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ABSTRACT
In �oorplanning� it is common that a designer wants to have
certain modules abutting with one another in the �nal pack�
ing� Unfortunately� few �oorplanning algorithm can han�
dle abutment constraints although this feature is useful in
practice� The problem of controlling the relative positions
of an arbitrary number of modules is non�trivial� Slicing
�oorplans have an advantageous feature that the topologi�
cal structure of the packing can be found without knowing
the module dimensions� This feature is good for handling
placement constraints in general� In this paper� we make
use of it to solve the abutment problem in the presence of
L�shaped and T�shaped modules� This is done by a proce�
dure which explores the topological structure of the packing
and �nd the neighborhood relationship between every pair
of modules in linear time� This enables us to check and �x
the abutment constraints and to handle the L�shaped and
T�shaped modules� There are many previous works on recti�
linear block packing but none of them can handle rectilinear
blocks with soft modules e�ciently� Our main contribution
is a method which can handle abutment constraints in the
presence of L�shaped or T�shaped modules in such a way
that the shape �exibility of the soft modules can still be
fully exploited to obtain a tight packing� We tested our
�oorplanner with some benchmark data and the results are
promising� We can pack �� modules� �	
 of which are L�
shaped or T�shaped� with twelve abutment constraints in
about �� minutes giving less than �
 deadspace using a ��
MHz UltraSPARC workstation�

1. INTRODUCTION
Floorplanning is an important step in physical design of
VLSI circuits� It is the problem of placing a set of cir�
cuit modules on a chip to optimize the circuit performance�
It is not just a simple packing problem� Besides optimiz�
ing the packing area and interconnect cost� there are some
constraints that the designers may want to impose on the
�nal packing for di�erent reasons� For example� a designer

may want to have the logic modules in a pipeline of a cir�
cuit to abut one after another to favor the transmission of
data between them� This abutment problem is very com�
mon in practice but few �oorplanning algorithm can handle
these constraints� The problem of controlling the relative
positions of an arbitrary number of modules is non�trivial�
In most stochastic �oorplanning algorithms� the abutment
information is not known until the exact dimensions of the
modules are taken into account and there is no systematic
method to �x the violated constraints�

In the �oorplanning stage� most of the modules are not yet
designed and thus are �exible in shape �soft modules�� while
some of them are re�used and their shapes are �xed �hard
modules�� A good �oorplanning algorithm should be able
to handle both soft and hard modules e�ectively� There are
two kinds of �oorplans� slicing and non�slicing� A slicing
�oorplan is a �oorplan which can be obtained by recursively
cutting a rectangle into two parts by either a vertical line
or a horizontal line� A non�slicing �oorplan is one not re�
stricted to be slicing� There are several advantages of using
slicing �oorplans although non� slicing �oorplans are more
general� Firstly� focusing only on slicing �oorplans signif�
icantly reduces the search space which in turn leads to a
faster runtime� Secondly� the shape �exibility of the soft
modules can be fully exploited to give a tight packing based
on an e�cient shape curve computational technique �� ���
It has been shown mathematically that a tight packing is
achievable ��� for slicing �oorplans�

Slicing �oorplans have another advantageous feature that we
can �nd out the topological structure of the packing with�
out knowing the module dimensions� This feature is good
for handling placement constraints in general We can check
and �x the constraints given those topological information�
In the case of abutment constraints� we devised a procedure
called Neighbor which can �nd out the neighborhood rela�
tionship between all pairs of modules in linear time and the
results of which enable us to check whether two modules
abut as required and to �x a violated constraint by shuf�
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A and B now abut
horizontally.

Both C and D are right
neighbors of A.

