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a b s t r a c t 

Differential Privacy (DP) is well-known for its strong privacy guarantee. Briefly speaking, DP algorithms 

guarantee that the statistical information of the data is roughly preserved, and at the same time, indi- 

vidual privacy is protected with guarantees. However, when there are correlations among the attribute in 

the dataset, only relying on DP is not sufficient to defend against the attribute linkage attack, which is 

a well-known privacy attack aiming at deducing individuals’ private information. In the attribute linkage 

attack, the adversary can leverage prior knowledge about the victim, combined with accessing the pub- 

lished dataset, to infer sensitive information about a victim. In this paper, we study the attribute linkage 

attack in DP settings, and argue that enhancing DP can give users a higher level of privacy guarantees. 

Our contributions are ➀ we show that the attribute linkage attack can be initiated with high probabil- 

ity under the protection of DP, ➁ we propose a variant of DP called APL-Free ε-DP to provide a higher 

level of privacy guarantees, ➂ we design an algorithm APLKiller which satisfies the APL-Free ε-DP. Finally, 

experiments show that our algorithm not only eliminates the attribute linkage attack, and at the same 

time, it has a better ability to extract useful information from the data. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

In the current digital era, personal information has become 

aluable. Using these data, companies can provide personalized 

ecommendations by understanding users’ behavior and devise 

etter advertising strategies to improve recommendation mod- 

ls. These personal data range from names, shopping preferences, 

ealth records, etc., and these data are continuously being col- 

ected by companies or internet service providers via various chan- 

els. In the meantime, because data collection is becoming ubiqui- 

ous, privacy becomes a serious concern. For instance, there have 

een severe privacy breaches in recent years ( Cadwalladr, 2018; 

yFitnessPal, 2018 ) which compromised user privacy. 

Industry and academia have put in significant effort on how 

o protect personal privacy. One method is to anonymize the 

ata before publishing them to the public ( Machanavajjhala et al., 

0 06; Sweeney, 20 02 ). Unfortunately, individuals’ private informa- 

ion could still be leaked ( Barbaro et al., 2006; Narayanan and 

hmatikov, 2006 ). One of the most damaging privacy attacks is the 

ttribute linkage attack ( Chen et al., 2013 ). In this attack, the at-
∗ Corresponding authors. 

E-mail addresses: jcwang@cse.cuhk.edu.hk (J. Wang), zhli@cse.cuhk.edu.hk (Z. 

i), cslui@cse.cuhk.edu.hk (J.C.S. Lui), sunmingshen@baidu.com (M. Sun). 

A

g

M

s

ttps://doi.org/10.1016/j.cose.2021.102552 

167-4048/© 2021 Elsevier Ltd. All rights reserved. 
acker can leverage part of attribute information to deduce more 

nformation about the victim. 

Recently, differential privacy (DP) was proposed ( Dwork et al., 

014 ), and researchers have proposed various DP algorithms. 

riefly speaking, a DP algorithm adds random noise to the 

ataset to preserve user privacy. Currently, companies like 

oogle ( Erlingsson et al., 2014 ) and Uber ( Near, 2018 ) are using DP

lgorithms to enhance their data services and to protect user pri- 

acy. DP algorithms can be categorized in two different settings: 

on-interactive DP and interactive DP . The former is for publishing 

atasets to the public, while the latter is for responding to users’ 

ueries to a dataset, e.g., a query can be: “how many participants 

n the dataset are male?”. 

Despite its strong privacy guarantees, DP is not without any 

itfalls. For example, how to determine the privacy budget ε is 

 non-trivial issue that requires rich experience from data pub- 

ishers ( Lee and Clifton, 2011 ). A high value of ε will result in a

ow degree of privacy but a high degree of data utility, that is, 

he ability to extract useful information from the data. So how to 

et a proper value for ε is known as the utility-privacy dilemma . 

lso, correlations among records, e.g., social relationships, can de- 

rade the privacy guarantee of DP ( Chen et al., 2014; Kifer and 

achanavajjhala, 2011; 2012; Liu et al., 2016 ). In this paper, we 

how that DP-processed datasets are prone to the attribute linkage 
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Table 1 

Examples of a retail dataset D and its perturbed version D p using differential privacy. 

ID Itemset Occurrences ID Itemset Occurrences 

1 beer, 

toothpaste, 

scissor, hanger 

20 1 beer, 

toothpaste, 

scissor, hanger 

23 

2 beer, 

toothpaste 

4 2 beer, 

toothpaste 

2 

3 beer 1 3 beer, 

toothpaste, 

scissor 

8 

4 beer, 

toothpaste, 

scissor 

12 4 scissor, hanger 5 

5 scissor, hanger 3 5 toothpaste 2 

(a) An example of retail dataset D (b) A possible DP processed dataset D p 
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ttack when attributes in the original dataset are correlated. Such 

ttribute correlations will introduce attribute linkage vulnerability 

ith high probability. 

Table 1 is an example to illustrate the attribute linkage attack. 

pecifically, Table 1 (a) is a retail dataset D in which each record 

ontains a unique itemset with the number of its occurrence, i.e., 

he number of customers who bought the corresponding itemset. 

ote that in Table 1 (a), there exists correlations among items. For 

xample, statistically most customers who bought { toothpaste, scis- 

or, hanger } would like to buy beer . The consequence of having 

uch a correlation is that all itemsets which contain { toothpaste, 

cissor, hanger } have zero occurrence, except for the itemset { beer, 

oothpaste, scissor, hanger } with 20 occurrence. Given the above cor- 

elation in the dataset, adversaries can initiate the attribute linkage 

ttack. For simplicity, we will use “Eve” to represent the adver- 

ary and “Alice” to represent the victim. If Eve knows that Alice 

ought the itemset { toothpaste, scissor, hanger } in advance and ac- 

esses the dataset D , she can search for all records which contain 

hese three items, and finally uniquely identify the first record in 

able 1 (a). The consequence is that Eve can deduce that Alice also 

ought beer , which is private information for Alice. Since Eve can 

se the itemset { toothpaste, scissor,hanger } as prior knowledge to 

niquely identify a record, we call this itemset an attribute privacy 

eakage (APL), and a formal definition will be given in Section 4 . 

pecifically, Eve can initiate the attribute linkage attack by linking 

he APL with a unique record in D , which eventually causes Alice’s 

rivate information leakage. 

To provide privacy protection, the data publisher may use DP 

lgorithms to perturb the dataset D and output the DP-processed 

ataset D p . For example, a classical DP algorithm for histogram 

ata is presented ( Dwork et al., 2014 ): For each itemset in the

temset universe, a random positive/negative Laplace noise is 

dded to the number of its occurrence to compute the perturbed 

umber of its occurrence. Any itemset with a non-positive per- 

urbed number of occurrences will not be added to D p . As a result,

or an itemset S, if the number of its actual occurrence is low, the 

robability for S to be added to D p will be low. Table 1 (b) shows a

ossible DP-processed dataset D p . Because of the noise introduced 

y the DP algorithm, the number of occurrences of itemsets has 

een modified. For example, the itemset { beer } exists in D , but it

oes not exist in D p because of the negative Laplace noise. 

Unfortunately, in our example, one can check that the APL is 

ot eliminated in the DP-processed dataset D p . Specifically, the 

temset { toothpaste, scissor, hanger } is not only an APL in D , but

lso an APL in D p . The consequence is that Eve can uniquely iden-

ify Alice’s record in D p , and deduce that Alice bought beer . In this

ork, we highlight that there is a high probability that the exis- 

ence of an APL in D will be well preserved in D p , which allows

he attribute linkage attack in DP settings. The root cause is that 
S

2 
he existence of an APL in the dataset depends on the underlying 

tem correlation, which DP algorithms try their best to preserve 

or data utility. As a result, DP algorithms preserve the correlation 

or the data utility, and at the same time, preserve the existence 

f APLs. In our example, the underlying correlation in D between 

 toothpaste, scissor, hanger } and beer guarantees that the occurrence 

f { beer, toothpaste, scissor, hanger } is large, while any other itemset 

hich contains { toothpaste, scissor, hanger } is zero. Such a correla- 

ion is well preserved in D p as well as the existence of the APL 

 toothpaste, scissor, hanger }. 

In order to eliminate the APLs and defend against the attribute 

inkage attack in DP settings, we argue that enhancing DP can 

trengthen users’ privacy, and propose the APL-Free ε-DP , which 

ddresses the APL issue in DP settings. Furthermore, we design 

n algorithm, APLKiller , which aims to publish datasets and, at the 

ame time, satisfies the APL-Free ε-DP. Experimental results show 

hat our algorithm APLKiller guarantees user privacy and also pro- 

ides high data utility. In summary, our contributions are: 

• We show that applying traditional DP algorithms to real-world 

datasets can create possibilities of the attribute linkage attack 

on the DP-processed dataset. Specifically, an adversary can de- 

duce the private information of victims with a high probability 

in DP settings. 

• To eliminate APLs and defend against the attribute linkage at- 

tack, we propose the APL-Free ε-DP. We show that an algorithm 

which satisfies APL-Free ε-DP can guarantee that no attribute 

linkage attack will be initiated on the processed dataset. 

• We design a novel algorithm, APLKiller, which is based on a 

topology-theoretic approach ( Dowker, 1952 ) to defend against 

the attribute linkage attack in DP settings. It has O (mn ) time 

complexity, where m is the number of records in the dataset, 

and n is the number of items in the item universe. Further- 

more, our algorithm preserves the data utility when processing 

the dataset. Evaluation results show that the privacy guaran- 

tee of APLKiller is better than that of the traditional DP algo- 

rithm. Moreover, evaluation results show that the data utility 

of APLKiller is higher than that of the traditional DP algorithm. 

The rest of this paper is organized as follows: In Section 2 , 

e review correlation issues in DP, the attribute linkage attack 

nd current work of privacy protection using topology theory. In 

ection 3 , we present some preliminaries. In Section 4 , we give 

n illustration and analysis of the attribute linkage attack in DP 

ettings. In order to defend against the attribute linkage attack, 

e propose the APL-Free ε-DP and the algorithm APLKiller in 

ection 5.2 , with experiment evaluations in Section 6 . Finally in 

ection 7 , we conclude our work. 
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Table 2 

A table of definitions for commonly used symbols. 

Symbol Descriptions 

I The item universe. Specifically, let n be the size of the universe, 

and I k ∈ I ( k ∈ { 1 , . . . , n } ) is the k th item in I . 

S An itemset which consists of several items, i.e., S ⊆ I . 

Specifically, | S.items | is the number of items in S, and 

| S| is the number of occurrences of S in the dataset. 

