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A Mathematical Framework for Analyzing

Adaptive Incentive Protocols in P2P Networks

Bridge Qiao. Zhao† John C.S. Lui† Dah-Ming Chiu‡

Abstract— In P2P networks, incentive protocol is used to en-
courage cooperation among end nodes so as to deliver a scalable
and robust service. However, the design and analysis of incentive
protocols have been ad hoc and heuristic at best. The objective
of this paper is to provide a simple, yet general framework
to analyze and design incentive protocols. We consider a class
of incentive protocols which can learn and adapt to other end
nodes’ strategies. Based on our analytical framework, one can
evaluate the expected performance gain, and more importantly,
the system robustness of a given incentive protocol. To illustrate
the framework, we present two adaptive learning models and
three incentive policies and show the conditions in which the
P2P networks may collapse and the conditions in which the P2P
networks can guarantee a high degree of cooperation. We also
show the connection between evaluating incentive protocol and
evolutionary game theory so one can easily identify robustness
characteristics of a given policy. Using our framework, one can
also gain the understanding on the price of altruism and system
stability. This framework can help protocol designers to quickly
evaluate the correctness of their incentive policies and to explore
the proper incentive mechanism to achieve cooperation.

I. Introduction

Incentive protocols play a crucial role in many networking

environments. For example, consider a wireless mesh network

wherein a node needs other nodes to assist in its packet

forwarding. Since packet forwarding increases the energy

consumption, therefore unless there is some built-in incen-

tive mechanism, rational nodes will choose not to perform

any packet forwarding. If enough wireless nodes behave in

this selfish manner, the underlying wireless network will be

partitioned and nodes will be unreachable. Another example

is in P2P file sharing protocols where nodes rely on other

nodes to perform uploading service. This mutual uploading

service offloads the server and allows the system to scale.

Again, without the incentive mechanism to encourage nodes to

perform uploading service, the server will be overwhelmed and

nodes may never be able to finish the file downloading process.

The above examples illustrate one important point: embedding

incentive protocols to encourage cooperation among nodes

is crucial so that the overall system performance can be

improved. However, the design and analysis of incentive

protocols have been ad-hoc and heuristic at best.

It is important to point out that there is a natural tendency

that nodes will not used a fixed strategy but instead, adapt from

the environment. Authors in [2], [6] point out that there are
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benefits for nodes to learn and adapt from neighboring nodes

in a P2P network, e.g., nodes will provide uploading service to

other nodes, but when they discover that there are other nodes

that can free ride on their altruism and get good downloading

service, then these nodes may choose to change its strategy and

adapt a more selfish strategy. Therefore, to fully understand

a given incentive protocol, we need to have a systematic

and formal methodology to model the dynamic learning and

adaptive behavior of cooperating/competing nodes, and to

evaluate the robustness and effectiveness of the underlying

incentive protocol. The aim of this paper is to provide a

general analytical framework to design and analyze a large

class of adaptive incentive protocols for P2P networks. Our

contributions are:

• We propose a general analytical framework to evaluate

the performance of adaptive incentive protocols in P2P

networks.

• To illustrate the utility of our mathematical framework,

two different learning models and derive their perfor-

mance measures and robustness conditions.

• We carry out performance evaluation of the above three

incentive protocols and show their performance gain and

formally state that under what conditions the P2P network

will be robust and under what conditions the P2P network

may collapse.

• We show the connection between evaluating the robust-

ness of incentive protocols and evolutionary game theory.

We illustrate how one can map linear incentive policies

to two-player games, and to give an efficient technique to

identify the robustness characteristics of linear incentive

policies.

• We quantify the performance and robustness of the

system when there is cost associated with realizing an

incentive protocol.

• We show that there is a tradeoff between altruism and

system robustness and justify why one may want to limit

the degree of altruism so as to encourage cooperation.

The outline of this paper is as follows. We present a general

performance model of incentive policies for P2P systems in

Section II. In Section III, we present two learning models for

strategy adaptation. In Section IV, we present two incentive

policies and any incentive policy in a generalized incentive

policy class and show how to use our the framework to analyze

these protocols. In Section V, we derive the performance

measures such as system gain and the expected gain for

individual strategy, as well as the robustness conditions for

the given incentive policies. Results of performance evaluation
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are presented in Section VI on the three incentive policies. In

Section VII, we provide the connection between our frame-

work and evolutionary game theory. We use a simple game-

theoretical technique to identify robustness characteristics of

linear policies. In Section VIII and IX, we present the price

of altruism and how it relates to the network stability. Related

work is given in Section X and Section XI concludes.

II. An Incentive Model for P2P Networks

In this section, we present a general mathematical model

to study some incentive protocols in P2P networks. Given an

incentive protocol, we show how to use this framework to

evaluate (a) its evolution and robustness, and (b) its perfor-

mance measures such as expected service received and service

contributed of the given incentive protocol. For the incentive

protocols we study, we have the following assumptions:

• Finite strategies: we consider incentive policies which

have finite strategies. Given an incentive policy P =
{s1, s2, . . . , sn} where si is the ith strategy in P . Peers

can choose to use any si ∈ P . A peer using strategy

si is called a type i peer. Potential strategies can range

from altruism (e.g., willing to contribute) to egoism (e.g.,

refusing to contribute).

• Service model: we model a P2P network as a discrete

time system. At the beginning of each time slot, each peer

randomly selects another peer in the system and requests

for service1. A selected peer may choose to serve the

request based on its current strategy. Let gi(j) denote

the probability that a type i peer will provide service

to a type j peer. Accordingly, one can define an n × n
generosity matrix G with Gij = gi(j). At each time slot,

a peer obtains α > 0 points when it receives a service

from another peer, while loses β points when it provides

a service to another peer. Without loss of generality, we

normalize β = 1.

Let xi(t) denote the fraction of type i peers in the system

at time t. We define E[Ri(t)] as the expected services that

a type i peer can receive in one time slot, E[Ri(t)] can be

expressed as:

E[Ri(t)] =
n
∑

j=1

xj(t)gj(i) for i = 1, . . . , n. (1)

Let E[Si(t)] denote the expected number of service units

provided by a type i peer at time t, and this quantity can

be derived as follows. Assume that at time t, there are N(t)
number of peers in the P2P network. Consider a tagged type i
peer and denote N as the set representing the other N(t)− 1
peers in the P2P network. Let k∈N , then the probability that

this tagged type i peer will provide service to this peer k is

L, which can be expressed as:

L = Prob[k selects this type i peer] ×

Prob[type i peer will serve k]

=
1

N(t)−1





n
∑

j=1

Prob[k is of type j]gi(j)



 ,

1this assumption is also made in several other P2P studies, e.g. [10], [18].

and

Prob[k is of type j] =

{

xj(t)N(t)
N(t)−1 for j 6= i,

xi(t)N(t)−1
N(t)−1 for j = i.