Figure �� Shu�ing modules to obtain a feasible packing�

�ing the modules� An example is shown in Figure �� In
this example� module A is constrained to abut with mod�
ule B horizontally� Figure ��a� is the original packing in
which the constraint is violated� By examining the topolog�
ical structure of the packing� we �nd the neighbors of A� i�e�
C and D in this example� Shu�ing B with a right neighbor
of A gives us a similar packing with the constraint satis�ed
�Figure ��b��� This approach is actually an extension and
generalization of the method used in ��� to handle bound�
ary constraints� This work is however more general as we
are �nding out the neighborhood relationship between every
pair of modules� not just between the modules and the chip
boundary�

We have also made used of this feature to handle rectilinear
blocks in slicing �oorplans� Because of the recent advance
in semiconductor manufacturing technology� new packag�
ing schemes such as Multi�Chip Modules �MCMs� and in�
tegrated circuit components often have their shapes more
complex than a simple rectangle� A lot of works have been
reported on placement of rectilinear blocks but none of them
can handle rectilinear blocks with soft modules e�ciently�
��� proposes the bounded �D contour searching algorithm to
handle arbitrarily shaped rectilinear and soft modules but
their method focuses mainly on area minimization ��� ex�
tends the idea of slicing �oorplan to handle L�shaped mod�
ules� but only hard modules and L�shaped modules can be
handled� Only ��� can handle soft modules with a greedy
heuristic method but it takes about ��� hours to pack a set
of �	 modules on a Sun SPARC �	 Workstation�

Slicing �oorplans are well known to be e�ective in handling
soft modules� It is not obvious how it can handle L�shaped
or T�shaped modules because of the nature of slicing �oor�
plans that the regions inside must be rectangular in shape�
A common practise is to partition the L�shaped or T�shaped
modules into rectangular sub�modules� These sub�modules
are packed independently initially� A post�processing step
will later move them back together to form the original
shapes� This method is unnatural as we will repeatedly
move the sub�modules to di�erent places and move them
back together in every iteration� The post�processing step
is complicated and time�consuming� In our work� we treat
the L�shaped or T�shaped modules as single modules but
they will be expanded to their original shapes when being
packed� An example is shown in Figure �� In this exam�
ple� module D is L�shaped� The initial packing is shown in
Figure ��a�� We will expand D to its original shape before
computing the total area and interconnect cost� The pack�
ing after expansion is shown in Figure ��b�� The expansions
are dependent on the relative positions of the L�shaped or
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Figure �� An Example of module expansion� D is L�shaped�

T�shaped modules in the original packing� Again� we ex�
plore the topological structure of the packing and expand
the modules accordingly� After calculating the total area
and interconnect cost� they are treated as single modules
again before the �oorplan is transformed in the next itera�
tion of the stochastic process�

Our main contribution is a method which can handle abut�
ment constraints in the presence of L�shaped or T�shaped
modules in such a way that the shape �exibility of the soft
modules can still be fully exploited to obtain a tight pack�
ing� We tested our �oorplanner using some benchmark data�
The experiments give very promising results� We can pack
�� modules� �	
 of which are L�shaped or T�shaped mod�
ules� with twelve abutment constraints in about �� minutes
giving less than �
 deadspace using a �� MHz UltraSPARC
workstation� The rest of the paper is organized as follows�
We �rst de�ne the problem formally in Section �� Section
 presents our method to handle abutment constraints with
L�shaped and T�shaped modules� Experimental results are
shown in Section ��

2. PROBLEM DEFINITION
We consider three kinds of modules M � MR �ML �MT

where MR is a set of rectangular modules� ML is a set of
L�shaped modules and MT is a set of T�shaped modules�
A rectangular module A is a rectangle of height h�A� and
width w�A�� The aspect ratio of A is de�ned as h�A��w�A��
A rectangular module can either be hard or soft� The height
and width of a hard module are �xed but the module is free
to rotate� The shape of a soft module can be changed as
long as the area remains a constant and the aspect ratio is
within a given range� An L�shaped module B �Figure �a��
consists of two rectangular sub�modules B� and B�� where
w�B�� and w�B�� are aligned and h�B�� � h�B��� A T�
shaped module C �Figure �b�� consists of three rectangular
sub�modules C�� C� and C� where w�C��� w�C�� and w�C��
are aligned and h�C�� � maxfh�C��� h�C��g� We assume
that all T�shaped and L�shaped modules are hard modules�

In general� two modules A and B are said to be abut horizon�
tally �Figure ��� denoted by Habut�A�B� if a vertical bound�
ary lA of module A and a vertical boundary lB of module
B abut such that lA lying immediately on the left of lB and
the length of the abutment is at least minflen�lA�� len�lB�g
where len�lA� is the length of lA and len�lB� is the length
of lB � The abutment in the vertical direction is de�ned sim�
ilarly�

A �oorplan for n modules is a dissection of a rectangle by
horizontal and vertical lines into n non�overlapping regions
such that each region must be large enough to accommo�
date the module assigned to it� A packing is a non�overlap
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Figure �� L�shaped Modules and T�shaped Modules
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placement of all the modules in M � A feasible packing is
a packing such that all the abutment constraints are satis�
�ed and the widths and heights of all the soft modules are
consistent with their aspect ratio constraints and area con�
straints� Our objective is to construct a feasible packing F
to minimize A��W where A is the total area of the packing�
W is an estimation of the interconnect cost and � is a user�
speci�ed constant which controls the relative importance of
A and W in the cost function� We require that the aspect
ratio of the �nal packing is between two given numbers rmin
and rmax�

3. SLICING FLOORPLANS
A slicing �oorplan can be represented by an oriented rooted
binary tree� called a slicing tree �Figure ��� Each internal
node of the tree is labeled by a � or a � operator� corre�
sponding to a vertical or a horizontal cut respectively� Each
leaf corresponds to a basic module and is labeled by a num�
ber from � to n� No dimensional information on the position
of each cut is speci�ed in the slicing tree� If we traverse a
slicing tree in postorder� we obtain a Polish expression� A
Polish expression is said to be normalized if there is no con�
secutive ��s or ��s in the sequence� It is proved in ��� that
there is a ��� correspondence between the set of normalized
Polish expressions of length �n � � and the set of slicing
�oorplans with n modules� Our method is developed based
on the simulated annealing algorithm in ����
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Figure �� Slicing tree representation and Polish ex�

pression representation of a slicing �oorplan

4. OUR APPROACH
4.1 An Overview
The algorithm Main below outlines the �ow of our method�
In each step of the annealing process� we consider a partic�
ular Polish expression� We will scan the expression once to
�nd out the topological structure of the packing and� in par�
ticular� the neighborhood relationship between every pair of
modules� This is possible because the operators � and � in
a Polish expression have orientations� e�g� AB� means that
A is right below B and AB� means that A is on the left of B
immediately� We will scan the expression once to mark the
left� right� top and bottom neighbors of every module� Fig�
ure � shows a simple example in which the neighbors of every
module are marked in a table after this step� Then we will
shu�e the modules to satisfy as many abutment constraints
as possible� Please refer back to Figure � as an example� In
this example� module A is constrained to abut with module
B horizontally� i�e� Habut�A�B�� but this constraint is vio�
lated in the original packing �Figure ��a��� After �nding the
neighborhood information between all pairs of modules� we
will shu�e B with a closest right neighbor of A� i�e� module
D in this example� to obtain a similar packing �Figure ��b��
which satisfys the constraint� After this shu�ing step� the
abutting modules will stay together unless some later moves
break them apart�

After �xing the abutment constraints� we will expand the
L�shaped or T�shaped modules into their original shapes�
This is done by modifying the Polish expression to embed
the sub�modules of the rectilinear blocks in such a way that
the relative positions between all the modules in the orig�
inal Polish expression are preserved� Please refer back to
Figure � as an example� In this example� module D is L�
shaped� The initial packing is shown in Figure ��a�� We will
expand D to its original shape before computing the total
area and interconnect cost� The packing after expansion is
shown in Figure ��b�� After expansion� we can do the shape
curve computation as usual to obtain the total area of the
�nal �oorplan� The implementation is simple and the �ex�
ibility of the soft modules can still be fully exploited� We
will describe the steps in details in the following sections�

Algorithm Main

Input� The size� shape and interconnection of a set of
modules M �MR �ML �MT � where MR is a
set of rectangular modules�ML is a set of L�
shaped modules and MT is a set of T�shaped
modules� a set of horizontal abutment cons�
traints and a set of vertical abutment constraints�

Output� A feasible packing of the modules in M
�� Initialization�
�� Repeat�
	� Transform the Polish expression �old to ��

� Scan � to �nd the neighbors of every module�
�� Modify � to �new by shu�ing modules to �x the

violated abutment constraints�

� Expand the L�shaped or T�shaped modules in �new

to obtain a new Polish expression ��
�� Calculate the total area and interconnect cost of the

oorplan represented by ��
�� Decide whether to accept �new� If yes� �old � �new�
�� Until Cost � k�
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Figure �� Neighborhood information can be ob�
tained from the Polish expression

4.2 Handling Abutment Constraints
4.2.1 Finding the Neighbors of a Module
We can �nd the neighborhood of a module from the Polish
expression because the operators in the expression have ori�
entations� e�g� AB�means that A is right below B and AB�
means that A is on the left of B immediately� These topo�
logical relationship is independent of the dimensions of the
modules� For example� Figure � is a packing corresponding
to the expression AB�CDE�F ��G�H��� We can tell
from the Polish Expression the neighborhood relationship
as shown in the table� This information can be obtained by
scanning the expression once and update the table whenever
an operator is seen� i�e� when two sub��oorplans are com�
bined by either a � operator �vertical cut� or a � operator
�horizontal cut�� The algorithm Neighbor below outlines the
step to �nd this neighborhood information� Notice that the
variables Lside�X�� Rside�X�� Tside�X� and Bside�X� de�
note the set of modules lying along the left boundary� right
boundary� top boundary and bottom boundary of a sub�
�oorplan X� Consider combining two sub��oorplans X and
Y horizontally as in XY �� If both Rside�X� and Lside�Y �
have more than one modules� the top module in Rside�X�
will abut horizontally with the top module in Lside�Y � and
the bottom module in Rside�X� will abut horizontally with
the bottom module in Lside�Y �� Lets explain with the exam�
ple in Figure �� When we combine the sub��oorplan contain�
ing A and B and the sub��oorplan containing C�D�E� F�G
and H by the � operator� we know that B will abut with
H horizontally and A will abut with C horizontally� No�
tice that we do not know whether G will abut with A or B
or both because this is dependent on the dimensions of the
modules� so we will not say anything about the abutment
of G� However� if any one of Rside�X� or Lside�Y � has only
one module� every module in Rside�X� will abut with every
module in Lside�Y � horizontally� For example� in Figure ��
when we combine the sub��oorplan containing C and the
sub��oorplan containing D�E and F by the � operator� we
know that C will abut with D� E and F horizontally� Sim�
ilarly� we can derive the vertical neighborhood relationship
from the � operator�

Algorithm Neighbor

Input� A Polish expression � � ���� � � � ��n��

Output� For each module A� �nd the modules abutting
with A in all four directions�

�� For i � � to �n� ��
�� If �i is a module name�
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Figure 	� Abutment between modules

Lside��i� � Rside��i� � Tside��i� � Bside��i�
� �i

	� Push �i�

� If �i is a � operator�
�� Pop Y� Pop X�
�� If Rside�X� or Lside�Y � has only one module�
�� Habut�A�B� is true for all A � Rside�X� and

