
Post-Placement Voltage Island Generation ∗

Royce L.S. Ching, Evangeline F.Y. Young,
Kevin C.K. Leung
Department of CSE

The Chinese University of Hong Kong

{lsching,fyyoung,ckleung}@cse.cuhk.edu.hk

Chris Chu
Department of ECE

Iowa State University

cnchu@iastate.edu

ABSTRACT
High power consumption will shorten battery life for hand-
held devices and cause thermal and reliability problems.
One way to lower the dynamic power consumption is to re-
duce the supply voltage. Multi-supply voltage (MSV) is
introduced to provide higher flexibility in controlling the
power and performance trade-off. In region-based MSV,
circuits are partitioned into “voltage islands” where each
island occupies a contiguous physical space and operates at
one supply voltage. In a very recent work [6], this supply
voltage partitioning problem is addressed, and the input cir-
cuit is partitioned into a slicing structure with every voltage
island rectangular in shape. This unnecessary restriction
on the structure and island shapes has caused a significant
degradation in the solution quality. In this paper, we pro-
pose a method to solve this voltage island generation prob-
lem without these restrictions. Experimental results have
shown that our approach is fast and can improve the solu-
tion quality significantly. In some data sets, only two voltage
islands are needed to satisfy the same power consumption
bound while the approach in [6] will generate nineteen.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids—Placement and
routing ; J.6 [Computer Applications]: Computer-aided
design—Computer-aided design (CAD)

General Terms
Algorithm, Design

Keywords
Voltage Island, Floorplanning, Tree

1. INTRODUCTION
The high functionality of SoC designs today and the much

higher leakage current are leading designs to power dissipa-
tion of hundreds of watts. High power consumption will
shorten battery life for handheld devices and cause thermal

∗The work described in this paper was partially supported
by a grant from the Research Grants Council of the Hong
Kong Special Administrative Region, China (Project No.
CUHK4188/03E.)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICCAD’06, November 5-9, 2006, San Jose, CA
Copyright 2006 ACM 1-59593-389-1/06/0011 ...$5.00.

and reliability problems. This power dissipation problem is
expected to get worse at the future process nodes. There are
two sources of power consumption: dynamic and static [2],
and the former has dominated the total power consump-
tion in today’s designs. Dynamic power consumption can
be reduced by techniques like reducing switching activity,
load capacitance and supply voltage. Reducing supply volt-
age can significantly lower the dynamic power consumption
which is proportional to the square of the supply voltage.
Multi-supply voltage (MSV) is thus introduced to provide
higher flexibility in controlling the power and performance
trade-off. There are two types of MSV, row-based and region
based. In row-based MSV, standard cells of high and low
supply voltage will interleave in different rows. In region-
based MSV, circuits are partitioned into “voltage islands”
where each island occupies a contiguous physical space and
operates at one supply voltage [1, 4, 3].

Region-based design is mostly done manually based on
a design’s logic hierarchy. However, logic boundaries may
not be good for voltage supply partitioning. These logic
boundaries are usually non-optimal for supply voltage par-
titioning [6]. Besides the power issue, it is also important to
minimize the number of voltage islands to reduce the over-
head in voltage shifting devices and the cost in routing the
power networks.

Wu et al. [6] is the first to consider this supply voltage
partitioning problem capturing the power versus design cost
(number of voltage islands) trade-off. They partition the in-
put circuit into a slicing structure in which every voltage
island is rectangular in shape. This unnecessary restriction
on the structure and island shapes has caused a significant
degradation in solution quality. In some data sets tested
in [6], only two voltage islands are needed to satisfy the same
power consumption bound while the approach in [6] will give
19 voltage islands. In this paper, we propose a method to
solve this voltage island generation problem without this re-
striction on island shapes. Experimental results have shown
that our approach is very efficient and can give much better
results than [6] in terms of reducing power consumption and
the number of islands. The improvement in solution quality
is mainly due to the relaxed restriction on the island shapes.
In order to demonstrate the effectiveness of our approach,
we have also compared our method with a greedy heuristic
which tries to solve the problem directly and we can see that
our approach is also better in terms of both solution quality
and run time.

