
A New and Efficient Congestion Evaluation Model in Floorplanning:
Wire Density Control with Twin Binary Trees

Steve T. W. Lai

Department of CSE

The Chinese Univ. of H.K.

Shatin, N.T., Hong Kong

twlai@cse.cuhk.edu.hk

Evangeline F. Y. Young

Department of CSE

The Chinese Univ. of H.K.

Shatin, N.T., Hong Kong

fyyoung@cse.cuhk.edu.hk

Chris C. N. Chu

Department of ECPE

Iowa State University

Ames, IA 20011-3060

cnchu@iastate.edu

Abstract

As technology moves into the deep-submicron era, the
complexity of VLSI circuit design grows rapidly, especially
in the interconnections between modules. Therefore, inter-
connect optimization has become an important concern in
floorplanning today. Most routability-driven floorplanners
[2][6][8] use grid-based approach that divides a floorplan
into grids as in global routing. Congestion is estimated as the
expected number of nets passing through each grid. Although
this approach is direct and accurate, it is not efficient when
dealing with complex circuit containing thousands of nets.
In this paper, an efficient and innovative routability-driven
floorplanner using twin binary trees (TBT)[9][10] represen-
tation is proposed. The congestion model we used is the wire
density on the half-perimeter boundary of different regions
in a floorplan. These regions are defined naturally by the
TBT representation. In order to increase the efficiency of our
floorplanner, a fast algorithm for the least common ances-
tor (LCA) problem in [1] is used to compute the wire den-
sity. From the experimental results, the number of unroutable
wires can be reduced in a short time.

1. Introduction

1.1. Motivation

In the deep-submicron era, the complexities of VLSI cir-

cuits are growing rapidly. The interconnections between

modules will become longer and denser in the future. There-

fore, interconnect optimization in floorplan design has be-

come ever more important than before. As floorplanning

is at the beginning phase of the VLSI design cycle, an

interconnect-optimized floorplan will favor the applicability

and performance of the later designing stages like placement,

global routing, detailed routing, etc, and, most importantly,

allow timing closure to be achieved earlier.

Recently, some routability-driven floorplanners [2][6][8]

are proposed. Most of them use the grid-based approach to

measure the congestion of a floorplan. In this approach, a

floorplan is divided into grids as in global routing. At each

grid, the expected number of nets passing through is recorded

as a weight to measure congestion. Although this approach

is direct and simple, such kind of routing-oriented estimation

is time consuming if it is performed in each iteration of the

simulated annealing process in a floorplanner. It is imprac-

tical for complex circuit designs. Therefore, a new and fast

congestion evaluation model using a suitable floorplan repre-

sentation will be very useful.

1.2. Previous work

Recently, several floorplanners are proposed to consider

routability in the floorplanning phase. In paper [2], a floor-

plan is divided into grids and congestion is estimated at each

grid by assuming that each wire is routed in either L-shape

or Z-shape. They use simple-geometry routing to plan the

wires in reasonable time. In paper [8], a realistic global router

is used to evaluate the congestion of each placement solu-

tion. In paper [6], a probabilistic method is proposed to es-

timate congestion and routability. A floorplan is divided into

a 2-dimensional grid structure and congestion is estimated at

each grid. Similar approaches are also proposed in [4] and

[5]. Although the above congestion evaluation models have

been shown to be effective in reducing interconnect cost, their

computational costs are very high.

1.3. Our contribution

In order to provide a simple and efficient congestion eval-

uation method other than the complicated grid-based ap-

proach, an indirect congestion evaluation model, wire den-
sity, is proposed. Instead of estimating the congestion at each

grid using global routing, we measure congestion as the wire

density passing through the boundary of different regions in

a floorplan. It is because a floorplan, that has a high wire

density on average, has a greater chance of having conges-

tion problem. An example is shown in figure 1. We use twin
binary trees (TBT) as the floorplan representation because the

regions to be evaluated can be naturally defined by the TBT

representation. For a floorplan with n modules, n−1 regions

Proceedings of the Design,Automation and Test in Europe Conference and Exhibition (DATE’03) 
1530-1591/03 $17.00 © 2003 IEEE 



are defined by each tree. In order to provide more regions for

evaluation, we have constructed an additional pair of trees,

which is the mirror of the original pair of trees. In order

to increase the efficiency of our floorplanner, we have made

use of a fast algorithm [1] for the least common ancestor
(LCA) problem to compute the wire density. Experimental

results have shown that an interconnect-optimized floorplan

of a complex circuit can be obtained in less than five min-

utes.