B S The boundary set for the itemset S (See Definition 1 ). 

Specifically, each element in B S is called a “boundary itemset”. 

Q An APL in a dataset (See Definition 4 ). 

D A set-valued dataset which is in the form of { (S, | S| ) } . 
Specifically, D I is the set of itemsets in D . 

D p The DP-processed dataset of the original dataset D . 

D i A subset of the dataset D which contains all i -itemset records 

in D , i.e., the set of records which contain itemsets of size i for 

i > 0 . 

ε The privacy budget parameter used for DP algorithms. 
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. Background 

In this section, we first provide the background information of 

P. Then we give an overview of the attribute linkage attack. Fi- 

ally, we discuss how topology theory ( Erdmann, 2017 ) helps to 

efend against the attribute linkage attack. Note that we here list 

escriptions of commonly used symbols throughout this paper for 

eference, as shown in Table 2 . 

.1. Correlation issues in differential privacy 

The main idea of standard DP is that by adding or deleting one 

ecord from the dataset, it will have a negligible impact on the 

uery results. Therefore, it can hide evidence of an individual in 

he dataset. DP was initially used for interactive settings in which 

he user submits a query on the dataset, for example, “how many 

eople visit google.com in the web log?”, and the user will get the 

orresponding answer with some added noise to increase privacy. 

owever, it is reported that only a limited number of queries can 

e answered and the flexibility of performing personalized data 

nalysis tasks is constrained under this setting ( Leoni, 2012; Mo- 

ammed et al., 2011 ). Non-interactive DP, which aims to sanitize 

he publication of the whole datasets, becomes an alternative. It is 

ssential in many situations like publishing medical or census data. 

pecialized non-interactive DP algorithms were designed for low 

imensional data publishing ( Acs et al., 2012; Hardt et al., 2012; Li 

t al., 2014; Zhang et al., 2014 ), as well as for high-dimensional

ata release ( Chen et al., 2011; 2015; Wang et al., 2016; Zhang 

t al., 2017 ). 

Although standard DP is elegant, there are still usability and 

rivacy leakage issues. For example, how to set the privacy param- 

ter ε is not easy to decide ( Lee and Clifton, 2011 ). Attacks target-

ng DP systems have also been reported ( Haeberlen et al., 2011 ). 

ne of the most serious issues is that correlations among records 

an decrease privacy guarantees of DP ( Chen et al., 2014; Kifer and 

achanavajjhala, 2011; 2012; Liu et al., 2016 ). Specifically, the vic- 

im’s private information can be encoded in the social correlation, 

hich is formed by a specific group of participants, e.g., friends or 

amilies. Once such underlying social correlations are discovered, 

he victim’s private information is under leakage. 

Our paper points out that the victim’s private information can 

lso be encoded in the item correlation, which is formed by all par- 

icipants. The item correlation can create APLs and allows the at- 

acker to initiate the attribute linkage attack in the original dataset. 

ven worse, DP algorithms cannot correctly handle these APLs, and 

hese APLs are preserved in the DP-processed dataset with high 

robability. The consequence is that even though DP algorithms 

re applied to increase privacy, the attacker can still initiate the 
3 
ttribute linkage attack and cause privacy leakage. Compared with 

he social correlation issue in DP, we highlight that the item corre- 

ation issue is more general and severe for the following reasons. 

1. It is easier for attackers to discover the item correlation in data 

than the social correlation. 

2. By leveraging item correlations, the attacker can easily con- 

struct the attribute linkage attack to leak the private informa- 

tion. 

3. It is harder for data publishers to defend against the at- 

tribute linkage attack because the underlying item correlation 

is formed by all participants instead of a small group. 

Note that we focus on the non-interactive DP setting in most 

arts of this paper because of its broad applicability and flexibility. 

lso, it is much more intuitive and clear to use the non-interactive 

P setting to show the attribute linkage attack. In addition, many 

apers focus on counting queries since counting is a fundamental 

ask in data mining. So we also focus on counting queries and their 

erivatives. 

.2. Attribute linkage attack 

The attribute linkage attack is one of the most damaging pri- 

acy leakage attacks ( Xu et al., 2014 ). The attacking philosophy is 

o use the combination of non-private attributes, e.g., zip-code and 

irthday, to uniquely identify the victim’s record and deduce val- 

es of private attributes, e.g., the medical information of an indi- 

idual. This attack can happen because an adversary can take ad- 

antage of specific attribute correlations in the dataset, which cre- 

te APLs. Once the adversary identifies these APLs, by accessing the 

ataset, the adversary can deduce the victim’s private information, 

.g., the victim’s medical information. 

In a set-valued dataset, each item in the dataset can be viewed 

s a binary attribute. In Section 1 , we have provided an example 

o give an intuition of the attribute linkage attack on a set-valued 

ataset. Previous investigations ( Barbaro et al., 2006; Kifer and 

achanavajjhala, 2012; Narayanan and Shmatikov, 20 06; 20 08 ) 

ave shown some real-world cases of the attribute linkage at- 

ack on set-valued datasets. One can check that the attribute link- 

ge attack can be easily initiated in the real world. For example, 

n Narayanan and Shmatikov (2008) , authors show that one can 

niquely identify a movie subscriber’s record in the IMDb dataset 

y only using part of his/her movie rating histories. Specifically, 

nly two rating histories with dates can uniquely identify 68% of 

ubscribers’ records. Once the identification is successful, deduc- 

ng more ratings of a subscriber is then possible. Note that it is 

sually challenging to distinguish beforehand which items are pri- 

ate and which are non-private. Therefore, treating each item as 

qually private is necessary to provide a strong privacy guarantee, 

hile it increases the complexity of designing privacy-preserving 

lgorithms. 

Various anonymization standards have been proposed for pub- 

ishing datasets while defending against the attribute linkage at- 

ack. They are usually based on the generalization techniques ( He 

nd Naughton, 2009; Terrovitis et al., 2008 ). The main criticisms of 

uch techniques are that they are easy to attack, and data general- 

zation sharply decreases data utility ( Dwork et al., 2014; 2017 ). Al- 

hough DP provides a much stronger privacy guarantee than those 

nonymization standards, little research has focused on the at- 

ribute linkage attack in DP settings. In this paper, we argue that 

P is still not immune to the attribute linkage attack. The attribute 

orrelation will enlarge the possibility of the attribute linkage at- 

ack in DP settings. In order to defend against the attribute linkage 

ttack, we here introduce a topology-theoretic approach. 
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Table 3 

Relation R for the dataset D p in Table 1 > (b). 

ID/Item beer toothpaste scissor hanger 

1 • • • •
2 • •
3 • • •
4 • •
5 •

Table 4 

Relation R q on {beer, toothpaste, scissor, hanger}. 

ID / Item beer toothpaste scissor hanger 

1 • •
2 • • •
3 • •
4 •
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Table 5 

Perturbed D ′ p to defend against the attribute linkage attack. 

ID Itemset Occurrences 

1 beer, 

toothpaste, 

scissor, hanger 

23 

2 beer, 

toothpaste 

2 

3 beer, 

toothpaste, 

scissor 

8 

4 scissor, hanger 5 

5 toothpaste 2 

6 toothpaste, 

scissor, hanger 

2 

7 beer,scissor, 

hanger 

3 

8 

beer,toothpaste, 

hanger 
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.3. Topology of privacy 

Recently security researchers presented a formalism to study 

rivacy using topology theory ( Erdmann, 2017 ). Specifically, they 

rst model a dataset D as a relation R : X × Y , in which X repre-

ents a set of records in D , and Y represents the item universe, e.g.,

ll kinds of commodities in a shop. For example, one can trans- 

orm the DP-processed dataset D p in Table 1 (b) into a relation R as

hown in Table 3 . 

Suppose one wants to determine whether an attribute linkage 

ttack can be initiated on a record r which contains the itemset 

 = { beer, toothpaste, scissor, hanger }, the first step is to project R

n Table 3 onto a sub-relation R q : X 
′ × S, in which X ′ is the set

f records containing at least one item in S. Table 4 is an exam- 

le. Then we can use topology theory to prove that there will be a 

ossibility of an attribute linkage attack targeting the itemset S if 

nd only if any element in the boundary set B S is missing in R q . 

efinition 1 (Boundary Set) . The boundary set B S of an itemset S

s generated by removing each item from S. That is, 

 S = { S ′ ⊂ S : | S.items | − | S ′ .items | = 1 } , 
here | S.items | is the size of S, and each element S ′ ∈ B S is called

 boundary itemset . 

Note that given | S.items | = n , the number of boundary item- 

ets in B S is also n . For example, the boundary set B S of the

temset S = { beer, toothpaste, scissor, hanger } contains the follow- 

ng four boundary itemsets: { toothpaste, scissor, hanger }, { beer, scis- 

or, hanger }, { beer, toothpaste, hanger }, and { beer, toothpaste, scis- 

or }. The above result implies that any missing boundary itemset 

 

′ is an APL, and can be used as the prior knowledge to uniquely 

dentify the target’s itemset S. Moreover, S − S ′ is the leaked in- 

ormation. Referencing to our example, since the boundary itemset 

 toothpaste, scissor, hanger } is missing in Table 4 , Eve can deduce

hat Alice also bought beer . 

Let D 

I be the set of itemsets in D . We can further use topology

heory to prove that if there is no missing boundary itemset for 

ach maximal itemset in D 

I , then there will be no attribute linkage 

ttack targeting records in D . 

efinition 2 (Maximal Itemset) . A maximal itemset of D 

I is an 

temset S ∈ D 

I that is not a subset of any other itemset in D 

I . 

For example, in Table 1 , the only maximal itemset is { beer, 

oothpaste, scissor, hanger }. The above result implies a powerful de- 

ense methodology: For each maximal itemset S ∈ D 

I , if one can arti- 

cially generate records for all missing boundary itemsets, no attribute 

inkage attack can happen in the generated dataset. We will use this 

dea to derive our defense methodology in Section 5.2 . Going back 
4 
o our example, Table 5 is an example dataset wherein every item- 

et is free from the attribute linkage attack. Records 6–8 are the 

rtificial records which are added for the only maximal itemset 

 beer, toothpaste, scissor, hanger }. Specifically, each artificial record 

ontains a missing boundary itemset in the original dataset. One 

an check that with the artificial record which contains the item- 

et { toothpaste, scissor, hanger }, Eve cannot uniquely identify Alice’s 

ecord, and deduce that Alice bought beer anymore. We will dis- 

uss the detail of our proposed methodology in Section 5.2 , which 

efends against the attribute linkage attack in DP settings. 