In the following, we will define the problem in section 2,
then we will discuss the methodology used in our approach in
section 3. In section 4, we will describe the greedy heuristic,
and the experimental results will be reported in section 5.

2. PROBLEM FORMULATION
In this voltage island generation problem, we are given

an m × n grid based placement P of N cells where each
cell has its own voltage requirement, and the objective is to
partition this placement into a set of contiguous regions such
that the total number of regions is as small as possible, and
when each region is supplied with the same voltage, i.e., the
maximum voltage in that region (since the voltage assigned
to a cell should not be lower than its required voltage), the
total wastage in power does not exceed a given threshold.
We will use an m × n array A to represent the dynamic
power required at each point. Notice that dynamic power is
proportional to the square of the supply voltage. Each cell
will occupy an integral number of elements in A (we use the
word “element” to describe a room inside a grid) and there
may be empty elements in between. An example is shown in
fig. 1. The voltage island generation problem is to partition
this array into a set of connected regions Π = {R1 . . . Rk} 1

such that the size of the partitioning |Π| = k is as small as
possible and the total power wastage w(Π) does not exceed
a given threshold where w(Π) is defined as:

w(Π) =
∑

1≤t≤k

w(Rt),

the power wastage w(R) of a region R is defined as:

w(R) =
∑

(i,j)∈R

(µ(R) − A[i, j])

and µ(R) = max(i,j)∈R A[i, j] is the maximum power re-
quired in region R.

A

B

D

E

G

H I

LK

F

J

m = 8 and n = 9

C

Figure 1: An Example of the Input Grid Based
Placement.

This problem is similar to the Voltage-partitioning Prob-
lem (VPP) defined in [6], except that the regions are not
restricted to be rectangular in shape. We formally define
our problem as follows:
Non-rectangular Voltage-partitioning Problem (NVPP)
Given an m × n array A and an error threshold δ, find a
partitioning Π of connected regions whose weight w(Π) is at
most δ and the size |Π| is as small as possible.

3. METHODOLOGY
The input grid size m × n is usually huge and it is very

inefficient to work on it directly. Therefore, we will first
coarsen the grid to a size of O(N) where N is the number
of cells. We will then build a tree T of the elements in
the coarsened grid according to their adjacencies and their
differences in power requirement. A dynamic programming
will be applied to partition this tree optimally into subtrees

1In terms of connectivity, it is assumed that each element is
connected to its four neighbors.

(each subtree will correspond to a connected region) such
that the total power wastage is minimized. This tree T will
be reconstructed and partitioned repeatedly until the total
power wastage reaches the given threshold. An overview of
the whole process is shown in fig. 2 and details of each step
will be given in the following sections.

Tree
construction

partitioning to
Optimal tree

achieve a wastage
of at most (1-)

Solution
legalization

Tree

YesNo

 = 0.5r

r small?

reconstruction

 = 0.9 xr r

r δ

construction

coarsening
Grid

Graph

Figure 2: An Overview of Our Approach.

3.1 Grid Coarsening and Graph Construction
Given an m × n grid-based placement P , we will first

coarsen the grid into one with about N square-like shaped
elements where N is the total number of cells in P . This can
be done by dividing the original grid into rows and columns
of elements with heights and widths approximately equal to√

W×H
N

where W and H are the width and height of P re-

spectively. Notice that we will adjust the widths and heights
of the rows and columns in the coarsened grid slightly such
that every element in the original grid will be in one and
only one element of the new grid. An example is shown in
fig. 3(b). Let this coarsened grid be A′ with size m′ × n′.
Now, each element A′[i, j] in the coarsened grid A′ will con-
tain a set of elements in the original grid A and the value
of A′[i, j] will be set to the maximum value among these
elements in A. Notice that this coarsening step has already
caused a small amount of power wastage and the function
cost(x) is used to denote the power wastage brought at an
element x in A′ due to this coarsening step. To further re-
duce the size of this coarsened grid, we will combine those
neighboring elements that belong “completely” to the “same
cell” to form one element. Notice that a cell cannot be split
between islands at the end, so this enhancement is a reason-
able step to reduce the size of A′.

