
20% power saving if being grouped together. This grouping
information is now generated randomly.10 Our algorithm is
implemented in C language and all the experiments are per-
formed on a Sun Blade 2500 with a 1.6 GHz CPU and 2 GB
RAM.

10This grouping information can be calculated from a task graph that shows
when and how long certain cores can be powered down.

TABLE V

Comparison Between Our Approach and the Simplified Dynamic

Programming Approach

Data K Change in Change in Change in Change in
Total Power Total Area Wire Length Run Time

(%) (%) (%) (%)(
y1−x1
x1

) (
y2−x2
x2

) (
y3−x3
x3

) (
y4−x4
x4

)

n10 0 0.00 0.00 0.00 −1.28
1 0.00 0.05 3.80 −11.81
2 0.00 5.36 8.22 −27.78
3 7.05 0.58 1.22 30.10
4 0.00 −0.81 8.67 −21.26
5 0.00 0.39 13.63 35.36
6 0.00 1.18 −4.20 −1.61

n30 0 0.00 0.00 0.00 −0.79
1 0.00 0.15 1.90 −19.76
2 4.24 1.53 1.68 4.94
3 0.79 0.40 1.80 −24.06
4 −2.81 3.01 2.34 −2.59
5 −5.55 −3.32 −7.59 −25.81
6 −1.28 2.27 4.50 −9.34

n50 0 0.00 0.00 0.00 −0.80
1 −0.69 −2.72 0.66 −7.29
2 0.76 −4.71 0.50 −19.23
3 10.07 0.41 −3.32 −13.38
4 6.08 −0.07 −3.28 −7.07
5 −9.35 2.47 0.65 −10.55
6 −1.39 7.41 4.86 4.60

n100 0 0.00 0.00 0.00 −0.81
1 −11.73 0.47 −0.18 11.04
2 −9.39 0.49 3.13 −0.67
3 10.39 −1.21 1.85 7.72
4 5.26 −0.91 −1.04 −14.80
5 3.59 1.85 3.05 −10.80
6 0.10 −0.70 2.98 −20.70

n200 0 0.00 0.00 0.00 −0.75
1 −4.61 0.07 6.52 −3.10
2 4.90 1.84 3.97 −5.47
3 18.19 4.17 2.77 −8.10
4 1.74 −1.97 4.24 −16.98
5 1.15 −0.14 5.54 −3.91
6 5.52 5.19 4.46 −1.04

n300 0 0.00 0.00 0.00 0.10
1 −0.59 3.33 3.58 −0.73
2 −1.42 −1.04 −1.13 −3.77
3 4.09 0.94 0.39 −5.68
4 −4.92 −1.30 2.86 −19.77
5 4.40 1.33 1.72 2.81
6 5.35 2.07 1.83 −0.85

Average − +0.95 +0.67 +1.97 −5.37

The results are shown in Table III. For each dataset, we
performed voltage island driven floorplanning with the number
of voltage islands generated ranges from zero to six.11 We
could see from the results that up to 50% power saving can be
achieved without any significant degradation in area and wire
length. In addition, the speed is very acceptable and promising.
Some resultant floorplans are shown in Figs. 3 and 4. Fig. 3 is
a resultant packing of dataset n100, with four voltage islands
generated. In Fig. 4, we aim at testing a particular situation
in which some cores can be operated at very low voltages.
We use playout of the MCNC benchmark as the test case,
and assign 0.6-V to cores {2–9}, and 0.8-V to cores {12–19},
respectively, as their minimum working voltage. Floorplanning

11Although the number of voltage levels is five, the number of islands is
not limited by five because two islands can be operated at the same voltage.

MA AND YOUNG : MULTIVOLTAGE FLOORPLAN DESIGN 615

TABLE VI

Experimental Results for Lowest Possible Power Approach

Data K Total Power Total Dead Wire No. of Run
Power Saving Area Space Length Idle Time

(%) (%) (×10) Islands (s)
n10 4 267 263 46.416 225 032 1.490 1535 1 3.30
n30 8 213 796 54.446 221 016 5.622 4012 2 39.06
n50 7 191 360 57.171 221 552 10.369 8745 4 105.75
n100 20 203 397 49.639 185 450 3.208 15 778 0 326.30
n200 29 199 201 49.609 178 723 1.693 32 647 7 1416.87
n300 30 289 226 52.943 298 419 8.461 60 022 2 2723.68

is then performed with K = 2 and 1.5-V being the chip-level
voltage. In the result, two islands are generated as expected,
one with cores {2, 3, 4, 8, 9} and the other with {12, 13, 14,
15, 17}. The cores {5, 6, 7} and {16, 18, 19} are not included
in the islands due to other factors like interconnect and area
(their sizes are small and will not cause large power wastage
even if operated at a higher voltage).