. Preliminaries 

In this section, we first give a formal definition of the set- 

alued dataset, then we introduce various terms to formalize dif- 

erential privacy. Note that in this paper, we will use the term 

item” and “attribute” interchangeably because each item can be 

iewed as a binary attribute, i.e., an attribute with range {0, 1}. 

.1. Set-valued dataset 

Set-valued data are commonly used to represent data, e.g., 

hopping lists, visited web-pages and click streams. Let I = 

 I 1 , I 2 , . . . , I n } be the item universe with size n , and an itemset

 ⊆ I is a subset of I , with | S.items | being the number of items in

and | S| being the number of occurrences of S in the dataset. For 

xample, in Table 1 (a), each item is a commodity in a supermar- 

et and I = { beer , toothpaste , scissor , hanger } . An itemset S could be 

 beer, toothpaste, scissor, hanger } with | S.items | = 4 and | S| = 20 .

 set-valued dataset D can be represented using a histogram, in 

hich each record r stores a unique itemset S with its number of 

ccurrences | S| in the dataset, i.e., D = { (S, | S| ) } . We use D 

I to rep-

esent the set of itemsets in D , that is, D 

I = { S : (S, | S| ) ∈ D } . 

.2. Differential privacy 

DP ( Dwork, 2011 ) is a mathematical framework designed to 

rotect users’ privacy. The main goal of DP is to guarantee that 

hether or not a person participated in the dataset will not dra- 

atically increase the risk of individual information being leaked. 

n DP, the parameter ε, which is the privacy budget, is determined 

n advance to decide the level of privacy and noise introduced to 

he dataset D . Note that in the set-valued dataset, one’s participa- 

ion will influence the number of occurrences of a specific itemset. 

or example, removing Alice’s participation from Table 1 (a) will re- 

uce the number of occurrences of the itemset { beer, toothpaste, 
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cissor, hanger } by 1. Specifically, the formal definition of DP is as 

ollows. 

efinition 3 ( ε-differential privacy ) . A randomized algorithm A 

rovides ε-differential privacy if for any two neighboring set- 

alued datasets D 1 and D 2 which only differ in one occurrence of 

n itemset, and for any output D p ⊆ Range (A ) , 

Pr (A (D 1 ) = D p ) 

Pr (A (D 2 ) = D p ) 
≤ e ε, 

here the probability is taken over the randomness of A . 

Generally speaking, two popular noise additive mechanisms are 

idely used by DP algorithms: the Laplace mechanism and the 

xponential mechanism ( Dwork et al., 2014 ). Specifically, the key 

dea of the Laplace mechanism, which is used in our paper, is to 

enerate a noisy answer x = Lap(μ, b) from the Laplace distribu- 

ion, where b is the scaling parameter, and μ is the true query 

nswer. In particular, b = � f/ε, in which � f is the global sensitiv- 

ty measuring the impact of changing at most one occurrence for 

ne record in the original dataset. In this paper, since we focus on 

ounting queries, the global sensitivity is 1. 

. Attribute linkage attack on DP-processed datasets 

In this section, we first give a formal definition of the APL, 

hich adversaries use to initiate the attribute linkage attack. Then 

e give an analysis to show that the attack can be initiated with a 

igh probability when the traditional DP algorithm is applied. Fi- 

ally, we use two popular DP algorithms with real-world datasets 

o give a case study, which confirms the feasibility of the attack in 

he real world. 

.1. Attribute privacy leakage 

We here formally define the attribute privacy leakage (APL), 

hich is used by adversaries to initiate the attribute linkage at- 

ack. Roughly speaking, an APL Q is an itemset that the adversary 

an use to uniquely identify a specific itemset S in the dataset. 

efinition 4 (APL) . Given a dataset D , we say that Q ⊂ I is an APL

n D if 

{ S | S ∈ D 

I and Q ⊂ S}| = 1 , 

here I is the item universe and D 

I is the set of itemsets in D (see

able 2 ). 

By using the APL Q , an adversary can initiate the attribute link- 

ge attack and uniquely identify an itemset S in D 

I . Specifically, 

 − Q is the leaked information that the adversary could obtain. In 

ur previous example, { toothpaste, scissor, hanger } is an APL which 

elps the adversary to uniquely identify the itemset { beer, tooth- 

aste, scissor, hanger }, and beer is the leaked information. Note 

hat for a real-world dataset, the size n of the item universe (See 

able 2 ) is usually large. As a consequence, there are 2 n − 1 item-

ets which can be APLs, and so it is computationally expensive to 

ocate all APLs exhaustively. 

However, the topology-theoretic approach in Section 2.3 shows 

hat one only needs to check whether boundary itemsets (See 

efinition 1 ) for all maximal itemsets (See Definition 2 ) in a 

ataset are APLs or not so to defend against the attribute linkage 

ttack. Therefore, in the rest of the paper, unless we state other- 

ise, all itemsets considered are maximal itemsets, and all APLs con- 

idered are boundary itemsets which can be used to uniquely identify 

hose maximal itemsets. Such an assertion also shows that we con- 

ider a highly damaging threat model: The adversary can have the 

ost prior knowledge, which is the boundary itemset of the target 

aximal itemset. The following section will formally analyze why 
5 
he attribute linkage attack is highly probable in DP settings when 

here are correlations among items. 

.2. Attack analysis 

We first state the attack methodology, i.e., how the adversary 

everages the APL to initiate the attribute linkage attack. Then, a 

iscussion about the insufficient protection of standard DP is given, 

hen there are correlations among items. Finally, we will analyze 

he probability of the attribute linkage attack in DP settings. In this 

aper, we assume the adversary has the following prior informa- 

ion in advance. 

1. The victim’s itemset S is in D 

I . 

2. The adversary knows an APL Q ⊂ S. Specifically, Q is a boundary 

itemset in B S , and the adversary can use it to uniquely identify 

S in D 

I . 

However, the adversary cannot access the original dataset D and 

annot identify the victim’s itemset S in D 

I . Instead, she can only 

ccess the DP-processed dataset D p and wants to check whether 

can be used to uniquely identify the victim’s itemset S in D 

I 
p , 

hich is the set of itemsets in D p . If that is the case, it means that

is an APL in D p , and the adversary can successfully deduce the 

ictim’s private information. Specifically, the attack methodology is 

escribed as follows. 

Attack methodology : After accessing the DP-processed dataset 

 p , the adversary first links her prior knowledge Q with records 

n D p . As as result, she locates a candidate set G = { S ′ | S ′ ∈ D 

I 
p and

 ⊆ S ′ } . Then the attribute linkage attack is successfully initiated 

f and only if G = { S} , which means that the victim’s itemset S is

niquely identified. Going back to our example, if Eve knows in ad- 

ance that Q = { toothpaste, scissor, hanger } and accesses D p shown 

n Table 1 b, Eve can locate the candidate set G = {{ beer, toothpaste, 

cissor, hanger }}, which only contains Alice’s itemset. In this case, 

he attribute linkage attack is successfully initiated. On contrary, 

f Eve accesses the dataset D 

′ 
p shown in Table 5 , she will locate 

he candidate set G = {{ beer, toothpaste, scissor, hanger }, { toothpaste, 

cissor, hanger }}. In this case, Eve cannot determine Alice’s itemset, 

nd the attribute linkage attack cannot be successfully initiated. 

Note that the attribute linkage attack is also feasible in the 

ontext of the interactive DP setting. Specifically, the interactive 

etting and the non-interactive setting only differ in formats of 

epresenting data. At the core, they apply the same noise addi- 

ive mechanism, e.g., the Laplace mechanism, to achieve the same 

evel of privacy guarantees. Here we also state the attack method- 

logy in the interactive setting. Specifically, by constructing spe- 

ific combinations of queries, the adversary can leverage her prior 

nowledge to deduce private information. Using our previous ex- 

mple, because the number of itemsets in the itemset universe 

hich contain { toothpaste, scissor, hanger } is two, i.e., { toothpaste, 

cissor, hanger } and { beer, toothpaste, scissor, hanger }, the adversary 

an propose two queries: 

• Q 1 : How many people purchased the itemset { toothpaste, scissor, 

hanger } exactly? 

• Q 2 : How many people purchased the itemset { beer, toothpaste, 

scissor, hanger }? 

Let the true answer of Q 1 be x and Q 2 be y in D . Given a ran-

omized DP algorithm A which outputs the perturbed query re- 

ult, one can derive that 

r ( Eve de duces b eer ) = Pr (A (Q 1 ) = 0 and A (Q 2 ) = r) 

= exp (−ε| 0 − x | ) · exp(−ε| r − y | ) 
= exp (−ε(x + y − r)) , 

here A (Q 1 ) and A (Q 2 ) are two noisy answers which provide

-differential privacy for Q and Q . A (Q ) = 0 combined with
1 2 1 
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 (Q 2 ) = r > 0 denotes that all customers who bought the item-

et { toothpaste, scissor, hanger } also bought beer , which implies that 

ve can successfully launch the attribute linkage attack. 

Insufficient protections under correlations : Continuing the 

iscussion in the interactive setting, we want to emphasize that 

orrelations among items can sharply decrease the privacy guar- 

ntee of DP, and it is not feasible to rely on DP to defend against

he attribute linkage attack. Given two neighboring datasets D 1 and 

 2 , which only differ in one occurrence of an itemset, according to 

efinition 3 , one can derive that 

ax 
D 1 ,D 2 

Pr ( Eve de duces b eer in D 1 ) 

Pr ( Eve de duces b eer in D 2 ) 

≤ exp (−ε(x + y − r)) 

exp (−ε(x + y − 1 − r))) 

= exp (ε) , 

owever, suppose there are correlations among the items, for ex- 

mple, 

r ( beer | toothpaste, scissor, hanger ) = 0 . 9 , 

n this case, one can simply derive that y = 9 x , and 

ax 
D 1 ,D 2 

Pr ( Eve de duces b eer in D 1 ) 

Pr ( Eve de duces b eer in D 2 ) 
≤ exp (ε(10 x − r)) 

exp (ε(10(x − 1) − r)) 

= exp (10 ε) . 

uch an amplification shows the sharp decrease of DP’s privacy 

uarantee, and adding or deleting one record can have significantly 

mpacts on the probability of the attribute linkage attack. The re- 

ult implies insufficient protection against the attribute linkage at- 

ack using standard DP. Similar dependency issues for standard DP 

ave also been proposed ( Liu et al., 2016 ). However, the attribute 

inkage attack proposed in our paper is more severe, and the rea- 

on is the following. 