After this coarsening step, we will construct a graph G(V, E)
from A′ such that each element in A′ will become a node
in V and two nodes u and v in V will have an edge e(u, v)
between them if they are neighbors of each other in A′. An
example of this graph construction step is shown in fig. 3(d).

A

B

D

E

G

H I

LK

F

1 2 3 4

5

7

6

8

11

9 10

1312

(c) Grid after further size reduction (d) Graph constructed finally

13

J

(b) Coarsened grid(a) Original grid and placement

C

1 2 3 4

5 8 9 10

7

6 11 12

Figure 3: Grid Coarsening and Graph Construction.

Each node u in G will have a cost cost(u), a size size(u)
that denotes the number of A’s elements contained in u and
a value µ(u) that denotes the maximum power required at
u. Now the problem becomes a graph partitioning prob-
lem in which we want to partition G into a set of connected
subgraphs {G1 . . . Gk} such that k is as small as possible
and the total cost

∑
1≤i≤k cost(Gi) does not exceed a given

threshold where the cost of a subgraph Gi is defined as:

cost(Gi) =
∑

u∈Gi

((µ(Gi) − µ(u)) × size(u) + cost(u))

and µ(Gi) = maxu∈Gi µ(u) is the maximum power required
in Gi.

3.2 Tree Construction
After constructing the graph G, we will perform a bottom-

up clustering of G recursively. At each level, pairs of adja-
cent nodes are clustered to form a “super-node” at the next
level according to the amount of power wastage incurred.
A binary tree T is constructed to represent this multi-level
clustering process, in which the leave nodes are the nodes in
G and the internal nodes are the super-nodes. The pseudo-
code for this tree construction step is given as below:

Pseudocode BuildTree()
// Given a graph G(V, E) where each node u in V has attributes
// cost(u), µ(u) and size(u), perform a bottom-up multi-level
// clustering on G and construct a binary tree T to represent
// this recursive clustering.

1. S = V .
2. Repeat
3. S′ = ∅.
4. Repeat
5. Find the nodes in S that has the smallest number of

neighbors in S. Call this subset of nodes C.
6. Find a pair of nodes u and v such that u ∈ C, v is a

neighbor of u and the clustering cost
a = (µ(x) − µ(y)) × size(y) is the minimum where
x = u (x = v) and y = v (y = u) when
µ(u) ≥ µ(v) (µ(u) < µ(v)).

7. Create a node w in S′ that represents a cluster between
u and v.

8. µ(w) = max{µ(u), µ(v)}, size(w) = size(u) + size(v)
and cost(w) = cost(u) + cost(v) + a

9. Remove u and v from S.
10. Add two tree edges from w to u and v.
11. Until no more clusterings can be done.
12. Put all the remaining nodes in S to S′.
13. S = S′.

14.Until only one node left in S.
15.Put the only node in S as the root of T .

In step 7 of BuildTree(), we will try to cluster those nodes
with the smallest number of neighbors first in order to reduce
the number of “dangling” nodes that cannot be paired up
with any other nodes.

3.3 Optimal Tree Partitioning
After constructing T , we will partition it into a set of

subtrees {T1 . . . Tk} such that every leaf node is contained
in one subtree, k is the smallest possible, and the total cost∑

1≤i≤k cost(ri) where ri is the root of Ti is smaller than
a given threshold. This tree partitioning problem can be
solved optimally by dynamic programming and the pseudo-
code is given below. Notice that after this tree partitioning
step, each sub-tree corresponds to a connected region in the
original placement P and the total cost

∑
1≤i≤k cost(ri) is

equivalent to the total power wastage of these corresponding
regions in P .

