
Selected best papers from ETS’06

Test scheduling for built-in self-tested embedded
SRAMs with data retention faults

Q. Xu, B. Wang, A. Ivanov and F.Y. Young

Abstract: The test scheduling problem for built-in self-tested embedded SRAMs (e-SRAMs) when
data retention faults (DRFs) are considered is addressed here. We proposed a ‘retention-aware’ test
power model by taking advantage of the fact that there is near-zero test power during the pause time
for testing DRFs. The proposed test scheduling algorithm then utilises this new test power model
to minimise the total testing time of e-SRAMs while not violating given power constraints, by
scheduling some e-SRAM tests during the pause time of DRF tests. Without losing generality,
we consider both cases where the pause time for DRFs is fixed and cases where it can be
varied. Experimental results show that the proposed ‘retention-aware’ test power model and the
corresponding test scheduling algorithm can reduce the testing time of e-SRAMs significantly
with negligible computational time.
1 Introduction

Embedded memories, in particular embedded SRAMs
(e-SRAMs), tend to consume most of the silicon area in
today’s system-on-a-chips (SoCs), ranging from register
files as small as 64 bits to larger caches with sizes of hun-
dreds of kilobits or even megabits [1]. Because of their
extreme density, e-SRAMs are more prone to manufactur-
ing defects than the other types of on-chip circuitry (e.g.
standard cells) and it is important to test them thoroughly
to ensure an acceptable SoC yield. Therefore how to effi-
ciently and effectively test these hundreds of instances of
e-SRAMs on-chip for all possible faults becomes a major
challenge for the SoC system integrators [2]. On the one
hand, we would like to let more e-SRAMs be tested in par-
allel to reduce the total testing time and hence the SoC test
cost. On the other hand, however, the test power constraint
becomes a major concern because power consumption in
test mode is usually higher than the one in functional
mode [3]. Therefore efficient power-constrained test sche-
duling techniques (e.g. [4]) play a key role in reducing
e-SRAM test cost.

Most prior work in test scheduling assumes a constant
power consumption during the entire test process. As
shown in Fig. 1b, an e-SRAM test can be represented by
a rectangle, where its width denotes the testing time and
its height denotes the test power. Although simple and
effective for logic testing, this model is overly pessimistic
for e-SRAM testing when data retention faults (DRFs) are
considered [5]. DRFs model the defects in SRAM bit cells
that fails to retain a stored logic value. The most common
test method for DRFs is simply loading a known value

The Institution of Engineering and Technology 2007

doi:10.1049/iet-cdt:20060128

Paper first received 28th August 2006 and in revised form 3rd January 2007

Q. Xu and F.Y. Young are with the Department of Computer Science and
Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

B. Wang is with AMD, AMD One Place, Sunnyvale, CA, USA

A. Ivanov is with the Department of Electrical and Computer Engineering,
University of British Columbia, Vancouver, B.C., Canada, V6T 1Z4

E-mail: qxu@cse.cuhk.edu.hk
256
into the cell and waiting for a period of time (up to hundreds
of milliseconds [1]), and then reading it out, as shown in
Fig. 1a. During the two DRF pause time (for retention test
of both logic ‘0’ and logic ‘1’), no read/write operations
are performed and hence it consumes near-zero test
power. By taking this property into account, we propose a
‘retention-aware’ test power model for built-in self-tested
(BISTed) e-SRAMs, in which each e-SRAM test is rep-
resented by three rectangles A, B and C with interval TAB

and TBC corresponding to the DRF pause times, as shown
in Fig. 1c. Based on this new test power model, we
present an efficient and effective test scheduling algorithm
that minimises the total testing time of e-SRAMs under
given power constraints, by scheduling some e-SRAM
tests during the pause time of DRF tests. Without loss of
generality, we consider both cases where the pause time
for DRF tests is fixed and cases where it can be varied.

Fig. 1 Test power model for e-SRAMs with data retention faults

a March algorithm for testing DRFs
b Traditional test power model
c Retention-aware test power model
IET Comput. Digit. Tech., 2007, 1, (3), pp. 256–264

Experimental results show that our approach significantly
reduces the total testing time under given power constraints.

2 Prior work and motivation

2.1 Related work in DRF tests

From the functional point of view, e-SRAM data retention
faults behave as that the e-SRAM cell cannot retain a
logic 1/0 after a certain amount of time [6]. From the
defect point of view, DRFs are usually caused by a defective
source, drain or gate open of the pull-up transistor of the
e-SRAM cell or by a defective power or ground path.
Based on the above, there are mainly two types of DRF
testing methodologies: (i) functional-based, that is, introdu-
cing pass time in March tests [7, 8] and (ii) defect-based,
that is embedding various design for test (DFT) circuitries
to identify DRFs in a short time [1, 9–17].

DFT-based DRF testing methods embed dedicated circui-
tries in e-SRAM cells and/or their peripherals and detect
DRF-related defects with specially designed operations.
Among the previous work [1, 9–17] weak-write method
[15] has excellent DRF detectability due to the fact that
the weak write value can be programmable on the fly,
while pre-discharge write method proposed in [16] leads
to the most significant test time savings (close to zero)
and has the additional benefit of at-speed testability that is
more important for deep sub-micron technology [18].
Although effective on detecting DRFs, the above DFT tech-
niques require more design efforts and also often come with
high hardware and/or performance overhead. Moreover,
since the DFT circuitries are implemented at transistor
level, these techniques are technology-dependent and
hence requires verification at every technology node for
all corner cases, which may significantly increase
time-to-market. Because of the above reasons, most
memory compilers supplied by memory vendors today do
not provide the feature to apply the above DFT
techniques.