• It is not difficult to find out that the larger the correlation is, 

the lower the privacy guarantee DP will provide. Specifically, 

when the conditional probability equals to γ ∈ (0 , 1) , the pri- 

vacy guarantee reduces to exp ( ε
1 −γ ) , which is unacceptable. 

• Such item correlations are common in the real world, e.g., 

shopping preferences and medical information. Moreover, the 

number of possible correlations increases exponentially as the 

number of items in the dataset increases, and it is diffi- 

cult to use some DP variants, e.g., dependent differential pri- 

vacy ( Liu et al., 2016 ), to eliminate the attack. 

eriving the probability of attribute linkage attack : Remember 

hat the first step for the adversary is to use the prior knowledge 

to locate a candidate set G . We say Q is an APL, and the attribute

inkage attack is successfully initiated if and only if the candidate 

et G = { S} , where S is the victim’s itemset. Therefore, the proba-

ility of the successful attribute linkage attack equals the probabil- 

ty that the condition “G = { S} ” holds in the DP-processed dataset 

 p . To derive the probability that the condition “G = { S} ” holds, 

e find that the condition can be further dissect into two compo- 

ents, i.e., C 1 : S ∈ D 

I 
p and C 2 : G 

′ ∩ D 

I 
p = ∅ where G 

′ = { S ′ | Q ⊆ S ′ ⊆
 and S ′ 
 = S} . Specifically, C 1 requires that the victim’s itemset S

hould exist in the DP-processed dataset D p , such that the adver- 

ary can identify it using the prior knowledge Q and make sure 

 ∈ G . C 2 requires that for other itemsets which can also be identi-

ed by the prior knowledge Q , they should not exist in D p to make

ure that the victim’s itemset S is uniquely identified. As a result, 

e have 

r ( Successful Attribute Linkage Attack ) = Pr (G = { S} ) 
= Pr (C 1 C 2 ) . 
a

6 
Computing the above probability is non-trivial for different DP 

lgorithms. However, because DP algorithms need to maintain a 

igh data utility, the probability of a specific itemset being added 

o D p is positively related to its frequency in D . For example, the 

asic idea of the partitioning-based DP algorithms ( Chen et al., 

011 ) is first to partition the whole itemset space into many sub- 

egions, then keep those regions with large numbers of occur- 

ences ( Leoni, 2012 ). Sampling algorithms in DP ( Chen et al., 2015;

hang et al., 2017 ) learn the item correlations from the original 

ata distribution first, then generate D p from noisy joint distribu- 

ion. Based on this observation, one can assert that 

Pr ( Successful Attribute Linkage Attack ) = Pr (C 1 C 2 ) 

∝ f D (S) ·
∏ 

S ′ ∈ G ′ 
(1 − f D (S ′ )) , 

here S is the victim’s itemset, f D (S) is the frequency of S in the 

ataset D , and G 

′ = { S ′ | Q ⊆ S ′ ⊆ I and S ′ 
 = S} . 
In our attack, since Q is an APL for S in the original dataset 

 , no other itemsets contain Q , and a strong correlation exists be- 

ween Q and S − Q . Using our previous example, most customers 

hoose to buy beer after they purchase the itemset { toothpaste, scis- 

or, hanger }. Such a correlation increases f D (S) where S is the item- 

et { beer, toothpaste, scissor, hanger }, while at the same time keeps 

f D (S ′ ) as low as possible. The consequence is that in D p , there is

 high probability for the attacker to uniquely identify S. Another 

ay to understand the influence of correlations on the probability 

f attribute linkage attack is that, since the item correlation is an 

ssential statistical property, which DP algorithms try to preserve, 

he item correlation is likely to be kept in D p . However, the truth 

s that the existence of the APL depends on the correlation of un- 

erlying items. As long as the item correlation is well preserved, 

he existence of APLs will also be well preserved. The consequence 

s that when the adversary observes D p , there is a high chance that 

he attack can be successfully initiated. Next, we will use experi- 

ents to demonstrate the high probability of the attack in the DP 

etting. 

.3. Case study 

In this section, we use real-world datasets and two DP algo- 

ithms, DiffPart ( Chen et al., 2011 ) and PrivBayes ( Zhang et al.,

017 ), to demonstrate the attribute linkage attack on DP-processed 

atasets. The reason to choose these two algorithms is that they 

re popular and representative: one is partitioning-based, and an- 

ther is sampling-based. We first give an overview of these two 

lgorithms, then we show the probability of the attack using our 

esigned experiments. 

DiffPart: On startup, DiffPart requires a context-free taxonomy 

ree T to instruct the partitioning procedure, and Fig. 1 is an ex- 

mple. Specifically, the tree is constructed with four leaf nodes, 

ach denoting a specific item I k , k ≥ 1 . We map each item in the

tem universe { beer, toothpaste, scissor, hanger } to I 1 , I 2 , I 3 and I 4 
espectively. Besides those leaf nodes, internal nodes of the tree 

re a set of their leaves. For example, the internal node I { 1 , 2 , 3 , 4 } = 
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Fig. 2. A possible partitioning process using DiffPart . 
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1 https://archive.ics.uci.edu/ml/datasets/msnbc.com+anonymous+web+data . 
2 https://www.icpsr.umich.edu/web/NACDA/studies/9681/publications . 
 I 1 , I 2 , I 3 , I 4 } . The parameter f controls the maximum degree of

odes. In Fig. 1 , we let f = 2 . 

Note that a set of taxonomy tree nodes can generalize records 

n a dataset. Specifically, for a record r : (S, | S| ) in a dataset D (See

able 2 ) and a set of tree nodes N , N generalizes the record r if

1) ∀ I k ∈ S, ∃ N ∈ N , I k ∈ N, and (2) ∀ N ∈ N , N ∩ S 
 = ∅ . For example,

he set of tree nodes { I { 1 , 2 } , I { 3 , 4 } } can generalize a record which

ontains the itemset { I 1 , I 2 , I 3 } . Given the idea of generalization,

iffPart uses sets of tree nodes to create disjoint partitions of the 

ataset D . Fig. 2 is an example which processes the dataset shown 

n Table 1 a. In particular, each partition p is a rectangle area, which 

ontains a set of tree nodes p.cut (the left part of the rectangle) 

nd a set of records p.records which are generalized by p.cut (the 

ight part of the rectangle). 

Specifically, DiffPart initiates a top-down partitioning proce- 

ure. It starts from creating an initial partition p in which the set 

f nodes p.cut contains the single root node of the taxonomy tree, 

.e., I { 1 , 2 , 3 , 4 } . Because the root node is the set of all items in the

tem universe, it can generalize all five records from r 1 to r 5 , and

p.records stores all these records. After that, DiffPart creates sub- 

artitions by (1) expanding the root node ( I { 1 , 2 , 3 , 4 } ) with its child 

odes ( { I { 1 , 2 } } and { I { 3 , 4 } } ) in the tree, and (2) further generalizing

ecords in the initial partition. Such sub-partition generation pro- 

edures will not stop until the set of tree nodes in newly generated 

ub-partitions cannot be expanded. That is, in the end, each gen- 

rated sub-partition p will contain a set of nodes p.cut , in which 

ach node is a leaf node. In this case, the set of nodes p.cut rep-

esents a specific itemset. One can check in Fig. 2 that each leaf 

artition contains a specific itemset, e.g., { I 1 , I 2 , I 3 } . 
Every time a partition p is generated, DiffPart first computes 

he sum of occurrences for all records in p.records . After that, a 

aplace noise is added to the sum, and if the noisy sum is larger

han a threshold, the partition p will be kept for further process- 

ng. Otherwise, the partition p will not be processed anymore. 

pecifically, the threshold is controlled by a user-specified param- 

ter c 1 : the larger c 1 is, the larger the threshold will be. In other

ords, the parameter c 1 controls the degree to which partitions 

ith small numbers of occurrences of records will be filtered out. 

ote that in Fig. 2 , we only draw the sub-partition which are kept

uring the procedure. We did not show those sub-partitions which 

re filtered out because of small numbers of occurrences. Finally, 

hen a leaf partition p is generated, the set of nodes p.cut repre- 

ents a specific itemset. DiffPart further computes its noisy number 

f occurrences, and adds the itemset p.cut with its noisy number 

f occurrences to the output dataset D p . 

PrivBayes: The idea of PrivBayes is different from DiffPart. It 

ims to first derive an approximate distribution of items in the 
7 
ataset, then apply sampling methods to generate a synthetic 

ataset D p . The algorithm runs in three phases: 

1. Construct a k -degree Bayesian network B over the items in the 

dataset using ε1 -DP methods. 

2. Generate a set of conditional distributions of the original 

dataset D using ε2 -DP methods. 

3. Compute the approximate joint distribution over the original 

dataset D . Combined with the network B and conditional dis- 

tributions derived from the second step, the algorithm samples 

itemsets from the derived distribution to generate a synthetic 

dataset D p . 

Specifically, the choice of the parameter k is affected by another 

arameter θ , which measures the usefulness of the noisy distribu- 

ion. One can check that both DiffPart and PrivBayes are consis- 

ent with our analysis in Section 4.2 that the frequency of itemsets 

ill influence the probability of the attack. Specifically, in DiffPart, 

he number of occurrences of a specific itemset S will influence 

he noisy sum in partitions where S locates, and further influence 

he probability of these partitions generating sub-partitions. For 

rivBayes, the number of occurrences will directly influence the 

onditional distribution derived in the second step and further in- 

uence the joint distribution. When a sampling method is applied, 

he itemset with a more significant number of occurrences has a 

arger probability of being sampled. Further, we will use experi- 

ents to demonstrate how significant the probability of the attack 

an be. 

Experiment results: We perform experiments to show the at- 

ribute linkage attack on DP-processed datasets. The real-world 

atasets are MSNBC 1 and NLTCS 2 . MSNBC is a public dataset on the 

CI machine learning repository, which contains 989,818 records 

nd 17 items, while NLTCS contains 17,721 records and 16 items. 

n NLTCS, there is only one maximal itemset S N , which contains all 

6 items. The same property applies for MSNBC, and there is only 

ne maximal itemset S M 

which contains all 17 items. Moreover, the 

nly maximal itemsets in both datasets have APLs. 

We set S N and S M 

as the target, and in each dataset, we choose 

n arbitrary APL for the target to investigate whether the APL still 

xists in D p . If that is the case, the attack succeeds. Specifically, we 

re interested in the probability that the DP-processed dataset D p 

as the APL for the target. For each DP algorithm and each param- 

ter setting, we generate 10 0 0 DP-processed datasets to compute 

he average probability of having APLs for the target. Note that it 

https://archive.ics.uci.edu/ml/datasets/msnbc.com+anonymous+web+data
https://www.icpsr.umich.edu/web/NACDA/studies/9681/publications
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Fig. 3. Probability of having APLs for S M with different c 1 and the number of oc- 

currences. 