Pseudocode PartitionTree()
// Given a threshold δ′ and a binary tree T where each node u in
// T has an attribute cost(u), partition T into a set of subtrees
// {T1 . . . Tk} (with roots r1 . . . rk respectively) such that
// every leaf node is contained in one subtree, the total cost
//

∑
1≤i≤k cost(ri) is within the threshold δ′ and k is the

// smallest possible.

1. k = 0
2. Repeat
3. k = k + 1.
3. cost = DP (T, k).
4. Until cost ≤ δ′.
5. Return the roots of the partitioned subtrees.

Pseudocode DP(T , k)
// Partition a binary tree T , where each node u in T has an
// attribute cost(u), into k subtress such that every leaf node is
// contained in one subtree and the total cost

∑
1≤i≤k cost(ri)

// is the smallest possible where ri for 1 ≤ i ≤ k are the roots of
// the subtrees.

1. Let r be the root of T .
2. If k is 1, return(cost(r)).
3. If r has only one child, DP (child(r), k),
4. Else
5. min = ∞ and k′ = 0.
6. For i = 1 to k − 1
7. c = DP (lchild(r), i) + DP (rchild(r), k − i).
8. If min > c, min = c and k′ = k.
9. Record k′ in a table for later retrieval of the subtrees.

3.4 Tree Reconstruction
We do not stop after one tree partitioning because the

structure of the tree T (which represents the neighborhood
of the leaf nodes) is very much dependent on the criteria
we have used in BuildTree() to cluster the nodes. We will
iteratively reconstruct the tree and re-partition it. The tree
reconstruction step is exactly the same as the BuildTree()
procedure except that we start with S = {r1 . . . rk} where
ri is the root of a subtree obtained after partitioning in the
last iteration. This tree reconstruction step is very impor-
tant since it allows us to redistribute the nodes between
the subtrees. Notice that after a tree T is reconstructed to
T ′, the optimal partitioning of T will also be one possible
partitioning of T ′. Therefore the optimal partitioning solu-
tion of T ′ will not be worse than that of T . We will also
progressively loosen the required threshold in total cost by

reducing the r in fig. 2, because it is better to produce more
subtrees at the beginning (by having a smaller threshold)
and gradually refine the solution by combining the subtrees
(by partitioning with a larger threshold). In our implemen-
tation, r is set to 0.5 initially (note that 0 ≤ r ≤ 1). A
larger initial value can be used without degrading the solu-
tion quality and the value of 0.5 is found from experiments
to be a good balancing point between run time and solution
quality.

3.5 Solution Legalization
In the final solution of the above iterative reconstruction

and partitioning step, there may be cells partitioned in more
than one regions, which is not legal. Therefore we will per-
form a post-processing step to assign each of those cells to
a region that have taken the largest portion of it. This
legalization step is not performed in [6] but the difference
incurred in the total power wastage is very small.

3.6 Time Complexity
In the coarsening step, we need to do one update for each

intersection between a cell and an element of the coarsened
grid A′. Each element in A′ will intersect with at most a
constant number of cells, so the time complexity is O(m′n′).
Since we have put m′ × n′ ≈ N , the complexity of this step
is O(N). The graph construction step can be done in O(N)
time since each element in A′ has at most four neighbors.
For tree construction (and reconstruction), there are at most
O(log N) levels and at each level, we need to compute the
cost of every possible clustering of two neighboring nodes
and sort the edges according to these costs. This can be
done in O(N log N). We also need to compute the connec-
tivity information for the next level, but this can again be
done in O(N) time since there are at most O(N) edges to
look at. Therefore, the total time for tree construction is
O(N log2 N). The dynamic programming for optimal tree
partitioning can be done iteratively in a bottom-up manner,
i.e., compute DP (t, k) from k = 1 to K, where K is the max-
imum number of partitions that we will try, for each subtree
t starting from the those rooted at a leaf to the whole tree
T . The total time for this dynamic programming step is
thus O(K2N). The solution legalization step can be done
in O(N log N) time. Therefore, the total time complexity of
this tree-based approach is O(N(log2N + K2)).