A. Comparison With Previous Work

In order to compare with the results of the previous related
work [7] on exactly the same problem,12 we have done
another set of experiments with the benchmarks provided by
the authors of [7] without idle islands. In their datasets, the
available voltage levels for each cell are chosen from the set
{1.1−V, 1.3−V, 1.5−V, 1.8−V }, the area of each level shifter
is 10 × 10 and the power cost is one. The comparisons are
displayed in Table II. Results show that our approach is much
more efficient and is able to save more power in most cases,
while with less area overhead. Note that we set K = 4 in the
experiments, i.e., four islands are generated for each test case.

B. Comparison With the Simplified Dynamic Programming
Approach

In this simplified dynamic programming approach, the is-
lands formed across the left and right subtrees are not taken
into account, This approach is suboptimal in terms of power
saving with respect to a particular candidate floorplan, but
due to the stochastic property of the annealing process, the
solution quality will not be significantly degraded. This obser-
vation is supported by the experiments. Table IV displays the
experimental results of this simplified dynamic programming
approach, while Table V compares this approach with our
approach, from which we can see that this simplified dynamic
programming approach performs a little bit inferior to our
method in terms of solution quality, with a 5.37% reduction
in running time on average.

C. Comparison With the Lowest Possible Power Approach

In this lowest possible power approach, each core is set
to operate at its lowest legal working voltage level, so that
the largest possible power saving can be achieved. This
approach provides an upper bound on power reduction for us

12In [7], it is also assumed that the legal voltage levels of a core are the
feasible operating voltages at which the core will satisfy its performance
requirement.

Fig. 5. Resultant floorplans for proximity constraints to power pins.
(a) Without considering proximity to power pins. (b) Considering proximity
to power pins.

to compare with. From Table III, we can see that the power
consumption of our approach is very close to this lowest
possible value, but the number of voltage islands is much
smaller. Note that the efficient implementation of the island
counting procedure [pseudocode IslandCount()] contributes
to the relatively shorter execution time of this lowest possible
power approach.

D. Extension to Consider Area and Power Overhead Due to
Level Shifters

Level shifters (LS) are needed for connections between two
blocks in different power domains. These level shifters will

616 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 4, APRIL 2010

TABLE VII

Considering the Power and Area Overhead of Level Shifters

No. of LS Power Saving (%) Area (Dead Space) Run Time (s)
Data w/o LS With LS w/o LS With LS w/o LS With LS w/o LS With LS

Opt. Opt. Opt. Opt. Opt. Opt. Opt. Opt.
n10 34 15 12.42 17.83 300 394 (26.20) 256 836 (13.68) 0.667 1.095
n30 38 38 40.07 40.41 236 410 (11.76) 236 222 (11.70) 8.076 17.28
n50 103 73 28.95 36.58 242 586 (18.14) 228 655 (13.15) 23.94 63.71
n100 207 167 19.45 24.39 219 795 (18.33) 212 630 (15.56) 88.05 303.4
n200 372 316 15.93 16.94 218 822 (19.71) 209 078 (15.96) 378.2 1641
n300 665 460 10.95 11.53 346 578 (21.18) 308 149 (11.35) 927.6 3321
Average 236.5 178.1 21.29 24.61 260 764 (19.22) 241 928 (13.56) 237.7 891.2
Diff(%) −24.7 +15.61 −7.22 +275

TABLE VIII

Experimental Results for MinVdd Approach

Data K Total Power Dead Wire No. of Run Data K Total Power Dead Wire No. of Run
Power Saving Space Length Idle Time Power Saving Space Length Idle Time

(%) (%) (×10) Islands (s) (%) (%) (×10) Islands (s)
n10 0 498 778 0.000 1.158 1274 0 0.491 n100 0 403 877 0.000 1.052 12 536 0 85.18

1 334 549 32.92 4.039 1293 0 0.532 1 286 710 29.01 6.767 13 294 0 85.85
2 290 593 41.74 0.548 1463 1 0.784 2 264 563 34.49 8.728 13 222 0 88.73
3 277 862 44.29 0.733 1438 1 0.683 3 248 192 38.55 3.791 14 205 0 90.61
4 272 102 45.45 0.638 1340 1 0.824 4 244 842 39.38 1.918 13 957 0 95.08
5 267 263 46.41 0.426 1359 2 0.956 5 237 291 41.24 6.848 14 138 0 99.03
6 267 263 46.41 0.460 1320 2 0.973 6 227 722 43.62 0.891 13 725 0 103.7