Therefore we consider the case that DRF tests are applied
in the traditional functional-based methods. As shown in
Fig. 1a, all the e-SRAM cells are firstly initialised as a
logic value 1/0. After that, the e-SRAM under test is dis-
abled, that is, no read or write operation is conducted, for
a pre-defined pause time (up to several hundred millise-
conds) before reading the values out. To reduce DRF
testing time, Wang et al. [8] proposed to reuse the initialisa-
tion time of the neighbourhood cells which are not on the
same row as the cells under test as part of the pause time.
This technique, however, is only effective for large
e-SRAMs. As discussed in [1], retention testing needs to
consider the slow process corner case, whose leakage
(responsible for the loss of the stored logic value) actually
slows from 130 to 90 nm. Because of this, the pause time
for testing DRFs does not decrease significantly with the
increasing chip operational frequency, and hence the
testing time for DRFs dominates the total e-SRAM testing
time when applying pause test, especially for small
e-SRAMs. In fact it is the above observation that motivates
this work on how to effectively and efficiently utilise the
pause time for DRF tests in test scheduling process.

2.2 Related work in test scheduling

Test scheduling is the process that allocates test resources
(e.g. test bus lines or BIST engines) to cores at different
time in order to minimise the overall testing time, while at
the same time satisfying the given constraints [19]. Various
IET Comput. Digit. Tech., Vol. 1, No. 3, May 2007
constraints need to be considered during test scheduling,
but probably the most important one is the test power
constraint. That is, testing more cores in parallel usually
result in reduced testing time; however, it will also
increase the test power, which may lead to destructive
testing [20].

Many test scheduling techniques have been proposed in
the literature [3, 21–25] (only name a few). In particular,
[21, 23] considered power constraint in their work. The
above work, however, mainly targets on the test scheduling
of logic cores (usually scanned), and one of the design aims
is to design an efficient test access mechanism (TAM)
architecture to link the test source/sink to the core under
test. e-SRAM tests, however, are usually conducted
by BIST engines, without involving TAM design and
optimisation issues. Another major difference of e-SRAM
test from logic test is that the testing time for an e-SRAM
is a fixed constant with its size given, while the testing
time for a logic core usually varies with the assigned
TAM width. Wang et al. [4] proposed a simulated annealing
(SA) algorithm for the test scheduling of BISTed memory
cores. Test power for each memory is assumed to
be constant during its entire testing process and the
computational time is quite high when the number of
memory cores is large. Fang et al. [26] presented an
effective and efficient power-constrained test scheduling
heuristic for their hardware/software co-testing method-
ology. None of the above work considered the special
features of DRF pause tests.

2.3 Impact of e-SRAM BIST architecture

How the e-SRAM BIST architectures are designed affects
the test scheduling process. For example, when many differ-
ent e-SRAMs share the same BIST engine to save silicon
area, depending on the BIST scheme, they may [27] or
may not [28] be able to be tested in parallel. Since
at-speed testability for e-SRAMs becomes more important
with the ever increasing operational frequency, most of
the current system integrators prefer to design unique
BIST engine for each and every e-SRAM, at least for the
timing-critical portion of the BIST engine, for example,
the address generator, the control signal generator and the
comparator [29]. As a result, we consider the case that
each e-SRAM is supplied with its own BIST engine. It is
important to note that, however, the proposed approach
can easily be generalised to the BIST-sharing scenario by
adding additional constraints into the test scheduling
process.

In addition, whether the BIST engine is ‘soft’ or ‘hard’
significantly affects the test scheduling process. When it is
‘soft’, that is, the system integrator is able to modify its
architecture, the pause time for DRF tests (i.e. TAB and
TBC) can be changed easily. When it is hard-wired,
however, the pause time is a pre-determined fixed value.
Without loss of generality, we consider both cases.

3 Retention-aware test scheduling

The retention-aware test scheduling problem investigated in
this section can be stated as follows:

Problem Pdrf – opt: Given the test parameters for the
BISTed e-SRAMs, including

† the total number of e-SRAMs Nm;
† the maximum allowed test power Pmax;
257

† for each BISTed e-SRAM i, the test power consumption
Pi, the testing time TA_i, TB_i and TC_i for blocks A, B and C;
† the minimum pause time for testing DRFs Tpause;

determine the test schedule of all e-SRAMs such that (i) the
total testing time is minimised; (ii) the pause time for testing
DRFs satisfies TAB � Tpause and TBC � Tpause and (iii) the
test power consumption at any moment does not exceed
Pmax.

3.1 Scheduling with flexible DRF pause time

3.1.1 Packing-based scheduling strategy: Since each
e-SRAM test i can be modelled by three rectangular blocks
Ai, Bi and Ci (see Fig. 1c), our objective can be seen as to
pack all the rectangles Ai, Bi, and Ci (i ¼ 1, . . . , Nm) into
a rectangular region of height not exceeding Pmax and of a
minimised width such that for every e-SRAM i, the separ-
ation between Ai and Bi and the separation between Bi

and Ci are at least Tpause. This is a typical constrained rec-
tangle packing problem and can be modelled and solved
by using a SA approach as described in [30], borrowed
from the floorplanning literature.