Since |N | = N(t) − 1, the expected number of service

units provided by this tagged type i peer in one time slot

is E[Si(t)] = [N(t)−1]L. Combining the above expressions

and by assuming that the number of peers N(t) in a P2P

system is relatively large, we have

E[Si(t)] ≈
n
∑

j=1

xj(t)gi(j) for i = 1, 2, . . . , n. (2)

Define p̃i(t) be the random variable denoting the performance

gain of type i peer at time slot t and denote its expectation

by P̄i(t). Because a peer receives α points for each service it

receives and loses β = 1 point for each service it provides, the

expected performance gain per slot at time t is P̄i(t), which

can be expressed as:

P̄i(t) = αE[Ri(t)]− E[Si(t)] i = 1, 2, . . . , n. (3)

The above n equations can be expressed in matrix form and

P̄ (t), the expected gain per time slot for the P2P network at

time t is

P̄ (t) =

n
∑

i=1

xi(t)P̄i(t) = (α− 1)xT (t)Gx(t), (4)

where x(t) is a column vector of [x1(t), . . . , xn(t)].
In summary, to evaluate the performance and robustness

of a given incentive protocol, one has to first “determine” all

values in matrix G (i.e., all gi(j) for a given incentive policy).

In Section IV, we will illustrate how to use this analytical

framework to study several incentive protocols.

Note that for an incentive policy, it may include strategies

such as serving other peers upon request, or refusing to serve

upon request. A peer uses strategy si may choose to adapt to a

new strategy sj when this peer discovers that strategy sj will

provide a better performance gain, or P̄j(t) > P̄i(t). How to

discover and adapt to that strategy sj with a higher gain than

si can be modeled by the underlying learning process, which

we will describe next.

III. Learning Models for P2P Networks

Learning and adapting to the environment are natural be-

havior of a rational individual. Peers may get information

from external environment, and adjust their strategy so as to

obtain better performance. This process can be spontaneous

and gradual. The rate of adaptation depends on the truthfulness

of information received by peers and the sensitivity of peers

toward this information. Since peers learn and adapt naturally,

one can consider adding a layer of software so as to guide

peers to learn so the system will operate at a desirable point.

In short, learning activities do exist and it is worthwhile to

promote in P2P systems. As a result, such learning behavior

has a significant impact on the evolution and dynamics of the

system. In this paper, we will present two learning models and

will study how these learning models can affect the dynamics

of incentive policies in P2P networks.
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A. Current-best Learning Model (CBLM)

One learning abstraction is that peers discover the best

strategy at the current time and adapt to it. We call this

the “current-best learning model” and it can be described as

follows: at the end of a time slot, a peer can choose to switch

(or adapt) to another strategy s′ ∈ P with probability γa which

we called the adapting rate. To decide which strategy to switch

to, a peer needs to “learn” from other peers. Let sh(t) be the

strategy that has the highest expected gain among all s ∈ P
at the end of the time slot t (or h ∈ argmaxj{P̄j(t)}). Then

a peer using strategy si will switch to strategy sh at time

slot t + 1 with probability γs(P̄h(t) − P̄i(t)), where γs is

the sensitivity to the performance gap. We call the product

γ = γaγs as the learning rate. Under this learning model, peers

will adapt to the current best strategy, and the probability of

adaptation to this current winning strategy is proportional to

the performance gap of the expected gain.

Note that there are many ways to realize this learning

abstraction, and one approach is the following: a P2P system

can distributively elect a leader and all peers report their

current performance gain to this leader. The leader is respon-

sible for computing the average gain for all strategies. Peers

can query this leader about the current best strategy sh(t).
Note that when γ is sufficiently small, the leader will not be

overwhelmed by the query workload.

Let us illustrate how the current-best learning model can

affect the system dynamics of a given incentive policy. One

can express x(t) = [x1(t), · · · , xn(t)], where xi(t) is the

fraction of peers using strategy si at time t, using the following

difference equations:

xi(t+ 1) = xi(t)− γxi(t)
(

P̄h(t)− P̄i(t)
)

, i 6= h,

and for sh(t), the strategy that has the highest expected gain,

we have

xh(t+ 1) = xh(t) + γ
n
∑

i=1,i6=h

xi(t)
(

P̄h(t)− P̄i(t)
)

.

We can transform the above difference equations to a contin-

uous model2 as:

dxh(t)

dt
= γ

∑

i6=h

xi(t)
(

P̄h(t)−P̄i(t)
)

= γ

(

P̄h(t)−
n
∑

i=1

xi(t)P̄i(t)

)

=γ
(

P̄h(t)−P̄ (t)
)

, (5)

dxi(t)

dt
= −γxi(t)

(

P̄h(t)− P̄i(t)
)

, i 6= h. (6)

In summary, given an incentive policy, we first need to

determine all entries in the corresponding generosity matrix

G = {gi(j)}, then we can evaluate the dynamics of the system

using the above differential equations.

2Informally, the transformation can be carried out by assuming that (1) the
peer-request process is a Poisson process with rate equal to 1, (2) the number
of adapting events is a Poisson process with rate γa. (3) In each event, the
sensitivity to performance gap is γs, and we have γ = γaγs.

B. Opportunistic Learning Model (OLM)

The current-best learning abstraction requires each peer to

update its type and its gain to a data collecting node (or

leader), and this node needs to compute the average gain

for all peers in a P2P network. Therefore, the computational

requirement may be high and the data collecting node needs

to be resourceful or else one will face the scalability problem.

Here, we propose another learning abstraction which we called

the “opportunistic learning model”. This learning abstraction

can be described as follows: at the end of a time slot, each

peer randomly chooses another peer in the network as its

teacher with probability γa. If the teacher is of a different

type and has a better performance gain, the peer adapts to the

teacher’s strategy with sensitivity γs to their performance gap.

One interesting note is that this learning abstraction does not

require frequent access to shared global history and can be

realized in a fully distributed fashion.

Let us illustrate how this learning abstraction can affect the

system dynamics of a given incentive policy. Let fi(p̃i(t)) be

the probability density function (pdf) of random variable p̃i,
ρij(t) be the rate that type i peers will switch to type j peers

at time t, then:

Pr[type i peer switches to type j when j is a teacher] =
∫

p̃i(t)<p̃j(t)

γs(p̃j(t)− p̃i(t))fi(p̃i(t))fj(p̃j(t))dp̃i(t)dp̃j(t).

Since the fraction of type i peers is xi(t), the teacher will be

of type j with probability xj(t) and adapting rate is γa, thus

the rate that type i peers switches to type j peers is:

ρij(t) = γxi(t)xj(t)×
∫

p̃i(t)<p̃j(t)

(p̃j(t)− p̃i(t))fi(p̃i(t))fj(p̃j(t))dp̃i(t)dp̃j(t).

Similarly, the rate that type j peers switches to type i:

ρji(t) = γxj(t)xi(t)×
∫

p̃j(t)<p̃i(t)

(p̃i(t)− p̃j(t))fi(p̃i(t))fj(p̃j(t))dp̃i(t)dp̃j(t).

Therefore, the total rate of population flow from type i to type

j is δij(t), where:

δij(t) = ρij(t)− ρji(t) = γxi(t)xj(t)E[p̃j(t)− p̃i(t)]

= γxi(t)xj(t)[P̄j(t)− P̄i(t)].