n30 0 469 330 0.000 1.476 3420 0 7.014 n200 0 395 316 0.000 6.219 31 893 0 364.9
1 275 553 41.28 0.438 3707 0 7.169 1 329 242 16.71 2.398 30 558 0 383.6
2 271 589 42.13 0.874 3496 0 8.307 2 291 271 26.32 3.753 30 031 0 394.4
3 221 819 52.74 3.082 3592 1 8.539 3 286 235 27.59 4.943 30 729 0 405.2
4 221 819 52.74 0.720 3457 2 8.919 4 269 032 31.94 0.892 30 412 0 428.3
5 212 608 54.70 0.698 3521 2 9.632 5 259 551 34.34 4.124 31 387 0 460.8
6 209 293 55.41 0.787 3754 3 10.24 6 254 794 35.54 1.017 30 706 0 487.1

n50 0 446 803 0.000 0.606 7765 0 20.11 n300 0 614 632 0.000 2.594 51 507 0 742.9
1 285 954 36.00 0.715 8004 0 21.19 1 393 365 36.00 4.814 49 823 0 793.8
2 248 255 44.43 0.807 7866 0 22.15 2 379 667 38.23 1.845 47 248 0 802.3
3 231 630 48.16 2.058 7826 0 23.46 3 361 630 41.16 2.879 53 672 0 812.7
4 204 658 54.19 0.775 8097 1 24.66 4 353 570 42.47 1.175 48 355 0 855.6
5 191 360 57.17 1.124 8003 2 25.41 5 350 212 43.02 6.196 50 268 0 866.1
6 191 360 57.17 0.764 8815 3 26.87 6 342 367 44.30 3.432 50 773 0 912.4

lead to area and power overhead and should be minimized.
We can extend our floorplanner to minimize the usage of level
shifters by having additional terms in the cost function that
represents the total area and power consumption due to level
shifters. We assume that a level shifter is needed whenever a
wire is connecting two blocks operating at different voltages.
For example, if a net connects a source in voltage island A
to three sinks, two in island B and one in island C, two
level shifters will be inserted, one between A and B and one
between A and C. These level shifters will add to the total
area and power consumption of the design. This extra area and
power usage can be estimated according to the size of a level
shifter which can then be included into the area and power
term of the cost function, ψLS = (A+ALS)+λwW +λp(P+PLS),
where ALS and PLS are the total area and power consumption
due to the level shifters, respectively.13 The result is shown

13The extra area due to the level shifters are considered and reflected in
the cost function as described above. In terms of the final layout, we can
proportionally increase the area of each core according to the number of level
shifters inserted due to signals coming out from it. In this way, the final
floorplan obtained from the annealing process can be slightly changed to take
into account this extra area due to the level shifters.

in Table VII. In these experiments, the number of voltage
islands K is set to four. Results show that our method can
reduce the number of level shifters by 67.1% on average and
can reduce total power consumption as well as total area, with
some penalty in run time.

E. Extension to Consider Power Network Routing

The voltage islands should be placed in proximity to the
power pins to simplify the power routing step and to minimize
the IR drop. The power network resources can be modeled
by the sum of the half perimeters of the islands [5]. We can
also extend our floorplanner to consider these power network
issues by having additional terms in the cost function (with
weights determined by random walk) to represent: 1) the total
distance of the voltage islands from their respective power
pins; and 2) the sum of the half perimeters of the islands. In
our experiments, we assume that the positions of the K power
pins are given. In each iteration of the annealing process, each
island is matched to a power pin such that the total distance
between them is the smallest possible. This total distance and
the sum of the islands’ half perimeters will be minimized
during the annealing process.

MA AND YOUNG : MULTIVOLTAGE FLOORPLAN DESIGN 617

Two resultant packings of the n300 dataset consisting of 300
blocks are shown in Fig. 5, and they are produced with the
fixed-outline constraint. The packing in Fig. 5(a) is obtained by
the original floorplaner, without taking into consideration these
power network issues, while the one in Fig. 5(b) is obtained
by this extended version. There are four power pins located at
the center of each boundary in this example. We can see from
the figures that the four islands are shifted to the sides of the
chip containing the pins in order to be located closer to their
respective power pins, and the islands are closer to square in
shape that will favor IR drop reduction and power network
routing.

F. Experiments With minVdd

In this version of the problem, instead of having a few
discrete legal voltage levels, each core has a minimum voltage
minVi such that i can achieve timing closure at a voltage level
not less than minVi. Our framework can be easily modified
to address this minVdd version of the problem. The results of
applying our dynamic programming approach to this problem
is shown in Table VIII. We can see that the running time is
much shorter in comparison with Table III because it is easier
to compute the maximum minVi among a group of cores than
finding the smallest voltage level feasible to all of them.