In this approach, SA is used to search for a good packing
satisfying a given set of general placement constraints. In
each annealing step, a candidate packing solution S rep-
resented by a sequence pair [31], is evaluated. A pair of con-
straint graphs, Gh and Gv, are constructed according to the
sequence pair to realise a packing from its representation.
To impose a ‘minimum separation’ constraint between
two blocks, for exmple, between Ai and Bi (or between Bi

and Ci), an edge of weight Tpause will be inserted into the
horizontal constraint graph from Ai to Bi (from Bi to Ci,
respectively). According to the definition of horizontal con-
straint graph, an edge e(vi, vj) from vi to vj of weight w
means that the block represented by vj must be placed at a
distance of at least w units on the right of the block rep-
resented by vi. After adding all these additional constraint
edges, a single source shortest path algorithm can be per-
formed on the constraint graphs to find out the location of
each block. The resulting packing will automatically have
all the minimum separation constraints satisfied. It may
happen that a positive cycle is formed in the horizontal con-
straint graph after adding those additional constraint edges
and the single source shortest path algorithm will be
failed, implying that the current candidate floorplan solution
is infeasible to satisfy all the minimum separation con-
straints. In this case, we will remove all the additional con-
straint edges and simply pack the blocks according to the
sequence pair. A penalty term will be included in the cost
function to penalise the violated constraints. The cost func-
tion of a candidate solution S used in the annealing process
is as follows

cost(S) ¼ area(S) þ a� Penalty1(S) þ b� Penalty2(S)

where a and b are weights, area(S) is the area of S and is
computed as Pmax � width(S), Penalty1(S) is the penalty
for exceeding the maximum allowed test power Pmax and
Penalty2(S) is the penalty for violating the minimum
separation constraints. Penalty1(S) and Penalty2(S) are
computed as

Penalty1(S) ¼ (max {0, height(S) � Pmax})2

Penalty2(S) ¼ S
n
i¼1(max {0, Tpause � (x(Bi) � x(Ai))})2

þ S
n
i¼1(max {0, Tpause � (x(Ci) � x(Bi))})2
258
where x(R) of a rectangular block R is the x-coordinate of
the lower left corner of R. The SA engine provides a very
flexible framework to solve this constrained block packing
problem. However, its runtime is very long for problem
instances with a large number of blocks and constraints.
To make use of this packing-based approach, some
groupings betweeen the memories will be done as a
pre-processing step. First of all, some memories of the
same type and belonging to the same testing period, that
is, period A, B or C, will be grouped together as one
block and they are grouped in such a way to form a square-
shaped rectangle as much as possible (packing of square-
shaped rectangles are relatively easier). For example, if
there are 12 BISTed e-SRAM i, with test power consump-
tion Pi ¼ 18, testing time TA

i ¼ 60, TB
i ¼ 12 and TC

i ¼ 12,
these 12 A blocks will be grouped together in the form of
6 � 2 since the dimensions of this 6 � 2 combined block
will be 108 � 120 (6 � Pi ¼ 108), which is a possible
shape closest to a square. Similarly, we do such preproces-
sing for the A, B and C blocks of each BISTed e-SRAM i to
reduce the problem size. Memories of the same type and
belonging to the same testing period will be grouped
together if their total area does not exceed a certain
threshold of the total area of all the memory blocks. This
threshold is set by the user to control the trade-off
between the optimality of the solution and the runtime.
The smaller the threshold, less grouping will be done, and
the solution quality will be higher but the runtime will be
longer. In all the following experiments, a theshold of
0.01 is used, that means there will be at most 100 blocks
in the problem instance after grouping.

3.1.2 Fast scheduling heuristic: The pre-processing
step used in the above packing-based scheduling strategy
significantly reduces computational complexity, but it also
greatly restricts the available solution space and hence
may lead to excessive testing time. In this section, we
present another heuristic that is both efficient in terms of
runtime and effective in terms of testing time, based on
the algorithm presented in [26]. In this heuristic (as shown
in Fig. 2), every e-SRAM test block (i.e. Ai, Bi or Ci) is
treated as a scheduling unit, and its data structure is as
follows

Data structure memory block

1. index; /� The memory index �/

2. type; /� Memory block type, that is, A, B or C�/

3. power; /� Testing power �/

4. time; /� Testing time �/

5. lowerLimit; /� The earliest possible schedule time �/

6. begin; /� Schedule begin time �/

7. end; /� Schedule end time �/

8. is Scheduled; /�Scheduled or not �/

While the other variables are self-explanatory, the vari-
able lowerLimit is utilized to meet the DRF interval Tpause

constraint and is discussed in detail in the following
algorithm.

The algorithm DRF_Flexible_Schedule takes the set of
memory test blocks MB, Tpause and Pmax as inputs and
outputs the test schedule of all e-SRAMs. It starts by initi-
alising the lowerLimit for every memory test block in
MB. For the blocks whose type is ‘A’, lowerLimit is initia-
lised to be zero; while for the other memory blocks whose
type is ‘B’ or ‘C’, they are initialised to be 1. As a result,
IET Comput. Digit. Tech., Vol. 1, No. 3, May 2007

in the very beginning of the test scheduling process, only ‘A’
type of memory test blocks can be scheduled. Next, the
current schedule begin time is initialised to zero, the currently
available power constraint Pavl is initialized to Pmax and the
number of unscheduled memory blocks is initialised to the
size of MB (line 2). As long as there exist unscheduled
memory test blocks, the algorithm first tries to find the
maximum one that can be scheduled at thisTime (line 5). If
such mi exists, it will be scheduled by updating its begini,
endi and isScheduledi (line 7). Line 8 updates Pavl and
Nunscheduled after scheduling mi. If mi is of ‘A’ or ‘B’ type,
we need to update the lowerLimit of the corresponding
‘B’ or ‘C’ block (line 9). If no such blocks can be found
and at the same time Pavl ¼ Pmax, which means all the
unscheduled blocks are of type ‘B’ or ‘C’, and their
lowerLimit all exceed thisTime. In this time, we have to
insert idle time into the test schedule and update thisTime
accordingly (lines 11–12). If no such blocks can be found
but Pavl , Pmax, which means the current available test
power is not enough, we will record this idle power Pidle

(line 14), and branch to finish some currently scheduling
blocks to release more available test power (lines 15–20).

