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Dynamic Games of Complete & Perfect Information

Basic Theory: Backwards Induction

Definition
Dynamic Game: Game in which we have sequence of
moves.
Complete Information: Games in which the strategy space
and player’s payoff functions are common knowledge.
Perfect Information: Each move in the game the player with
the move knows the full history of the game thus far.
Imperfect Information: At some move the player with the
move does not know the history of the game.
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Dynamic Games of Complete & Perfect Information

Basic Theory: Backwards Induction

Consider a game in which
1 Player 1 chooses an action a1 from the feasible set A1.
2 Player 2 observes a1 and then chooses an action a2 from

the feasible set A2.
3 Payoffs are u1(a1, a2) and u2(a1, a2).

Example: Player 1 chooses between giving player 2
$1,000 or nothing. Player 2 observes player 1’s move, and
choose to explode a grenade that will kill both players.
Obviously, we can extend this game, by allowing more
players, or allowing players to move more than once.
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Dynamic Games of Complete & Perfect Information

Solution Technique: Backwards Induction

When player 2 gets the move, he needs to solve

max
a2∈A2

u2(a1, a2).

Assume that for each action a1, the above optimization
problem has a unique solution, denoted by R2(a1) (which
is player 2’s best response).
Then, player 1 needs to solve:

max
a1∈A1

u2(a1, R(a1)).

Assume this optimization has a unique solution a∗1, the
backwards-induction outcome of this game is (a∗1, R2(a∗1)).
Compare with the previous normal-form representation of
a game, the verbal description of (1)− (3) is called the
extensive-form representation of the game.
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Dynamic Games of Complete & Perfect Information

Extensive Form Representation

Playing this game
In round 3, player 1
chooses L

′′
.

In round 2, player 2
chooses L

′
.

In round 1, player 1
chooses L. Thus the
game ends in the first
round.
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Dynamic Games of Complete & Perfect Information

Stackelberg Game

Definition (Stakelberg Game)
Two players in this game: a leader and a follower.
The leader moves first, choosing a strategy.
Then the follower observes the leader’s choice and picks a
strategy.

Under the Stackelberg game, the leader chooses strategy
knowing that the follower will apply best response.
Every Stackelberg equilibrium is also Subgame Perfect
Nash Equilibrium.
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Dynamic Games of Complete & Perfect Information

Stackelberg Model of Duopoly

Example
Consider two firms where

firm 1 chooses quantity q1 ≥ 0,
firm 2 observes q1, chooses quantity q2 ≥ 0,
firm i profit function

πi(qi , qj) = qi [P(Q)− c] .

where P(Q) = a−Q is the market clearing price and
Q = q1 + q2, the aggregate quantity and c is a constant.
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Dynamic Games of Complete & Perfect Information

Stackelberg Duopoly and Backward Induction

Firm 2’s solution is R2(q1), :

max
q2≥0

π2(q1, q2) = max
q2≥0

q2 [a− q1 − q2 − c] ,

R2(q1) =
a− q1 − c

2
, where q1 < a− c.

Firm 1’s response:

max
q1≥0

π1(q1, R2(q1)) = max
q1≥0

q1
a− q1 − c

2
,

q∗1 =
a− c

2
; R2(q∗1) =

a− c
4

.
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Dynamic Games of Complete & Perfect Information

Comment on Stackelberg Duopoly

Recall that the Nash equilibrium in the Cournot game,
each firm produces (a− c)/3.
The aggregate quantity of the Stackelberg game,
3(a− c)/4, is greater than the Nash equilibrium of the
Cournot game 2(a− c)/3.
The market-clearing price is lower in the Stackelberg
game.
Firm 1’s profit in the Stackelberg game is higher than its
profit in the Cournot game.
Firm 1’s better off in the Stackelberg game implies firm 2 is
worse off. (Leader’s advantage).
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Dynamic Games of Complete & Perfect Information

Sequential Bargaining: 3-period, 1 unit of resource

In the first period, Player 1 proposes to take s1 of the
resource, leaving 1− s1 to Player 2.
Player 2 either accepts (and the game ends with payoffs
s1 to Player 1 and 1− s1 to Player 2), or reject (the game
continues).
In the second period, Player 2 proposes that Player 1 to
take s2 of the resource, leaving 1− s2 to Player 2.
Player 1 either accepts (and the game ends with payoffs
s2 to Player 1 and 1− s2 to Player 2), or reject (the game
continues).
In the third period, Player 1 receives s of the resource,
player 2 receives 1− s of the resource, where 0 < s < 1.