Fig. 4. Probability of having APLs for S M with different ε and the number of occur- 

rences. 
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Fig. 5. Probability of having APLs for S M with different θ and ε. 
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s time-consuming for PrivBayes to process large datasets (over 24 

ours). Instead, we use DiffPart to process the MSNBC dataset and 

rivBayes to process the NLTCS dataset separately. 

Figs. 3 and 4 show that the probability of having the APL for 

 M 

increases quickly, as we increase the number of occurrences. 

he occurrence of 80 is sufficient for the attacker to launch the 

ttribute linkage attack on S M 

with a probability of 0.92. Note that 

n the original dataset, the number of occurrences of S is 13, which 

eans that in the real world, Eve can successfully launch the at- 

ribute linkage attack on S M 

with a probability of at least 0.4. In 

ig. 3 , one can observe that a larger c 1 , which is a user-defined

arameter in DiffPart, results in a more significant probability of 

eing attacked. We vary c 1 from 0.1 to 1 in this experiment. 

Fig. 4 shows the influence of privacy budget ε given c 1 = 1 . As

he privacy budget increases, the variance of added noise becomes 

maller, such that the utility improves at the cost of weakening the 

rivacy guarantee. One can check that the probability of having the 

PL for S M 

increases as a larger value of privacy budget is assigned. 

or example, if one publishes the dataset with ε = 1 . 6 , the target’s

nformation can be leaked with probability of at least 0.6 in the 

eal world, which is an unacceptable privacy leakage risk. 

We further use PrivBayes and NLTCS to show the probability of 

aving APLs for S . For the PrivBayes algorithm, the parameter θ
N 

8 
ontrols the degree in the constructed Bayesian network N , and 

is the privacy budget. Fig. 5 shows the experimental results as 

e vary ε from 0.1 to 1. One can check that as ε increases, the 

enerated noisy distribution is closer to the original distribution in 

 , which means that the existence of the APL is more likely to be

reserved. Moreover, a lower θ will also incur a higher probability 

f the attack. In summary, there are two important conclusions for 

he attribute linkage attack in DP settings. 

1. For traditional DP algorithms, users need to carefully select the 

parameter to reduce the probability of being attacked. 

2. There is a privacy-utility dilemma : A larger ε means a lower 

scale of noise, which can bring a better data utility. However, 

in this section, one observes that a larger ε also brings a higher 

probability of being attacked. 

In the following section, we will propose our defense method- 

logy and solution. 

. Defense methodology 

In this section, we propose a variant of DP to address the at- 

ribute linkage attack, which is called APL-Free ε-DP. Further, we 

esign an algorithm, APLKiller, which satisfies the APL-Free ε-DP 

nd is used to publish datasets securely. Experiment results show 

hat our algorithm provides a stronger privacy guarantee and bet- 

er data utility than traditional DP algorithms. 

.1. APL-Free ε-DP 

First, let us provide the definition of APL-Free ε-DP. 

efinition 5. A randomized algorithm A satisfies APL-Free ε-DP if 

 satisfies the following requirements: 

1. For any D p ∈ Range (A ) , there is no APL in D p . 

2. For any two neighboring datasets D 1 and D 2 which only differ 

in one occurrence of an itemset, and for any possible output 

D p ⊆ Range (A ) , 

P r(A (D 1 ) = D p ) 

P r(A (D 2 ) = D p ) 
≤ exp(ε) . 

Compared with Definition 3 , APL-Free ε-DP adds an additional 

onstraint: there should be no APLs in the output dataset. Be- 

ides inheriting the privacy guarantee of standard DP, the addi- 

ional constraint also guarantees that the attacker cannot launch 

he attribute linkage attack in the output dataset D p . Note that 
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Algorithm 1 APLKiller. 

Require: D , parameter vectors F , C 1 , privacy budget ε
Ensure: perturbed dataset D p 

1: i ← |I| 
2: Initialize an empty set D p and a vector of empty sets Q
3: Partition D into 

⋃ n 
i =1 D i { D i contains all i -itemsets} 

4: while i ≥ 1 do 

5: D 

′ 
i 
← LevelPart (i, D i , F i , C 

i 
1 , ε) {Generate D 

′ 
i 
} 

6: D p = D p ∪ D 

I ′ 
i 

7: for S i 
j 
∈ D 

I ′ 
i 

do 

8: Q i = Q i ∪ B S i 
j 

{Aggregate boundary itemsets for D 

′ 
i 
} 

9: end for 
10: for S i 

k 
∈ Q i do 

11: N 

i 
k 

= 0 

12: {Determine the noisy number of occurrences of 
boundary itemsets} 

13: while N 

i 
k 

≤ 0 do 

14: N 

i 
k 

= NoisyCount(| S i 
k 
| , ε) 

15: end while 

16: Add record (S i 
k 
, N 

i 
k 
) to D p . 

17: end for 
18: {Remove influences of Q i on generating D 

′ 
i −1 

} 

19: Remove records which contains itemset S i 
k 

∈ Q i from 

D i −1 

20: i ← i − 1 

21: end while 

22: return D p 
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ny sequence of computations that each provides APL-Free ε-DP 

n isolation also provides APL-Free ε-DP. Specifically, the following 

equential composition theorem holds. 

heorem 1 (Sequential Composition Theorem) . Let A i each be a 

andomized algorithm that satisfies APL-Free εi -DP. A sequence of 

 i (D ) over the dataset D provides APL-Free 
∑ 

i (εi ) -DP. 

In some cases where a sequence of computations are conducted 

n disjoint datasets, the privacy budget ε only depends on the 

orst guarantee of all computations. Specifically, the following par- 

llel composition theorem holds. 

heorem 2 (Parallel Composition Theorem) . Let A i each be a ran- 

omized algorithm that satisfies APL-Free εi -DP. A sequence of A i (D i ) 

ver a set of disjoint datasets D i provides APL-Free (max (εi )) -DP. 

We defer the detailed proof in Appendix A.1 and Appendix 

.2 for further reference. 

.2. APLKiller 

In this section, we propose the algorithm APLKiller, which is 

sed for publishing datasets efficiently and accurately. Most im- 

ortantly, we prove that our algorithm satisfies the APL-Free ε-DP, 

hich provides a higher privacy guarantee. 

Framework: One of the advantages of our algorithm APLKiller 

ver traditional DP algorithms is the elimination of APLs. To 

chieve this goal, we use the topology-theoretic approach (See 

ection 2.3 ) to instruct the design of our algorithm. Specifically, 

opology theory shows that for each maximal itemset in a dataset, 

ll boundary itemsets should also exist in the dataset to defend 

gainst the attribute linkage attack. The above result implies that 

henever a maximal itemset S is added to D p , it is critical to make 

ure the existence of its boundary set B S in D p . Based on the above

nderstanding, we designed the APLKiller, which contains two pro- 

edures. 

• Level Partitioning : The goal of this partitioning procedure is to 

generate records that contain itemsets of given sizes. 

• Boundary Adding : The goal of this adding procedure is to add 

artificial records. These records contain boundary itemsets for 

itemsets added by the partitioning procedure. 

APLKiller generates the output dataset D p in several rounds. 

pecifically, a size i ∈ { 1 , . . . , |I|} is given in each round, and

PLKiller first initiates the level partitioning procedure. The par- 

itioning procedure will generate records that contain itemsets of 

he given size i (the number of items in the itemset). After that, for 

ach generated itemset S, APLKiller initiates the boundary adding 

rocedure to ensure the existence of the boundary set B S in D p . 

uch iteration ends when the size i reaches 0. Since the bound- 

ry set for each itemset generated by the partitioning procedure is 

ell checked, according to topology theory, there will be no APLs 

n D p , and the attribute linkage attack cannot be launched. Also, 

ll of these operations should be done in a differentially private 

anner to satisfy APL-Free ε-DP. 

Let i -itemset be an itemset which contains i items, and D i be the

art of a dataset D containing all i -itemset records (See Table 2 ).

lgorithm 1 shows the pseudocode of the overall framework of 

PLKiller. The core components are LevelPart (Line) and the Bound- 

ry Adding (Line to Line): They correspond to the level partition- 

ng procedure and the boundary adding procedure, respectively. In 

ach round, LevelPart first initiates the level partitioning procedure 

nd takes the size i as well as D i as the input. As a result, it returns

 

′ 
i 
, which is the perturbed dataset containing i -itemset records. Af- 

er that, APLKiller adds records in D 

′ 
i 

to the output dataset D p , and

nitiates the boundary adding procedure. Specifically, APLKiller first 
9 
ggregates boundary itemsets for each i -itemset in D 

′ 
i 
. Then it de- 

ermines the noisy number of occurrences of each boundary item- 

et to generate artificial records. Finally, these artificial records are 

lso added to the output dataset D p . 

Note that the iteration follows the decreasing order of the size 

 (Line), and the iteration ends when the size i = 0 . The output

ataset D p is the union of D 

′ 
i 

for i ∈ { 1 , . . . , |I|} , and the set of

ecords which contain those boundary itemsets. For example, if the 

ize of the item universe |I| = 10 , APLKiller will first call LevelPart 

o generate D 

′ 
10 , which contains 10-itemset records. Then APLKiller 

ggregates boundary itemsets for those 10-itemsets in D 

′ 
10 

, deter- 

ines their noisy number of occurrences, and adds them to D p 

ith those records in D 

′ 
10 . The iteration stops when i = 0 , and

PLKiller returns D p to users. 

In the remaining part of this section, we first introduce the 

ramework of LevelPart, which is responsible for the partitioning 

rocedure. Then we introduce our boundary adding procedure. Fi- 

ally, we introduce the privacy budget allocation scheme and give 

n analysis of APLKiller. 

Level partitioning procedure. The algorithm LevelPart is re- 

ponsible for the level partitioning procedure, and its pseudocode 

s shown in Algorithm 2 . Specifically, it takes the size l, the dataset

 l , the privacy budget ε and several algorithm-specific parameters 

s inputs. As a result, it returns a perturbed dataset D 

′ 
l 
, which con-

ains l-itemset records with noisy numbers of occurrences. Level- 

art shares a similar top-down partitioning procedure with that 

f DiffPart (See Section 4.3 ). However, LevelPart applies additional 

ize constraints to prune “illegal” partitions, which we will intro- 

uce later. The advantage of the size-restricted partitioning proce- 

ure is to generate records that contain itemsets of the given size. 