This paper is divided into seven sections. In section 2,

a brief review of the TBT floorplan representation will be

given. Section 3 will give an overview of our floorplanner. In

section 4 and 5, the ideas and implementation details of the

wire density congestion evaluation model will be described

and explained. Finally, experimental results will be shown in

section 6.

Floorplan A Floorplan B

B

A

C

A B C

Boundary of

high wire density

Figure 1. High wire density in floorplan A.

2. Twin binary trees
In our floorplanner, we use twin binary trees (TBT) as our

floorplan representation. The TBT floorplan representation is

first proposed in paper [9]. It shows an one-to-one mapping

between TBT and mosaic floorplan. Recall that the definition

of twin binary trees is as follows:

Definition 1 The set of twin binary trees T BTn ⊆ Treen ×
Treen is the set:

T BTn = {(t1,t2) | t1,t2 ∈ Treen and θ(t1) = θc(t2)}

where Treen is the set of binary trees with n nodes, and θ(t)
is the labelling of the binary tree t.

The labelling of a binary tree t can be obtained by perform-

ing an in-order traversal on t. When the traversed node has

no left child, a bit 0 is added to the sequence. Similarly, if it

has no right child, a bit 1 is added to the sequence. The first

0 and the last 1 in the labelling are omitted. If a pair of trees

(t1,t2) are twin binary to each other, their labellings will be

the complement of each other, i.e., θ(t1) = θc(t2).
Given a mosaic floorplan F , we can construct a pair of

trees (t1, t2) by travelling along the slicelines of F . The root

of t1 is the upper right corner of the packing. By connect-

ing the upper right corners of all the modules, the horizontal

slicelines represent the tree edges connecting from a parent

to its left child, while the vertical slicelines represent the tree

edges connecting from a parent to its right child. The con-

struction of t2 can be done similarly by connecting the lower

left corners of all the modules. It has been shown that the

pair of trees constructed in this way must be twin binary to

each other. Also, it is observed that the in-order traversal of

the pair of trees are the same[10]. An example is shown in

figure 2, θ(t1) = 10010 and θ(t2) = 01101, so θ(t1) = θc(t2).
Also, their in-order traversals are both ABCFDE.

B

A

E

F

D

C

0 0

1

0 1

B

A E

F

DC

0

0

11

1

A

F

B

C D

E

t1 t2

Figure 2. Construction of TBT.

3. Overview of our floorplanner
In this section, we will give a brief introduction to our

routability-driven floorplanner with the new wire density

congestion evaluation model. Our floorplanner is based on

the TBT floorplan representation and simulated annealing is

used. Given a candidate floorplan solution, the total wire

length of the nets is estimated by the half-perimeter bound-

ing box approach. The congestion cost is estimated by the

wire density which is computed as the number of nets pass-

ing per unit length of the boundary of different regions. These

regions are defined by the TBT representation naturally and

hierarchically. The estimation of wire density will start from

the leaf nodes and follow the post-order traversal of the tree.

Each tree can provide n− 1 samples, i.e., n− 1 regions, for

wire density estimation. In order to obtain more samples, two

additional trees are constructed from the original pair of TBT

to provide a total of 4(n−1) wire density values.

4. Wire density model
In order to improve the routability of a floorplan solution

in an efficient way, an indirect but effective congestion eval-

uation model is used. This model aims at measuring conges-

tion as the wire density (number of nets per unit length) on

the boundary of different regions in a floorplan.

Definition 2 Given a TBT (t1, t2), the region R(i) covered by
module i in t ∈ {t1,t2} is the rooms occupied by module i and
the modules in the subtree rooted at i in t.