The total in-flow to type j, which we denote as ẋj , is:

dxij(t)

dt
=

n
∑

i=1

δij=γxj(t)[P̄j(t)− P̄ (t)] j = 1, . . . , n. (7)

In summary, given an incentive policy P , we first need

to derive all entries in the corresponding generosity matrix

G, then we can use Equations (5)-(7) to study the system

dynamics and determine the robustness condition. In the

following section, we present several incentive policies to

illustrate this analytical framework.
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IV. Incentive Policies for P2P Networks

Let us now present several incentive protocols and illustrate

how to use the mathematical framework to analyze their

evolution and determine their robustness conditions and per-

formance measures. For simplicity of illustration, we classify

peers in a P2P network according to their behavior upon

receiving a request [2]. These include:

1) Cooperator: a peer has an altruistic behavior and it

always serve other peers independent of whether other

peers provide service or not.

2) Defector: a peer has a selfish behavior and it always

refuse to serve any request from other peers in the

network.

3) Reciprocator: a peer has a reciprocative behavior when

it serves the requester according to the requester’s

service strategy, e.g., if the requester is a cooperator

(defector), this peer will serve (deny) the request. The

rationale of this type of behavior is to make a fair

exchange of service.

One interesting question is how to design a proper incentive

policy so as to keep the P2P networks as scalable and robust as

possible. Let us proceed to illustrate using our methodology.

A. Mirror Incentive Policy Pmirror

The first policy we consider is called the mirror incentive

policy Pmirror. For this policy, when a reciprocative peer

receives a request for service, this peer infers (e.g., similar

to the tit-for-tac operation in BT) the requester’s reputation,

and it will only provide service with the same probability as

this requester serves other peers in the system. For example,

suppose peer k received 100 requests from other peers and

served 60 of them, then when peer k requests a reciprocator

for service, peer k will only get the service with probability

of 0.6. Hence, if the requester is a cooperator (defector

or reciprocator), the receiving peer will act exactly like a

cooperator (defector or reciprocator) to the requester. This is

the reason why we coin it the mirror incentive strategy.

Under the Pmirror policy, there are three pure strategies:

(1) pure cooperation, or s1, (2) mirror reciprocation, or s2,

and (3) pure defection, or s3. To evaluate the performance

and robustness of Pmirror, we need to derive all entries in the

generosity matrix G, or gi(j), which is the probability that

a peer of type i will serve a peer of type j. Based on the

definition of the mirror policy, it is easy to see that g1(j) = 1
and g3(j) = 0 for j ∈ {1, 2, 3}, g2(1) = 1 and g2(3) = 0.

The remaining issue is the expression of g2(2), and it can be

derived as follows:

g2(2) = Prob[a reciprocator will grant a request]

=

3
∑

i=1

Prob[the requester is of type i] ×

Prob[granting the request|type i requests]

= x1(t)g2(1) + x2(t)g2(2) + x3(t)g2(3)

= x1(t) + x2(t)g2(2).

Solving the above equation, we have

g2(2) =
x1(t)

1− x2(t)
=

x1(t)

x1(t) + x3(t)
. (8)

In other words, the probability for a reciprocator to serve

another reciprocator is close to 1 when the fraction of defector

is close to zero, but as the probability will approach zero when

the fraction of defector increases.

B. Proportional Incentive Policy Pprop

We consider another incentive policy which we called the

proportional incentive policy Pprop. This incentive policy was

proposed in [2] in which results were obtained via simulation

only. Reciprocative strategy s2 in Pprop is defined as follows:

peers using s2 serve the requester (say type j) with the

probability equal to the requester’s contribution/consumption

ratio, or E[Sj ]/E[Rj ]. When the ratio is larger than one, the

probability to serve the requester is equal to one. By definition,

if the requester is a cooperator, its ratio can be larger than

one. Thus, we have g2(1) = 1. If the requester is a defector,

its ratio is zero, hence g2(3) = 0. The remaining issue is the

expression for g2(2), which can be derived as follows:

E[R2(t)] = x1(t)g1(2) + x2(t)g2(2) + x3(t)g3(2)

= x1(t) + x2(t)g2(2),

E[S2(t)] = x1(t)g2(1) + x2(t)g2(2) + x3(t)g2(3)

= x1(t) + x2(t)g2(2).

Since E[R2(t)] = E[S2(t)], we have g2(2) = 1, or a

reciprocator will always serve another reciprocator. The other

values of gi(j) are g1(j) = 1 and g3(j) = 0 for j ∈ {1, 2, 3}.

Comparing to the mirror strategy, the proportional strategy

takes into account the services consumed by requesters and

reciprocators can enjoy more service from other reciprocators.

Also, the reciprocator will serve another reciprocator indepen-

dent on the state of the system.

C. Linear Incentive Policy Class CLIP

The proportional incentive policy belongs to a “class” of

incentive policies which we called the linear incentive policy

class, CLIP . Any policy in CLIP has a constant generosity

matrix G = [Gij ] where Gij = gi(j). In here, constant implies

that gi(j) is independent of any xi(t). It is easy to see that

the performance of each strategy is a linear function of xi(t)
for a linear policy.

To implement a policy in CLIP , one can first design a classi-

fier for reciprocative peers to infer the types of requesters. For

example, suppose there are three strategies available: coopera-

tion, reciprocation and defection. We can design the following

classifier: it visits the shared history, and identifies those

peers who never contribute as defectors. Those who serve

the defectors are cooperators, and the rest are reciprocators.

With such a classifier, a linear strategy can serve cooperators,

reciprocators and defectors with different probabilities pc, pr,

pd as specified by the protocol designer. The generosity matrix

G is:

G =





1 1 1
pc pr pd
0 0 0



 (9)
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It is easy to see that the proportional incentive policy belongs

to the linear incentive policy class (Pprop ∈ CLIP ) because

pc = 1, pr = 1 and pd = 0 while the mirror incentive policy

is not (Pmirror 6∈ CLIP ) because its g2(2) depends on x1(t)
and x3(t).

V. Performance and Robustness of Incentive Policies

In this section, we analyze and compare the performance

and robustness of the three incentive policies described in

the previous section. Informally, an incentive protocol of a

P2P system is robust when the system will finally stay at

a high contribution level (e.g., most peers are cooperators

or reciprocators) and the P2P network is immune to system

perturbation such as peer arrivals or departures.

A. Robustness Analysis of Mirror Incentive Policy using

the current-best learning method

We first consider the mirror incentive policy Pmirror using

the current-best learning model (CBLM). Given the derivation

of gi(j) of Pmirror in Section IV, we substitute them into Eq.

(3) and (4) to obtain P̄i(t), the expected gain of using strategy

si for i = {1, 2, 3}, as well as P̄ (t), the expected gain of the

system. These performance measures are:

P̄1(t) = α(x1(t) + x2(t))− 1, (10)

P̄2(t) = (α− 1)
x1(t)

1− x2(t)
, (11)

P̄3(t) = αx1(t), (12)

P̄ (t) = (α− 1)
x1(t)

1− x2(t)
. (13)

Let us consider their respective differences:

P̄3(t)− P̄1(t) = 1− αx2(t),

P̄3(t)− P̄2(t) =
x1(t)(1− αx2(t))

1− x2(t)
,

P̄2(t)− P̄1(t) =
(1− αx2(t))(1 − x1(t)− x2(t))

1− x2(t)
.

Based on the above expressions, we have the following im-

portant observations:

• Case A: when x2(t)> 1/α, we have P̄1(t) > P̄2(t) >
P̄3(t), or cooperators always enjoy the best performance.

Therefore defectors and reciprocative peers will continue

to adapt their strategies to the cooperative strategy. There-

fore, x2(t) and x3(t) will decrease until x2(t) = 1/α.