B � Lside�Y ��
�� Else�
�� Habut�A��B�� and Habut�A��B�� are true where

A�� A� are the top and bottom modules in
Rside�X� resp�� and B�� B� are the top and
bottom modules in Lside�Y � resp��

��� Rside��i� � Rside�Y �� Lside��i� � Lside�X��
Tside��i� � Tside�X� � Tside�Y ��
Bside��i� � Bside�X� � Bside�Y ��

��� Push �i�
��� If �i is a � operator�
�	� Pop Y� Pop X�
�
� If Tside�X� or Bside�Y � has only one module�
��� V abut�A�B� is true for all A � Tside�X� and

B � Bside�Y ��
��� Else�
��� V abut�A��B�� and V abut�A��B�� are true where

A�� A� are the left and right modules in
Tside�X� resp�� and B�� B� are the left and
right modules in Bside�Y � resp��

��� Tside��i� � Tside�Y �� Bside��i� � Bside�X��
Rside��i� � Rside�X� � Rside�Y ��
Lside��i� � Lside�X� � Lside�Y ��

��� Push �i�

4.2.2 Shuffling Modules to Fix Violated Abutment Con-
straints

If a Polish expression does not satisfy all the abutment con�
straint� we can �x it as much as possible by shu�ing the
modules� An example is shown in Figure �� In this ex�
ample� assume that module B is required to abut with F
vertically� i�e� V abut�B�F �� but it is violated initially as
shown in Figure ��a�� We will then try to move F to the
top of B or move B to the bottom of F � In the �rst case�
B has two neighbors at the top� C and D� Since F is closer
to D than to C in the Polish expression� we will shu�e F
and D in order to �x this violated constraint� In general�
if an abutment constraint V abut�X�Y � is violated� we will
�rst try to move Y to the top of X by shu�ing Y with
the closest top neighbor of X in the Polish expression� If it
is failed� e�g� all the top neighbors of X are �xed in posi�
tion� we will try to move X to the bottom of Y by shu�ing
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constraints

X with the closest bottom neighbor of Y � The procedure
for the horizontal direction is de�ned similarly� Notice that
�Please refer to Main� we will not shu�e the modules back
to their original positions if an expression is accepted� i�e�
the constrained modules will stay together unless some later
moves break them apart�

It is possible that some constraints are still violated after all
the possible shu�ings� We include an abutment constraint
term in the total cost to penalize the remaining violated con�
straints� All violations will be eliminated as the annealing
process proceeds in most of the cases�

4.3 Handling L-shaped and T-shaped Mod-
ules

Instead of partitioning into rectangular sub�modules� L�shaped
and T�shaped modules are treated as single modules in the
annealing process� They will be expanded to their original
shapes when being packed and the expansions are dependent
on their topological positions in the original Polish expres�
sion� After calculating the total area and interconnect cost�
they are treated as single modules again in the �oorplan
transformation�

4.3.1 Expansion of L-shaped Modules
Consider an L�shaped module X in a Polish expression ��
we will expand it into its sub�modules X� and X� by modi�
fying the expression according to the relative position of X
in �� There are four di�erent cases as shown in Figure ��
The subtree labeled ��� can either be a basic module or a
subtree of modules� We are trying to pack modules into the
unoccupied area of the L�shaped modules� The L�shaped
module is oriented di�erently in di�erent cases so as to pre�
serve as much as possible the relative position between all
the other modules in the original Polish expression�

4.3.2 Expansion of T-shaped Modules
Similar to an L�shaped module� we will expand a T�shaped
module X into its sub�modules X�� X� and X� by modifying
the Polish expression � according to the relative position of
X in �� There are two di�erent cases� depending on the
sibling u of X in the slicing tree� If u is an internal node
and the two children subtrees of u are not parts of the same
module� we will pack the sub�modules ofX with the children
subtrees of u as shown in Figure �	 and ��� The subtree
labeled ��� or ��� can either be a basic module or a subtree
of modules� Again� we are trying to pack modules into the
two unoccupied areas of the T�shaped module� and the T�
shaped module is oriented di�erently in di�erent cases to
preserve as much as possible the relative positions between
all the other modules in the original Polish expression� If
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u is a single basic module or that the two children subtrees
of u belong to the same module �so we cannot pack them
apart as shown in Figure �	 and ���� we will label C as a
degenerated T�shaped module which will be expanded into
its sub�modules as described in Figure ���
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4.3.3 Expansion Order
The result of the expansion will depend on the order in which
the modules are expanded� An example is shown in Fig�
ure �� Assume that both module A and B in the �gure are
L�shaped� Expanding B followed by A will give us the pack�
ing in �a�� while expanding in the reverse order will give us
the packing in �b�� If the order is not de�ned well� we may
need to scan the Polish expression once for each L�shaped
or T�shaped module� In our implementation� we will �rst
expand the T�shaped modules� This requires scanning the
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expression twice� The �rst scan expands all the T�shaped
modules which are right children� and the second scan ex�
pands all the T�shaped modules which are left children� The
degenerated T�shaped modules are labeled on the way� Af�
ter these two scans� any T�shaped module will either be ex�
panded or labeled as degenerated� We will then expand the
remaining L�shaped modules and the degenerated T�shaped
modules� This also requires scanning the expression twice�
The �rst scan expands all the L�shaped modules or degen�
erated T�shaped modules which are right children� and the
second scan expands those which are left children� The al�
gorithm is described by the algorithm Expansion below� We
need to scan the expression four times in total� An example
of expansion is shown in Figure ��� In this example� module
A is T�shaped and module B is L�shaped� A is expanded
�rst because it is a T�shaped module and a right child� After
that� we should expand the T�shaped modules which are left
children followed by the L�shaped modules which are right
children� but there is none of them� Finally� we will expand
B which is an L�shaped module and a left child�

Algorithm Expansion

Input� A Polish expression � with a set of modules M
�MR �ML �MT � where MR is a set of
rectangular� modules ML is a set of L�shaped
modules and MT is a set of T�shaped modules�

Output� A Polish expression � with all the modules in
ML and MT expanded to their corresponding
sub�modules�

�� Scan � from left to right and generate a new Polish
expression �� by�

�� For any T�shaped module X which is a right child�
	� If the sibling u of X is an internal node and the

children subtrees of u are not parts of one module�

� Expand X as described in Figure ���
�� Else�
�� Label X as a degenerated T�shaped module�
�� Scan �� from left to right and generate a new Polish

expression �� by�
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Figure ��� Expansion of a degenerated T�shaped
Module

�� For any T�shaped module X which is a left child�
�� If the sibling u of X is an internal node and the

children subtrees of u are not parts of one module�
��� Expand X as described in Figure ���
��� Else�
��� Label X as a degenerated T�shaped module�
�	� Scan �� from left to right and generate a new Polish

expression �� by�
�
� For any L�shaped module or degenerated T�shaped

module X which is a right child�
��� If X is an L�shaped module�
��� Expand X as in case ��� of Figure ��
��� Else�
��� Expand X as in case ��� of Figure ���
��� Scan �� from left to right and generate a new Polish

expression � by�
��� For any L�shaped module or degenerated T�shaped

module X which is a left child�
��� If X is an L�shaped module�
��� Expand X as in case 	�
 of Figure ��
�	� Else�
�
� Expand X as in case 	�
 of Figure ���
��� Output ��

4.4 Time Complexity
We need to scan the Polish expression once to �nd the neigh�
bors of every module� This takes O�n� time where n is total
number of modules� Then shu�ing modules to �x violated
abutment constraints takes another O�nq� time where q is
the total number of abutment constraints� Notice that this is
only a worst case analysis� Usually� we do not need to scan
all the modules once to �nd the closest module to shu�e
with and the average time taken is just O�q�n�� To expand
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Figure ��� An Example of the Expansion Step

all the L�shaped and T�shaped modules� we need to scan the
expression four times which takes O�n� time� Therefore� the
total time taken in each iteration of the annealing process
to handle the abutment constraints and rectilinear blocks is
O�np� in the worst case� and O�n� p� on the average�

4.5 Moves and Cost Function
We use the same set of moves �M� M� and M� as in ����
The cost function is de�ned as A � �W � �D where A is
the total area of the packing obtained from the shape curve
at the root of the slicing tree and W is a half perimeter
estimation of the interconnect cost� D is a penalty term
for the violated abutment constraints� If an abutment con�
straint between two modules are violated� the corresponding
penalty term is computed as the manhattan distance that
one of the two module centers needs to move in order to
make them abut� An example is shown in Figure ��� In
this example� suppose A and B are constrained to abut hor�
izontally� i�e� Habut�A�B�� but this constraint is violated
and its corresponding penalty term D will be x � y where
x is the distance between the right boundary of A and the
left boundary of B and y is the vertical distance between the
centers of A and B� The penalty term is computed similarly
in case of L�shaped or T�shaped modules by just considering
the largest sub�modules in the rectilinear blocks� � and �
are constants which control the relative importance of the
three terms� � is usually set such that the area term and
the interconnect term are approximately balanced� We usu�
ally set � large enough that D will drop rapidly right at the
beginning�

5. EXPERIMENTAL RESULTS
We tested our �oorplanner with some benchmark data� ami�
ami�� and playout� In all the data� the rectangular mod�
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Figure ��� Penalty for violation of an abutment con�

straint
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Figure ��� A result packing of ami�� Module �� ��
��� �� and ��� �� ��� �� and �� are required to abut

horizontally� Module ��� 
� ��� �� and �� �� and ��
are required to abut vertically� All constraints are

satis�ed�

ules are soft modules with aspect ratios lying between 	���
and ��	 and the L�shaped or T�shaped modules are hard
modules� For each experiment� the starting temperature is
decided such that an acceptance ratio is �		
 at the begin�
ning� The temperature is lowered at a constant rate and the
number of iterations in one temperature step is proportional
to the number of modules� All the experiments were carried
out on a �� MHz UltraSPARC Workstation�

We did two sets of experiments� one set with only rectan�
gular modules and the other set with L�shaped or T�shaped
modules� In the �rst set� we did �ve testings for each bench�
mark data� each testing with a di�erent set of abutment con�
straints� The abutment constraints we imposed are usually
that chains of four to �ve modules are required to abut hor�
izontally or vertically� The averaged result for each bench�
mark data is shown in Table �� We can see from the table
that our method can handle abutment constraints e�ciently�
Figure �� and �� show two result packings�

In the second set of experiments� we modi�ed the bench�
mark data by changing some modules to L�shaped or T�
shaped� We called these data lt�ami� lt�ami�� and lt�
playout� Again� we did �ve testings for each data� impos�
ing di�erent abutment constraints on the modules for each
testing� Table � summarizes the results� Figure �� and Fig�
ure �� show two result packings� The rectangular modules
are white in color� the L�shaped modules are light greg and
the T�shaped modules are dark grey�
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Figure �
� A result packing of lt�ami�� Module ��
�� ��� ��� ��� 
 and �� are required to abut hori�

zontally and module ��� ��� �� ��� ��� �� and �� are
required to abut vertically� Eleven out of the twelve

abutment constraints are satis�ed�
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Table �� Results of Testing Abutment Constraints
with L�shaped and T�shaped Modules� Each data

set has �� modules having abutment constraint�
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Figure �� A result packing of lt�playout� Module

�� � and ��� 
 and � ��� ��� �� and �� are required
to abut horizontally� Module � ��� �� and ��� ���

�	 and �
� �
 and � are required to abut vertically�

Eleven out of twelve of the abutment constraints are
satis�ed�


