
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 6, DECEMBER 2023 2745

Enabling Distributed and Optimal RDMA Resource
Sharing in Large-Scale Data Center Networks:

Modeling, Analysis, and Implementation
Dian Shen , Junzhou Luo, Member, IEEE, ACM, Fang Dong , Member, IEEE, Xiaolin Guo , Ciyuan Chen ,

Kai Wang , and John C. S. Lui , Fellow, IEEE, ACM

Abstract— Remote Direct Memory Access (RDMA) suffers
from unfairness issues and performance degradation when
multiple applications share RDMA network resources. Hence,
an efficient resource scheduling mechanism is urged to optimally
allocates RDMA resources among applications. However, tradi-
tional Network Utility Maximization (NUM) based solutions are
inadequate for RDMA due to three challenges: 1) The standard
NUM-oriented algorithm cannot deal with coupling variables
introduced by multiple dependent RDMA operations; 2) The
stringent constraint of RDMA on-board resources complicates
the standard NUM by bringing extra optimization dimensions;
3) Naively applying traditional algorithms for NUM suffers
from scalability issues in solving a large-scale RDMA resource
scheduling problem. In this paper, we present how to optimally
share the RDMA resources in large-scale data center networks
with a distributed manner. First, we propose Distributed RDMA
NUM (DRUM) to model the RDMA resource scheduling problem
as a new variation of the NUM problem. Second, we present
distributed algorithms to efficiently solve the large-scale, inter-
dependent RDMA resource sharing problem for different RDMA
use cases. Through theoretical analysis, the convergence and
parallelism of proposed algorithms are guaranteed. Finally,
we implement the algorithms as a kernel-level indirection module
in the real-world RDMA environment, so as to provide end-
to-end resource sharing and performance guarantee. Through
extensive evaluations by large-scale simulations and testbed
experiments, we show that our method significantly improves
applications’ performance under resource contention, achieving
1.7 � 3.1⇥ higher throughput, and in a dynamic context, the
largest performance improvement reaches 98.1% and 64.1% in
terms of latency and throughput, respectively.

Manuscript received 30 October 2021; revised 8 October 2022;
accepted 20 March 2023; approved by IEEE/ACM TRANSACTIONS ON
NETWORKING Editor J. Llorca. Date of publication 7 April 2023; date of
current version 19 December 2023. This work was supported in part by
the Jiangsu Provincial Key Research and Development Program under Grant
BE2022065-4, in part by the National Natural Science Foundation of China
under Grant 6227072991, in part by the Jiangsu Provincial Key Laboratory
of Network and Information Security under Grant BM2003201, and in part
by the Fundamental Research Funds for the Central Universities under Grant
2242021R41177. The work of John C. S. Lui was supported in part by the
RGC GRF under Grant 14215722. (Corresponding author: Fang Dong.)

Dian Shen, Junzhou Luo, Fang Dong, Xiaolin Guo, and Ciyuan Chen are
with the School of Computer Science and Engineering, Southeast Univer-
sity, Nanjing 211189, China (e-mail: dshen@seu.edu.cn; jluo@seu.edu.cn;
fdong@seu.edu.cn; xlguo@seu.edu.cn; cychen@seu.edu.cn).

Kai Wang was with the School of Computer Science and Engineering,
Southeast University, Nanjing 211189, China (e-mail: kwang@seu.edu.cn).

John C. S. Lui is with the Department of Computer Science and Engi-
neering, The Chinese University of Hong Kong, Hong Kong, China (e-mail:
cslui@cse.cuhk.edu.hk).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TNET.2023.3263562, provided by the authors.

Digital Object Identifier 10.1109/TNET.2023.3263562

Index Terms— Data center network, RDMA, distributed
optimization.

I. INTRODUCTION

REMOTE Direct Memory Access (RDMA) is a tech-
nology of high speed data transfer among applications

across networks [1], [2]. Based on kernel bypass, RDMA
allows applications to perform data transfers from user-space
directly to RDMA Network Interface Card (RNIC) without
the involvement of the operating system kernel. RDMA can
achieve significantly higher throughput, lower latency, and
lower CPU utilization than traditional TCP/IP based protocols,
thus becoming a promising networking technology for data
center applications.

Although the kernel bypassing design of RDMA is efficient
for data transfer, it does not work well in a shared data center
environment as reported in [3], [4], and [5]. In particular,
native RDMA does not provide efficient resource management
across applications [4]. When multiple applications share
the RDMA-enabled network, one greedy application could
monopolize the resources by issuing a large batch of requests.
Thus, RDMA fails to deliver the quality of service (QoS),
performance isolation, or fairness guarantee in the shared
environment.

To this end, one urging question is how to design an efficient
resource scheduling mechanism which optimally allocates the
RDMA resources among applications. Existing proposals [3],
[4], [5], [6] addressed this issue at the system level, by imple-
menting RDMA resource scheduling solutions with perfor-
mance isolation and rate allocation. However, the scheduling
policies were based primarily on engineering heuristics, and
they are far away from the optimality of resource allocation
efficiency. Theoretically, network resource scheduling opti-
mization can be formulated as a Network Utility Maximization
(NUM) problem [7], [8], [9], [10], where the utility provides
a metric to measure the optimality of resource allocation
efficiency, such as QoS or fairness. While previous efforts [11],
[12], [13] in TCP/IP networks have been successful in deriving
optimal resource scheduling solutions based on solving some
specific NUM, none has considered RDMA. In this paper,
we propose a novel adoption of NUM to address the optimal
RDMA resource scheduling.

However, the aforementioned NUM-based solutions require
a strong assumption on the optimization variables and utility
functions. Specifically, a common assumption used in previous

1558-2566 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 03,2024 at 06:01:40 UTC from IEEE Xplore. Restrictions apply.

2746 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 6, DECEMBER 2023

methods is that there is only one set of optimization variables
(e.g., a rate allocation vector) and the utility function is depen-
dent on this set of optimization variables only [8], [11], [12],
[13]. Because such an assumption contradicts the complexities
inherent in RDMA networks, it is challenging to adopt the
NUM for RDMA resource scheduling. The challenges include
the following three aspects.

Multiple dependent RDMA operations introduce many
coupled variables. RDMA exposes to higher layer applica-
tions multiple low-level hardware primitives such as oper-
ations on multiple queues. These operations, with different
functionalities, can be described by different utility func-
tions. Since these operations are dependent (Section II-C),
the RDMA resource scheduling problem can be formulated
as a multi-block optimization problem with coupled variables.
Consequently, the assumption of NUM is invalid, and the
standard NUM algorithms are unable to deal with it.

Stringent constraint of RDMA on-board resources
brings one extra dimension in the utility function. RDMA
caches the connection information on the RNIC to achieve
low latency communications. As the on-board RNIC cache is
limited, when the number of connections grows, the total size
of connection states will exceed the RNIC cache size and cause
cache thrashing (Section II-D), impairing the performance
of hosting applications. Standard NUM [7], [8] treats the
number of connections as unconstrained flows. With such a
stringent cache constraint, the active connections in RDMA
should be carefully selected or prioritized. Thus, this is another
optimization dimension which invalidates the assumption of
NUM, making the standard NUM more complicated to solve.

The inherently large RDMA network scale causes the
scalability issue. In a production RDMA network, the number
of hosts is on the order of O(104) to O(105), and the
number of applications on each host is of O(103). Thus the
number of variables can be up to O(108). Naively applying
traditional algorithms for NUM suffers from scalability issues
in solving such a large-scale optimization, especially for the
cases with coupled RDMA operations among multiple hosts.
Thus, we are motivated to consider distributed optimization,
and an implementation that can provide a fast and scalable
solution.

In this paper, we present how to optimally schedule appli-
cations in the RDMA network with a distributed algorithm.
Specifically, we first model the RDMA resource scheduling
problem as a new variation of the NUM problem to charac-
terize the complexities of RDMA networks, called Distributed
RDMA NUM (DRUM). DRUM is inherently a multi-block
constrained optimization problem, which jointly optimizes the
sharing on multiple RDMA resources. Second, taking into
account the RDMA on-board resources constraint, we design
the objective function of DRUM by applying a top-k̃ applica-
tions selector. Considering the resource preemption scenario,
we further model the resource usage of each connection with
a certain preemptive range, such that the resources are allowed
to be preempted by other applications. We then analyze the
tractability of the proposed model by convexity analysis.
Third, we present a distributed solution which splits the
large-scale global optimization problem into many small local
subproblems. We propose a novel distributed algorithm based
on the alternating directional method of multipliers (ADMM)

Fig. 1. RDMA abstracts resources in the semantics of queues and allows
kernel bypass data transfer for applications.

and prove the convergence guarantee and parallelism of our
ADMM-based algorithms through theoretical analysis. In par-
ticular, we analyze in depth the difference when modeling
different types of RDMA operations.

To demonstrate the applicability of our proposed algorithms,
we implement them as a kernel-level RDMA indirection
module which manages all the privileged resources. The
implemented system, DRUM-agent, is an end-to-end solution
that can be deployed in a distributed manner in the current
RDMA network architecture. Finally, we conduct extensive
testbed experiments in the real-world RDMA environment
with a comparison to the state-of-the-art methods. Experimen-
tal results show that DRUM can significantly improve appli-
cations’ performance in the shared RDMA network, achieving
1.7�3.1⇥ higher throughput under heavy background traffic.
In a dynamic context, the largest performance improvement
reaches 98.1% and 64.1% in terms of latency and throughput,
respectively. The overhead of DRUM is also mild that it only
consumes less than 30% usage of one CPU core when serving
over 250 connections on one host.

To the best of our knowledge, this paper is the first work
to discuss the modeling, analysis and implementation of the
RDMA resource sharing problem. Our major contributions are
summarized as follows:

• We propose a new variation of the NUM model called
DRUM to formulate the RDMA resource sharing prob-
lem, addressing the inherent complexities within RDMA
networks.

• We present a distributed and modular algorithm to solve
the problem, and prove the convergence guarantee and
parallelism through theoretical analysis.

• We implement a kernel-level RDMA indirection mod-
ule which manages all privileged resources and enables
resource sharing with the proposed algorithms.

• We evaluate our method through large-scale simulations
and testbed experiments. The experimental results show
that the RDMA network achieves higher scalability and
improved network performance, compared with the state-
of-the-art methods.

II. BACKGROUND AND MOTIVATION

A. RDMA and RDMA Resource Management
RDMA is a technology of high speed data transfer among

applications across a network [1]. Different from traditional
TCP/IP networks, RDMA bypasses the operating system ker-
nel and allows applications to directly access the low-level
hardware resources in RNIC. Therefore, RDMA eliminates

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 03,2024 at 06:01:40 UTC from IEEE Xplore. Restrictions apply.

SHEN et al.: ENABLING DISTRIBUTED AND OPTIMAL RDMA RESOURCE SHARING 2747

Fig. 2. Characteristics of RDMA communication: (a) The unfairness issue in the shared network; (b) dependent RDMA operations; (c) cache thrashing issue
under a large amount of connections.

the packet processing overhead in the kernel so as to provide
both high bandwidth and low latency.

RDMA abstracts the resources as various queues, and
applications implement the communication using these queues.
As Fig. 1 shows, there are primarily three queues. The “send
queue” and “receive queue” are always created in pairs and
are referred to as a Queue Pair (QP). To perform data transfer,
an application creates a QP and places instructions on the
QP. These instructions are small data structures called Work
Queue Elements (WQEs), which contain the memory location
where the data reside and where it wants to send. The RNIC
then processes the WQEs to send the data. The third one
is the Completion Queue (CQ), which is used to notify
the applications when the WQEs have been completed. The
completion notifications are called Completion Queue Entries
(CQEs). The applications actively poll the CQEs to determine
the completion of messages sent.

When multiple applications share the network, native
RDMA does not provide efficient management of resources
across applications [4]. As a consequence, one application
can simply post a large batch of WQEs to monopolize the
resources, thereby degrading the performance of other applica-
tions. As a simple illustration in Fig. 2(a), the 80% completion
time of one foreground traffic degrades by 3.9⇥ from 20 µs
to 78 µs when the co-located application increases the WQE
requests batch size from 20 to 100.

B. Network Utility Maximization
The theory behind network management problems is usually

generalized by Network Utility Maximization (NUM). NUM
is a powerful and widely-used modeling tool, the formulation
of which captures network resource management objectives
through utility functions and models various types of resource
constraints as the constraint set. The basic NUM problem has
the following formulation

maximize
X

s

Us(xs),

s.t. 8s : xs 2 Xs,

where s denotes any source in the network, xs denotes the
source rate such as the bandwidth, Us(xs) denotes the utility
functions, and {Xs} is the constraint set, such as bandwidth
constraints. Previous researches modeled TCP/IP networks and
derived resource scheduling solutions based on solving some
specific NUM with particular utility functions [12], [13].

Assumption of NUM. In a standard NUM model, the rate
allocation vector x = {xs} is usually assumed to be the only

set of optimization variables and utility functions Us(xs) are
often assumed to be dependent on x only [8], [12], [13].

However, such an assumption is violated in the context of
RDMA networks due to their inherent complexities. In the
following section, we demonstrate the inherent complexities
within RDMA networks through experimental results and
analysis, and then present how to extend NUM with a new
variation of this model.

C. The Dependency Among Multiple RDMA Operations
RDMA resource scheduling involves the management on

multiple queues, e.g., allocating the WQE requesting rates
on QP and deciding the CQE polling rates on CQ. At the
application level, the operations on these queues are inherently
dependent. Specifically, the applications usually implement the
communications through a “WQE requesting-CQE polling-
WQE requesting” loop that an application can only issue a
batch of WQE requests after polling one CQE. The batch
size is controlled by the parameter wr_num. For example,
TensorFlow-RDMA [14] sets wr_num to be 1 when process-
ing tensors and Spark [15] sets it dynamically according to
the shuffle data in the buffer. In the experiment, we manually
adjust the CQE polling rate of one application and measure
its throughput. From Fig. 2(b), we observe that the throughput
grows as the CQE polling rate increases, because the appli-
cation can issue more WQE requests in one loop. Therefore,
controlling one communication operation in RDMA affects
the other in turn, yielding multiple dependent variables in the
resource scheduling optimization. The standard NUM-oriented
algorithms are unable to deal with such complexity.

D. RNIC Cache Thrashing Under Concurrent Connections
RDMA caches the connection information on the RNIC

to achieve low latency communications. However, since the
RNIC cache is limited, when the number of connections
grows, the total size of QP states will exceed the RNIC cache
size and cause cache thrashing. Cache thrashing significantly
impairs the performance of hosting applications. To better
understand this issue, we vary the number of concurrent
connections in one host and measure the average throughput.
In the experiment, RDMA connections are set with different
types: Reliable Connection (RC), Unreliable Connection (UC),
and Unreliable Datagram (UD). While RC and UC need to
create QPs and maintain the queue states when establishing
connections, UD supports unreliable communication without
establishing QPs. As Fig. 2(c) shows, when the number

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 03,2024 at 06:01:40 UTC from IEEE Xplore. Restrictions apply.

2748 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 6, DECEMBER 2023

of connections using RC and UC exceeds 20, the RNIC
is unable to cache all the connection information and the
average throughput drops significantly. The result indicates
that, to maintain high communication performance, the num-
ber of QPs should be constrained to avoid cache thrashing.
With such a stringent cache constraint, the active connections
should be carefully selected or prioritized. Therefore, one more
optimization dimension on the application selection makes the
standard NUM rather complicated to solve.

E. One-Sided and Two-Sided RDMA Operations
RDMA applications transfer messages by directly manipu-

lating RNIC through hardware primitives called RDMA Verbs.
The typical Verbs consist of one-sided and two-sided opera-
tions. One-sided Verbs, including Write, Read and etc, directly
access remote memory without involving the remote server’s
CPU. In particular, Read Verb is used to fetch data from the
memory of a remote host, while Write Verb transfers data into
the memory of a remote host. On the contrary, two-sided Verbs
require the involvement of the remote server. For example,
Send and Recv Verbs are used in pairs that when the Send Verb
transfers a message to the remote host, a corresponding Recv
Verb must be evoked to receive the message. As introduced
earlier, all Verbs are posted, by the data structure of WQEs,
to QPs that are created and maintained inside the RNIC. How-
ever, the fundamental difference brought by these two types
of RDMA operations lies in the fact that one-sided operations
only raise WQEs requests and completion notifications on one
host, while two-sided operations raise them on both hosts.
Therefore, two-sided operations introduce dependent optimiza-
tion variables, in terms of resource allocation, on different
remote hosts, bringing additional challenges for designing a
distributed solution for RDMA resource sharing.