There is a discount factor δ per period, 0 < δ < 1.
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Dynamic Games of Complete & Perfect Information

Solution

Consider Player 2’s optimal offer if the 2nd period is
reached.
Player 1 is facing a choice, choose s2 or receive δs.
Player 1 will accept the offer iff

s2 ≥ δs.

Player 2’s 2nd-period decision:
1 receiving 1− δs (by offering s2 = δs to Player 1), or
2 receiving δ(1− s) in the third period.

Since 1− δs > δ(1− s), Player 2’s optimal 2nd-round
choice is s∗2 = δs and Player 1 will accept.
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Solution: continue

Player 1 is facing a choice in the 1st-period.
Player 2 will only accept the offer in the 1st-period iff

1 1− s1 ≥ δ(1− s∗2), or
2 s1 ≤ 1− δ(1− s∗2).

Player 1’s 1st-period decision:
1 receiving 1− δ(1− s∗2) = 1− δ(1− δs) (making that bid), or
2 receiving δs∗2 = δ2s.

Since 1− δ(1− δs) > δ2s, so Player 1’s optimal 1st-period
offer is s∗1 = 1− δ(1− δs).

The solution of the game should end in the 1st-period with
(s∗1, 1− s∗1), where s∗1 = 1− δ(1− δs).
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Dynamic Games of Complete & Perfect Information

Extension to infinite rounds

What about if we have infinite number of rounds?
Truncate the infinite-horizon game and apply the logic from
the finite-horizon case.
The game in the 3rd period, should it be reached, is
identical to the game beginning in the 1st period.
Let SH be the highest payoff player 1 can achieve in any
backwards-induction outcome of the game as a whole.
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Extension to infinite rounds: continue

Using SH as the 3rd period payoff to player 1.
Player 1’s first-period payoff is f (SH) where

f (s) = 1− δ + δ2s.

But SH is also the highest possible 1st-period payoff, so
f (SH) = SH .
The only value of s that satisfy f (s) = s is

s∗ = 1/(1 + δ).

Solution is, in the first round, player 1 offers
(s∗, 1− s∗) = (1/(1 + δ), δ/(1 + δ)) to player 2, who will
accept.
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Two-Stage Dynamic Games of Complete but Imperfect Information

Framework

We allow simultaneous moves (which corresponds to
“imperfect information”) with each stage.
Consider the following two-stage game:

1 Player 1 and 2 simultaneously choose action a1 ∈ A1 and
a2 ∈ A2 respectively.

2 Player 3 and 4 observe the outcome of the 1st stage
(a1, a2), then simultaneously choose action a3 ∈ A3 and
a4 ∈ A4 respectively.

3 Payoffs are ui(a1, a2, a3, a4) for i = 1, 2, 3, 4.

Various of the above game (1) players 3 and 4 are player 1
and 2; (2) player 2 or player 4 is missing.
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Framework: continue

For each outcome of (a1, a2), the 2nd stage game has a
unique Nash equilibrium, denoted by
(a∗3(a1, a2), a∗4(a1, a2)) (assumption of NE).
Player 1 and 2 anticipate (a∗3(a1, a2), a∗4(a1, a2)), then both
players simultaneously take action with the payoff of
ui(a1, a2, a∗3(a1, a2), a∗4(a1, a2)) for i = 1, 2.