Fig. 2 Pseudocode for e-SRAM test scheduling with flexible DRF
pause time

Fig. 3 Scheduling example of three memory cores with fixed
DRF pause time
IET Comput. Digit. Tech., Vol. 1, No. 3, May 2007
The algorithm then repeats the loop (lines 4–24) and ends
only when all memory test blocks are scheduled.

3.2 Scheduling with fixed DRF pause time

The above DRF tests with flexible pause time requires the
system integrator to revise the BIST engine for each
e-SRAM based on the final test schedule. This not only
involves some development effort that may result in
longer time-to-market, but more importantly, there are

Fig. 4 Procedure for grouping e-SRAM tests

Fig. 5 e-SRAM tests grouping example
259

Table 1: e-SRAM configurations of the experimental
test cases

Test

case

e-SRAM N P, mW TA, cc TB, cc TC, cc

1 64 � 256 500 5914 16 896 1408 806

512 � 8 500 1475 135 168 11 264 5734

2 16 k � 32 10 12 894 4 325 376 360 448 180 326

64 k � 16 5 46 224 17 301 504 1 441 792 720 998

3 32 k � 16 1 23 904 8 650 752 720 8963 360 550

8 k � 32 2 7666 2 162 688 180 224 90 214

8 k � 8 3 6930 2 162 688 180 224 90 214

4 k � 16 3 4374 1 081 344 90 112 45 158

.

128 � 66 1 3215 33 792 2816 1510

16 � 8 10 545 4224 352 278

8 � 8 8 503 2112 176 190
260
cases that the BIST engines are hard-wired and the pause
time simply cannot be changed. As a result, in this
section, we consider how to schedule e-SRAM tests with
fixed DRF pause time

TAB ¼ TBC ¼ Tpause

Because of this fixed wait period, whenever an ‘A’
type of memory test block mi

A is scheduled, the
schedule of its corresponding mi

B and mi
C are determined

already. Therefore the three blocks cannot be treated
as independent scheduling units and have to be considered
as a whole. At the same time, it is fairly difficult to
keep track of the power profile during the scheduling
process. For example, as can be observed from Fig. 3,
the power profile after scheduling only three e-SRAMs
is already quite complex. To reduce the complexity
of this problem, instead of dynamically scheduling
memory test blocks in between the DRF pause time
TAB and TBC, we propose to group multiple e-SRAM tests
Table 2: Testing time comparison for test case 1

Test case 1

Pmax ¼ 60 mW

Tpause, cc Treg, cc Tpacking, cc Tflex, cc DTflex, % Tfixed, cc DTfixed, %

50 k 9 114 548 3 151 270 2 868 234 268.53 5 778 228 236.60

100 k 15 400 602 3 201 270 2 918 836 281.05 7 006 878 254.50

500 k 65 800 602 3 960 890 3 536 614 294.63 7 691 198 288.31

1 M 128 800 602 4 960 890 4 536 614 296.48 9 130 290 292.91

5 M 632 800 602 12 960 900 12 536 614 298.02 15 018 214 297.63

10 M 1 262 800 602 22 960 900 22 536 614 298.22 30 019 430 297.62

Pmax ¼ 100 mW

Tpause, cc Treg, cc Tpacking, cc Tflex, cc DTflex, % Tfixed, cc DTfixed, %

50 k 5 695 792 2 340 260 1 735 692 269.53 3 546 348 237.74

100 k 9 609 738 2 390 260 1 759 736 281.69 4 335 278 254.89

500 k 40 809 738 3 149 890 2 539 852 293.78 4 624 434 288.67

1 M 79 809 738 4 149 890 3 539 852 295.56 6 114 316 292.34

5 M 391 809 738 12 149 900 11 539 750 297.05 15 018 214 296.17

10 M 781 809 738 22 149 900 21 539 750 297.24 30 019 430 296.16

Pmax ¼ 200 mW

Tpause, cc Treg, cc Tpacking, cc Tflex, cc DTflex, % Tfixed, cc DTfixed, %

50 k 2 795 314 1 954 380 8 69 660 268.89 1 773 174 236.57

100 k 4 695 314 1 645 460 9 62 636 279.50 2 270 858 251.64

500 k 19 895 314 2 445 460 1 762 636 291.14 3 066 764 284.59

1 M 38 895 314 3 445 460 2 762 534 292.90 3 098 342 292.03

5 M 190 895 314 11 445 500 10 762 534 294.36 15 018 214 292.13

10 M 380 895 314 21 445 500 20 762 534 294.55 30 019 430 292.12

Pmax ¼ 500 mW

Tpause, cc Treg, cc Tpacking, cc Tflex, cc D Tflex, % Tfixed, cc D Tfixed, %

50 k 1 099 882 1 545 460 4 06 546 263.04 7 10 872 235.37

100 k 1 885 936 1 645 460 5 06 546 273.14 9 59 346 249.13

500 k 8 285 936 2 445 460 1 306 342 284.23 1 557 670 281.20

1 M 16 285 936 3 445 460 2 306 342 285.84 3 098 342 280.98

5 M 80 285 936 11 445 500 10 306 342 287.16 15 018 214 281.29

10 M 160 285 936 21 445 500 20 306 342 287.33 30 019 430 281.27
IET Comput. Digit. Tech., Vol. 1, No. 3, May 2007

statically before scheduling them. The main idea is to try to
fill up the DRF pause time as much as possible during the
initial grouping phase, and then treat the entire group of
e-SRAM tests as a single scheduling unit.
The pseudocode for this pre-processing procedure is
shown in Fig. 4.