• Case B: when x2(t) = 1/α, the performance of these

three strategies are the same and hence, there will not be

any strategy adaptation in the system.

• Case C: when x2(t) < 1/α, we have P̄3(t) > P̄2(t) >
P̄1(t). In other words, defectors have the best perfor-

mance and so cooperators and reciprocative peers will

adapt their strategies to the defective strategy. Since

x2(t) < 1/α will continue to hold, the population of

cooperators and reciprocative peers will keep decreasing

until defectors dominate the system (e.g., most peers

adapt the defective strategy). At this time, the P2P net-

work collapses since no one wants to contribute service

to others.

When a P2P system uses the Pmirror incentive protocol

under CBLM, the system has two equilibria: B and C respec-

tively. At B, the fraction of reciprocative peers x2(t) will stay

at the level 1/α. At C, the P2P network will be dominated

by defectors. However, point B is not a stable equilibrium.

Suppose the system is at B with x2(t) = 1/α, and x2(t)
changes a little bit (e.g., due to arrival or departure of peers

and these peers are of defective behavior). If the change is

positive, the system will go to case A and then drop back to

B. But if the change is negative, the P2P network will go to

C and never return to B. Since we cannot control the arrival

or departure of peers, the system will eventually go to case C
and contribution will cease to exist. In summary, the Pmirror

incentive policy is not robust and eventually all peers will

choose the defective strategy.

B. Robustness Analysis of Mirror Incentive Policy using

the opportunistic learning method

Now, let us consider using Pmirror under the opportunistic

learning model (OLM). We have:

P̄3(t)− P̄ (t) =
x1(t)(1 − αx2(t))

1− x2(t)
,

P̄2(t)− P̄ (t) = 0,

P̄1(t)− P̄ (t) = −
(1− αx2(t))(1 − x1(t)− x2(t))

1− x2(t)
.

Based on Eq. (7), the population of the reciprocative peers will

not change. The final state of the system depends on the initial

reciprocative population, which we classify into the following

cases:

• Case A: when x2 > 1/α, we have P̄3(t) < P̄ (t) <
P̄1(t). From Eq. (7), we see that defectors will keep

decreasing until they become extinct, and the P2P system

will only have cooperative and reciprocative peers.

• Case B: when x2 = 1/α, we have P̄3(t) = P̄ (t) = P̄1(t).
The system is in an unstable equilibrium and will go to

either case A or case C if there is any increase or decrease

in x2(t) due to arrival or departure of reciprocative peers.

• Case C: when x2 < 1/α, we have P̄3(t) > P̄ (t) >
P̄1(t). Cooperators will become extinct and the system

will eventually collapse.

Remark: Based on the above analysis, one can conclude that

the incentive policy Pmirror is not robust under the current-

best learning model or the opportunistic learning model. This

result implies that Pmirror is not a proper incentive protocol

for P2P networks.

C. Robustness Analysis of Proportional Incentive Policy

Using the current-best learning method

For the policy Pprop, we have derived gi(j) in Section IV.

The expected gain of the three strategies and the expected gain

of the system are:

P̄1(t) = α(x1(t) + x2(t))− 1, (14)

P̄2(t) = (α − 1)(x1(t) + x2(t)), (15)

P̄3(t) = αx1(t), (16)

P̄ (t) = (α − 1)(x1(t) + x1(t)x2(t) + x2
2(t)). (17)
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The performance difference of these strategies are:

P̄3(t)− P̄2(t) = x1(t)− (α− 1)x2(t),

P̄2(t)− P̄1(t) = 1− x1(t)− x2(t) ≥ 0,

P̄3(t)− P̄1(t) = 1− αx2(t).

One important note is that under the proportional incentive

policy, reciprocative behavior is always better than cooperative

behavior, and we have the following cases:

• Case A: when x2(t) > 1
α−1x1(t), we have P̄2(t) >

P̄3(t). Therefore, the fraction of reciprocative peers x2(t)
will keep increasing until they dominate in the P2P

system. In this situation, the expected system gain P̄ (t)
reaches the maximum at α− 1 and the system stabilizes

at this point.

• Case B: when x2(t) = 1
α−1x1(t), we have P̄3(t) =

P̄2(t) > P̄1(t). Therefore, only cooperative peers will

continue to adapt to either strategy s2 or s3. In this case,

x1(t) will decrease but x2(t) will not. Therefore, the

system will eventually go back to case A.

• Case C: when x2(t) < 1
α−1x1(t), defective behavior

has the highest performance so peers will adapt to this

strategy. However, since s2 has a higher performance than

s1, x1(t) will decrease at a faster rate than x2(t) until the

system reaches x2(t) =
1

α−1x1(t) and the system will go

to case B.

In summary, the P2P system is robust and the system will

eventually operate at case A, where the fraction of recip-

rocative peers dominates the system. Moreover, the system

achieves the optimal overall performance at this point. It is

important for us to point out that this mathematical result

agrees with the observation made in [2], which was obtained

only via simulation.

D. Robustness Analysis of Proportional Incentive Policy

Using the opportunistic learning method

Consider the policy Pprop under the opportunistic learning

model (OLM). From Eq.(14)-(17), we have:

P̄3(t)− P̄ (t) = x1(t)− (α− 1)x2(t)(1 − x2(t)),

P̄2(t)− P̄ (t) = (α− 1)x2(t)x3(t) ≥ 0,

P̄1(t)− P̄ (t) = ((α− 1)x2(t)− 1)x3(t).

Since P̄2(t)− P̄ (t) ≥ 0, then based on Eq. (7), the number

of reciprocative peers will keep increasing until defectors

become extinct, while cooperators will start increasing after

x2(t) becomes larger than 1/(α− 1). Finally, the system will

achieve the optimal overall performance since the P2P system

only has cooperators and reciprocators.

Remark: Based on the above analysis, we show that the

proportional strategy Pprop is robust under both the current-

best learning and the opportunistic learning methods and this

incentive protocol can encourage peers to contribute.

E. Robustness Analysis for Incentive Protocol in the Lin-

ear Incentive Class

The idea of reciprocative strategy is to infer the type of

requester from the shared history and provide differentiated

service. Although it is feasible in theory, it may be difficult to

implement in real systems due to incomplete history and delay

in the reputation update. How will this inaccuracy affect the

P2P network and what is the design margin? To answer these

questions, let us now analyze the robustness of any incentive

policy in the generalized linear incentive class CLIP .

For any incentive policy in CLIP , we have g2(1) = pc,
g2(2) = pr, g2(3) = pd. The performance of these three

strategies and the overall system are:

P̄1(t) = α(x1(t) + pcx2(t))− 1,

P̄2(t) = α(x1(t)+prx2(t))−(pcx1(t)+prx2(t)+pdx3(t)),

P̄3(t) = α(x1(t) + pdx2(t)),

P̄ (t) = (α − 1)(x1(t) + pcx1(t)x2(t) + prx
2
2(t)).

To analyze the robustness under the current-best learning

model, the performance gaps between any two strategies are:

P̄3(t)−P̄2(t)= pcx1(t)+pdx3(t)−(αpr−pr−αpd)x2(t),

P̄2(t)−P̄1(t)= 1−pcx1(t)−(pr−αpr+αpc)x2(t)−pdx3(t),

P̄3(t)−P̄1(t)= 1− α(pc − pd)x2(t).