III. RDMA RESOURCE SCHEDULING OPTIMIZATION

A. Problem Formulation
We consider an RDMA-enabled data center network as

illustrated in Fig. 3. It consists of a finite set of connected hosts
and a finite set of applications consuming network resources.
Let hosti be the i

th physical host. There are in total n hosts
in the network, i.e., i 2 Zn, where Zn = {1, 2, . . . , n}.
Any hosti runs up to m RDMA-enabled applications. The
scheduler allocates the WQE requesting rates sj to application
j 2 Zm, where Zm = {1, 2, . . . ,m}. Define xi 2 Rm

+
as the rate allocation vector for hosti, we have xi,j = sj

and xi = {s1, s2, . . . , sm}, i 2 Zn. The problem is how to
determine xi for each hosti. For a straightforward adoption of
NUM, the model becomes

maximize
nX

i=1

fi(xi), xi 2 Rm
+ ,

s.t. hi(xi) qi, 8i 2 Zn. (1)

where fi(·) : Rm ! R is the utility function. Although in
general fi(·) could be an arbitrary concave function, we first
carefully discuss how to choose this utility function. In a
shared networking environment, the basic design goal is to
ensure fairness among all connections instead of blindly max-
imizing the total throughput, otherwise certain applications

Fig. 3. RDMA resource scheduling model with n connecting hosts and m
co-located applications.

could be starving that 9i, xi ! 0n. That is to say, some
level of balance should be considered between fairness and
efficiency in the resource allocation. Addressing this issue,
we use a function that satisfies the definition of fairness, which
is a maximizer of ↵-fair utilities for all xi, parameterized by
0 < ↵ < +1 and a weight parameter wj . wj can be adjusted
subject to the priority of connections. We define the utility
function for all xi as

fi(< xi,1, xi,2, . . . , xi,m >) =
mX

j=1

wj · (1� ↵)�1
s
1�↵
j ,8xi.

(2)

Maximizing such fi(·) would generate a ↵-fair alloca-
tion [16]. The reason we use the ↵-fair utility function is the
generality of this function that it can satisfy the general needs
of network operators. For example, in the case when ↵ ! 1,
apply L’Hospital’s rule, we get

lim
↵!1

fi(xi) =
mX

j=1

wj lim
↵!1

s
1�↵
j � 1
1� ↵

=
mX

j=1

wj log sj , (3)

which generates the weighted proportional fairness. In the
case when ↵ = 2, fi(xi) =

Pm
j=1 wj/sj , optimizing such

utility function generates Minimum delay potential fairness.
In the case when ↵ ! +1, it generates Max-min fairness.
Furthermore, summing up the concave function fi(xi) for all i

remains its concavity, so that it can be solved easily by exiting
numerical optimization algorithms.

The cost function hi(·) : Rm ! R is an arbitrary convex
function, such as physical bandwidth limitations or resource
prices. We refer to x⇤ = {x⇤1, x⇤2, . . . , x⇤n} as an optimal
rate allocation if it solves problem (1), i.e.,

P
i fi(x⇤i) �P

i fi(xi),8xi. Traditionally, this problem can be solved via a
convex programming solver or Dual Decomposition method.

However, as described in Section II, the complexities of
RDMA make the direct transformation from NUM impractical.
First, RDMA abstracts the resources by multiple queues.
In addition to QP and associated WQE requesting rates,
scheduling CQ and associated CQE polling rates should also
not be overlooked. We define another rate vector zi =
{r1, r2, . . . , rm}, i 2 Zn, where rj is the allocated CQE
polling rate for each application j and zi,j = rj , j 2 Zm.
In RDMA, the CQE polling rate is closely related to the
application-perceived latency, we hereby define a different
utility function for CQ.

Definition 1 (CQ Utility): The function is characterized by
a multiplier gi(zi) = �� ·

Pm
j=1(1/zi,j)2, where zi 2 Rm

+ .
In this definition, � is the weighting factor that captures the

relative importance of latency-related utility. The application-

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 03,2024 at 06:01:40 UTC from IEEE Xplore. Restrictions apply.

SHEN et al.: ENABLING DISTRIBUTED AND OPTIMAL RDMA RESOURCE SHARING 2749

perceived latency for application j on hosti is captured by
(1/zi,j)2, which is inversely proportional with its CQE polling
rate zi,j . Then the overall utility function gi(·) depends on
the application-perceived latency. Clearly, gi(·) is a concave
function and achieves its maximum value when zi ! +1.

In the RDMA design, due to the on-board cache size
limitation, the number k̃ of active connections using QPs on
each hosti should be bounded, i.e. k̃ < m. In practice, k̃ is set
as k̃ = 20 and homogeneous across the data center. Therefore,
the selection of k̃ active applications should be considered.
Therefore, we rewrite the original fi(xi) as efi(xi) using the
following definition.

Definition 2 (QP Utility): We define the utility as a mul-
tiplier efi(xi), where xi 2 Rm

+ . The multiplier prioritizes k̃

applications with the largest utilities.

efi(xi) =
k̃X

j=1

(1� ↵)�1
s
1�↵
[j] , 8s[j] 2 xi, (4)

where [j] is the application with j-th largest utility value. Note
that efi(xi) is not restrictive to a top-k̃ utility selection. It can
be formulated to describe any prioritizing mechanism such
as FIFO or smallest job first. Therefore, the utility function
of QP is more complicated by applying the functionality of
application selection. We theoretically analyze the complexity
through convex analysis and derive the following lemma.

Lemma 1: The function efi(xi) is strictly concave.
Proof 1: First, order the element j in vector xi by the value

(1� ↵)�1
s
1�↵
j in the descending order. Then equation (4) is

mathematically equal to sum the top k̃ largest ones up from
m elements, which is

efi(xi) = max{(1� ↵)�1
s
1�↵
[i1]

+ . . . + (1� ↵)�1
s
1�↵
[ik̃]

|i1, i2, . . . , ik̃ 2 N, 1 i1 . . . ik̃ m}. (5)

Thus, there are C
k̃
m combinations of such selection. We can

define a binary vector t 2 Rm, where the corresponding
element of an accepted application is set to 1, while the
others are 0. Transform equation (5) to supt{fi(t · x[i])|8t}.
This means that we conduct a supremum operation on C

k̃
m

combinations of fi(·), which is efi(·) = g(fi(xi)), where
g(·) = supt{·}. Because fi(xi) is concave and g(·) is the
operation that maintains concavity, then efi(·) is still a concave
function. Therefore, the lemma is proved. ⇤

Other than the objective function, we also carefully consider
the cost function hi(·), which should be an arbitrary convex
function that restricts the physical RNIC capabilities, such as
the logarithm function used in [17], or a more general piece-
wise linear function with increasing slopes. For computational
convenience, we define h

q
i (xi) =

P
j log(xi,j) qi as the

physical constraints for xi, and h
c
i (zi) =

P
j log(zi,j)

ci for zi, where qi and ci are set according to the hard-
ware specifications. Note that we use a trick that the for-
mulation constrains the physical usages of RDMA on-chip
resources with logarithmic functions. When applying this trick,
we define qi and ci as qi = �iq̇

m
i and ci = �iċ

m
i , where

q̇i and ċi are the original hardware specifications, �i and
�i are the scaling factors. The rationale behind the scaling
is that summing up the logarithmic of xi,j and zi,j is the
product of their multiplications. Therefore, the scaling of q̇i

and ċi with exponentials approximates the original constraints.
This transformation will result in eliminable variables in the
derivation of the closed-form solution of optimization, and the
details will be described in the proof of Theorem 2 and 3.

We further consider the scenario where preemptive schedul-
ing is allowed in the RDMA network. Preemptive scheduling
is especially important for RDMA use cases where there
are many real-time or time-sensitive applications. To model
this feature, we extend the rate allocation vector xi with
an ellipsoidal region, denoted as aT

i xi,8i, where ai 2 Ai.
Ai is an ellipsoidal region that Ai = {ai : ai = ai +
qiu, ||u||2 = 1}. The physical meaning of Ai is that we
allow preemption on the RDMA resources in cases when some
latency bounded applications need to schedule immediately.
In this setting, the preemption range is controlled by qi that if
the application is not very urgent, it can declare that it needs a
minimum resource guarantee ai, and qiu amount of resources
can be preempted by other applications. For time sensitive
applications, it can declare that all the resources should be
strictly guaranteed. In this case, ai = 1 and qi = 0 and such
that xi degrades to the standard modeling. Therefore, with this
extension of xi, we can model different preemption tolerance
for various kinds of applications. Note that the same technique
applies to the CQE polling rate zi as well.

With the above definitions, we formulate a variant of the
basic NUM to characterize the RDMA resource scheduling
problem, denoted as DRUM, the objective of which is to
jointly optimize the utility of xi and zi.

maximize
nX

i=1

efi(xi) +
nX

i=1

gi(zi), xi, zi 2 Rm
+ ,

s.t. h
q
i (xi) qi, 8i 2 Zn,

h
c
i (zi) ci, 8i 2 Zn,

F (x) = z. (6)

Problem (6) is inherently a large-scale multi-block opti-
mization problem with equality and inequality constraints and
dependent optimization variables, which is hard to solve in a
timely manner.