As shown in figure 3, the region R(D) covered by module D
in t1 includes all the rooms occupied by module D, C, F and

E. We can obtain n− 1 wire density values for a tree with n
nodes. It is because R(root) is the whole packing and there

will be no nets passing through the boundary of the packing.

Proceedings of the Design,Automation and Test in Europe Conference and Exhibition (DATE’03) 
1530-1591/03 $17.00 © 2003 IEEE 



The following gives the equation to calculate the wire density
of R(i):

Ci =
Ni

Pi
(1)

where Ci is the wire density of R(i), Ni is the total number

of nets passing through the boundary of R(i) and Pi is the

normalized half-perimeter of R(i). The details of the compu-

tation of Ni and Pi will be given in the coming sections.

We choose TBT as the floorplan representation in our

floorplanner because it can define the regions for evaluation

naturally. Also, a lot of fast and simple tree algorithms can

be used in our congestion evaluation. We start the estimation

of wire density from the leaf nodes and follow the post-order

traversal of the tree to compute the terms Ni and Pi at each

node i. By dynamic programming, the information computed

at the children can be used to compute the wire density at the

parent.

E

F

D

C

B

A A

F

B

C D

E

Figure 3. Formation of R(D).

4.1. Computation of Ni

The term Ni, which is the total number of nets passing

through the boundary of R(i), can be computed as follows:

Ni = N′i +Nl(i)+Nr(i)−M′i (2)

where l(i) is the left child of i, r(i) is the right child of i, N ′i is

the number of nets connected to module i, M′i is an offset for

adjustments due to net merging and net completion, and it is

computed as follows:

M′i =
3

∑
j=2
( j−1)mi

j+
3

∑
j=2

j · ci
j (3)

where mi
j and ci

j are the number of nets merged and com-

pleted at i. The value j is the number of subnets of a single

net that meet at i. It can be either two or three.

The adjustment for net merging mi
j is needed because the

repeated counting of an identical net in N ′i , Nl(i) and Nr(i) will

over-estimate the term Ni. For j = 2, two subnets coming

from R(l(i)), R(r(i)) or module i of a single net are merged.

For j = 3, three subnets coming from R(l(i)), R(r(i)) and

module i of a single net are merged. The term mi
j is multi-

plied by j− 1 because we need to keep one counting in Ni

rather than j counting. An example is shown in figure 4. In

figure 4, we consider the situation when we reach module

D during the post-order traversal. We use thick solid lines

to represent merged nets. There is one net merged between

module D and R(C), one between module D and R(E), and

one between R(C) and R(E), so mD
2 = 3. There is also one

net merged between module D, R(C) and R(E), so mD
3 = 1.

Similarly, the adjustment for net completion ci
j is needed

because the repeated counting of an identical net in N ′i , Nl(i)

and Nr(i) will over-estimate the term Ni. The value j in ci
j has

the same meaning as that in mi
j. The term ci

j is multiplied by

j because the net has completed and all the counting should

be eliminated. In figure 4, we use thick dotted lines to rep-

resent completed nets. There is one net completed between

module D and R(C), two nets completed between module D
and R(E), three nets completed between R(C) and R(E), so

cD
2 = 1+2+3= 6. There is also one net completed between

module D, R(C) and R(E), so cD
3 = 1. Finally, M′D = mD

2 +

2mD
3 + 2cD

2 + 3cD
3 = 3 + 2(1) + 2(6) + 3(1) = 20

In figure 4, ND is computed as N ′D + NC + NE - M′D where

N′D = 10, NC = 13, NE = 11 and M′D = 20. As a result, ND =

10 + 13 + 11 - 20 = 14. There are 14 nets passing through

the boundary of R(D). The value of N ′i can be obtained eas-

ily as the net specification is given in the floorplanning phase.

However, the term M′i will vary for different packings, a naive

method to compute M′i will impose an O(mn) time complex-

ity where n is the total number of nets and m is the total num-

ber of modules. It is impractical for complex circuits. There-

fore, we have made use of an efficient algorithm for the least

common ancestor (LCA) problem to compute M′i . Details of

the implementation will be given in section 5.