Suppose (a∗1, a∗2) is the unique Nash equilibrium, then

(a∗1, a∗2, a∗3(a
∗
1, a∗2), a∗4(a

∗
1, a∗2))

is the subgame-perfect outcome.
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Two-Stage Dynamic Games of Complete but Imperfect Information

Bank Runs

Two investors deposited D with a bank.
The bank invested in a project. If it liquidate before the
project matures, a total return of 2r , where D > r > D/2. If
the project matures, a total return of 2R, where R > D.
Investors can withdraw on date 1 (before the project
matures) or date 2 (after the project matures).
The game is:

1 If both investors make withdrawals at date 1, each receives
r , game ends.

2 If only one makes withdrawal at date 1, that investor
receives D, other receives 2r − D, game ends.

3 If both withdraw at date 2, each receives R, game ends.
4 If only one withdraws at date 2, that investor receives

2R − D, other receives D, game ends.
5 If neither makes withdrawal at date 2, banks returns R to

each investor, game ends.
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Two-Stage Dynamic Games of Complete but Imperfect Information

”Normal-Form” of the game

For two dates

Date 1 Investor 2 Investor 2
(Withdraw) (Don’t)

Investor 1 r,r D, 2r-D
(Withdraw)
Investor 1 2r-D, D next stage
(Don’t )

Date 2 Investor 2 Investor 2
(Withdraw) (Don’t)

Investor 1 R,R 2R-D,D
(Withdraw)
Investor 1 D, 2R-D R,R
(Don’t )
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Two-Stage Dynamic Games of Complete but Imperfect Information

Analysis

Consider date 2, since R > D (and so 2R − D > D and
2R − D > R), “withdraw” strictly dominates “Don’t”, we
have a unique Nash equilibrium.
For date 1, we have:

Date 1 Investor 2 Investor 2
(Withdraw) (Don’t)

Investor 1 r,r D, 2r-D
(Withdraw)
Investor 1 2r-D, D R,R
(Don’t )

Since r < D (and so 2r − D < r ), we have two
pure-strategy Nash Equilibrium, (a) both withdraw, (b) both
don’t withdraw, with the 2nd NE being efficient.
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Two-Stage Dynamic Games of Complete but Imperfect Information

Tariffs and Imperfect Competition

Consider two countries, denoted by i = 1, 2, each setting a
tariff rate ti per unit of product.
A firm produces output, both for home consumption and
export.
Consumer can buy from a local firm or foreign firm.
The market clearing price for country i is P(Qi) = a−Qi ,
where Qi is the quantity on the market in country i .
A firm in i produces hi(ei) units for local (foreign) market,
i.e., Qi = hi + ej .
The production cost of firm i is Ci(hi , ei) = c(hi + ei) and it
pays tjei to country j .
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Two-Stage Dynamic Games of Complete but Imperfect Information

Tariffs and Imperfect Competition Game

First, the government simultaneously choose tariff rates t1
and t2.
Second, the firms observe the tariff rates, decide (h1, e1)
and (h2, e2) simultaneously.
Third, payoffs for both firms and governments:
(1) Profit for firm i :

πi(ti , tj , hi , ei , hj , ej) = [a− (hi + ej)]hi + [a− (ei + hj)]ei

−c(hi + ei)− tjei

(2) Welfare for government i :

Wi(ti , tj , hi , ei , hj , ej) =
1
2

Q2
i + πi(ti , tj , hi , ei , hj , ej) + tiej
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Two-Stage Dynamic Games of Complete but Imperfect Information

Tariffs and Imperfect Competition Game: 2nd
stage

Suppose the governments have chosen t1 and t2.
If (h∗1, e∗1, h∗2, e∗2) is a NE for firm 1 and 2, firm i needs to
solve maxhi ,ei≥0 πi(ti , tj , hi , ei , h∗j , e∗j ). After re-arrangement,
it becomes two separable optimizations:

max
hi≥0

hi [a− (hi + e∗j )− c]; max
ei≥0

ei [a− (ei + h∗j )− c]− tjei .

Assuming e∗j ≤ a− c and h∗j ≤ a− c − tj , we have

h∗i =
1
2

(
a− e∗j − c

)
; e∗i =

1
2

(
a− h∗j − c − tj

)
, i = 1, 2.

Solving, we have

h∗i =
a− c − ti

3
; e∗i =

a− c − 2tj
3

, i = 1, 2.
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Two-Stage Dynamic Games of Complete but Imperfect Information

Tariffs and Imperfect Competition Game: 1st stage

In the first stage, government i payoff is:

Wi(ti , tj , h∗1, e∗1, h∗2, e∗2) = Wi(ti , tj)

since h∗i (e∗i ) is a function of ti (tj ).
If (t∗1 , t∗2 ) is a NE, each government solves:

max
ti≥0

Wi(ti , t∗j ).