B. Problem Analysis and a General Algorithm
Traditionally, to solve problem (6) is based on the method of

multipliers, in which there is an augmented Lagrangian param-
eter ⇢, and Lagrangian dual variable u. The optimal value
x⇤, z⇤ and dual optimal value u

⇤ are computed iteratively by
solving the following equation:

(xk+1
, zk+1) := argmax

x,z
L⇢(x, z, uk),

(uk+1) = u
k + ⇢(F (xk+1)� zk+1).

Here, the augmented Lagrangian L⇢(x, z, uk) is maximized
jointly with respect to the two jointly dependent primal
variables. To solve this problem, we leverage the Alternat-
ing Direction Method of Multipliers (ADMM) [18] method.
In ADMM, xi and zi are updated in an alternating fashion;
that is, in each iteration k, x

k
i is computed as an intermediate

result from the previous state (zk�1
i , u

k�1
i). z

k+1
i is a function

of (xk+1
i , u

k
i), and the Dual variable u

k+1 is updated from u
k

by collecting all the x
k+1
i and z

k+1
i . Following the ADMM

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 03,2024 at 06:01:40 UTC from IEEE Xplore. Restrictions apply.

2750 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 6, DECEMBER 2023

framework, we obtain an algorithm schema with iterations on
the order of the x-minimization step, z-minimization step and
u-update step. We illustrate the schema as Algorithm 1:

Step 1, x-minimization step:

min
xi

� efi(xi) + u
k(F (x)� zk) + (⇢/2)||F (x)� zk||22,

s.t. h
q
i (xi) qi. (7)

Step 2, z-minimization step:

min
zi

�gi(zi) + u
k(F (xk+1)� z) + (⇢/2)||F (xk+1)� z||22,

s.t. h
c
i (zi) ci. (8)

Step 3, u-update step:

u
k+1 = u

k + ⇢ · (F (xk+1) + zk+1). (9)

By design, the alternating update in ADMM reduces
the computing complexity, and the extra regulation term
(⇢/2)||F (x) � z||22 stabilizes the iterations. One important
property of the ADMM-based solution is its theoretical guar-
antee of convergence. The convergence of our algorithm is
formally guaranteed by the following theorem:

Lemma 2: The strong duality holds for problem (6), i.e.,
suppose that problem (6) (P) has an optimal solution x

⇤
, z
⇤,

there exists and optimal solution to L0(x, z, u) (D), such that
the optimal values for (P) and (D) are equal, VP = VD.

Proof 2: The proof ban be found in Appendix.
Theorem 1: When a feasible solution to the DRUM exists,

the ADMM-based solution converges to the optimal value p
⇤.

In particular, the followings are true:
1. The consistency is achieved: xk ! F

�1(zk) as k ! +1.

2. The solution is optimal:
nX

i=1

efi(xk
i) +

nX

i=1

gi(zk
i) ! p

⇤ as

k ! +1.
3. An optimal dual value is found: ⇢u

k ! ⇢u
⇤ as k ! +1.

Proof 3: Let (x⇤, z⇤) be the primal optimal solution to
problem (4). In particular, F (x⇤) = z⇤. Let u

⇤ be a dual
optimal solution. Because of the condition that a feasible
solution to the DRUM exists, along with the strong duality
theorem, u

⇤ exists. Then we have (xk
, zk

, u
k) as an arbitrary

set of results generated in iteration k. Let v
k = u

k
/⇢ and

zk = F (xk) + v
k�1 � v

k, so we have

V
k =

nX

i=1

(||zk � z⇤||22 + ||vk � v
⇤||22). (10)

This equation leads to convergence if 9", Dk = V
k+1 �

V
k

< ". [18] has proved that D
k is Lipschitz continuous and

" exists 8k with any start point {x0
, z0

, u
0}, so " is

" = ⇢||rk+1||22 + ⇢||F�1(zk+1 � zk)||22, (11)

where r
k is the primal residual after k-th iteration. Equation

(11) holds with the saddle point theorem when the objective
functions efi(·) and gi(·) are closed, proper, and convex. Note
that it does not require the combination efi(·) + gi(·) to be
convex. With Lemma 1, efi(xi) =

Pk
j=1(1 � ↵)�1

s
1�↵
[j] is

strictly concave, so � efi(xi) is a convex function. By def-
inition, gi(zi) = �q ·

P
j(1/zij)2. gi(·) is concave when

dom(gi) 2 Rm
+ . Since zi 2 Rm

+ , �gi(zi) is a convex function.
Then we check the convexity of the constraints. We evaluate

the function h
q
i (·) and h

c
i (·) by definition. Specifically, for the

preemptive setting, we rewrite h
q
i (xi) by

h
q
i (xi) = (ai + qiu)T

xi qi , aixi + u
T qT

i xi qi

, aixi + ||qT
i xi||2 qi. (12)

Equation (12) indicates that the feasible set of xi is the
sublevel set of h

q
i (·), where Si = {xi : aixi + ||qT

i xi||2 qi}.
Si is a second-order cone (SOC) over xi, which is closed
and convex. The above analysis also applies to h

c
i (·),8i as

well. It is worth noticing that the modeling of the preemption
will not influence the convergence of this algorithm, which
demonstrates the feasibility and generality of this algorithm
in solving various kinds of RDMA resource allocation prob-
lems. When the above conditions hold, we can derive the
convergence of Vk. Assume the inverse of function F

�1(·)
exists, we can derive that F

�1(zk+1 � z⇤) is bounded and
both r

k+1 and F
�1(zk+1 � z

k) go to 0, when k ! +1.
Thus F

�1(z⇤) = x⇤, and Theorem 1.1 holds.
Since the inequality holds that p

k+1 � p
⇤ u

⇤T
r

k+1,
we have limk!+1p

k�p
⇤ = 0, i.e., the objective convergence.

Thus Theorem 1.2 is proved.
Finally, with Lemma 2, the duality gap is proved to be

zero for DRUM problem, so u
k ! u

⇤ when p
k ! p

⇤. Thus
Theorem 1.3 is proved. ⇤

Theorem 1 indicates that the ADMM-based method will
converge to the optimality with enough k. Note that it implic-
itly assumes that the function F (·) is convex and invertible.
Essentially, F (·) : Rm⇥n ! Rm⇥n correlates x and z and the
physical meaning behind this function is how the generation
of RDMA CQEs is related with WQEs. In the following
sections, we will show that, for different RDMA operations,
the relationship between CQEs and WQEs differs, yielding
different modeling of F (·). Furthermore, different versions
of F (·) lead to divergent designs and analyses of DRUM
solutions.

C. DRUM for One-Sided RDMA Operations

We first evaluate the one-sided RDMA operations. In this
case, the RDMA operations only generate CQEs on the local
host where they are evoked. In this case, as described in
Section II-C, the CQ polling rate and QP requesting rate have
an approximately linear relationship that, after polling each
CQE, the application generates multiple WQEs according to
the WQE batch size. Thus, F (·) can be defined as

F (x) = Ax = z, A 2 Rm⇥m
, (13)

where A = diag{a1, a2, . . . , am}, and a1 varies for applica-
tions with different WQE batch sizes. With the definition of
such F (·), we analyze how to solve the local subproblem on
hosti under Algorithm 1. First, for the x-minimization step,
we explore whether such a subproblem has a closed-form
expression. The computation of each x-minimization step is
guided by the following theorem.

Theorem 2: 8hi, the solution for x-minimization step is

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 03,2024 at 06:01:40 UTC from IEEE Xplore. Restrictions apply.

SHEN et al.: ENABLING DISTRIBUTED AND OPTIMAL RDMA RESOURCE SHARING 2751

x
k+1
i =

8
>>>><

>>>>:

xi,j = � 1
2cj + (c2

j � 4bjdj)1/2
b
�1
j ,8xi,j /2 I

{x1/2
i,j |bjx

4
i,j + cjx

2
i,j + xi,j + dj = 0},

8xi,j 2 I, ↵ = 1
2

{xi,j |xi,j = (bjx
2
i,j � cjxi,j � dj)1/3},

8xi,j 2 I, ↵ 6= 1
2

(14)

where bj = �⇢a
2
j , cj = ⇢ajz

k
i,j + aju

k
j and dj = �

q
i .

Guided by Theorem 2, we have a closed-form solution of
x

k+1
i , and now we consider the CQ polling part gi(zi), with

the following theorem to guide the update of vector z
k+1
i .