R(E)

D

R(C)

Net Merging

Net Completion

Figure 4. An example of computing ND.

4.2. Computation of Pi

The term Pi, which is the normalized half-perimeter of
R(i), can also be computed easily by following the post-order
traversal of the tree. As the tree edges of a TBT represent
the width and height of the rooms occupied by the modules,
we will separate the half-perimeter Pi of region R(i) into

the horizontal (Ph
i ) and vertical (Pv

i ) portions to make the
operation simple. The pseudo-code is given as follows:

HalfPerimeter(tree t)
1. For j = 1 to n where (π(1),π(2), . . . ,π(n)) is

the post-order traversal of t
2. i= π( j)
3. If i is a leaf node
4. Ph

i = wi
5. Pv

i = hi

Proceedings of the Design,Automation and Test in Europe Conference and Exhibition (DATE’03) 
1530-1591/03 $17.00 © 2003 IEEE 



6. If i has left child l(i) only
7. Ph

i = wi + Ph
l(i)

8. Pv
i = max(hi, Pv

l(i))

9. If i has right child r(i) only
10. Ph

i = max(wi, Ph
r(i))

11. Pv
i = hi + Pv

r(i)
12. If i has both left and right child, l(i) and r(i)
13. Ph

i = max((wi + Ph
l(i)), Ph

r(i))
14. Pv

i = max((hi + Pv
r(i)), Pv

l(i))

15. Pi=
Ph

i
chip width + Pv

i
chip height

In the pseudo-code, wi and hi are the width and height of

the room occupied by module i. The computation of P(i) is

divided into four cases. Line 3-5 is the case where module i
is a leaf node as in figure 5(a). Figure 5(b) shows the case of

line 6-8 where module i has a left child l(i) only. Figure 5(c)

shows the case of line 9-11 where module i has a right child

r(i) only. Line 12-14 is the last case where module i has both

left child l(i) and right child r(i) as in figure 5(d). Finally, on

line 15, Ph
i and Pv

i are normalized by the chip width and chip

height respectively to maintain a uniform order of magnitude.

As dynamic programming is applied in the computation, the

time complexity of HalfPerimeter(t) to compute the normal-

ized half-perimeters of all the (n− 1) regions is only O(n).

(a)

(d)(c)

(b)

i

)(ir
)(il

iw
ih

v
ilP )(

h
ilP )(

v
irP )(

h
irP )(

i
iw ih

i i
iwiw

ihih

)(il

)(ir

h
ilP )(

v
ilP )(

h
irP )(

v
irP )(

Figure 5. Cases in Pi computation.

4.3. Usage of mirror TBT

After discussing the computation of Ni and Pi, we can

evaluate the wire density for t1 and t2. By the characteris-

tic of the TBT representation, the Ci computed from t1 rep-

resent the wire densities of the boundaries facing the upper

right direction, while those computed from t2 represent the

wire densities of the boundaries facing the lower left direc-

tion. Each tree can give n−1 statistical samples for the wire

density evaluation where n is the number of modules. In or-

der to increase the effectiveness of our congestion model, a

pair of mirror TBT, which are based on the original pair of

TBT, are constructed. The mirror TBT can be imagined as the

TBT constructed from a packing which is rotated 90◦ coun-

terclockwise. Together with the mirror TBT, our congestion

model can give 4(n− 1) wire density values which consider

in four routing directions (upper right for t1, lower left for t2,

upper left for t3 and lower right for t4). As sufficient statis-

tical samples are considered, the routability of a packing can

be estimated correctly.