Comparing with the proportional strategy Pprop, to make

this policy robust, one sufficient condition is:

pd = 0 (18)

pr ≥ pc. (19)

Following the performance gap analysis for the proportional

incentive policy, it is easy to check that the system is robust for

both the current-best and opportunistic learning models when

Eq. (18) and Eq. (19) are satisfied.

It is important for us to point out that by Eq. (19), when

pc is small, the system is more likely to be robust. It may

seem counter-intuitive since reciprocative peers are punishing

the altruistic cooperators. The explanation is that the blind

altruism of cooperator helps defectors to survive thus damages

the system. To protect reciprocative peers, we need to control

the degree of altruism in the network. In later section, we also

quantify the impact of altruism in a P2P system.

Let us now restrict our attention to linear strategies with

pr, pc > pd > 0. The robustness of these policies depends on

the initial population x(0), and this is especially true for the

reciprocators. Let us define

cupper =
pc

(α− 1)(pr − pd) + pc − pd
, (20)

clower =
pd

(α− 1)(pr − pd)
. (21)

It is easy to show that for both learning methods, when

x2(0) > cupper , the P2P system will be robust, and when

x2(0) < clower, the P2P system will collapse under the

current-best learning method. As for other initial conditions,

the robustness depends on the learning mechanism and the

fraction of other strategies.

To illustrate the robustness region of the linear incentive

policy, let us consider the case that pc = 0.9, pr = 1, pd =
0.3 and the robustness region is depicted in Figure 1. The

horizontal axis is the fraction of cooperators while the vertical
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axis is the fraction of reciprocators. Since their sum is less than

or equal to one, the whole state space is below the diagonal

line. There is a boundary curve shown for each learning model

and if the initial state is above the curve, the system will be

robust for the corresponding learning model. We can observe

that the robust region of the opportunistic learning method is

strictly larger than that of the current-best learning method,

and the boundary curves intersect the vertical axis at x2 =
clower = 0.0714.
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Fig. 1. Robust regions for the two learning methods.

It is interesting to note that the current-best boundary curve

rises while opportunistic boundary curve drops as the initial

fraction of cooperators increases. This implies that cooperators

help in keeping the P2P system robust under the opportunistic

learning but harm the P2P system under the current-best

learning model. This can be explained as follows. Under the

current-best learning, when reciprocators are overwhelmed

by defectors, cooperators merely help defectors to increase,

which makes the P2P system less robust. However, in the

opportunistic learning, cooperators compensate the loss for

reciprocators and help them to increase, which makes the

system more robust.

VI. Performance Evaluation

We develop a simulator and carry out simulations to com-

pare and validate our mathematical framework. We present

the performance evaluation results in this section to show

the dynamics and performance of various incentive protocols.

Unless we state otherwise, the parameters we use are: shown

in Table I. The simulations are carried out via discrete time

N # of peers 500
α gain per service provides 7
β cost per service takes 1
γ learning rate 0. 004

TABLE I

PARAMETERS

slots. In each time slot, peer randomly selects another peer

for service. The selected peer decides whether to grant a

service or not according to a given incentive strategy (i.e.,

Pmirror, Pprop, or an incentive policy in CLIP ). When all

peers finish making their decisions, information is updated,

then each peer learns to adapt to a new strategy according to

a given probability and learning methods.

Exp. 1: Performance and Robustness of the Mirror Incen-

tive Policy (Pmirror): The population dynamics of Pmirror

under different initially conditions x(0) and different learning

models are depicted in Figure 2 and 3. The solid lines are

results from the simulation and the dotted lines are results

of our mathematical framework. Again, xi(t) represents the

fraction of peers using strategy si at time t, with s1, s2
and s3 being cooperative, reciprocative and defective strategy

respectively.

Let us consider the dynamics under the current-best learning

method. Figure 2 depicts the result. In the left graph, the

fraction of reciprocators at t = 0 is x2(0) < 1/α. One can

observe that the fraction of cooperators, x1(t), gradually drops

to zero and the system collapses. In the right graph, when

x2(0) > 1/α, the system seems to be robust at first since

there is a significant increase of the fraction of cooperator.

At t = 500−, we have x(t) = (0.51, 0.16, 0.33)T . However,

at t = 500, we introduce a small disturbance where new

cooperators arrive and some reciprocators leave the system,

so x(500) = (0.54, 0.13, 0.33)T . Although there are more

cooperative peers, this small disturbance causes the fraction of

reciprocative peers to drop below the threshold 1/α, causing

the system to collapse. As we observe at t=2000, there is a

significant fraction of defector in the system.

The dynamics of under the opportunistic learning method

is depicted in Figure 3. The initial conditions is similar to

those in Fig. 2. The left graph shows the system collapses

due to small x2(0), in the right graph, the system survives the

disturbance and is robust because the non-decreasing x2(t)
leaves a generous margin for disturbance. The performance

gains at t = 2000 for Figure 2 and 3 are:

x(0) P̄0 P̄1 P̄2 P
(0.4, 0.1, 0.5)T -0.37 0.04 0.04 0.04

(0.3, 0.2, 0.5)T 0.42 0.81 0.90 0.81

(0.4, 0.1, 0.5)T 0.08 0.24 0.28 0.24

(0.3, 0.2, 0.5)T 4.81 4.78 4.59 4.78

In conclusion, we validate our mathematical model and con-

firm that the Pmirror policy is not robust under the current-best

learning but may survive when x2(0) is above a threshold.
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Fig. 2. Evolution of Pmirror with current-best learning.
Left: x(0)=(0.4, 0.1, 0.5)T . Right: x(0)=(0.3, 0.2, 0.5)T .
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Fig. 3. Evolution of Pmirror with opportunistic learning.
Left: x(0)=(0.4, 0.1, 0.5)T . Right: x(0)=(0.3, 0.2, 0.5)T .

Exp. 2: Performance and Robustness of the Proportional

Incentive Policy (Pprop): The population dynamics of Pprop

under different initially conditions x(0) and different learning

models are shown in Figure 4 and 5. The simulation settings

are the same as that Exp. 1. The dynamic of the current-best

learning is depicted in Figure 4. In the left graph, the initial

condition is x(0) = (0.4, 0.1, 0.5)T . We can see that after

about 500 time slots, peers abandon the defective strategy

and the P2P network reaches a robust state. In the right

graph, initially we have x(0) = (0.3, 0.2, 0.5)T , so the P2P

network begins with a large fraction of reciprocators. At

t = 500−, we have x(t) = (0.24, 0.75, 0.01)T . At t = 500,

we introduce the same disturbance as before and we have

x(500)=(0.27, 0.72, 0.01)T . We can see that the P2P network

is robust after this disturbance. In Figure 5, we repeat the

same experiments under the opportunistic learning and similar

conclusion can be made. The performance gains at the end of

each

x(0) P̄0 P̄1 P̄2 P̄
(0.4, 0.1, 0.5)T 5.97 5.97 - 5.97

(0.3, 0.2, 0.5)T 5.96 5.97 - 5.97

(0.4, 0.1, 0.5)T 5.97 5.99 - 5.98

(0.3, 0.2, 0.5)T 5.98 5.98 - 5.98

In summary, our mathematical framework is very accurate

and more importantly, we show that the proportional incentive

policy Pprop is more robust than the mirror incentive policy

Pmirror.
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Fig. 4. Evolution of Pprop with current-best learning.