Solving the optimization, we have t∗i = a−c
3 , for i = 1, 2.

which is a dominant strategy for each government.
Substitute t∗i , we have

h∗i =
4(a− c)

9
; e∗i =

a− c
9

, for i = 1, 2.
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Two-Stage Dynamic Games of Complete but Imperfect Information

Comment on Tariffs and Imperfect Competition
Game

In the subgame-perfect outcome, the aggregate quantity
on each market is 5(a− c)/9.
But if two governments cooperate, they seek socially
optimal point and they solve the following optimization
problem :

max
t1,t2≥0

W1(t1, t2) + W2(t1, t2)

The solution is t∗1 = t∗2 = 0 (no tariff) and the aggregate
quantity is 2(a− c)/3.
Therefore, for the above game, we have a unique NE, and
it is socially inefficient.
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Repeated Games

Theory: Two-stage Repeated Game

Prisoners’ Dilemma
Two players play this simultaneously-move game twice.
Observing the outcome of the first play before the second
play begins.

L2 R2
L1 1,1 5,0
R1 0,5 4,4

Payoff for the entire game is the sum of the two stages
payoffs.
Analyzing the 1st stage of the game by taking into account
that the outcome of the game remaining in the 2nd stage
will be the NE of that game, or (L1, L2) with payoff (1, 1).
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Repeated Games

Theory: Two-stage Repeated Game

Prisoners’ Dilemma
The players’ first-stage game amounts to one-shot game:

L2 R2
L1 2,2 6,1
R1 1,6 5,5

This game also has a unique NE: (L1, L2).
The unique subgame-perfect outcome of the 2-stage game
is (L1, L2) in the first stage, (L1, L2) in the 2nd stage.
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Repeated Games

Definition and Proposition

Definition
Given a stage game G, let G(T ) denote the finitely repeated
game in which G is played T times, with the outcomes of all
preceding plays observed before the next play begins. The
payoffs for G(T ) are simply the sum of the payoffs from the T
stage games.

Proposition
If the stage game G has a unique NE then, for any finite T , the
repeated game G(T ) has a unique subgame-perfect outcome:
the NE of G is played in every stage.
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Definition and Proposition

Definition
Given a stage game G, let G(T ) denote the finitely repeated
game in which G is played T times, with the outcomes of all
preceding plays observed before the next play begins. The
payoffs for G(T ) are simply the sum of the payoffs from the T
stage games.

Proposition
If the stage game G has a unique NE then, for any finite T , the
repeated game G(T ) has a unique subgame-perfect outcome:
the NE of G is played in every stage.
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Repeated Games

Another look of the 2-stage repeated game

Consider the following game will be played twice:
L2 M2 R2

L1 1,1 5,0 0,0
M1 0,5 4,4 0,0
R1 0,0 0,0 3,3

The stage game has two pure-strategy NE: (L1, L2),
(R1, R2).
Since more than one NE, players anticipate the different
first-stage outcomes will be followed by different
stage-game equilibria in the 2nd stage.
Suppose players anticipate (R1, R2) will be the 2nd-stage
outcome if the 1st-stage outcome is (M1, M2), but (L1, L2)
will be the 2nd-stage outcome if any of the eight other
first-stage outcomes occurs.
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Repeated Games

Another look of the 2-stage repeated game

Players’ 1st-stage action amounts to the one-shot game:
L2 M2 R2

L1 2,2 6,1 1,1
M1 1,6 7,7 1,1
R1 1,1 1,1 4,4

There are three pure-strategy NE:
(L1, L2), (M1, M2), (R1, R2).
The NE (L1, L2) corresponds to the subgame-perfect
outcome ((L1, L2), (L1, L2)) (concatenate 2 NE).
The NE (R1, R2) corresponds to the subgame-perfect
outcome ((R1, R2), (L1, L2)) (concatenate 2 NE).
The NE (M1, M2) corresponds to the subgame-perfect
outcome ((M1, M2), (R1, R2)).
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Repeated Games

Another look of the 2-stage repeated game

Observation
If G = {A1, . . . , An; u1, . . . , un} is a static game of complete
information with multiple NE, then there may be
subgame-perfect outcomes of the repeated game G(T ) in
which for any t < T , the outcome in stage t is not a NE of G.