VII. Conclusion

In this paper, we have proposed a simulated annealing-based
approach for the floorplanning problem with simultaneous
island partitioning and voltage assignment. The three factors
area, wire length and power consumption of the resultant
floorplan are concurrently taken into consideration, and the
experiment results have shown that we are able to achieve
a significant power saving of up to 50% for the testing
datasets.

In addition, when extended to minimize the number of
level shifters between different voltage domains, our method
can reduce 67.1% of the LS used on average, with some
penalty in power saving; and it also functions well to generate
voltage islands in proximity to their corresponding power
pins, by having an additional term in the cost function to
minimize the total distance between voltage islands and power
pins.

References

[1] Y. Cai, B. Liu, Q. Zhou, and X. Hong, “Voltage island generation in
cell-based dual-vdd design,” Inst. Electron., Informat. Commun. Eng.
Trans. Fundam. Electron., Commun. Comput. Sci., vol. E90-A, no. 1,
pp. 267–273, 2007.

[2] L. Guo, Y. Cai, Q. Zhou, and X. Hong, “Logic and layout aware voltage
island generation for low power design,” in Proc. Asian South Pacific
Design Automat. Conf., 2007, pp. 666–671.

[3] J. Hu, Y. Shin, N. Dhanwada, and R. Marculescu, “Architecting voltage
islands in core-based system-on-a-chip designs,” in Proc. Int. Symp. Low
Power Electron. Design, 2004, pp. 180–185.

[4] W.-L. Hung, G. M. Link, Y. Xie, N. Vijaykrishnan, N. Dhanwada, and
J. Conner, “Temperature-aware voltage islands architecting in system-
on-chip design,” in Proc. Comput. Design, 2004, pp. 689–696.

[5] W.-P. Lee, H.-Y. Liu, and Y.-W. Chang, “Voltage island aware floorplan-
ning for power and timing optimization,” in Proc. Int. Conf. Comput.-
Aided Design, 2006, pp. 389–394.

[6] Q. Ma and E. F. Y. Young, “Voltage island-driven floorplanning,” in
Proc. Int. Conf. Comput.-Aided Design, 2007, pp. 644–649.

[7] W.-K. Mak and J. W. Chen, “Voltage island generation under per-
formance requirement for SoC designs,” in Proc. Asian South Pacific
Design Automat. Conf., 2007, pp. 798–803.

[8] D. Sengupta and R. Saleh, “Application-driven floorplan-aware voltage
island design,” in Proc. 45th Assoc. Comput. Machinery/IEEE Design
Automat. Conf., 2008, pp. 155–160.

[9] X. Tang, R. Tian, and D. F. Wong, “Minimizing wire length in floor-
planning,” IEEE Trans. Comput.-Aided Design Integrat. Circuits Syst.,
vol. 25, no. 9, pp. 1744–1753, Sep. 2006.

[10] D. F. Wong and C. L. Liu, “A new algorithm for floorplan design,”
in Proc. 23rd Assoc. Comput. Machinery/IEEE Design Automat. Conf.,
1986, pp. 101–107.

[11] H. Wu, I.-M. Liu, D. F. Wong, and Y. Wang. “Postplacement voltage
island generation under performance requirement,” in Proc. Int. Conf.
Comput.-Aided Design, 2005, pp. 309–316.

[12] S. Yang, W. Wolf, N. Vijaykrishnan, and Y. Xie. “Reliability-aware SoC
voltage islands partition and floorplan,” in Proc. Emerging Very Large
Scale Integrat. Technol. Architect., 2006, p. 343.

Qiang Ma received the B.Eng. degree in electrical
engineering from Zhejiang University, Hangzhou,
China, in 2006, and the M.Phil. degree in computer
science from the Chinese University of Hong Kong,
Shatin, Hong Kong, China, in 2008. He is currently
working toward the Ph.D. degree at the Department
of Electrical and Computer Engineering, University
of Illinois at Urbana-Champaign, Champaign.

His research interests include physical design of
chips, packages, and printed circuit boards.

Evangeline F. Y. Young received the B.S. and
M.Phil. degrees in computer science from the
Chinese University of Hong Kong (CUHK), Hong
Kong, China, and the Ph.D. degree in computer sci-
ence from the University of Texas, Austin, in 1999.

From 1999 to 2004, she was as an Assistant
Professor with the Department of Computer Science
and Engineering, CUHK, and currently she is an
Associate Professor in the same department. Her
current research interests include algorithms and
computer aided design of very large scale integration

circuits. She is now working actively on floorplanning, placement, routing, and
algorithmic designs.

Dr. Young has served on the technical program committees of several
major conferences including the International Conference on Computer Aided
Design, the Asia and South Pacific Design Automation Conference, the
International Symposium on Physical Design, and the Great Lakes Symposium
Very Large Scale Integration.