Left: x(0)=(0.4, 0.1, 0.5)T . Right: x(0)=(0.3, 0.2, 0.5)T .

Exp. 3: Performance and Robustness of incentive policy in

the Linear Incentive Class (CLIP ): for the linear incentive
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Fig. 5. Evolution of Pprop with opportunistic learning.
Left: x(0)=(0.4, 0.1, 0.5)T . Right: x(0)=(0.3, 0.2, 0.5)T .

policy, we set pc = 0.9, pr = 1.0 and pd = 0.3. Figure 6-

7 show the population dynamics of this linear policy under

different initial conditions and learning models.

Figure 6 shows the dynamics under the current-best learn-

ing. In the left graph, the initial population profile is x(0)=
(0.7, 0.13, 0.17)T , which is in the robust region of current-

best learning. We can see that reciprocators finally dominates

the system. However, in the right graph, when the initial

population profile x(0) = (0.7, 0.07, 0.23)T is not in the

robust region of current-best learning, the system collapses.

Figure 7 shows the result under the opportunistic learning.

The initial condition in the left graph is the same as that of the

right graph of 6. However, the system becomes robust under

the opportunistic learning. Note that x = (0.7, 0.07, 0.23)T

is between the two boundary curves. In the right graph of

Figure 7, the system collapse when the initial state x(0) =
(0.1, 0.05, 0.85)T is not in the robust region of opportunistic

learning. The performance gains for this policy are:

x(0) P̄0 P̄1 P̄2 P̄
(0.7, 0.13, 0.17)T 5.56 6.00 - 6.00

(0.7, 0.07, 0.23)T - -0.24 0.04 0.04

(0.7, 0.07, 0.23)T 5.37 6.00 - 6.00

(0.1, 0.05, 0.85)T - -0.22 0.04 0.04

In conclusion, we validate our mathematical framework.

When pd 6= 0, the robustness of the linear policy depends on

the initial condition x(0). When there are many reciprocators,

the system tends to be robust, otherwise, it is more likely

to collapse. Opportunistic learning is more robust than the

current-best learning in the sense that it has a larger robust

region.

Exp. 5: The Effect of Non-adaptive Peers: In this exper-

iment, we consider the impact to the P2P networks when a

“fixed portion” of peers do not adapt. The reason for carrying

out this experiment is to understand the impact of maintaining

some percentage of cooperators or reciprocators and to see

whether the system can still be robust. As before, we denote

the fraction of type i peers at time slot t by xi(t). Since the

service model is independent with learning process, given the

fraction of each type, the performance P̄i(t) of type i peer

is the same as before. Let the fraction of type i peers that

do not learn be fi, then for current-best learning, the system
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Fig. 6. Evolution of Plin with current-best learning.
Left: x(0)=(0.7, 0.13, 0.17)T . Right: x(0)=(0.7, 0.07, 0.23)T .
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Fig. 7. Evolution of Plin with opportunistic learning.
Left: x(0)=(0.7, 0.07, 0.23)T . Right: x(0)=(0.1, 0.05, 0.85)T .

dynamics is described by:

xi(t+ 1) = xi(t)− γ(xi(t)− fi)
(

P̄h(t)− P̄i(t)
)

, i6=h. (22)

xh(t+ 1) = xh(t) + γ

n
∑

i=1,i6=h

(xi(t)− fi)
(

P̄h(t)− P̄i(t)
)

.(23)

Since the fraction of any type of non-adaptive peers does

not change, to compare system performance and robustness

under different policy and learning mechanism, we need to

focus on the dynamics of adaptive peers. We say a system

is robust if adaptive peers have high contribution level on

average, otherwise, we say the system collapses. In here, we

consider two policies under the current-best learning method

and show how non-adaptive peers affect the system dynamics.

Exp. 5a: Mirror policy with CBL: Using the performance

gap analysis, we have the following results:

• When f2 > 1/α, all adaptive defectors will switch to

cooperative strategy, and the system is robust.

• When f2 < 1/α, all adaptive cooperators will switch to

defective strategy, and the system collapses.

Remark: We see that the system robustness under the mirror

policy and the current-best learning method depend only on

the fraction of non-adaptive reciprocators.

Exp. 5b: Proportional policy with CBL: Using the perfor-

mance gap analysis, we have the following results:

• if x2 < 1
1−α

f1, all adaptive peers will become defectors

and the system collapses.

• if x2 > 1
1−α

x1, all adaptive defectors will adapt to

reciprocators and the system is robust.

• if 1
1−α

f1 < x2 < 1
1−α

x1, whether the system is stable

or not depends on initial condition.

Remark: Here we can see that the non-adaptive cooperators,

i.e., the seeders in a P2P system, has a negative effect on the

system robustness under the proportional incentive policy with

the current-best learning. The reason is that adaptive peers will

have no motivation to contribute. However, if the seeders reach

a high fraction, the P2P system can still have high average

performance.
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Fig. 8. Evolution of Pmirror with current-best learning.
Left: x(0)=(0.5, 0.1, 0.4)T . 0.1 fraction of fixed cooperators.
Right: x(0)=(0.2, 0.3, 0.5)T . 0.1 fraction of fixed cooperators, 0.2 fraction
of fixed reciprocators.

Figure 8 shows two scenarios for the the mirror incentive

policy with the current-best learning. In the left graph, initially

there are 0.5 fraction of cooperators and 0.1 fraction of

cooperators are non-adaptive. We see that the defectors finally

dominates the system and only the fixed cooperators are left.

In the right graph, There are 0.2 fraction of non-adaptive

reciprocators and we see that the defectors are driven out of

the P2P system.
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Fig. 9. Evolution of Pprop with current-best learning.
Left: x(0)=(0.6, 0.05, 0.35)T . 0.4 fraction of fixed cooperators.
Right: x(0)=(0.1, 0.1, 0.8)T . 0.1 fraction of fixed cooperators.

Figure 9 shows the simulation results for the proportional

incentive policy with the current-best learning. In the left

graph, there are 0.4 fraction of non-adaptive cooperators and

0.05 fraction of reciprocators initially. The system finally

collapses with only defectors and non-adaptive cooperators

left. In the right graph, there are 0.1 fraction of non-adaptive

cooperators and 0.1 fraction of reciprocators initially and the

system is robust.
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VII. Connection with Evolutionary Game Theory

It is important for us to show that there is a connection

between our model and the evolutionary game theory. As

a result, one can use a game-theoretic technique to identify

important characteristics for system robustness.

Evolutionary game theory considers a population of individ-

uals with pure strategy set S. A population profile is a vector

x, where xi is the probability that a peer in the population

is using strategy si ∈ S. The payoff of strategy σ in a

population with profile x is denoted as π(σ,x). That is, the

whole population acts as the second player. The evolution of

the population profile is the key concern of evolutionary game

theory. One central concept in evolutionary game theory is the

the Evolutionary Stable Strategy (ESS), which is the strategy

that produces an equilibrium point in the evolution. We have

the following definition.