The procedure Group_Tests takes the set of e-SRAMs M,
Tpause and Pmax as inputs and outputs the e-SRAM test
groups MG. It starts by initialising the set of ungrouped
e-SRAMs Mungrouped, and the index i of the current
memory group mgi. Then we sort the memory tests in non-
increasing order in terms of their power consumption (line 2).
Inside the outer loop of the procedure, the first e-SRAM test
(i.e. the memory test in Mungrouped with the maximum
test power) is put in mgi (line 4). When this is the last
ungrouped e-SRAM, the procedure has already finished
grouping and terminates (lines 5–7). Otherwise, we try to
group other e-SRAM tests with their ‘A’ and ‘B’ blocks
embedded in TAB_1 and TBC_1. To check the feasibility, we
define terms RangeA, RangeB, TAB_occupied, and TBC_occupied,
which denotes the range to fit the e-SRAM’s ‘A’ block, the
IET Comput. Digit. Tech., Vol. 1, No. 3, May 2007
range to fit the e-SRAM’s ‘B’ block, the already occupied
DRF pause time TAB, and the already occupied DRF pause
time TBC, respectively. The physical meaning of the above
terms can easily be observed from Fig. 5. Whenever an
e-SRAM test is grouped into mgi, these values are updated
(lines 8–9, 22–23). When TAB_occupied . Tpause or
TBC_occupied . Tpause, no more e-SRAM tests can be
grouped into mgi, and hence we proceed to generate a new
memory test group (lines 11–13). Otherwise, we first try to
find a compatible e-SRAM test with maximum power con-
sumption that is able to fit in without conflicts (see Fig. 4).
If such memory test exists, it is grouped (line 18). If the
available test power allows and there are some other
exactly the same type of memories, they are grouped with
the same schedule (lines 19–21). The procedure halts
when all e-SRAM tests are grouped. Fig. 5 shows an
example grouping process with four e-SRAM tests.

After the e-SRAM test groups are generated with the
above procedure, each group is treated as a single unit
during the test scheduling process, which, again, can be
modelled as a rectangle (i.e. the dashed-rectangle as
Table 3: Testing time comparison for test case 2

Test case 2

Pmax ¼ 60 mW

Tpause, cc Treg, cc Tpacking, cc Tflex, cc DTflex, % Tfixed, cc DTfixed, %

50 k 97 821 470 1 12 821 000 97 321 470 20.51 97 821 470 0

100 k 98 321 470 112 821 000 97321470 21.02 98 321 470 0

500 k 1 02 321 470 1 12 821 000 97 321 470 24.89 1 02 321 470 0

1 M 1 07 321 470 1 12 821 000 97 321 470 29.32 1 07 321 470 0

5 M 1 48 661 500 1 16 379 000 99 437 478 233.11 1 60 838 270 8.19

10 M 2 22 187 620 1 22 007 000 1 08 670 310 251.09 2 32 465 150 4.63

Pmax ¼ 100 mW

Tpause, cc Treg, cc Tpacking, cc Tflex, cc DTflex, % Tfixed, cc DTfixed, %

50 k 58 692 882 70 288 300 55 689 624 25.12 58 692 882 0

100 k 58 992 882 70 288 300 55689 624 25.60 58 992 882 0

500 k 61 392 882 70 288 300 55 829 074 29.06 61 392 882 0

1 M 64 392 882 70 288 300 56 689 420 211.96 64 392 882 0

5 M 1 03 259 032 73 846 500 64 067 302 237.95 96 502 962 26.54

10 M 1 43 259 032 83 079 000 74 067 302 248.30 1 39 479 090 22.64

Pmax ¼ 200 mW

Tpause, cc Treg, cc Tpacking, cc Tflex, cc DTflex, % Tfixed, cc DTfixed, %

50 k 39 128 588 46 187 700 36 865 798 25.78 39 128 588 0

100 k 39 328 588 46 237 700 36 965 798 26.01 39 328 588 0

500 k 40 928 588 46 637 700 37 765 798 27.73 40 928 588 0

1 M 42 928 588 47 137 700 38 765 798 29.70 42 928 588 0

5 M 58 928 588 51 812 400 46 765 798 220.64 64 335 308 9.18

10 M 78 928 588 61 812 400 56 765 798 228.08 92 986 060 17.81

Pmax ¼ 500 mW

Tpause, cc Treg, cc Tpacking, cc Tflex, cc DTflex, % Tfixed, cc DTfixed, %

50 k 19 564 294 24 610 900 20 005 068 2.25 19 564 294 0

100 k 19 664 294 24 710 900 20 005 068 1.73 19 664 294 0

500 k 20 464 294 25 510 900 20 464 294 0 20 464 294 0

1 M 21 464 294 26 510 900 21 464 294 0 21 464 294 0

5 M 29 464 294 34 510 900 29 464 294 0 32 167 654 9.18

10 M 39 464 294 44 510 900 39 464 294 0 46 493 030 17.81
261

shown in Fig. 5). A heuristic similar to Algorithm 1 without
constraints is then utilised for this problem to minimise
testing time.

4 Experimental results

To show the benefits of the proposed retention-aware test
scheduling techniques, we constructed four test cases as
follows:

1. 500 instances of 64 � 256 and 500 instances of 512 � 8
e-SRAMs, in total 1000 e-SRAMs and about 10 Mb;
2. 10 instances of 16 k � 32 and 5 instances of 64 k � 16
e-SRAMs, in total 15 e-SRAMs and about 10 Mb;
3. 37 mixed types of e-SRAMs, in total 418 e-SRAMs and
about 5 Mb;
4. a combination of the above, in total 1433 e-SRAMs and
about 25 Mb.

The detailed configurations for the test cases are shown
in Table 1, in which N, P, TA, TB, and TC denote
262
the number of each type of e-SRAMs, the test power
consumption, the testing time for blocks A, B and C,
respectively. Note that we assume all e-SRAMs are
tested in 100 MHz when we acquire P from our memory
compiler. Although different e-SRAMs may be tested in
distinct frequencies in practice, this would not affect the
effectiveness of our approach.