4. A DIRECT METHOD
A direct method to solve the NVPP problem is by recur-

sively merging two neighboring cells (or super-cells) in an or-
der of non-decreasing power wastage incurred. Those merg-
ings with less power wastage will be done first. This process
can be repeated as long as the power wastage threshold is
not exceeded. At the end, we will obtain a set of connected
regions without violating the threshold. However, this ap-
proach has an intrinsic problem that neighboring cells with
the same voltage will first be merged to form big patches.
These big patches will forbid some non-neighboring patches
of the same or similar voltages to be merged to reduce the
number of islands without exceeding the threshold. A simple
example to illustrate this situation is shown in fig. 4(a). To
tackle this problem, we can coarsen the input m×n grid to
one of a small number of rows and columns (p×q) (fig. 4(b)).
Unlike the coarsening step in 3.1, the size of the coarsened
grid here should be small (otherwise, the same problem will
occur) and it will be done carefully to ensure that the power

Voltage 4
Voltage 4

islands after coarsening.
(b) Can possibly give two(a) Cannot give two islands.

Voltage 1

Figure 4: Drawback of the Direct Approach to Solve
NVPP.

Apply the direct
method of recursive

merging on

is the smallest possible

 and p q

A

B

p

q

Bq

p

qp

Output the best
solution found

Yes No

Initialize

to a x grid such
Coarsen the grid

that the total wastage

Try all x ?

Adjust and

Figure 5: An Overview of the Direct Method.

wastage incurred is the smallest possible. This coarsening
problem is a dual version of the Grid-partitioning Problem
as defined in [6] and we will describe it in more details in the
next section. However, it is difficult to figure out the correct
values of p and q. If they are too large, the same problem as
illustrated in fig. 4(a) will occur, but if they are too small,
the power wastage will be a lot. In our implementation, we
will try different values of p and q and output the best par-
titioning. Experimental results have shown that very good
results can be obtained by having p, q ≤ 20 for all the in-
dustrial data sets we have tried. Fig. 5 gives an overview of
this direct method to solve the NVPP problem.

4.1 Dual Grid-partitioning Problem (DGPP)
In this dual grid-partitioning problem, we are given the

original m × n grid A and two positive integers p and q, we
want to partition A into a p×q grid B where the total power
wastage w(B) is as small as possible where w(B) is similarly
defined as:

w(B) =
∑

1≤i≤p,1≤j≤q

w(B[i, j]),

the power wastage w(B[i, j]) of an element B[i, j] is defined
as:

w(B[i, j]) =
∑

(x,y)∈B[i,j]

(µ(B[i, j]) − A[x, y])

and µ(B[i, j]) = max(x,y)∈B[i,j] A[x, y] is the maximum power
required in B[i, j].

The GPP problem defined in [6] is similar except that a

power wastage threshold ε is given and they want to find
the smallest possible p× q such that the threshold is not ex-
ceeded. A randomized algorithm with guarantee in solution
quality and runtime has been proposed in [5] and is applied
to solve the GPP in [6]. For this dual version of GPP, we can
similarly apply the technique to solve the problem. In the
randomized algorithm, a load is assigned to every row and
column of the grid A and an iterative doubling technique is
used. Starting with unit load at each separator (row and
column) and a uniform p× q grid, an element in the current
p× q grid is chosen randomly with probability proportional
to the amount of power wastage of that element. The larger
the power wastage, the higher the chance an element will be
chosen. Then all the rows and columns intersecting with the
chosen element will have their loads increased by a certain
rate. The current grid is then refined according to the new
loads by dividing the total load evenly into p rows in the
vertical direction and q columns in the horizontal direction.
The intuition is that if an element has higher power wastage,
the rows and columns intersecting with it are more likely to
be chosen as gridlines in the next iteration. This step of
refining the grid and updating the load is repeated until the
total number of iterations exceeds a certain bound or the
total power wastage is less than a threshold ε. By binary
search on the threshold ε, we can find the smallest possi-
ble threshold achievable by a p × q grid. Careful analysis
can show that the expected number of iterations is bounded
and more details about the algorithm and the analysis can
be found in [5].