Definition 1: A mixed strategy σ∗ is an ESS if there exist an

ǫ > 0 such that for every 0 < ǫ < ǫ and every mixed strategy

σ 6= σ∗, inequality π(σ∗,xǫ) > π(σ,xǫ) holds. Here, xǫ is

the post-entry population profile with xǫ = (1 − ǫ)σ∗ + ǫσ,

which depicts population profile after a small mutation from

the strategy σ∗ to σ.

One simple and important class of evolutionary game is the

pairwise contest population game. In such a game, the payoff

to a focal individual using σ in a population with profile x is

π(σ,x) =
∑

s∈S

∑

s′∈S

p(s)x(s′)π′(s, s′). (24)

where p(s) and x(s′) are the probability that the focal player

and the selected player from the population using strategy s
and s′ respectively. The associated two-player game for this

population game is given by the following payoff function:

π1(s, s
′) = π2(s

′, s) = π′(s, s′). (25)

Remark: In a pairwise contest population game, for one

player, the population with profile x is indistinguishable from

a single player that uses a mixed strategy σ with σ(i) = xi.

With this in mind, we use a strategy to denote a population

profile and vice versa. To check and find ESSs in a pairwise

contest population game, we have:

Theorem 1: σ∗ is a ESS in a pairwise contest population

game if and only if for any σ 6= σ∗, either one of the following

two conditions holds:

1 π′(σ∗, σ∗) > π′(σ, σ∗),
2 π′(σ∗, σ∗) = π′(σ, σ∗) and π′(σ∗, σ) > π′(σ, σ).

π′(·, ·) is the payoff function of the associated two-player

game.

Proof: please refer to [13].

The implication of this theorem is that all ESSs of a pairwise

contest population game are Nash equilibria and can be found

from the strategic form of the associated two-player game.

Note that payoff function alone does not tell us how the

population evolves. Payoff has to be interpreted to define a

dynamic model of evolution. In replica dynamics [13], the

payoff is interpreted as the number of offsprings as the result

of certain strategy. Let π(x) be the average payoff, then the

system can be describe by a system of differential equations:

ẋi = (π(si,x)− π(x))xi si ∈ S. (26)

Now we give the definition of an important stability concept

in dynamic systems and its connection with ESS.

Definition 2: An asymptotically stable fixed point (ASF) of a

dynamic system is a fixed point that any small deviation from

it is eliminated by the dynamics as t → ∞.

Theorem 2: For pairwise contest population games, the ESS

of the associated two-player game is an asymptotically stable

fixed point (ASF) of Eq. (26).

Proof: please refer to [13].

In short, Theorem 2 justifies ESS as the evolutionary end point.

Let us apply the game-theoretic results to our incentive

model. To find the underlying game, we derive the payoff

function first. By Eq (1)-(3), the payoff of strategy si against

the population profile x(t) = [x1(t), . . . , xn(t)] at time t is:

π(si,x) = P̄i(t) = α

n
∑

j=1

xj(t)gj(i)−
n
∑

j=1

xj(t)gi(j)

=

n
∑

j=1

(αgj(i)− gi(j))xj(t), i = 1, . . . , n. (27)

Note that the payoff π(si,x) and generosity gj(i) are actually

functions of t. Here we ignore argument t for readability.

Comparing Eq. (27) with Eq. (24), we can construct the

associated two player game with payoff

π1(si, sj) = π2(sj , si) = αgj(i)− gi(j). (28)

The physical meaning of the above payoff expression is as

follows: it is the points gained by using strategy si after

exchanging a pair of services with a peer using strategy sj .

In summary, one can map our mathematical framework into

a pairwise contest game if the generosity matrix G is constant,

and the associated two-player game is just an exchange of

service. Both our model and the pairwise contest game have

the field payoff described by Eq. (27), so their dynamical

properties are the same. Formally, we have:

Theorem 3: A linear incentive policy can be mapped to a

two-player symmetric game, and the ESS of this game is an

ASF of its opportunistic learning dynamics described by Eq.

(7). If the ESS is a pure strategy se ∈ S, it is also an ASF of

its current-best learning dynamics described by Eq. (5)-(6).

Proof: The mapping is given by Eq. (28). More accurately,

the payoff matrix of first player is αG−G
T , and the payoff

matrix of the second player is αGT −G.

To prove the first part of the theorem, by Theorem 2, the

ESS of the pairwise contest is an ASF of Eq. (26). Note that

π(si,x) = P̄i(t) and π(x) = P̄ (t), therefore Eq. (26) is the

same as Eq. (7) up to a constant factor λ and hence they have

the same set of ASF. So the ESS is also an ASF of Eq. (7).

For the second part, consider a small deviation from the

pure se population. By Theorem 1, one can show that se’s

payoff π(se,xǫ) > π(σ,xǫ) for any other strategies σ. Since

π(si,x) = P̄i(t), we have P̄e(t) > P̄i(t) for any i 6= e. So

se is the winner, and by Eq. (5)-(6), xe will increase, which

eliminates the deviation. Therefore se is an ASF.
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The above theorem provides a simple game-theoretical

method to analyze the robustness of our incentive model. For

example, consider the linear incentive policy in section IV

with pc = 0.9, pr = 1, pd = 0.3. When α = 7, the associated

two-player game has payoff table as follows:

s1 s2 s3
s1 6, 6 5.3, 6.1 −1, 7
s2 6.1, 5.3 6, 6 −0.3, 2.1
s3 7,−1 2.1,−0.3 0, 0

To find ESSs, we find Nash equilibria first. Noticing that s1
is dominated by s2, we can reduce the payoff table to

s2 s3
s2 6, 6 −0.3, 2.1
s3 2.1,−0.3 0, 0

This game has three Nash equilibria: s2 and s3 and a mixed

strategy: (clower, 1 − clower). Here clower = 0.0714 (see

Section IV). Using Theorem 1, we can check that the first two

pure Nash equilibria are ESSs and the mixed Nash equilibria

will collapse under small disturbance. By Theorem 3, for both

learning models, the system has two stable states: one that all

peers use the linear strategy and another that all peers decide

to have the defective behavior. Which ESS the system will

converge to depends on the initial state x(0). When there is no

cooperator, the players in the associated game will converge

to s2 if x2 > clower and to s3 if x2 < clower. This result

agrees with our analysis in Section IV and is verified by our

experiments in Section VI.

VIII. The Effect of Protocol Cost

In previous sections, we assume that there is a reputation

service maintained by the system. In a distributed system, such

service is specified by the incentive protocol and maintained

by those who follow this protocol, i.e., the reciprocators. Re-

ciprocators will provide their private history of transactions to

this service and in return, they can access the type information

of any requester, and avoid the cost of serving defectors. If

the reputation service is implemented via the distributed hash

table (DHT) method, each reciprocator also has to contribute

local storage, bandwidth and computing power to manage

the information. In short, there is additional protocol cost for

reciprocators. We denote this cost as θ. In previous analysis

of the proportional incentive strategy, we ignored θ and reach

the conclusion that the fraction of reciprocator will finally

dominate the P2P system and defectors will extinct. However,

the result may be different if we take θ into account.

Here we analyze the effect of cost θ on the proportional

policy with the current best learning method. Using similar

approach, we can derive the performance gaps as:

P̄3(t)− P̄1(t) = 1− αx2(t),

P̄3(t)− P̄2(t) = 1− αx2(t) + θ − x3(t),

P̄2(t)− P̄1(t) = x3(t)− θ.