Tables 2–5 compare the total e-SRAM testing time using
different test scheduling schemes with the variation of the
DRF pause time Tpause and the given power constraint
Pmax

.Treg, Tpacking, Tflex and Tfixed represent the testing
time using the regular ‘single-rectangle’ test power model,
the testing time using packing-based algorithm shown in
Section 3.1.1 when Tpause can be varied, the testing time
using the fast heuristic shown in Section 3.1.2 when Tpause

can be varied, and the testing time using the grouping-based
strategy shown in Section 3.2, respectively. They are all in
unit clock cycles. Since we assume the e-SRAMs are
tested in 100 MHz, Tpause varies from 500 ms to 100 ms in
our experiments. DTflex and DTfixed are calculated as
DTflex ¼ Tflex 2 Treg/Treg � 100% and DTfixed ¼ Tfixed 2 T
Table 4: Testing time comparison for test case 3

Test case 3

Pmax ¼ 60 mW

Tpause, cc Treg, cc Tpacking, cc Tflex, cc DTflex, % Tfixed, cc DTfixed, %

50 k 9 832 198 10 257 360 9 832 198 0 9 832 198 0

100 k 9 932 198 10 168 740 9 932 198 0 9 932 198 0

500 k 19 845 932 10 732 200 10 732 198 245.92 10 732 198 245.92

1 M 32 374 618 12 392 580 11 732 198 263.76 12 277 186 262.08

5 M 1 34 827 711 23 252 400 19 732 198 285.36 23 650 983 282.46

10 M 2 64 827 711 32 190 600 29 732 198 288.77 38 655 739 285.40

Pmax ¼ 100 mW

Tpause, cc Treg, cc Tpacking, cc Tflex, cc DTflex, % Tfixed, cc DTfixed, %

50 k 9 832 198 9 832 200 9 872 412 0.41 9 832 198 0

100 k 9 932 198 10 610 640 9 932 198 0 9 932 198 0

500 k 11 946 457 11 654 380 10 732 198 210.16 10 732 198 210.16

1 M 19 835 346 12 344 320 11 732 198 240.85 11 732 198 240.85

5 M 82 783 700 21 061 200 19 732 198 276.16 23 650 983 271.43

10 M 1 62 783 700 32 850 000 29 732 198 281.74 38 655 739 276.25

Pmax ¼ 200 mW

Tpause, cc Treg, cc Tpacking, cc Tflex, cc DTflex, % Tfixed, cc DTfixed, %

50 k 9 832 198 10 340 040 10 002 636 1.73 9 832 198 0

100 k 9 932 198 10 168 740 10 012 422 0.81 9 932 198 0

500 k 10 732 198 11 002 540 10 732 198 0 10 732 198 0

1 M 11 732 198 11 744 900 11 732 198 0 11 732 198 0

5 M 42 463 843 19 732 200 19 732 198 253.53 23 650 983 244.30

10 M 82 463 843 30 002 600 29 732 198 263.95 38 655 739 253.12

Pmax ¼ 500 mW

Tpause, cc Treg, cc Tpacking, cc Tflex, cc DTflex, % Tfixed, cc DTfixed, %

50 k 9 832 198 10 121 620 10 002 636 1.73 9 832 198 0

100 k 9 932 198 10 132 160 10 012 422 0.81 9 932 198 0

500 k 10 732 198 11 002 540 10 732 198 0 10 732 198 0

1 M 11 732 198 11 833 860 11 732 198 0 11 732 198 0

5 M 20 076 869 19 732 200 19 732 198 21.72 23 650 983 17.80

10 M 40 076 869 29 732 200 29 732 198 225.81 38 655 739 23.55
IET Comput. Digit. Tech., Vol. 1, No. 3, May 2007

reg/Treg � 100%, which shows the benefit of the proposed
‘retention-aware’ test scheduling algorithms for variable
and fixed DRF pause time, respectively.

From these tables, we can observe Tflex (with compu-
tational time within a second) is better than Tpacking (with
computational time in minutes) in all cases. This is
mainly because, to reduce runtime, the packing-based sche-
duling strategy group many e-SRAM tests first. This limits
the solution space for Problem Pdrf – opt, which, however,
can be explored in the fast heuristic presented in Section
3.1.2.

It can be also seen from Tables 1–4 that the total
e-SRAM testing time is reduced in most cases with the pro-
posed ‘retention-aware’ test scheduling techniques, for both
cases with flexible DRF pause time and cases with fixed
DRF pause time. The reduction is especially significant
when Tpause is large. This is expected because more
e-SRAMs can fit in the DRF pause time during the schedul-
ing process in such cases. While these times with idle test
power consumption are wasted in traditional single-
rectangle model. We can also observe that the savings in
IET Comput. Digit. Tech., Vol. 1, No. 3, May 2007
testing time are usually larger when Pmax is smaller. This
is also expected because the ‘retention-aware’ test power
model is not very effective when the power constraint is
relaxed. For example, the total test power consumption of
all e-SRAMs in test case 3 is less than 800 mW. When
Pmax ¼ 500 mW, similar to using single-rectangle test
power model, the retention-aware scheduling approach
also wastes lots of idle power in the final schedule.
Therefore the savings are not very large.