This implies that credible promises about the future behavior
can influence current behavior

Stronger Result
In infinitely repeated games: even if the stage game has a
unique NE, there may be subgame-perfect outcomes of the
infinitely repeated games in which no stage’s outcome is a NE
of G.
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Repeated Games

Theory of Infinitely Repeated Game

Let say that we have a static game with complete information,
G, and it is repeated infinitely, with the outcomes of all previous
stages observed before the current stage begins.

If the payoff is the sum of payoffs at each stage, we have a
problem ! To overcome, we have:

Definition (Present Value)
Given the discount factor δ, the present value of the infinite
sequence of payoffs π1, π2, . . . is:

π1 + δπ2 + δ2π3 + . . . =
∞∑

t=1

δt−1πt .
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Repeated Games

Example an Infinitely Repeated Game

Consider the following stage game G:
Player 2: L2 Player 2: R2

Player 1: L1 1,1 5,0
Player 1: R1 0,5 4,4

NE of G is (L1, L2), but it is much better to play (R1, R2).
Player i ′s strategy is: Play Ri in the 1st stage. In the t th

stage, if the outcome of all t − 1 stages has been (R1, R2),
then play Ri ; otherwise, play Li .
This is an example of trigger strategy, player i cooperates
until someone fails to cooperate, which triggers a switch to
non-cooperation forever after.
Is (R1, R2) the NE of this infinitely repeated game?
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Repeated Games

Proof for Nash Equilibrium when δ ≥ 1/4

Assume player i has adopted the trigger strategy, and
show that when δ is close enough to one, player j ’s best
response is to adopt the same trigger strategy.
Since player i will play Li forever once the stage outcome
differs from (R1, R2), player j ′s best response is to play Lj
forever once there is a switch.
For strategy before the switch, playing Lj will yield a
present value

5 + δ ∗ 1 + δ2 ∗ 1 + · · · = 5 +
δ

1 + δ
.

Playing Rj will yield a present value of V where

V = 4 + δV , or V = 4/(1− δ).

Player j will choose Rj iff 4
1−δ ≥ 5 + δ

1−δ . This is only true if
δ ≥ 1/4. Trigger strategy is the NE.
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Repeated Games

More Definitions

Definition (Infinitely Repeated Game)
Given a stage game G, let G(∞, δ) denote the infinitely
repeated game in which G is repeated forever and the players
share the discount factor δ. For each t , the outcomes of the
t − 1 preceding plays of the stage game are observed before
the t th stage begins. Each player’s payoff in G(∞, δ) is the
present value of the player’s payoffs from the infinite sequence
of stage games.
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Repeated Games

More Definitions

Definition (Strategy)
In the finitely repeated game G(T ) or the infinitely repeated
game G(∞, δ), a player’s strategy specifies the action the
player will take in each stage, for each possible history of play
through the previous stage.

Example, previous G has four possible 1st-stage outcomes:
(L1, L2), (L1, R2), (R1, L2), (R1, R2).
The player’s strategy consists of five instruction (v , w , x , y , z)
where v is the 1st-stage action, the rest are the 2nd-stage
actions to be taken following the 4 possible 1st-stage outcomes.
(1) (b, c, c, c, c) means play b in the 1st-stage, play c no matter
what happens in the first. (2) (b, c, c, c, b) means, play b in the
1st-stage, play c in the 2nd-stage unless the 1st-stage outcome
was (R1, R2), then play b.
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Repeated Games

Definition on Subgame and Subgame-perfect NE

Definition (Subgame)
In the finitely repeated game G(T ), a subgame beginning at
stage t + 1 is the repeated game in which G is play T−t times,
or G(T−t). There are “many” subgames that begin at stage
t + 1, one for each of the possible histories of play through
stage t . In the infinitely repeated game G(∞, δ), each subgame
beginning at stage t + 1 is identical to the original game
G(∞, δ). There are as many subgames beginning at stage t + 1
of G(∞, δ) as there are possible histories of play through t .