LevelPart starts the partitioning procedure by initializing a tax- 

nomy tree and creating an initial partition p, in which the set 

f nodes p.cut contains the single root node of the taxonomy tree 
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Algorithm 2 LevelPart. 

Require: size l, dataset D l , fan-out F l , constant C 

l 
1 , and pri- 

vacy budget ε
Ensure: Perturbed dataset D 

′ 
l 

1: Initialize D 

′ 
l 

and construct taxonomy tree T with F l 
2: Create Partition p which includes all records and store 

root of T into p.cut . Let p.B = 

ε
2 

and p.α = 

p.B 
Par(p,l) 

3: Add p to an empty queue Q
4: while Q 
 = ∅ do 

5: Dequeue p 

′ from Q 

6: P ← LevelSGP (p 

′ , T , l, C 

l 
1 ) {Generate subpartitions of 

p 

′ } 
7: for each p i ∈ P do 

8: if p i is leaf partition then 

9: {Determine the noisy occurrence of the itemset} 
10: N p i 

= NoisyCount(| p i | , ε2 + p i .B ) 

11: if N p i 
≥ √ 

2 

C l 
1 

ε/ 2+ p i .B then 

12: Add N p i 
copies of p i .cut to D 

′ 
l 

13: end if 
14: else 

15: Add p i to Q {Continue to generate subpatitions 
of p i } 

16: end if 
17: end for 
18: end while 

19: return D 

′ 
l 

Fig. 6. The generation of 1-itemsets using LevelPart. 
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Line 1 and Line 2). Note that the related definitions, e.g., the tax- 

nomy tree, the partition and the generalization operation, are the 

ame as those used in DiffPart. One can refer to Section 4.3 for 

urther information. Fig. 6 is an example: The topmost partition 

ontains a single root node I { 1 , 2 , 3 , 4 } , which generalizes all records 

1 - r5 . 

In each round, LevelPart picks a partition p ′ (Line), and calls 

evelSGP to generate a set of sub-partitions P (Line). Specifically, 

f the generated sub-partition p i ∈ P is a leaf partition ( p i .cut

epresents a specific itemset), LevelPart will first compute its 

oisy number of occurrences by applying the Laplace mechanism 

Line to Line). After that, LevelPart uses a threshold to determine 

hether the noisy number of occurrences is large enough (Line). 

f that is the case, the itemset represented by p i .cut with the 

oisy number of occurrences will be added to D 

′ 
l 

(Line). Note that 

he threshold is controlled by a user-specified parameter C l 
1 
: The 

hreshold equals the multiplication of the standard deviation of 

he Laplace noise and the parameter C l 
1 
. In order to compute the 

oisy number of occurrences and the standard deviation, LevelPart 

eeds to determine the privacy budget. We will introduce the pri- 

acy budget allocation scheme later in this section. On the other 

and, if the generated sub-partition p i is not a leaf partition, it will 

e preserved for further partitioning (Line). An example is given in 

ig. 6 . For the initial partition p with p.cut = { I { 1 , 2 , 3 , 4 } } , it gener-

tes 3 sub-partitions. One of its sub-partitions with cut I { 1 , 2 } fur- 
10 
her generates two leaf partitions, which present itemsets { I 1 , I 2 } 
nd { I 2 } respectively. 

It is important to introduce LevelSGP, which is responsible for 

he sub-partition generation given the size constraint. The pseu- 

ocode is shown in Algorithm 3 . Specifically, LevelSGP first creates 

lgorithm 3 LevelSGP. 

equire: Partition p, taxonomy tree T , length l, constant C 

l 
1 

nsure: Vector of sub-partitions V 

1: Initialize empty vector V 

2: if | p.cut| > l or | p.items | < l then 

3: return V 

4: end if 
5: Randomly select u ∈ p.cut , expand and generate the set 

of non-empty sub-partitions S in which | s i .cut| ≤ l and 

| s i .items | ≥ l for s i ∈ S. 
6: Generalize records in p to sub-partitions in S
7: for s i ∈ S do 

8: N s i 
= NoisyCount(| s i | , p.α) 

9: if N s i 
≥

√ 

2 

C l 
1 

p.α then 

10: s i .B = p.B − p.α, s i .α = 

s i .B 

Par(s i ,l) 

11: Add s i to V {The subpartition can be further pro- 
cessed} 

12: end if 
13: end for 
14: j = 1 

15: {Select some empty subpartitions by random sampling} 
16: while j ≤ 2 

| p.items | do 

17: if NoisyCount(0 , p.α) ≥
√ 

2 

C l 
1 

p.α then 

18: Randomly generate an empty sub-partition s ′ 
j 

19: if | s ′ 
j 
.cut| ≤ l and | s ′ 

j 
.items | ≥ l then 

20: s ′ 
j 
.B = p.B − p.α, s ′ 

j 
.α = 

s ′ 
j 
.B 

Par(s i ,l) 

21: Add s ′ 
j 

to V 

22: end if 
23: end if 
24: end while 

25: return V 

ub-partitions for the current partition p by (1) randomly selecting 

ne node from p.cut and expanding it, and (2) generalizing records 

n p.records (Line). After that, created sub-partitions with non-zero 

ums of occurrences and those with zero sums are processed dif- 

erently. For sub-partitions with non-zero sums of occurrences, a 

aplace noise is added to the sum and the noisy sum is compared 

ith a user-defined threshold (Line to Line). If the noisy sum is 

arger than the threshold, the sub-partition will be kept for fur- 

her processing. Otherwise, the sub-partition with records in it will 

e discarded. For sub-partitions with zero sums of occurrences, a 

ampling method is applied to guarantee the randomness of the 

lgorithm. Specifically, Every time a Laplace noise is generated and 

s larger than the user-defined threshold, LevelSGP will randomly 

elect an empty partition and keep it for further processing (Line 

o Line). 

Note that the goal of LevelSGP is to generate sub-partitions 

iven the size constraint, which is not supported in DiffPart. Con- 

ider Fig. 2 as an example. DiffPart expands the partition with 

ut { I 3 , 4 } to create sub-partitions with cuts { I 3 } , { I 4 } , and { I 3 , I 4 } .
owever, if 1-itemsets are required, one should remove the par- 

ition with cut { I 3 , I 4 } , because it only contains 2-itemsets. In or-

er to make LevelSGP generate sub-partitions that meet the size 

onstraint, in this paper, we propose a novel pruning technique. 
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pecifically, given the size l, we find two situations in which a par- 

ition should be pruned. 

1. | p.cut| > l. 

2. | p.items | < l. 

In the first situation, the number of nodes in p.cut is com- 

uted and is used to compare with the size l. Since each node 

n p.cut contributes to at least one item, if the total number of 

odes is more significant than l, the partition p will generate 

t least (l + 1) -itemsets, and the partition should be filtered out. 

or example, in Fig. 6 , the partition with the cut { I { 1 , 2 } , I { 3 , 4 } } is

runed, because it will generate itemsets of length at least 2. For 

he second situation, | p.items | is the sum of sizes for all nodes in

p.cut . For example, for the partition p with the cut { I { 1 , 2 } , I { 3 , 4 } } ,
 p.items | = 4 . If it is less than l, the partition p can generate at

ost (l − 1) -itemsets, which should also be pruned. By enforcing 

he size checking (Line and Line), LevelSGP is guaranteed to only 

enerate sub-partitions containing l-itemsets. Finally, when a leaf 

artition is generated, it will only contain one l-itemset. 

Boundary adding procedure. The boundary adding procedure 

s initiated by the algorithm APLKiller. When LevelPart returns D 

′ 
i 

Line), APLKiller will first add records in D 

′ 
i 

to the output dataset 

 p (Line). Then the boundary itemset for each i -itemset in D 

′ 
i 

is de-

ived deterministically, and APLKiller collects those boundary item- 

ets in Line, where B S j is the boundary set for the itemset S j .

or each collected boundary itemset, APLKiller repeatedly gener- 

tes a number of occurrences with Laplace noise until it is positive 

Line). After that, the boundary itemset with the noisy number of 

ccurrences is added to D p to eliminate possible APLs in D p . Be- 

ore APLKiller starts the next round to generate (i − 1) -itemsets, it 

rst removes the existence of each boundary itemset S i 
k 

from D i −1 

Line). This is because they have been processed, and they should 

ot cause any influence in generating (i − 1) -itemsets. 

Privacy budget allocation and analysis . When initiating the 

evel partitioning procedure and the boundary adding procedure, 

PLKiller allocates the privacy budget to calculate the noisy sum 

or a specific sub-partition or calculate the noisy number of occur- 

ences of an itemset. Therefore, it is necessary to show how the 

rivacy budget is allocated. 

First, we show the budget allocation scheme in the level par- 

itioning procedure. APLKiller calls LevelPart iteratively to do level 

artitioning using D i as inputs. As every D i is disjoint from each 

ther, according to Theorem 2 , one can safely allocate the whole 

rivacy budget ε each time LevelPart is called. LevelPart first cre- 

tes an initial partition p, and assigns the whole budget ε to it 

Line). Specifically, p.B is the privacy budget for the sub-partition 

eneration, which is initially ε
2 . The remaining ε

2 budget will be 

nally used to determine the noisy number of occurrences of the 

enerated itemset. Every time sub-partitions of a partition p are 

enerated, p.B will be reduced, and the residue will be inherited by 

hese generated sub-partitions. Note that p.α represents the com- 

uted budget cost for the coming sub-partition generation. 

Specifically, every time LevelSGP is called to generate sub- 

artitions of a partition p, it will use up p.α, and assign the re-

aining ( p.B − p.α) budgets to all generated sub-partitions for fur- 

her partitioning (Line in LevelSGP). Since these sub-partitions rep- 

esent disjoint subsets of the original dataset D , such a privacy 

udget allocation scheme also follows the Theorem 2 . Moreover, 

n Line of LevelSGP, for all generated sub-partitions s i , s i .α is com- 

uted which is the budget cost for partition s i to launch the next 

ub-partition generation. Finally, in LevelPart, if LevelSGP returns a 

eaf partition p i , the remaining budget for sub-partition generation 

p i .B , plus the preserved half of the total privacy budget ε
2 , will be

sed for determining the noisy count of the itemset in D p (Line in 

evelPart). 
11 
In order to compute the privacy budget cost p.α for the sub- 

artition generation, the idea is to first compute the maximum 

umber of partitioning operations for the partition p to generate 

he leaf partition. After that, the algorithm allocates a fraction of 

he unused partitioning budget according to the maximum number 

f partitioning operations. For example, if p.B = 

ε
3 and the maxi- 

um number is 4, then the budget cost for the next sub-partition 

eneration p.α is ε
12 . Note that DiffPart also applies similar alloca- 

ion scheme, and it has been proved that the total budget cost for 

artitioning operations will not exceed 

ε
2 , which is the initially al- 

ocated budget for the sub-partition generation ( Chen et al., 2011 ). 