First, let us see what happens when there are only two

types of users (e.g., (a) reciprocators and cooperators; (b)

reciprocators and defectors). We have four cases:

• x3(t) = 0. The cooperators will dominate the system and

the overall average performance P̄ reaches the optimal

value of α− 1.

• x2(t) = 0. The system will be overwhelmed by defectors,

P̄ = 0.

• x1(t) = 0, x2(0) >
θ

α−1 . The system will be dominated

by reciprocators and P̄ = α− 1− θ.

• x1(t) = 0, x2(0) <
θ

α−1 . The system will be dominated

by defectors and P̄ = 0.

If we have all three types of users initially, it turns out that

the P2P system will either collapse or oscillates. We can divide

the system dynamics into four phases:

P1: Reciprocation is the best strategy. In this phase, x1(t) and

x3(t) decrease while P̄1(t) increases. When x3(t) is less

than θ, cooperation becomes better than reciprocation and

the system enters phase P2.

P2: Cooperation is the best strategy. x2(t) and x3(t) decrease

while P̄3 increases. Once x2(t) is less than 1
α

, defectors

get the best performance and the system enters phase P3.

P3: Defection is the best strategy, x2(t) >
θ

α−1 . In this phase,

x1(t) and x2(t) decrease. As x3(t) rises, reciprocation

regains the advantage. If x2(t) does not drop below the

threshold θ
α−1 , reciprocation finally becomes the best

strategy and the system enters phase P1 again, starting

another cycle. If x2(t) drops below the threshold, the

system enters phase P4, in which the system will collapse.

P4: Defection is the best strategy, x2(t) < θ
α−1 . In this

phase, reciprocators keep decreasing and defectors finally

dominates the system.

Remark: Whether the system collapses or oscillates depends

on θ and the initial condition. In general, systems with larger

θ are more likely to collapse because of the cost of realizing

an incentive protocol. On the other hand, if we can prevent co-

operators from getting better performance than reciprocators,

the system will stay in P1 and be robust.
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Fig. 10. Evolution of Pprop with current-best learning.

Left: x(0)=(0.6, 0.15, 0.25)T , θ = 0.1. Right: θ = 0.3.

Figure 10 shows the simulation and the mathematical

results. In the left graph, the initial condition is x(0) =
(0.6, 0.15, 0.25)T and θ = 0.1. We can see that the system

oscillates with a period of about 4500 time slots. Due to the

error accumulated for all simulation slots, there is a little offset

between the curves of simulation results and the curves of our

model prediction. However, our model still predicts the right

shapes and trends of these performance curves. In the right
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graph, the initial condition is the same but θ = 0.3. We can

see that the system collapses after one cycle.

IX. The Tradeoff between Altruism and System

Robustness

In the previous section, we see that when there is a protocol

cost, the proportional incentive policy may not be able to

eliminate defectors under the current-best learning method.

Defectors can revive and degrades the system performance

periodically or permanently. This is mainly caused by the blind

altruism of cooperators in providing services to others so that

other peers will not have incentive to contribute. To prevent

the periodic or permanent performance recession, reciprocators

should limit or constrain cooperators so that cooperators will

not overrun reciprocators when there are very few defectors.

One interesting question is how much should reciprocators

constrain the cooperators? Applying heavy limitation may not

be fair to cooperators and may hinder cooperation between

reciprocators and cooperators, while little limitation may not

be enough to ensure the robustness of P2P systems. To address

this problem, we consider and analyze a linear policy with

pc = ρ, pr = 1, pd = 0. Using the similar approach, we can

derive the performance gaps as:

P̄3(t)− P̄1(t) = 1− αρx2(t),

P̄2(t)− P̄3(t) = (α− 1)x2(t)− ρx1(t)− θ,

P̄2(t)− P̄1(t) = 1 + (α− 1− αρ)x2(t)− ρx1(t)− θ.

Based on the performance gap analysis, we have:

• When x2 < θ
α−1 , reciprocators keep decreasing and the

system will eventually collapse.

• When x2 > max{ ρ+θ
α−1 ,

ρ+θ−1
(α−1)(1−ρ)}, reciprocators finally

dominates the system.

Remark: The max expression in the second scenario decreases

as ρ increases. So the protocol cost θ and ethics level ρ are

all reversely related to to system robustness.
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Fig. 11. Evolution of Pprop with current-best learning.

Left: x(0)=(0.6, 0.15, 0.25)T , ρ = 0.96. Right: ρ = 0.99.

Figure 11 shows the effect of of altruism ρ by the cooper-

ators. In the left graph, we set ρ = 0.96 and we see that the

system is robust. In the right graph, the initial condition is the

same but we set ρ = 0.99, which is only a little bit higher. We

see that the little difference of ρ leads to completely different

result and the system eventually collapses.

X. Related Work

The earliest work on how to encourage cooperation in

P2P networks is via micro-payment [4]. In essence, it uses

a centralized approach to issue virtual currency. When a

node provides service to another node, virtual currency is

exchanged. Authors in [7]–[9] present the incentive issues and

service differentiation in P2P networks. In [1], [14], [16], [17],

authors also present their study of incentive issues in wireless

networks. In [12], authors show that shared history based

incentives can overcome the scalability problem of private

history based mechanisms. Furthermore, one can use DHT to

implement the shared history incentive mechanism. One exam-

ple of shared history based incentive mechanism is the recip-

rocative strategy [2], [6]. Each node makes decisions according

to the reputation of requesters and is studied via simulation

only. As for learning mechanisms, Q-learning [4] and Slacer

[5] are two learning methods and their performance study was

carried out via simulation or via small scale prototyping only.

This paper focus on the general mathematical framework to

analyze the robustness and properties on adaptive incentive

protocols with different learning mechanisms.

There are also some models developed to help in designing

incentives mechanism. Authors in [3] assume that each peer

has a fixed strategy set with a certain distribution while we

assume peers can adapt their strategies. In [15], authors show

that a proportional strategy can lead to market equilibria but

the result does not generalize to multiple strategies. Authors in

[11] analyze a reputation based reciprocative strategy and its

evolution dynamics in a biological context. Our paper focuses

on the robustness of distributed learning mechanisms.

XI. Conclusion

The main contribution of this paper is on introducing

a general mathematical framework to model and evaluate

the performance and robustness of incentive policies in P2P

networks. We assume that peers are rational and they adapt

their strategy based on the behavior of other peers. To illustrate

our mathematical framework, we present two incentive poli-

cies and show that the mirror incentive policy Pmirror may

lead to a complete system collapse, while the proportional

incentive policy Pprop, which takes into account of service

consumption and contribution, can lead to a robust system.

We also analyze a general class of incentive policies (the

linear incentive policy class) and show that, for a system to

be robust, we have to assure certain fraction of reciprocators

in the P2P system. Peers can learn about the payoff of other

strategies via distributed learning mechanism. We also present

two learning mechanisms and how they can be evaluated in

our mathematical framework. We show that the current-best

learning is less robust than the opportunistic learning, altruism

may have detrimental impact on the system, and when the

cost of realizing an incentive mechanism is high, the overall

system may not be robust. In general, learning mechanism is

worthwhile and one may consider incorporating this feature

into the incentive protocol design so as to encourage peers to

adapt and cooperate. This way, the P2P system can quickly

converge to the desirable operating point.
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