Theorem 3: 8hi and 8zi, the solution for z-minimization is

z
k+1
i = {zi,j |zi,j = �

c
i ((⇢ + u

k
j)zi,j � 2 z

�3
i,j � ⇢ajx

k+1
i,j)�1}.

(15)

Due to space limitation, the proofs of Theorem 2 and
Theorem 3 are attached in the Appendix. With the above
theorems, we have demonstrated that all the subproblems
of x and z minimization can be solved very efficiently by
closed-form expressions or simple numerical methods.

Parallelism analysis. Such an ADMM-based method can
be viewed as a variant of the method of multipliers where
Gauss-Seidel iterations over xi and zi are used. Consequently,
it naturally decomposes the joint minimization into two inde-
pendent steps and breaks down the dependency between the
steps into altering programming directions. Then, we focus on
each minimization step to see whether it can be computed in
parallel. For x-minimization step, as the objective

Pn
i

efi(xi)
is the summation of decomposed functions efi(xi), which is
separable. For the regulation term (⇢/2)||F (x)� z||22, as A =
diag{a1, a2, . . . , am} and assumed to be identical across all
hosts, F (x) can be easily decomposed to F (xi) = Axi =Pm

j=1 aj · xi,j ,8i. Then the regulation term can be rewritten
to (⇢/2)||F (xi) � zi||22. Therefore, x-minimization controls
only a subset of variables xi on each hosti, and observes its
local constraints qi and ci, it can be computed locally on hosti.
For the z-minimization step, applying similar decomposition,
gi(zi) and the constraints are also independent and local on
hosti. Therefore, the optimization of each xi and zi can work
in a distributed manner. For the dual update step, it collects
the value xi and zi from hosts, conducts a simple summation
computation and then broadcasts the updated dual value to
hosts. Therefore, the algorithm can work independently for
each host i to calculate x

k+1
i , z

k+1
i in each iteration k, so that

it can work in a distributed manner.

D. DRUM for Two-Sided RDMA Operations
We now explore the resource sharing problem for two-sided

RDMA operations. Theoretically, it can be viewed as an
extension of the problem (6), where the main difference is the
modeling of F (·). Revisiting the definition of F (·), it captures
the relations between WQEs and CQEs. As for two-sided
RDMA operations, the WQEs and associated CQEs will be
generated on both the sender and receiver sides and consume
the queue resources on both hosts. First, we analyze the partial
of zi incurred by receiving WQEs, denoted as z

0
i. On each

host l, we define a matrix B
l 2 Rm⇥n, where each element

B
l
ji represents the proportion of traffic that application j on

host l send to the destination host i. Such traffic raises the

CQEs processing on the destination host. Therefore, for each
application j on host i, it can receive traffic rj from other host,
which can be defined as rj = aj

Pn
l=1 sj ·Bl

ji. Expanding rj

to the host i, we can derive z
0
i as

z
0
i = A

i
nX

l=1

xl � b
l
i, 8i, (16)

where the operator � is an element-wise multiplication to
compute the Hadamard product of two vectors and b

l
i =

[Bl
1i, B

l
2i, . . . , B

l
mi] is the ith column vector of B

l. Besides, zi

in the two-sided RDMA operations cases should also include
the local CQEs incurred by sending WQEs, denoted as z

00
i .

z
00
i is the same as in the one-sided case, that z

00
i = A

i ·
xi. Combining them together, we can derive the correlation
between xi and zi by the following:

zi = z
0
i + z

00
i = A

i
nX

l=1

(xl � b
l
i) + A

i
xi, 8i. (17)

Therefore, for the two-sided operation case, the original
DRUM optimization problem becomes:

min
nX

i=1

f̃i(xi) +
nX

i=1

gi(zi),

s.t. h
q
i (xi) qi, 8i 2 Zn,

h
c
i (zi) ci, 8i 2 Zn,

A
i

nX

l=1

(xl � b
l
i) + A

i
xi = zi, 8i 2 Zn. (18)

Intuitively, this problem can still be solved by the standard
ADMM method. However, due to the dependence of variables
in the constraint A

i
Pn

l=1(xl � b
l
i) + A

i
xi = zi, we can see

that the x-minimization step requires all VMs vi to jointly
solve a global optimization problem due to the penalty term
(⇢/2)||Ai

Pn
l=1(xl � b

l
i) + A

i
xi � z

k
i ||22. To facilitate the

analysis, we reorganize the traffic matrix B to:

P
i =

0

BBB@

a
i
1B

i
11 a

i
1B

i
12 . . . a

i
1B

i
1i + a

i
1 . . . a

i
1B

i
1n

a
i
2B

i
21 a

i
2B

i
22 . . . a

i
2B

i
2i + a

i
2 . . . a

i
2B

i
2n

...
...

. . .
...

a
i
mB

i
m1 a

i
mB

i
m2 . . . a

i
mB

i
mi + a

i
m . . . a

i
mB

i
mn

1

CCCA

Note that in the definition of P
i, only the ith column have

extra a
i
1 summation. Then we can rewrite the last constraint

of problem (18) into a more compact manner:
nX

l=1

(xl � p
l
i) = zi, (19)

where p
l
i is the ith column of P

l. Such that we can see the
computation of xi relies on the summation of xi on all other
hosts. Such coupling is undesirable for large-scale networks.
Ideally, the x-update should be conducted independently by
each vi. Therefore, we aim to find a distributed solution for
this problem.

The trick here is to introduce an auxiliary variable y
i
l and

make a wise use of the structure of dual variables. Let xl�pl
i =

y
i
l and substitute it into problem (18). For clarity, we change

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 03,2024 at 06:01:40 UTC from IEEE Xplore. Restrictions apply.

2752 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 6, DECEMBER 2023

the subscript of x from i to l, then the original optimization
problem can be rewritten:

min
nX

l=1

f̃l(xl) +
nX

i=1

gi(
nX

l=1

y
i
l),

s.t. xl � p
l
i = y

i
l , 8i 2 Zn,

h
q
l (xl) ql, 8l 2 Zn,

h
c
i (zi) ci, 8i 2 Zn,

nX

l=1

y
i
l = zi, 8i 2 Zn. (20)

After reformulating this optimization problem, we can
derive the following steps of Algorithm 2 for solving the
two-sided RDMA resource sharing problem.

Step 1, x-minimization step:

x
k+1
l = arg min

xl

(f̃l(xl) +
⇢

2
kpl

i � (xl � x
k
l) + d

kk22), (21)

where d
k = 1

n (
Pn

l=1(p
i
l � x

k
l)� z

k
i + u

k).
Step 2, z-minimization step:

z
k+1
i = arg min

zi

(gi(zi) +
⇢

2n
kzi �

nX

l=1

(pl
i � x

k+1
l)� u

kk22).

(22)

Step 3, u-update step:

u
k+1
i = u

k
i +

nX

l=1

(pl
i � x

k+1
l)� z

k+1
i . (23)

Algorithm 2 is a variation of standard ADMM algorithm
described in equation (7) to (9)and its correctness is guaranteed
by the following theorem.

Theorem 4: Algorithm 2 complies with the standard ADMM
framework.

Proof 4: A preliminary of the proof is the lemma described
in [18] that the dual variables are equal for all hosts during
iteration. Let v

k
l be the dual variable of the subproblem on each

host l for each iteration k. This lemma implies 8l, vk
l = v

k.
With this lemma we have 8i, uk

i =
Pn

l=1 v
k
l = nv

k. By stan-
dard ADMM framework, the dual update step is formulated
by:

v
k+1
l = v

k
l + p

l
i � x

k+1
l � y

ik+1
l . (24)

Then we sum up equation (24) by l and substitute the
constraint

Pn
l=1 y

i
l = zi into it, the dual update step becomes:

u
k+1
i = u

k
i +

nX

l=1

(pl
i � x

k+1
l)�

nX

l=1

(yik+1
l)

= u
k
i +

nX

l=1

(pl
i � x

k+1
l)� z

k+1
i , (25)

which is exactly the same as the dual update step described
in equation (23). Therefore, the dual step is proven to comply
with the standard ADMM. Besides, with equation (24), we can
also derive that the dual on each host is given by:

v
k
l = v

k =
1
n

u
k =

1
n

u
k�1 +

1
n

(
nX

l=1

(pl
i � x

k
l)� z

k
i)

= v
k�1 +

1
n

(
nX

l=1

(pl
i � x

k
l)� z

k
i). (26)

We then analyze the x-update step. Applying the standard
ADMM framework to problem (18), we have:

x
k+1
i = arg min

xi

f̃i(xi) +
⇢

2
kpl

i � xl � y
ik
l + v

k
l k22. (27)