Therefore, calculating Par(p, l) , which represents the maximum 

umber of partitioning operations for the partition p to generate 

eaf partitions and l-itemsets, is necessary for deriving the allo- 

ated budget p.α. Once Par(p, l) is computed, p.α can be sim- 

ly computed as p.B 
Par(p,l) 

. We first compute Par(p, l) for partition p

hich contains single internal node in p.cut , e.g., p.cut = { I { 1 , 2 , 3 , 4 } } .
ased on the result, we provide a solution to deal with more gen- 

ral cases, where a partition may contain multiple leaf nodes and 

nternal nodes, e.g., p.cut = { I { 1 , 2 } , I { 3 , 4 } } . 
heorem 3. For a partition p, if p.cut contains single internal node u 

nd | u.items | = n , then given the fan-out parameter f , for f k ≤ n 
l 

≤
f k +1 and l > 0 , k ≥ 0 , 

 ar(p, l) = P ar(u, l) 

= 

{
0 , l = 0 

n −1 
f−1 

+ 

∑ k 
i =1 (l − � n 

f i 
� ) , otherwise 

The detailed proof is deferred to Appendix A.4 for further refer- 

nce. We extend the above result to more general cases: Compute 

ar(s, l) for a partition s which contains multiple leaf nodes and 

nternal nodes. Specifically, let p be its parent partition, the num- 

er of leaf nodes in s be n l s and the number of internal nodes in s

e n i s . Here we give the computation of Par(s, l) . 

 ar(s, l) = 

{
P ar(p, l) − 1 , n 

i 
s > 1 

P ar(u, l − n 

l 
s ) , n 

i 
s = 1 , 

(1) 

here u is the only internal node in partition s . Since for the par-

nt partition p, the generation of s takes one round, when there are 

ultiple internal nodes in the partition s , we simply let Par(s, l) 

qual to Par(p, l) minus 1. However, when there is only one in- 

ernal node in s , because leaf nodes will contribute to one item 

or constructing l itemsets, and it will not increase the number of 

ounds of partitions, we let Par(s, l) be Par(u, l − n l s ) , which means

hat the maximum number of partitioning operations only depends 

n how we select ( l − n l s ) items from the internal node u . To better

xplain the mechanism, the following example is given. Suppose 

p.cut = { I { 1 , 2 , 3 , 4 } } and s.cut = { I { 1 , 2 } , I { 3 , 4 } } . In this case there are

wo internal nodes in s , and we let Par(s, l) = Par(p, l) − 1 . Sup-

ose s ′ .cut = { I { 1 , 2 } , I 3 } , in this case, there is one internal node and

ne leaf node in s ′ , so we let Par(s, l) = Par(I { 1 , 2 } , l − 1) . 

For any partition s , one can first leverage Theorem 3 and 

q. 1 to compute Par(s, l) . Then one can derive the budget cost 

or the next partitioning operation, i.e., s.α = 

s.B 
Par(s,l) 

. Also, it has 

een shown that the total budget cost for the level partitioning 

rocedure will not exceed ε. We further introduce the budget allo- 

ation scheme for the boundary adding procedure. Specifically, for 

ach boundary itemset, we use the total budget ε to generate its 

oisy number of occurrences (Line in APLKiller). Note that such an 

llocation scheme also follows the Theorem 2 . The reason is that 

1) each boundary itemset is disjoint from each other, and (2) be- 

ause APLKiller removes each boundary itemset from the dataset 

Line), the boundary itemset is also disjoint from those itemsets in 

 , which are processed by the level partitioning procedure. There- 
i 
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Table 6 

Description of experimental datasets. 

Dataset | D | |I.items | max (r) 

MSNBC 989,818 17 17 

Checkin- 

Foursquare 

266,909 77 31 

NLTCS 17,721 16 16 
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Fig. 7. Execution time of APLKiller, DiffPart and PrivBayes. 
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ore, it is appropriate to allocate the total budget ε to each bound- 

ry itemset. 

After introducing the algorithm design as well as the allocation 

cheme for the privacy budget used in partitioning operations, we 

tate that Lemma 1 holds. 

emma 1. LevelPart satisfies ε-DP. 

Next, we will analyze APLKiller regarding its privacy guarantees, 

ata utility and time complexity. 

.3. Algorithm analysis 

In this section, we give the analysis of APLKiller. We first prove 

hat APLKiller satisfies APL-Free ε-DP, then we give an analysis of 

he time complexity of our algorithm. 

heorem 4. APLKiller satisfies APL-Free ε-DP. 

The detailed proof is in the Appendix A.3 . Moreover, for the 

ime complexity analysis, we have the following result, and the 

roof is shown in Appendix A.5 . 

emma 2. The time complexity of DiffPart is O (mn ) , where m is the

umber of records in the dataset D , and n is the number of items in

he item universe. 

The time complexity of APLKiller is attractive, compared with 

ther algorithms which have exponential time complexity, e.g., 

rivBayes. In the next section, we will use the experiment to show 

hat our algorithm also enjoys better data utility than DiffPart and 

rivBayes. 

. Experimental evaluation 

In this section, we evaluate our algorithm by comparing with 

raditional DP algorithms in terms of the execution time, privacy 

evel and data utility. 

Three datasets are used, and detailed information about these 

atasets is shown in Table 6 , where | D | is the number of records

n the dataset, |I.items | is the size of item universe, and max (r) is

he maximum number of items in one record. In the rest of this 

ection, we (1) compare the execution time of our algorithm with 

hat of DiffPart and PrivBayes algorithms, (2) perform the privacy 

nalysis to show the privacy guarantee which our algorithm can 

rovide, and (3) show that our algorithm provides better data util- 

ty. All experiments were conducted on an Intel Core i5 2.4 GHz PC 

ith 8GM RAM. 

.1. Efficiency analysis 

In this subsection, we report the time cost of publishing 

atasets using APLKiller, DiffPart, and PrivBayes. The result is 

hown in Fig. 7 . For each dataset and each algorithm, we run the

lgorithm 10 0 0 times to publish the corresponding dataset and 

ompute the average of the execution time. Note that the algo- 

ithm PrivBayes cannot handle large datasets efficiently. Specif- 

cally, for Checkin and MSNBC datasets, the execution time for 

he PrivBayes algorithm is over 24 hours. Therefore, the efficiency 
12 
f the algorithm PrivBayes is the worst. For the privacy analysis 

 Section 6.2 ) and the utility analysis ( Section 6.3 ), we will not ap-

ly PrivBayes on the Checkin dataset and the MSNBC dataset be- 

ause of its low efficiency. 

One can check that our algorithm APLKiller outperforms Diff- 

art in efficiency. Specifically, the execution time of APLKiller is 

educed by 27.04% on average, compared with that of DiffPart. 

or some datasets, e.g., the Checkin dataset, the execution time of 

PLKiller can even be reduced by nearly 50%. The main reason for 

he speedup is that APLKiller prunes unnecessary partitions, which 

peeds up the generation of sub-partitions (See Section 5.2 ). As 

 result, users can use our algorithm to publish the dataset effi- 

iently. 

.2. Privacy guarantee analysis 

In Section 4 , we have used DiffPart and PrivBayes to show the 

ossible attribute linkage attack. In this section, we extend our ex- 

eriments and add APLKiller to make the comparison. Specifically, 

he only maximal itemset in the NLTCS dataset is denoted as S N , 

nd the only maximal itemset in the MSNBC dataset is denoted as 

 M 

. We set S N and S M 

as the target and check the probability of

aving APLs for these two targets in the generated dataset. 

Fig. 8 shows the comparison result between DiffPart and 

PLKiller. We used the MSNBC dataset to do the experiment. The 

alue of each point is derived from the average of the analy- 

is result among 10 0 0 generated datasets. In Fig. 8 (a), we change

he privacy budget ε, and we further change the parameter c 1 in 

ig. 8 (b. For the record, although APLKiller allows one to set dif- 

erent parameters at different levels, in the following analysis, un- 

ess we state otherwise, the same parameter for each level is used 

o compare with DiffPart. For example, c 1 = 1 means that we set 

 

i 
1 

= 1 for each size i in APLKiller. By using our algorithm APLKiller, 

ne can check that for each parameter setting, there is no single 

PL in the generated dataset, which means that the target itemset 

s guaranteed to be protected from the attribute linkage attack. 

We also compare APLKiller with PrivBayes using the NLTCS 

ataset, and the result is shown in Fig. 9 . Note that by using 

rivBayes, the probability of having APLs for the target itemset 

aries little as one sets different ε (97.2% - 98.6%). Therefore, lines 

rawn from PrivBayes overlap heavily. However, by using APLKiller, 

o matter how the parameter is set, there is no APL in the gener- 

ted dataset, and so the probability of having APLs is always 0. 
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Fig. 8. Privacy comparison using DiffPart and MSNBC. 

Fig. 9. Privacy comparison using PrivBayes and NLTCS. 
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Fig. 10. Utility comparison using MSNBC and Checkin datasets. 
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From the above analysis, one can see that our algorithm pro- 

ides a stronger guarantee. We will further analyze the data utility 

nd show that our algorithm preserves a good data utility. 

.3. Data utility analysis 

First, it is important to introduce the utility metric. Since we 

ocus on counting queries, for each experiment, 50,0 0 0 counting 

ueries are generated. Moreover, the 50,0 0 0 queries are divided 

nto two groups: half for querying existing itemsets in the orig- 

nal dataset and half for querying random itemsets. By querying 

xisting itemsets, we examine the real data utility, and by query- 

ng random itemsets, we simulate the real-world use cases. Given 
13 
 query Q , for example, “How many people bought the beer?”, the 

elative error ( Chen et al., 2011 ) for Q is computed as | Q (D ′ ) −Q (D ) | 
max (Q(D ) ,s ) 

, 

here Q(D 

′ ) is the query result on the generated dataset, Q(D ) is 

he query result on the original dataset, and s is the sanity bound 

n order to weaken the influence of queries with extremely small 

ounting answers ( Chen et al., 2011 ). All three datasets mentioned 

n Table 6 are used to do the utility analysis, and we set the sanity

ound to 0.01% of the size of the original dataset. 