Definition (Subgame-perfect)
A NE is subgame-perfect if the players’ strategies constitute a
NE in every subgame.
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Repeated Games

The trigger-strategy is subgame-perfect NE

We must show that the trigger strategies constitute a NE
on every subgame of the infinitely repeated game.
Note that every subgame of an infinitely repeated game is
identical to the game as a whole.
These subgames can be grouped into two classes: (i)
subgames in which all the outcomes of earlier stages are
(R1, R2), (ii) subgames in which the outcome of at least
one earlier stage differs from (R1, R2).
For (i), adopting the trigger strategy, which was shown as a
NE of the game.
For (ii), players repeat the stage-game equilibrium (L1, L2),
which is also a NE of the game.
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Repeated Games

Definitions

Definition (Feasible Payoff)

The payoff (x1, . . . , xn) is feasible in the stage game G if there is a
convex combination of the pure-strategy payoffs of G.

Definition (Average Payoff)

Given the discount factor δ, the average payoff of the infinite
sequence of payoffs π1, π2, . . . is

(1− δ)
∞∑

t=1

δt−1πt ,

The last game has a present value of 4/(1− δ) but an average payoff
of 4.
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Repeated Games

Friedman’s Theorem

Friedman’s Theorem (or Folk’s theorem)
Let G be a finite, static game of complete information. Let
(e1, . . . , en) denote the payoffs from a NE of G, and let
(x1, . . . , xn) denote any other feasible payoffs from G. If xi > ei
∀i and if δ is sufficiently close to one, then there exits a
subgame-perfect Nash equilibrium of the infinitely repeated
game G(∞, δ) that achieves (x1, . . . , xn) as the average payoff.
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Repeated Games

Folk’s Theorem Illustration
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Theory: Static Bayesian Games and Bayesian NE

An Example: Cournot Competition under
Asymmetric Information

Consider a Cournot duopoly model with inverse demand
given by P(Q) = a−Q where Q = q1 + q2 is the
aggregate quantity.
Firm 1’s cost function is C1(q1) = cq1.
Firm 2’s cost function is C2(q2) = cHq2 with probability θ
and C2(q2) = cLq2 with (1− θ), where cL < cH .
Information is asymmetric: firm 2 knows its cost function
and firm 1’s, but firm 1 knows its cost function and only that
firm 2’s marginal cost cH with θ and cL with (1− θ).
This is a game with incomplete and asymmetric
information.
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Theory: Static Bayesian Games and Bayesian NE

Cournot game with incomplete information

Let q∗2(cH) and q∗2(cL) be firm 2’s quantity choices, q∗1 be
firm 1’s single quantity choice.
If firm 2’s cost is high, it will choose q∗2(cH) and to solve

max
q2

[(a− q∗1 − q2)− cH ] q2.

Similarly, if cost is low, q∗2(cL) will solve

max
q2

[(a− q∗1 − q2)− cL] q2.

Firm 1 chooses q∗1 to solve

max
q1

θ [(a−q1−q∗2(cH))−c] q1+(1−θ) [(a−q1−q∗2(cL))−c] q1.
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Theory: Static Bayesian Games and Bayesian NE

Cournot game with incomplete information

Solving these optimization problems, we have

q∗2(cH) =
a− 2cH + c

3
+

1− θ

6
(cH − cL) ,

q∗2(cL) =
a− 2cL + c

3
− θ

6
(cH − cL) ,

q∗1 =
a− 2c + θcH + (1− θ)cL

3
.

For Cournot game with complete information,
q∗i = (a− 2ci + cj)/3, for i = 1, 2.
Note that under the Counot game with incomplete
information, q∗2(cH) > q∗2 and q∗2(cL) < q∗2.
WHY? Because firm 2 not only tailors its quantity to its
cost, but also anticipate the response by firm 1.
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Theory: Static Bayesian Games and Bayesian NE

Definition

Definition (Bayesian Nash Equilibrium)
In the static Bayesian game
G = {A1, . . . , An; T1, . . . , Tn; p1, . . . , pn; u1, . . . , un}. The
strategies s∗ = (s∗1, . . . , s∗n) are a (pure-strategy) Bayesian
Nash equilibrium if for each player i and for each i ’s types ti in
Ti , s∗i (ti) solves:

max
ai∈Ai

∑
t−i∈T−i

ui(s∗1(t1), . . . , s∗i−1(ti−1), ai , s∗i+1(ti+1), . . . , s∗n(tn); t)pi(t−i)|ti).
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Theory: Static Bayesian Games and Bayesian NE