4.2 Time Complexity
The randomized algorithm to solve the DGPP will be in-

voked a constant number of times depending on the num-
ber of combinations of p × q that we want to try. In our
implementation (as described by fig. 5), this constant is
16 in all our experiments. The runtime of the random-
ized algorithm is O((m + n + pq)p log(mn) log K

ε
) where

K is the difference between the upper and lower bounds
of the binary search on ε and ε is the error bound we al-
low in the search. Since p, q ≤ 20 in our implementation,
the time complexity to solve the DGPP problem once is
O((m + n) log(mn) log K

ε
). The second part of recursively

merging elements in the resultant coarsened grid obtained
by the randomized algorithm can be done very efficiently in
O(pq) time. Again, p, q ≤ 20 and this is equivalent to con-
stant time. Therefore the total time for this direct method
is O(mn + (m + n) log(mn) log K

ε
). The extra O(mn) time

is due to a pre-processing step that allows us to calculate
the power wastage of any rectangular region of the grid A
in constant time in the randomized algorithm.

5. EXPERIMENTAL RESULTS
In the experiments, we will compare our tree partitioning

approach (Tree-Alg) with the approach in [6] (called TS-
Alg) and the greedy direct method (G-Alg). We used the
same set of industrial designs as in [6], (please refer to [6]
for details on how the data sets are prepared) and, similar
to [6], the bound on total power increase is computed as a
certain percentage of the maximum power increase, which
corresponds to the total power increase when the voltages
of all the cells are raised to the highest required voltage on
the entire chip. All the experiments are conducted using a
Dell Optiplex 280 with an Intel P4 3.2GHz CPU and 2GB
RAM.

Table 1 compares the output sizes of our Tree-Alg with
those of TS-Alg and G-Alg. Here, we used the same power
increase bounds as in [6] to order to have a fair comparison.
The designs are listed with increasing input sizes, i.e., the
size of the array A. Notice that the experiments of [6] are
conducted on a machine with 1.95 GHz and 11.7GB memory
and their reported run time does not include the O(m × n)
pre-processing time for the GPP. For the number of voltage
islands, the best result is bolded on each row. From the
table, we can see that our Tree-Alg can give a much smaller
number of voltage islands in comparison with TS-Alg (re-
duced by a factor of 5.1 on average), because the unneces-
sary restriction on the structure and shapes of the voltage
islands is relaxed. It is hard to compare the run time di-
rectly because different machines are used and a non-trivial
amount of pre-processing time is omitted in the reported run
time of [6]. However, we can see from table 1 that the run
time of our Tree-Alg is very affordable in practice. In com-
parison with the greedy direct approach G-Alg, the numbers
of voltage islands generated are similar (Tree-Alg gives the
same or a smaller number of voltage islands in 8 out of the
10 cases), but Tree-Alg can run a lot much faster. Actually,
most of the run time in G-Alg is spent on solving the DGPP
(the pre-processing step to coarsen the input grid), and the
run time to perform the recursive merging is negligible.