5. Implementation
5.1. Efficient calculation of Ni

In this section, a detailed explanation of using the LCA al-

gorithm to compute Ni will be given. Recall from section 4.1

that the major difficulty of computing Ni is the high compu-

tational cost of computing the term M′i . Instead of computing

M′i for each module i one by one, we are going to compute

all M′i incrementally by visiting each net one by one. Let’s

look at the example in figure 6. In this example, we need to

find the nodes B, C and D where adjustments are needed due

to net merging and completion of net p. Net p will merge

at node B, C and D, and finally complete at B. The nodes

where adjustments are needed are LCA(u,v), where (u,v) are

some module pairs in a net. For a net with k modules, k− 1

LCAs should be found for adjustments. It is observed that we

cannot get the correct LCAs where adjustments are needed

by just picking the module pairs arbitrarily. For example, the

LCAs obtained by simply selecting the three adjacent module

pairs from the original net specification of p in figure 6 are

LCA(A,C) = B, LCA(C,E) = D and LCA(E,F) = D which

are not the correct set of LCAs {B,C,D} where adjustments

are needed. Therefore, the following lemma is used to find

the correct set of LCAs where adjustments are needed for a

net p.

Lemma 1 Given a tree t with n nodes (representing n mod-
ules) and a net p connecting k modules (m1,m2, . . . ,mk). The
set of nodes Lp in t where two or more subnets of p meet
(adjustment is needed) is

Lp =
k−1⋃

i=1

{LCA(mπ(i),mπ(i+1))}

where (mπ(1),mπ(2), . . . ,mπ(k)) is a permutation of the k
modules obtained by following the pre-order traversal of t.
(In figure 6, the permutation of the modules connected by
p following the pre-order traversal is (ACFE) and Lp =
{B,C,D}.)

Proof: The proof is done by induction on the depth of the tree t. The

pre-order traversal of t of depth n+ 1 can be expressed as ABnCn

where A is the root, Bn and Cn represent the pre-order traversal of

the left subtree of A rooted at B and the right subtree of A rooted

at C with depth smaller than or equal to n respectively, and n is the

Proceedings of the Design,Automation and Test in Europe Conference and Exhibition (DATE’03) 
1530-1591/03 $17.00 © 2003 IEEE 



larger value of the depths of the left and right subtree of A. Because

of the lacking of space, we will show the proof for the case where

A have both left and right subtrees only. The cases where A has left

subtree or right subtree only can be proved similarly.

When n= 1, the pre-order traversal of t is (AB1C1) as shown in

figure 7(a). For the tree t where A have both left and right subtrees,

B1 and C1 represent B and C respectively and the pre-order traversal

is ABC. Consider the case for a net p= {C,B,A}, the subnets of p
will meet (twice) at node A. The permutated p is {A,B,C}, and the

LCAs found according to the lemma are correct since LCA(A,B) =
A and LCA(B,C) = A. The cases where p= {B,A}, p= {C,A} and

p= {C,B} can be proved similarly. Hence, the proposition is true

when n= 1.

Assume that the proposition is true when n= k, and the pre-order

traversal of t is ABkCk as shown in figure 7(b). When n= k+1, the

pre-order traversal of t will be ABk+1Ck+1. We can re-write it as

A(BDkEk)(CFkGk) as in figure 7(c). Let B f and Bl be the first and

last node of the permutated subnet of p in BDkEk respectively, and

C f be the first node of the permutated subnet of p in CFkGk. For

the case where net p resides in the left and right subtrees of A and

node A, the LCAs found from the left and right subtrees of A are

correct according to the inductive hypothesis. There is one more

node that the subnets of p will meet (twice), which is A, and it will

be found correctly according to the lemma since LCA(A,B f ) = A
and LCA(Bl,C f ) = A. The cases where net p resides in the left or

right subtree of A completely, p resides in the left subtree of A and

node A, p resides in the right subtree of A and node A, and p resides

in the left and right subtrees of A but not node A can be argued

similarly. Hence, the proposition is true for n= k+1. Q.E.D.

- Preorder Tree Traversal:

  BADCFE

- Net-list:

  p={A, C, E, F}

- Permutated Net-list in preorder:

  ACFENet merging

Net completion

B

A

E

F

D

C

LCA(A, C)

LCA(C, F)

LCA(F, E)

Net p={A, C, E, F}

Figure 6. Using LCA to compute Ni.