Example:

Consider the following game:
Pat Pat

(Opera) (Football Game)
Chris (Opera) 2,1 0,0

Chris (Football Game) 0,0 1,2
Two NE under pure strategy, (Opera, Opera), (FG, FG).
What is the mixed strategy that has the NE?
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Theory: Static Bayesian Games and Bayesian NE

Example:

Let q (r ) be the probability that Pat (Chris) will choose
Opera.
Chris’s expected payoff in choosing Opera is
q × 2 + (1− q)× 0 = 2q, and the expected payoff in
choosing FG is q × 0 + (1− q)× 1 = 1− q. So Chris will
choose opera iff q > 1/3, will choose FG iff q < 1/3. If
q = 1/3, any value of r is the best response by Chris.
Pat’s expected payoff in choosing Opera is
r × 1 + (1− r)× 0 = r , and the expected payoff in
choosing FG is r × 0 + (1− r)× 2 = 2(1− r). So Pat will
choose opera iff r > 2/3, will choose FG iff r < 2/3. If
r = 2/3, any value of q is the best response by Pat.
Then (q, 1− q) = (1/3, 2/3) for Pat and
(r , 1− r) = (2/3, 1/3) for Chris are the mixed strategy NE.
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Theory: Static Bayesian Games and Bayesian NE

Example:

Consider the following static game with incomplete
information:

Pat Pat
(Opera) (FG)

Chris (Opera) 2+tc ,1 0,0
Chris (FG) 0,0 1,2 +tp

where tc (tp) is privately known by Chris (Pat) only. Both tp
and tc are independent and uniformly distributed in [0, x ].
The normal form G = {Ac , Ap; Tc , Tp; pc , pp; uc , up}.
Ac = Ap ={Opera,FG}, Tc = Tp = [0, x ],
pc(tp) = pp(tc) = 1/x for all tc and tp.
What is the pure-strategy Bayesian Nash equilibrium of
this game?
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Theory: Static Bayesian Games and Bayesian NE

Solution

We’ll construct a pure-strategy BNE in which Chris
chooses opera if tc > c and chooses FG otherwise, while
Pat chooses FG if tp > p and chooses opera otherwise.
In such an equilibrium, Chris chooses opera with
probability (x − c)/x while Pat chooses FG with probability
(x − p)/x .
Note that when the incomplete information disappears (i.e.,
as x → 0), the BNE should approach the mixed-strategy
NE, or (x − c)/x and (x − p)/x will approach 2/3 as x
approaches zero.
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Theory: Static Bayesian Games and Bayesian NE

Solution: continue

For a given value of x , we will determine values of c and p such
that these strategies are a BNE.

Given Pat’s strategy, Chris’s expected payoff of opera & FG:
p
x
× (2 + tc) +

(
1− p

x

)
× 0 =

p
x

(2 + tc),

p
x
× 0 +

(
1− p

x

)
× 1 = 1− p

x
.

Thus, Chris chooses opera iff tc ≥ x
p − 3 = c.

Gvien Chris’s strategy, Pat’s expected payoff of opera & FG:(
1− c

x

)
× 1 +

c
x
× 0 = 1− c

x
,(

1− c
x

)
× 0 +

c
x
× (2 + tp) =

c
x

(2 + tp),

Thus, Pat chooses FG iff tp ≥ x
c − 3 = p.
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Theory: Static Bayesian Games and Bayesian NE

Solution: continue

Equating tc and tp, we have two equations: p = c and
p2 + 3p − x = 0.
Solving the quadratic equation shows that:

Prob[Chris chooses Opera] =
x − c

x
= 1− −3 +

√
9 + 4x

2x
,

Prob[Pat chooses FG] =
x − p

x
= 1− −3 +

√
9 + 4x

2x
.

Both approach 2/3 as x approaches zero.
Thus, the incomplete information disappears, the player’s
behavior in this pure-strategy BNE of the
incomplete-information game approaches the
mixed-strategy NE of the game with complete information.
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