In equation (27), we focus on the regulation term, which is
p

l
i�xl�y

ik
l +v

k
l . By substituting equation (26) into it, we have

the following derivation:

p
l
i � xl � y

ik
l + v

k
l

= p
l
i � xl � y

ik
l + v

k
l � p

l
i � x

k
l

+ y
ik
l +

1
n

(
nX

l=1

(pl
i � x

k
l)� z

k
i)

= p
l
i � xl � P

l
i � x

k
l + d

k
, (28)

in which we define d
k = 1

n (
Pn

l=1(p
i
l � x

k
l)� z

k
i + u

k).
Substituting the equation (28) into equation (27), we can see

that it is exactly the same as the x-update step described in
equation (21). Therefore, the x-update step is proved. Finally,
for the z-update step, as we introduce an auxiliary variable y

i
l ,

we have:

y
i,k+1
l = arg min

yi
l

= gi(
nX

l=1

y
i
l) +

⇢

2

nX

l=1

kyi
l � p

l
i � x

k+1
l � v

k
l k22. (29)

Then, we focus on the term inside the norm operator y
i
l �

p
l
i � x

k+1
l � v

k
l , together with the derivation in equation (24),

we have:

y
i
l � p

l
i � x

k+1
l � v

k
l = �v

k+1 = � 1
n

u
k+1

=
1
n

(zi �
nX

l=1

(pi
l � x

k+1
l)� u

k). (30)

Thus, the Euclidean norm part of equation (29) becomes:
nX

l=1

kyi
l � p

i
l � x

k+1
l � v

k
l k22 =

1
n
kzi�

nX

l=1

(pi
l � x

k+1
l)� u

kk22.

Then, substituting
Pn

l=1 y
i
l = zi, we have the z-update step:

z
k+1
i := argmin(gi(zi) +

⇢

2N
kzi �

nX

l=1

(pi
l � x

k+1
l)� u

kk22),

which is the same as the z-minimization step described
in Equation (22). By now, we show that all three steps of
Algorithm2 are mathematically transformed from the standard
ADMM framework. Thus, Theorem 4 is proved. ⇤

Parallelism analysis. First, for x-minimization step, we can
analyze it as two components. In terms of the objective func-
tion,

Pn
i

efi(xi) is the summation of decomposed subproblem
efi(xi), which is the same as the one-sided operation case.
The difference lies in the regulation part which incorporates
the dependent constraints among xi and zi on multiple hosts.
With Theorem 4, we successfully decompose the coupled
regulation term (⇢/2)||Ai

Pn
l=1(xl � b

l
i) + A

i
xi � z

k
i ||22 into

a new one ⇢2kpl
i � (xl � x

k
l) + d

kk22). For the new regulation

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 03,2024 at 06:01:40 UTC from IEEE Xplore. Restrictions apply.

SHEN et al.: ENABLING DISTRIBUTED AND OPTIMAL RDMA RESOURCE SHARING 2753

function, the optimization relies on the variable xl only and
as d

k = 1
n (

Pn
l=1(p

i
l � x

k
l) � z

k
i + u

k), the summation ofPn
l=1(p

i
l � x

k
l) is the values already computed in the last

round of iteration. For the z-minimization step, gi(zi) are also
independent among each host and its regulation part contains
no coupling of variables. So gi(zi) can be calculated by each
host. Therefore, the computation of two terms xi and zi can
be distributed across each host. For the dual update step,
it collects the value xl and zi from hosts, conducts a simple
summation and then broadcasts to all the hosts. From the u-
update step described by equation (23), we notice that the
u-update step can further be distributed to each host i, and
collects only the intermediate values from host l where they
have mutual two-sided communications. It is worth noticing
that, in the former computation of the dual variable u

k for the
one-sided operations, the global u

k is computed by collecting
all the intermediate variables among all the hosts. Now, also
with the fact that 8i, vk

i = v
k, u

k can also be computed by the
distributed hosts. Therefore, for DRUM problem, we conclude
that all the three key steps can be computed in a distributed
manner, for both one-sided and two-sided operations.

E. Simulations
To illustrate the basic behavior of the proposed algorithms,

we report the simulation results for some large-scale instances
of the DRUM problem. We implement our proposed algo-
rithms in Python with CVXPY [19] package and embed
them in multiple parallel processes to simulate the distributed
network scenario. The difference with a real-world RDMA
network is that the communication between multiple processes
is using cross-process communication instead of real data
transferring on the substrate network. In the simulation, the
utility and cost functions of problem (6) are set as the concrete
context of RDMA communication. For different applications,
we randomly generate the coefficients that correlate the CQ
rates and QP rates, and encode them in matrix A. We set
the number of host in data centers n 2 {102

, 103
, 104} and

each host can run up to m applications, m 2 {50, 5 ⇥
102

, 5 ⇥ 103}. With this setting, we simulate a large-scale
data center environment. Each application’s communication
is randomly generated. The maximum WQE processing rate
qi is set to be 20 to 100 million operations per second and
the CQE processing rate ci is set to be 15 to 50 million
operations per second. The maximum concurrent number of
RDMA connections k̃ is set to be 20 to 50. These numbers
represent state-of-the-art RDMA configurations in real-world
data centers.

For the numerical part, we set the penalty parameter ⇢ =
10�3 of the ADMM algorithm after an empirical sweep of
⇢ 2 {10�4

, 10�3
, 10�2

, 10�1}. The initial point of u
0 and

z
0 are set to be zero. The evaluation metric is the number of

iterations, which is platform-independent.
For comparison, we also implement the conventional Dual

Decomposition approach with sub-gradient methods to solve
the standard NUM described in problem (1). The step size ⇢k

is chosen following the commonly accepted diminishing step
size rule [17], with ⇢k = 10�3

/
p

k.
Convergence. We first evaluate the convergence of DRUM

algorithms under varying n and m. From Figs. 4(a) and 5(a),
we observe that our algorithm converges very fast in less

Fig. 4. Convergence analysis when n = 100, m = 50.

Fig. 5. Convergence analysis when n = 103, m = 500.

than 20 iterations for all cases. Figs. 4(b) and 5(b) depict
the trajectory of the primal residual defined in the proof of
Theorem 1. From the figures, we observe that the primal
residual becomes less than 1 when n = 100, m = 50, and
less than 10 when n = 103, m = 500 after 10 iterations.
We also observe that D

k is indeed non-increasing and Lip-
schitz continuous. From the simulation results, we also find
out that the convergence rate is independent of the problem
size by the fact that the convergence behaviors of the proposed
algorithm are the same in all cases when n 2 {102

, 103
, 104},

m 2 {50, 5⇥ 102
, 5⇥ 103}. This means that our algorithm is

scalable for solving large-scale problems. The blue dotted line
in Fig. 4(a) and Fig. 5(a) is an 99.5% approximated optimal
value for the objective. The algorithm stops at 17-th iteration
when n = 103, m = 500. These results confirm that our
algorithm generates a solution with high accuracy even faster.

Fault-tolerance. In the real-world RDMA environment,
since our algorithm runs in a distributed manner on each
host, the missing of intermediate results between the iterations
can happen. For example, packet losses will cause interme-
diate results missing as they are contained in the RDMA
messages. This is especially common when RoCE (RDMA
over Converge Ethernet) is used without Priority Flow Control
(PFC) [2]. In this RDMA usage scenario, zero packet loss is
no longer guaranteed. Another example is that, when the host
is overloaded, some intermediate results can not be computed
within a certain deadline. In this case, such straggler results
should be discarded. Therefore, the fault-tolerance capability
is important that even if some intermediate results are missing,
the algorithm can still converge to the optimal solution. In this
simulation case, we demonstrate the fault-tolerance ability of
our algorithm. We randomly introduce the failure by manually
dropping the intermediate results with different probabilities.
Fig. 6 plots the convergence with different failure probabilities
from 0% to 10%. From the figures, we observe that the impact
of failures is insignificant. Although the random failure causes
the solution quality to degrade at the early stage (before the 10-
th iteration), when n = 100, m = 50, the optimization gap is at
most 1.5% compared to the solution with p = 0%, and ceases

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 03,2024 at 06:01:40 UTC from IEEE Xplore. Restrictions apply.

2754 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 6, DECEMBER 2023

Fig. 6. Fault-tolerance analysis.

to 0.2% after 20 iterations. Fig. 6(b) demonstrates the situation
when n = 1000, m = 500, our algorithm has less than
0.1% optimality loss and essentially the same convergence
speed with 10% failure rate. This fact indicates that our
algorithm is robust against the faults. This feature is especially
desirable when deploying the algorithm in real-world RDMA
data centers.