(a)

A

B C

(b)

A

B

G

C

FED

A

B C

(c)

Figure 7. Proof of our M′i computation.

After obtaining the set Lp of a net p, we can update the

value of the corresponding M′i . As shown in figure 6, M′B,

M′C and M′D will be incremented by 1 because net p will be

merged when they are visited. Finally, M′i of the shallow-

est module i in the set Lp will be further incremented by 1

because the net is going to be completed there. In figure 6,

this shallowest module is B. The same operation will be per-

formed for each net to compute all M′i . Finally, we can apply

equation (2) to compute all Ni for wire density computation.

5.2. Solving the LCA problem efficiently

In paper [1], an efficient and simple LCA algorithm is

proposed. It reduces the LCA problem to the Range Min-
imum Query (RMQ) problem. By applying the Sparse Ta-
ble (ST) algorithm for the RMQ problem, the LCA problem

can be solved in constant time with a preprocessing time of

O(nlogn) using dynamic programming.

5.3. Cost Function

The cost function for the simulated annealing process of

our floorplanner is shown as follows:

cost = A+αW +βC (4)

where A is the chip area of the floorplan, W is the total wire

length estimated, C is the summation of all the wire density

values of the floorplan, and α and β are the weights to de-

scribe the importance of these three terms. In our floorplan-

ner, α and β are set such that the ratio of the importance of

these three terms are A : W : C = 2 : 2 : 1.

5.4. Complexity

Efficiency is one of the major advantages of our wire den-

sity congestion model. Recall from equation (1) that the

computation of the wire density Wi is divided into two parts,

Ni and Pi. The operations needed to compute Ni for all

i are the construction of the LCA sparse table (O(nlogn)),
the computation of M′i for all i (O(k)) where k is the total

number of pins in all nets, and the computation of equa-

tion (2) (O(n)), so the time complexity of computing Ni will

be O(nlogn)+O(k)+O(n) =O(nlogn)+O(k). Usually, the

magnitude of k is much greater than that of n, so we treat the

time complexity of computing Ni as O(k). Secondly, the time

complexity of computing Pi for all i is O(n). As a result, the

time complexity of our congestion estimation method is O(k)
only.

6. Experimental results
We have implemented two floorplanners for testing. One

is a traditional floorplanner without considering congestion,

the other one is a routability-driven floorplanner using our

wire density model. Both floorplanners are based on the

TBT floorplan representation and the simulated annealing ap-

proach. Three MCNC benchmarks {ami33,ami49, playout}

Proceedings of the Design,Automation and Test in Europe Conference and Exhibition (DATE’03) 
1530-1591/03 $17.00 © 2003 IEEE 



are used. In addition, three data sets {n2000,n2500,n3000}
are created to demonstrate the performance of our floorplan-

ner for complex circuits. The detailed specifications of the

data sets are shown in table 1. The experiments are per-

formed using a PC with a Pentium III 1GHz processor and

1GB memory. We use a simple global router to evaluate the

performance of the floorplanners.

Experimental results are shown in table 2. The term un-
routable wire is the wire that cannot be routed in the shortest

Manhattan distance due to the limitation of the wire capac-

ity at each grid in the global router. The term congestion
is the average number of nets per µm2 of the top 10% most

congested grids reported by the router. We use the data in

paper [7] to compute the parameters in the router. We use

the feature values of the 0.18µm technology for ami33 and

ami49. For the other data sets, we use the feature values of

the 0.13µm technology. The results show a significant reduc-

tion in the number of unroutable wires. The results in con-

gestion are similar for the two floorplanners. It shows that

our floorplanner is actually more efficient in distributing the

wires uniformly since more wires are being routed (the num-

ber of unroutable wires has decreased) without increasing the

congestion measures. Besides, the wire capacity of each grid

is actually bounded to avoid over-congestion in the router and

the results show that the wiring capacity of each grid is more

fully utilized by our floorplanner. Another important result

from the experiment is that the runtime of our floorplanner

for a complex circuit with three thousand nets (n3000) is less

than five minutes. It demonstrates both the effectiveness and

efficiency of our wire density model in reducing the intercon-

nect cost.

Data Number of Number of Number
Modules IO Pins of Nets

ami33 33 42 123
ami49 49 22 408
playout 62 192 1611
n2000 60 200 2000
n2500 75 200 2500
n3000 90 200 3000

Table 1. Specifications of the data sets.

7. Conclusion
In this paper, we present a new congestion model using

wire density as a measurement. We use TBT as the floorplan

representation because the regions for evaluation can be de-

fined by the TBT representation naturally, the fast and simple

tree algorithms, for example, the LCA algorithm, can facil-

itate the efficiency of our congestion model. By using the

regions defined by the TBT and the mirror TBT, sufficient

samples can be taken for congestion evaluation. The time

complexity of the whole congestion estimation method is lin-

ear with respect to the total number of pins in all nets. Ex-

Data Dead Wire Number of Congestion Runtime
Space Length Unroutable (# of nets (s)
(%) (103µm) Wires per µm2)

Floorplanner with wire density control
ami33 10.10 6.34 0.00 0.83 70.60
ami49 13.76 30.16 0.20 1.00 117.46

playout 12.25 63.64 7.48 8.31 146.94
n2000 13.47 104.35 99.82 12.71 176.20
n2500 16.10 147.69 242.67 13.67 235.76
n3000 16.76 184.76 386.37 14.09 288.34

Floorplanner without considering congestion
ami33 8.50 6.13 0.03 0.86 25.14
ami49 12.46 30.26 0.60 1.07 42.20

playout 10.84 62.97 9.20 8.66 57.82
n2000 11.62 99.09 142.20 12.79 62.36
n2500 13.93 141.18 314.34 13.46 82.63
n3000 14.54 177.77 476.24 13.82 105.35

Table 2. Experimental results of our floorplan-
ner.

periments have shown that this congestion evaluation model

is efficient and effective when dealing with complex circuits.

The number of unroutable wires can be greatly reduced in a

short time.

References
[1] M. A. Bender and M. Farach-Colton. The LCA problem revis-

ited. In Latin American Theoretical INformatics, pages 88–94,

2000.
[2] H. M. Chen, H. Zhou, F. Y. Young, D. F. Wong, H. H. Yang,

and N. A. Sherwani. Integrated floorplanning and interconnect

planning. In Proc. Int. Conf. On CAD, pages 354–357, 1999.
[3] X. Hong, G. Huang, Y. Cai, J. Gu, S. Dong, C. K. Cheng, and

J. Gu. Corner block list: An effective and efficient topological

representation of non-slicing floorplan. In Proc. Int. Conf. On
CAD, pages 8–12, 2000.

[4] P. Hung and M. J. Flynn. Stochastic congestion model for

VLSI systems. Technical Report CSL-TR-97-737, Stanford

University, 1997.
[5] J. Lou, S. Krishnamoorthy, and H. S. Sheng. Estimating

routing congestion using probabilistic analysis. In Int. Symp.
Physical Design, pages 112–117, 2001.

[6] C. W. Sham and E. F. Y. Young. Routability driven floorplan-

ner with buffer block planning. In Int. Symp. Physical Design,

pages 50–55, 2002.
[7] D. Sylvester and K. Keutzer. Getting to the bottom of deep

submicron. In Proc. Int. Conf. On CAD, pages 203–211, 1998.
[8] M. Wang and M. Sarrafzadeh. Modeling and minimization

of routing congestion. In Proc. of Asian-Pacific DAC, pages

185–190, 2000.
[9] B. Yao, H. Chen, C. K. Cheng, and R. Graham. Revist-

ing floorplan representations. In Int. Symp. Physical Design,

pages 138–143, 2001.
[10] E. F. Y. Young, C. C. N. Chu, and Z. C. Shen. Twin binary

sequences: A non-redundant representation for general non-

slicing floorplan. In Int. Symp. Physical Design, pages 196–

201, 2002.

Proceedings of the Design,Automation and Test in Europe Conference and Exhibition (DATE’03) 
1530-1591/03 $17.00 © 2003 IEEE 