Table 2 displays another comparison between Tree-Alg
and TS-Alg in which the number of voltage islands gen-
erated is similar and we want to know how much saving in
power wastage can be achieved. We can see from column
three that the saving is 23% on average, with a runtime
of just about 25 seconds on average. Fig. 6-7 show some
snapshots of the original placements and the voltage islands
generated by Tree-Alg for some of the data sets. In these
diagrams, the darker the color, the higher the voltage re-
quirement is. We can see from these figures that Tree-Alg
can carefully outline the boundaries of the islands to reduce
power wastage. Although the islands formed are rugged in
shape, their boundaries can be easily smoothened without
causing much increase in the total power consumption.

6. REFERENCES
[1] Power Islands: The Evolving Topology of SoC Power

Management.
http://www.us.design-reuse.com/articles/article9150.html.

[2] J. Buurma and L. Cooke. Low-power Design using Multiple
VT H ASIC Libraries.
http://www.sinavigator.com/Low Power Design.pdf.

[3] J. Hu, Y. Shin, N. Dhanwada, and R. Marculescu. Architecting
Voltage Islands in Core-based System-on-a-chip Designs.
Proceedings of the 2004 International Symposium on Low
Power Electronics and Design, pages 180–185, 2004.

[4] D. E. Lackey, P. S. Zuchowski, T. R. Bednar, D. W. Stout,
S. W. Gould, and J. M. Cohn. Managing Power and
Performance for System-on-chip Designs using Voltage Islands.
Proceedings IEEE International Conference on
Computer-Aided Design, pages 195–202, 2002.

[5] S. Muthukrishnan and T. Suel. Approximation Algorithms for
Array Partitioning Problem. J. of Algorithms, 54:85–104, 2005.

[6] H. Wu, I.-M. Liu, Martin D. F. Wong, and Y. Wang.
Post-Placement Voltage Island Generation under Performance
Requirement. Proceedings of the International Conference on
Computer-Aided Design, 2005.

Table 1: Comparisons with TS-Alg and G-Alg

Design Power # of VI Ratio Run time (s)
Name # of Cells Size of A Bound Tree-Alg (a) G-Alg TS-Alg (b) (a : b) Tree-Alg G-Alg TS-Alg

IndustryB 5926 79 × 790 60% 7 4 18 1:2.6 1 7 58
IndustryC 43677 161 × 2860 50% 2 2 19 1:9.5 2 19 125
IndustryG 76406 230 × 3504 60% 2 3 19 1:9.5 3 27 105
IndustryH 243188 694 × 7852 40% 4 6 19 1:4.8 8 44 9
IndustryA 317752 732 × 8793 55% 5 5 17 1:3.4 13 52 16
IndustryD 397940 1300 × 8270 35% 8 4 17 1:2.1 20 58 49
IndustryI 342113 1199 × 8931 35% 3 5 15 1:5 8 55 39
IndustryJ 737555 1372 × 12350 35% 4 4 17 1:4.3 31 70 32
IndustryE 352060 2144 × 17159 35% 7 9 13 1:1.9 12 111 47
IndustryF 306326 2652 × 20978 40% 2 2 15 1:7.5 6 125 5
Average 1:5.1 9.6 57 49

Table 2: Comparisons with TS-Alg on Power Wastage

Design Power Bound Reduction # of VI Run time (s)
Name Tree-Alg TS-Alg Tree-Alg TS-Alg Tree-Alg TS-Alg

IndustryB 40% 60% 20% 14 18 1 58
IndustryC 25% 50% 25% 21 19 7 125
IndustryG 35% 60% 25% 14 19 14 105
IndustryH 15% 40% 25% 17 19 16 9
IndustryA 30% 55% 25% 17 17 46 16
IndustryD 15% 35% 20% 16 17 43 49
IndustryI 10% 35% 25% 13 15 22 39
IndustryJ 15% 35% 20% 17 17 58 32
IndustryE 25% 35% 10% 9 13 24 47
IndustryF 10% 40% 30% 13 15 16 5
Average 23% 25 49

Figure 6: The results of IndustryA (above: original
placement; below: 5 voltage islands)

Figure 7: The results of IndustryC (above: original
placement; below: 2 voltage islands)