In a few cases, the proposed method leads to a slightly
longer testing time (e.g. when DRF pause time is fixed,
Pmax ¼ 200 mW and Tpause� 5 M in test case 2). This is
due to the fact that test case 2 has only 15 large
e-SRAMs, and when Tpause � 5 M several e-SRAMs can
be grouped into one scheduling unit (when Tpause , 5 M,
e-SRAMs in test case 2 cannot be grouped and the schedul-
ing process is exactly the same as the single-rectangle
power model). As shown in Fig. 3, the grouping happens
in the horizonal direction and the testing time of the
group becomes larger than the testing time of each
individual e-SRAM. By using the single-rectangle
Table 5: Testing time comparison for test case 4

Test case 4

Pmax ¼ 60 mW

Tpause, cc Treg, cc Tpacking, cc Tflex, cc DTflex, % Tfixed, cc DTfixed, %

50 k 1 07 653 668 1 29 819 000 1 07 103 668 20.51 1 07 653 668 0

100 k 112 463 987 1 30 037 000 1 07 153 668 24.72 1 08 253 668 23.74

500 k 1 76 764 981 1 29 961 000 1 07 553 668 239.15 1 13 053 668 236.04

1 M 2 58 026 656 1 30 542 000 1 08 053 668 258.12 1 19 053 668 253.86

5 M 9 09 248 192 1 30 842 000 1 09 890 674 287.91 1 85 165 072 279.64

10 M 1 725 540 774 1 37 209 000 116 239 718 293.26 2 36 508 457 286.29

Pmax ¼ 100 mW

Tpause, cc Treg, cc Tpacking, cc Tflex, cc DTflex, % Tfixed, cc DTfixed, %

50 k 63 659 032 79 170 800 58 392 882 28.27 63 659 032 0

100 k 67 345 682 78 933 800 58 394 209 213.29 64 059 032 24.88

500 k 1 07 396 086 80 139 300 58 355 585 245.66 67 259 032 237.37

1 M 1 56 979 271 80 120 800 58 864 114 262.50 71 718 391 254.31

5 M 5 60 096 335 89 052 600 64 067 302 288.56 1 03 260 488 281.56

10 M 1 060 515 913 90 178 300 74 067 302 293.02 1 41 904 895 286.62

Pmax ¼ 200 mW

Tpause, cc Treg, cc Tpacking, cc Tflex, cc DTflex, % Tfixed, cc DTfixed, %

50 k 39 128 588 49 206 700 37 847 244 23.27 39 128 588 0

100 k 39 328 588 50 167 900 37 847 244 23.77 39 328 588 0

500 k 53 371 616 50 444 000 37 986 694 228.83 40 928 588 223.31

1 M 78 037 504 51 967 900 38 765 798 250.32 42 928 588 244.99

5 M 2 76 225 151 57 333 200 46 765 798 283.07 64 603 720 276.61

10 M 5 25 644 342 67 333 200 56 765 798 289.20 94 603 105 282.00

Pmax ¼ 500 mW

Tpause, cc Treg, cc Tpacking, cc Tflex, cc DTflex, % Tfixed, cc DTfixed, %

50 k 19 564 294 27 494 700 19 564 294 0 19 564 294 0

100 k 19 664 294 27 594 700 19 664 294 0 19 664 294 0

500 k 21 483 404 28 394 700 20 685 190 23.72 20 464 294 24.74

1 M 31 559 844 29 394 700 21 464 294 231.99 21 464 294 231.99

5 M 1 11 159 194 37 394 700 29 464 294 273.49 32 303 628 270.94

10 M 2 19 778 181 47 394 700 39 464 294 282.04 47 301 790 278.48
263

power model; however, these e-SRAMs may be able to be
scheduled in the vertical direction and hence reduced
testing time can be achieved. Nevertheless, this situation
rarely happens when the number of e-SRAMs is large
and/or the sizes of e-SRAMs are small. There are also
other few cases that Treg , Tflex and we attribute them
to the fact that the fast heuristic explores only part of the
solution space.

5 Conclusion

Traditionally, test power modelling treats e-SRAMs
the same as logic cores and represents the test using a
‘single-rectangle’ model. This paper showed that this
model is overly conservative because of the near-zero
power delay cycles used to detect data retention faults.
By taking advantage of this property, we proposed a
retention-aware test power model and the associated
test scheduling techniques. We considered both cases
where the DRF pause time is fixed and cases where it
can be varied. Experimental results show that the
proposed approach can significantly reduce e-SRAM
testing time, especially when the power constraint is
tight and/or the DRF pause time is large. As stressed
in [1], the DRF pause time can be as large as up to
hundreds of ms even for the future technologies, the
proposed approach is able to greatly reduce the e-SRAM
test cost.

6 Acknowledgment

This work was supported in part by the Hong Kong SAR
UGC Direct Grant 2050366.

7 References

1 Aitken, R., Dogra, N., Gandhi, D., and Becker, S.: ‘Redundancy,
repair, and test features of a 90 nm Embedded SRAM generator’.
Proc. IEEE Int. Sym. on Defect and Fault Tolerance in VLSI
Systems (DFT), 2003, pp. 467–474

2 Bommireddy, A., Khare, J., Shaikh, S., and Su, S.-T.: ‘Test and debug
of networking SoCs - a case study’. Proc. IEEE VLSI Test Symp.
(VTS), 2000, pp. 121–126

3 Zorian, Y.: ‘A distributed BIST control scheme for complex VLSI
devices’. Proc. IEEE VLSI Test Symp. (VTS), Princeton, NJ, 1993,
pp. 6–11

4 Wang, C.-W. et al.: ‘Test scheduling of BISTed memory cores for
SOC’. Proc. IEEE Asian Test Symp. (ATS), Tamuning, Guam,
USA, 2002, pp. 356–361

5 Wang, B., Yang, J., Wu, Y., and Ivanov, A.: ‘A retention-aware
test power model for embedded SRAM’. Proc. IEEE Asia
South Pacific Design Automation Conf. (ASP-DAC), 2005,
pp. 1180–1183

6 Dekker, R., Beenker, F., and Thijssen, L.: ‘A realistic fault model and
test algorithms for static random access memories’, IEEE Trans.
Computer-Aided Design, 1990, 9, (6), pp. 567–572

7 Rajsuman, R.: ‘An algorithm and design to test random access
memories’. Proc. Int. Symp. on Circuits and Systems (ISCAS),
1992, pp. 439–442

8 Wang, B., Yang, J., and Ivanov, A.: ‘Reducing test time of embedded
SRAMs’. Proc. IEEE Int. Workshop on Memory Technol., Design and
Testing (MTDT), 2003, pp. 47–52
264
9 Adams, R.D., Deo, A.P., and Zarrineh, K.: ‘Method and apparatus for
testing memory cells for data retention faults’, U.S. Patent 6,681,350,
Cadence Design Systems, Inc., 20 January 2004

10 Brauch, J., and Fleischman, J.: ‘Design of cache test hardware on
the HP PA8500’. Proc. IEEE Int. Test Conf. (ITC), 1997,
pp. 286–293

11 Champac, V.H., and Avendano, V.: ‘Test of data retention faults in
CMOS SRAMs using special DFT circuitries’, IEE Proc., Circuits,
Devices and Systems, 2004, 151, (2), pp. 78–82

12 Champac, V.H., Avendano, V., and Linares, M.: ‘Bit line sensing
strategy for testing for data retention faults in CMOS SRAMs’, IEE
Electron. Let., 2000, 36, (14), pp. 1182–1183

13 Champac, V.H., Castillejos, J., and Figueras, J.: ‘IDDQ testing of
opens in CMOS SRAMs’. Proc. IEEE VLSI Test Symp. (VTS),
1998, pp. 106–111

14 Kuo, C., Toms, T., Neel, B.T., Jelemensky, J., Carter, E.A., and
Smith, P.: ‘Soft-defect detection (SDD) technique for a high-
reliability CMOS SRAM’, IEEE J. of Solid-State Circ., 1990, 25,
(1), pp. 61–67

15 Meixner, A., and Banik, J.: ‘Weak write test mode: an SRAM cell
stability design for test technique’. Proc. IEEE Int. Test Conf.
(ITC), 1997, pp. 1043–1052

16 Yang, J., Wang, B., Wu, Y., and Ivanov, A.: ‘Fast detection of data
retention faults and other SRAM cell open defects’, IEEE Trans.
Computer-Aided Design, 2006, 25, (1), pp. 167–180

17 Yoon, D.H., Kim, H.S., and Kang, S.: ‘Dynamic power supply current
test for CMOS SRAM’. Proc. Int. Conf. on Computer-Aided Design
(ICCAD), 2001, pp. 399–402

18 Powell, T.J., Cheng, W.T., Rayhawk, J., Samman, O., Policke, P., and
Lai, S.: ‘BIST for deep submicron ASIC memories with high
performance application’. Proc. IEEE Int. Test Conf. (ITC), 2003,
pp. 386–392

19 Xu, Q., and Nicolici, N.: ‘Resource-constrained system-on-a-chip test:
a survey’, IEE Proc., Computers Digital Tech., 2005, 152, (1),
pp. 67–81

20 Girard, P.: ‘Survey of low-power testing of VLSI circuits’, IEEE
Design & Test of Computers, 2002, 19, (3), pp. 80–90

21 Chou, R.M., Saluja, K.K., and Agrawal, V.D.: ‘Scheduling tests for
VLSI systems under power constraints’, IEEE Trans. VLSI Syst.,
1997, 5, (2), pp. 175–184

22 Goel, S.K., and Marinissen, E.J.: ‘Effective and efficient test
architecture design for SOCs’. Proc. IEEE Int. Test Conf. (ITC),
Baltimore, MD, 2002, pp. 529–538

23 Iyengar, V., Chakrabarty, K., and Marinissen, E.J.: ‘Integrated
wrapper/TAM co-optimization, constraint-driven test scheduling,
and tester data volume reduction for SOCs’. Proc. ACM/IEEE
Design Automation Conf. (DAC), 2002, pp. 685–690

24 Larsson, E., Pouget, J., and Peng, Z.: ‘Defect-aware SOC test
scheduling’. Proc. IEEE European Test Workshop (ETW), 2004,
pp. 359–364

25 Xu, Q., and Nicolici, N.: ‘Multi-frequency test access mechanism
design for modular SOC testing’. Proc. IEEE Asian Test Symp.
(ATS), 2004, pp. 2–7

26 Fang, B.H., Xu, Q., and Nicolici, N.: ‘Hardware/software co-testing
of embedded memories in complex SOCs’. Proc. Int. Conf. on
Computer-Aided Design (ICCAD), 2003, pp. 599–605

27 Jone, W.B., Huang, D.C., Wu, S.C., and Lee, K.J.: ‘An efficient BIST
method for distributed small buffers’, IEEE Trans. VLSI Syst., 2002,
10, (4), pp. 512–515

28 Nadeau-Dostie, B., Silburt, A., and Agrawal, V.K.: ‘Serial interfacing
technique for embedded memory testing’, IEEE Design & Test of
Computers, 1990, 7, (2), pp. 52–63

29 Wang, B., and Xu, Q.: ‘Test/repair area overhead reduction for small
embedded SRAMs’. Proc. IEEE Asian Test Symp. (ATS), 2006,
pp. 37–44

30 Young, F.Y., Chu, C.N., and Ho, M.L.: ‘Placement constraints in
floorplan design’, IEEE Trans. VLSI Syst., 2004, 12, (7),
pp. 735–745

31 Murata, H., Fujiyoushi, K., Nakatake, S., and Kajitani, Y.:
‘Rectangle-packing-based module placement’. Proc. Int. Conf. on
Computer-Aided Design (ICCAD), 1995, pp. 472–479
IET Comput. Digit. Tech., Vol. 1, No. 3, May 2007