Fig. 10 shows the comparison result on MSNBC and Checkin 

atasets. For these two datasets, we only use them to compare 

PLKiller with DiffPart. We do not consider PrivBayes because 

SNBC and Checkin datasets are two relatively large datasets, and 

t is time-consuming for PrivBayes to generate perturbed datasets 

hen the input dataset is large. Experiment results show that it 

ill take more than 24 hours for PrivBayes to generate a perturbed 

ataset, which is infeasible for experiments and real-world use 

ase. In order to compare APLKiller with PrivBayes, we use NLTCS, 

hich is a small dataset, to do the experiment. 

Fig. 10 a shows the utility result on MSNBC dataset, with c 2 = 1 ,

f = 2 and ε ranging from 0.25 to 2. We also set c 1 ∈ [0 . 1 , 0 . 5 , 1] .

ach point is the average computed by generating 50,0 0 0 queries 

n terms of 10 0 0 rounds. As c 1 is decreased from 1.0 to 0.1, one

an see that the data utility is increased, and the data utility of 

PLKiller is better than that of DiffPart when c 1 = 0 . 1 . Experiment

esults show that the relative error for APLKiller is reduced by 3.6% 

n average, as ε varies. Fig. 10 b shows similar results when the 

heckin dataset is used, and the relative error is only 2.5% to 4.9%. 

Moreover, one can observe the utility-privacy dilemma: Al- 

hough a smaller ε can decrease the probability of having the APL 

n Fig. 8 , it brings a more significant relative query error shown in 
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Fig. 11. Utility comparison using the NLTCS dataset. 
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ig. 10 , which implies that the data utility becomes worse. How- 

ver, APLKiller eliminates this dilemma: No matter how the privacy 

arameter ε is set, the probability of having the APL is guaranteed 

o be always zero. Therefore, our algorithm lets publishers publish 

he dataset with good data utility while comprehensively defend- 

ng against the attribute linkage attack. 

In Fig. 11 , we further show the utility result and consider 

rivBayes. We use the NLTCS dataset to do the experiment. For 

iffPart and APLKiller, we set c 1 to 0.1 and 0.5; For PrivBayes, we 

ollow the experiment evaluation instruction ( Zhang et al., 2017 ) 

nd set θ to 4 and 5 separately. One can see that the data utility 

f APLKiller is better than that of DiffPart and PrivBayes. In detail, 

or different ε settings, our algorithm APLKiller reduces the relative 

rror by 6.8% compared with that of DiffPart, and 49.1% compared 

ith that of PrivBayes. 

. Conclusions 

In this paper, we show that the attribute linkage attack is a se- 

ere problem under DP settings. In order to eliminate this attack, 

e enhance standard DP and propose the APL-Free ε-DP. We fur- 

her propose a top-down partitioning algorithm APLKiller, which is 

ased on a topology-theoretic approach to defend against the at- 

ack in DP settings. Compared with traditional DP algorithms, our 

lgorithm has a lower execution time, which is efficient for pub- 

ishing the dataset. Moreover, our algorithm eliminates the issue of 

he attribute linkage attack and achieves a higher level of privacy 

uarantees. Finally, better data utility is achieved. 

How to set the parameter for our algorithm APLKiller to publish 

he dataset is our ongoing research. Specifically, APLKiller supports 

ustomized parameters for generating itemsets of different sizes, 

nd exploring the appropriate parameter setting given a specific 

ataset can help users to get better data utility. Moreover, extend- 

ng the scope of attacks and proposing more stringent DP variants 

re also exciting directions to build a more general privacy frame- 

ork based on APL-Free ε-DP and APLKiller. For example, inves- 

igating how to address the probabilistic attribute linkage attack is 

 challenging while valuable topic. The work of John C.S. Lui was 

upported in part by the RGC’s RIF R4032-18. 
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In the appendix, we list the proof for theorems and lemmas 

hich were proposed in previous sections. 

1. Proof for sequential sequential composition theorem 

roof. For any sequence of computations A i (D ) = D i , i ∈ { 1 , . . . , k } ,
he probability of getting the output is 

∏ k 
i =1 Pr [ M i (D ) = D i ] . By ap-

lying the definition of APL-Free ε-DP, and for any two neighboring 

atasets D and D 

′ , we have 

k ∏ 

i =1 

Pr [ M i (D ) = D i ] 

≤ ( 
k ∏ 

i =1 

Pr [ M i (D 

′ ) = D i ] · exp (εi | D − D 

′ | )) 

= 

k ∏ 

i =1 

Pr [ M i (D 

′ ) = D i ] · exp ( 
k ∑ 

i =1 

εi ) 

urther, according to the definition of APL-Free ε-DP and the result 

erived from the topology theory, there will be no APLs in any out- 

ut dataset D i . Proof completes. �

2. Proof for parallel sequential composition theorem 

roof. Consider two neighboring datasets D , D 

′ , and a general par- 

itioning procedure which partitions D into 
⋃ k 

i =1 D i , and partitions 

 

′ into 
⋃ k 

i =1 D 

′ 
i 
. According to the definition of the neighboring 

ataset, one can derive that there exists a single j ∈ { 1 , . . . , k } , such

hat | D j − D 

′ 
j 
| = 1 . Then for any sequence of computations A i (D i ) ,

ach of which outputs D 

out 
i 

∈ Range (A i ) , the probability of getting

he sequence of outputs is 
∏ k 

i =1 Pr [ A i (D i ) = D 

out 
i 

] . By applying the

efinition of APL-Free ε-DP, we have 

k ∏ 

i =1 

Pr [ A i (D i ) = D 

out 
i ] 

≤ ( 
k ∏ 

i =1 

Pr [ A i (D 

′ 
i ) = D 

out ′ 
i ] · exp (εi × | D i − D 

′ 
i | )) 

≤
k ∏ 

i =1 

Pr [ A i (D 

′ 
i ) = D 

out ′ 
i ] · exp ( max 

i 
εi ) 

urther, according to the definition of APL-Free ε-DP and the result 

erived from the topology theory, there will be no APLs in any out- 

ut D 

out 
i 

. Proof completes. �

3. Proof for APLKiller satisfying APL-Free ε-DP 

roof. To prove that APLKiller satisfies APL-Free ε-DP, we need to 

rove that it satisfies those two constraints in Definition 5 . Because 

ur handling of boundary itemsets is inspired by the topology- 

heoretic approach, which has been proved that there will be no 

PLs in the generated dataset, the first constraint is satisfied. 

The only thing we need to prove is that APLKiller satisfies the 

econd constraint. It can be checked that only two components of 

PLKiller use the original dataset D . The first component is Level- 

art, which uses D i to generate D 

′ 
i 

in Line. The second component 

s adding boundary itemsets in Line. Note that Q i and D i −1 are gen- 

rated in a deterministic way once D 

′ 
i 

is generated, so it can be 

erived that 

Pr [ D p ] = Pr [ D 

′ 
1 D 

′ 
2 . . . D 

′ 
n Q 1 . . . Q n ] 
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Fig. 12. Counting the number of partitioning operations needed for generating the 

itemset {1,3} in T . First, from the level of leaf nodes, locate I 1 and I 3 , then aggre- 

gate them to nodes in the upper level. The final number of partitioning operations 

equals the number of internal nodes traversed during the aggregation, which is 3. 
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1 ∏ 

i = n 
( Pr [ L (D i ) = D 

′ 
i ] Pr [ D i −1 , Q i | D 

′ 
i ] 

∏ 

S i 
k 
∈ Q i 

Pr [ | S i k | = N 

i 
k ]) 

= 

1 ∏ 

i = n 
( Pr [ L (D i ) = D 

′ 
i ] ·

∏ 

S i 
k 
∈ Q i 

Pr [ | S i k | = N 

i 
k ]) , 

here L represents our algorithm APLKiller, | S i 
k 
| is the true occur- 

ence of kth boundary itemset in Q i , and N 

i 
k 

is the noisy occur- 

ence. 

Because all D i and S i 
k 

are disjoint, according to Theorem 2 , 

he total privacy budget ε can be assigned to the generation of 

ach D 

′ 
i 

and S i 
k 
. Since D 

′ 
i 

is generated by LevelPart, according to 

emma 1 , it satisfies the second constraint. For each S i 
k 
, APLKiller 

irectly generates the positive Laplace noise using privacy budget 

. Therefore, the APLKiller satisfies APL-Free ε-DP, and the proof is 

ompleted. �

4. Proof for Theorem 3 

roof. In Chen et al. (2011) , it has been shown that if there is

o pruning operation, the maximum number of partitioning op- 

rations to reach the leaf partition is n −1 
f−1 

, which is the number 

f internal nodes in the taxonomy tree T rooted at u . Now given

runing operations, one can simply derive that Par(u, l) ≤ n −1 
f−1 

. It 

s not difficult to show that the number of partitioning operations 

quals the number of internal nodes visited during the aggrega- 

ion of items from the bottom of the taxonomy tree to the top. To 

llustrate this fact, we give an example shown in Fig. 12 . 

Let the level of leaf nodes in T be 0. There are two cases to

onsider. In level i > 0 , 

1. for a l-itemset, if l ≤ � n 
f i 
� , which is maximum number of nodes

in level i , it will visit at most l nodes and leave � n 
f j 

� − l number

of nodes unvisited at each level j < i . 

2. for a l-itemset, if l ≥ � n 
f i 
� , it will visit at most � n 

f j 
� nodes at

each level j ≥ i . 

Consider l ∈ [ n 
f k +1 

, n 
f k 

) . For level j ≥ k + 1 , all nodes can be vis-

ted. For level j ≤ k , it will leave at least � n 
f j 

� − l nodes unvisited.

o 

 ar(u, l) ≤ n − 1 

f − 1 

−
k ∑ 

j=1 

(� n 

f j 
� − l) , 

nd the proof is completed. �

5. Proof for the time complexity 

roof. In each round of APLKiller, The main computational cost 

omes from Line, where LevelPart is called to generate D 

′ 
i 
, given 

he length i . 
15 
Now let us prove the time complexity of LevelPart. Similar to 

he proof for DiffPart: For each partitioning operation, the main 

omputational cost comes from the distribution of records from a 

artition to its sub-partitions, and the time complexity is O (| D i | ) .
ince the maximum number of partitioning operations, according 

o Theorem 3 , is bound by n −1 
f−1 

, the time complexity of LevelPart 

or generating i -itemset is O (n | D i | ) . 
Finally, for generating itemsets for all lengths, the time com- 

lexity is O (n 
∑ n 

i =1 | D i | ) , which is O (mn ) , and the proof is

ompleted. �
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