Stopping criterion. In practice, it is usually unnecessary to
derive an exact optimal value for the traffic allocation problem,
so we discuss a practical way to stop the iteration when finding
a high accuracy solution. Following [18], we can record the
primal and dual residuals r

k and s
k in each iteration k, which

measures the primal feasibility and the difference between
the current and previous iterations. We can define a simple
criterion for terminating iteration when

||rk||2 <= ✏
pri

, ||sk||2 <= ✏
dual (31)

where ✏
pri and ✏

dual are primal and dual tolerances, respec-
tively. We can normalize both of these quantities to network
size by ✏

pri = ✏
dual = ✏

abs
n, for some absolute tolerance

✏
abs

> 0. The choice of ✏
abs is usually a heuristic in practice

with sensitivity tests.

IV. SYSTEM DESIGN AND IMPLEMENTATION

Inspired by the host-based software design for RDMA
resource management [4], [20], DRUM designs and deploys
distributed agents on each RDMA-enable host, so as to provide
end-to-end resource sharing and performance guarantee. The
essential of DRUM agent is a kernel-level RDMA indirection
module and it acts as a delegator for the applications on
the host, and manages the low-level RDMA resources, i.e.,
QPs and CQs. As illustrated in Fig. 7, the DRUM agent
is a lightweight software module that lies between RDMA
applications and the RNIC driver. It handles applications’
traffic through 3 main modules: an IO monitor, a DRUM
scheduler, and a DRUM poller.

IO monitor is designed to enable the resource sharing
among multiple RDMA applications. It is the key module
of the DRUM indirection layer. Essentially, it is a dedicated
thread that maintains a virtual request pool shared by all the
hosted applications. In order to support scalable and efficient
transport, the IO monitor follows a lock-free design. Instead
of allowing applications using the mutex_lock to access the
RDMA on-board resources, when each connection generates
WQEs, IO monitor maps the WQEs in the application mem-
ory space to the virtual request pool. When the WQEs are
generated, rather than directly accessing the underlying QPs,
they are redirected to the virtual request pool. These WQEs
are further processed by the asynchronous model that they will
be actively fetched by the DRUM scheduler. Such a lock-free
design is implemented by listening to the fd which contains

Fig. 7. Architecture of DRUM indirection module.

the WQEs by the I/O multiplexing technique epoll. Based
on epoll, the IO monitor is able to listen up to 65536 fds.
This design is different from the past practice [3], [4], where
developers allocate one QP for each application. The reason
behind is that, for some specific type of RDMA operations,
there are some limitations of QP sharing. For example, QPs of
RC type only support one-to-one communication. To facilitate
this, DRUM implicitly converts the shared QP to UD type,
and such conversion is transparent to applications. Then we
arrange different connections to the same target node to share
one QP and the multiplexing ratio is set between 4 to 10 in
our settings.

Another important resource handled by IO monitor is the
RDMA Memory Region (MR). In native RDMA, each applica-
tion registers a dedicated memory region to manipulate WQEs
for transmission. In DRUM design, the IO monitor module
pre-registers a global memory buffer to shadow the memory
regions of applications. When applications need to register a
memory region, the IO monitor allocates a privileged memory
space from the global memory buffer, remaps the virtual
pages of application buffer to the physical pages of system
buffer. Such an MR sharing mechanism further eliminates the
frequent memory allocation and mapping overhead, such as
CPU circle waste and memory fragmentation.

DRUM scheduler decides the rates and the dequeue
sequences of WQEs in the virtual request pool. The first
fundamental enabler of resource sharing is to identify the
WQEs for each application, and to further manage the state of
each connection. DRUM scheduler allocates a Connection ID
for each application. The Connection ID is extracted from fd
associated with each application when creating the QP. Then
the Connection ID is stored in the wr_id domain in each
WQE. For two-sided operations, the IO monitor should also
be notified with the Connection ID for remote applications,
so as to facilitate the DRUM algorithm. The recording of a
remote Connection ID is implemented by exploring the usage
of the imm_data domain in Receive Completion elements.
The imm_data domain is a 32 bits number in network
order which can be sent along with the payload of Send
Work Request to the receiver and be placed in the Receive
Completion at the side of the receiver. Therefore, the remote
scheduler can write Connection ID in the imm_data domain
and the local Poller is able to find the remote Connection ID
in the imm_data domain of the Receive Completion. The
IO monitor then works collaboratively with the DRUM poller
to identify each Receive Completion according to the remote

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 03,2024 at 06:01:40 UTC from IEEE Xplore. Restrictions apply.

SHEN et al.: ENABLING DISTRIBUTED AND OPTIMAL RDMA RESOURCE SHARING 2755

Connection ID. Then, the DRUM scheduler is dedicated to
fetching the WQEs based on the computed rates for each
application. Specifically, it first computes the rates of fetching
WQEs for different applications, fetches the WRs actively and
sends them to the corresponding physical QPs on RNIC.

DRUM poller maintains and manages the completion queue
of CQEs. In our design, all connections on the same host share
one CQ. The implementation of sharing CQ is by using direct
memory mapping, which is similar with that of QP sharing.
When their messages finish transferring, a CQE is generated
into the shared CQ. The DRUM poller has one dedicated
thread which actively polls the CQEs. Since the CQE contains
the connection identifier, the poller is able to know which QP
and which application it is associated with. Finally, the poller
pushes the received CQEs to the corresponding applications
by the decided rates. This design utilizes the CQ more wisely
and hereby maximizes the resource sharing.

Deployment considerations In the RDMA-enabled data
center, the DRUM agents are deployed on each host. On each
host, the agent first executes independently to solve a small
subproblem with only local information, determining the initial
queue usage rates for the co-resident applications. In many
cases, the subproblem is solved by closed-form formulations
given in Section III. Furthermore, we have explored the
internal parallelism to solve xi so as to implement Algorithms
1 and 2 in a more computation-friendly manner. After each
iteration, they get feedback from the coordinator and update
the rates for the next decision round. The coordination is also
not computation-intensive, because it simply accumulates the
collected values. As we have analyzed, the coordinator can be
also deployed in a distributed manner. Thus, it either collects
the intermediate results from the local host or from hosts where
they have mutual two-sided communications. The intermediate
values of x

k
i , z

k
i , u

k are stored as floating numbers and their
sizes are usually several Bytes. These values are encoded as
special control packets for network management purposes.
If the operators sacrifice some precision, these values can
be further encoded in the header of regular data packets.
Furthermore, the DRUM algorithm is inherently fault-tolerant,
so that it works even when some of the intermediate results
are missing. In practical deployment, the coordinator is set
with a window where it collects and sums up the intermediate
results, and for any timeout control messages, it reuses the last-
round values. In general, DRUM works very similar with most
existing network protocols, e.g. TCP/IP congestion control,
where all the senders initialize a congestion window size and
gradually converge to a stationary according to the network
congestion signals issued by the switch, e.g. packet loss or
ECN marking [21]. In the TCP congestion control context,
the ECN signaling can be viewed as a variation of the dual
coordination in DRUM. Besides, the computational iterations
can be further accelerated by emerging network hardware such
as FPGA NIC and P4 switches [22], [23], enabling the network
to make wiser resource management decisions.

V. EXPERIMENT

A. Experiment Settings

We evaluate DRUM’s performance in a real-world RDMA
network environment through extensive testbed experiments.

Testbed. The testbed is built with 7 nodes, each of which is
equipped with two 2.2GHz Intel Xeon E5-2650 v4 processors
and 64 GB of memory. All these servers are installed with
Ubuntu 16.04 and are equipped with a Mellanox ConnectX
Series RNIC (40 Gbps over InfiniBand) to enable RDMA.
Application. We implement an RDMA-enabled Key-Value
(KV) store service. On client nodes, each client creates mul-
tiple connections requesting data in the KV store through
RDMA network. Each connection requests for data with
random data sizes ranging between [32B, 1MB]. In our imple-
mentation of KV, as the stored values are of small sizes,
it is recommenced [24] to use one-sided RDMA operations
to avoid frequent notifications on both sides. For comparison,
we also implement KV with two-sided RDMA operations.

Redis [25]is a widely-used open-source memory cache
software. We rewrite its communication module. The orig-
inal communication of Redis is done mostly with Redis.c
in the message event handling function processEven-
tOnce(void* task_id_) and processEvents(void* connection-
handler). For comparison, we replace its previously hardcoded
write_with_imm() functions by one-sided Write() and two-
sided Send/Rcv() verbs, respectively. To synthesize the work-
loads, we modify the code of benchamark.c to generate the
desired workloads and the data cached in Redis is in the range
of [10B, 512MB].
Benchmark. For comparison, we have implemented the fol-
lowing benchmarking mechanisms:
(1) RAW: It represents the raw RDMA-based primitives and
the standard operation in the RDMA (same as in FaRM [26]).
In this case, each connection manages its own QP and WQEs.
(2) SHARE: It denotes the connection grouping mechanism
proposed in [4] and [3], where the connections designated for
the same host share one QP for resource multiplexing. As the
authors suggest, the multiplexing ratio of QP is set to be 5.
(3) DRUM: The implementation of our method, with con-
trolled RDMA resource sharing.

Some key experimental results are highlighted as follows:
• For individual 32B packet under varying background

traffic, DRUM completes the WQE 3.1⇥ faster than RAW
and 1.7⇥ than SHARE. (Test case 1)

• In a setup with the dynamically changing context, DRUM
proactively allocates the RDMA resources and provides
a consistent performance, where the largest performance
improvement reaches 98.1% and 64.1% in terms of
latency and throughput, respectively. (Test case 2)

• For real-world applications and workloads, DRUM is able
to achieve 39.2% higher throughput for KV and up to
142.6% latency reduction for Redis. (Test case 3)

• DRUM only introduces less than 30% overhead of one
CPU core when serving over 250 connections on one
host. (Test case 4)

B. Experimental Results

Test Case 1 (Packet level performance). To evaluate whether
our model could provide fine-grained resource scheduling,
we test the completion time of a WQE to continuously request
for 32B data from the KV store server, while the background
connection varies its WQE batch size from 20 to 100. Fig. 8
demonstrates the distribution of the WQE completion time.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 03,2024 at 06:01:40 UTC from IEEE Xplore. Restrictions apply.

2756 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 6, DECEMBER 2023

Fig. 8. WQE completion time of a 32B message for KV.

Fig. 9. 1GB flow completion time of a sequence of WQEs for KV.

Fig. 10. Comparison on 32B packet completion time.

Fig. 11. Completion time of 1MB flows (32B/packet).

We observe that the single WQE completion time is unaffected
by the background traffic that with the number of background
connections increasing from 20 to 100, the 80% completion
time of the packets remains within 20 µs. This case demon-
strates that DRUM can protect the RDMA flow from starving
by HOL blocking, even with heavy background traffic.

We then compare DRUM with the benchmarking mecha-
nisms. We adjust the number of concurrent connections cc in
the host. cc is set as {20, 50, 100}. The evaluation results are
depicted in Fig. 10. When cc = 20, the 80% completion time
of the single WQE are 7.1 µs, 7.2 µs, 8.8 µs under RAW,
SHARE and DRUM, respectively. When cc increases, RAW
does not work properly. For example, the 80% completion
time under RAW degrades from 26.5 µs to 90.4 µs, when cc

increases from 50 to 100. The reason is that when the number
of connections increases, RNIC will be occupied by storing
and replacement of QP states. Although SHARE employs the
QP sharing and performs better than RAW, it suffers from the
long tail distribution of the completion time. From our further
analysis, this is because of the lock contention on the shared
QP. On the contrary, DRUM accesses QP by the single DRUM
agent in a lock-free manner. It completes the WQEs in 14.5 µs
and 24.0 µs, when cc = 50 and cc = 100. It is worth noting
that when cc = 100, DRUM completes the WQEs 3.1⇥ faster
than RAW and 1.7⇥ than SHARE.
Test Case 2 (Flow level performance). In this test case,
we evaluate the performance of DRUM when transferring a

Fig. 12. Performance comparison with varying message sizes.

large data file. The foreground traffic transmits 1MB message
through one WQE each, and continuously transfers 1GB of
data in total. The background connections request for Redis
data at random sizes between [1KB, 10MB] and the batch
size parameter is set between [20, 100]. We repeat the flow
transfer for 1,000 times, and Fig. 9 illustrates the distribution
of the flow completion time. We see that the completion
time of foreground traffic is unaffected by the background
traffic that the distributions of flow completion time remain
stable. The reason is that DRUM jointly controls the resource
scheduling on CQ and QP, providing an enhanced resource
scheduling.

We then evaluate DRUM’s performance by transferring a
1MB flow that is composed of a sequence of 32B WQEs. The
evaluation results are depicted in Fig. 11. When cc = 20, the
80% completion time are 53.1 ms, 82.8 ms, 62.9 ms under
RAW, SHARE and DRUM, respectively. When the number
of concurrent connections increases, where the contention on
CQ polling is more severe, DRUM outperforms all other
mechanisms. When cc = 100, DRUM completes the WQEs
3.75⇥ faster than RAW and 1.4⇥ than SHARE.

We then dynamically adjust some context features, i.e.,
average message sizes. In this experiment, we measure the
average latency of all messages and the system throughput
under DRUM against RAW and SHARE. The result with
changing message sizes can be seen in Fig. 12. In general,
DRUM can provide a stable performance that the latency
increases incrementally subjected to the message size growth.
When the packet size is small in the range [5B, 200B],
DRUM has an advantage of 43% to 98.1% improvement.
When the packet sizes are medium, SHARE achieves similar
performance with DRUM. However, when packet sizes go
large, SHARE becomes less effective, having an overhead of
14.7%- 27.8% than DRUM, in terms of the average latency.

In the aspect of system throughput, we measure the amount
of operation the RNIC could process in a second. As is shown
in Fig. 12(b), the throughput of DRUM decreases gradually
and consistently when the packet sizes grow from 100B to
1MB. When the message size is medium from 1KB to 5KB,
the throughput of SHARE is close, which means that QP
sharing is an effective method. In particular, when packet sizes
grow to larger than 500KB, the throughput of RAW drops
dramatically to 10.3 to 15.6 KOPS, while DRUM achieves
14 to 25.6 KOPS in the same scenario, which is a 35.9% to
64.1% performance improvement.
Test Case 3 (Overall system performance). We evaluate
DRUM by measuring the overall system performance, in terms
of throughput and latency. We repeat the experiments for ten
times and record the average performance, associated with the
90th percentile performance (upper whiskers) and the 10th
percentile performance (lower whiskers). In this test case,

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 03,2024 at 06:01:40 UTC from IEEE Xplore. Restrictions apply.

SHEN et al.: ENABLING DISTRIBUTED AND OPTIMAL RDMA RESOURCE SHARING 2757

Fig. 13. Throughput with increasing number of connections.

Fig. 14. Latency with increasing number of connections.

we vary the concurrent number of clients requesting data from
the KV store from 20 to 400, which are distributed evenly
to 6 physical servers. The clients request data at random
sizes between [32B, 1MB]. As shown in Fig. 13, for KV
application, DRUM significantly outperforms all other mecha-
nisms in terms of the average throughput. SHARE performs
better than RAW, but when connections increase, the lock
contention on shared QP becomes the bottleneck, thus hurting
the performance of applications. When the total number of
connections is larger than 300, the average throughput under
DRUM is 1.8⇥ greater than SHARE. In Fig. 13, we observe
that the performance variation under DRUM is much smaller,
demonstrating that our method can deliver consistent and
stable performance enhancement. Fig. 14 shows the average
latency of messages. We record the latency of each batch of
WQEs. From the results, we observe that DRUM is capable of
keeping most of the requests within extremely low latency of
less than 18 µs. When the number of connections increases,
the network is fully saturated and the performance of SHARE
degrades, the average latency is 67.3% higher than DRUM
when the total number of connections is larger than 300.
Meanwhile, when taking a closer look at the variation of the
latency, we also observe that the 90th percentile tail latency
is much higher under SHARE than that under DRUM. The
reason is that SHARE does not consider the impact of CQE
contention issue in the CQ that the completion signals of some
messages are delayed. Consequently, the application-perceived
latencies of these messages become high. The tail latency issue
is especially harmful to latency-sensitive applications in data
centers. On the contrary, as the results in Fig. 14 indicate,
DRUM has the benefit of providing stable and consistent low
latency for all messages.

To further evaluate the performance of DRUM under
application-specific workloads, we implement two represen-
tative RDMA applications, KV and Redis, by using one-sided
and two-sided verbs, respectively. Throughout the evaluation,
we adjust the workloads for different applications. As for
KV, we change the workloads to be read-intensive (95%
GET, 5% PUT) or write-intensive (50% GET, 50% PUT).
Fig. 15(a) and (b) demonstrate the latency and throughput
of one-sided KV. Under DRUM, the latency remains as low
as 3.1 µs, while the performance under SHARE fluctuates
between [4.2µs, 6µs]. We observe that both SHARE and

Fig. 15. Performance comparison of the KV application.

RAW perform worse than DRUM. In detail, the latency under
SHARE is 30.1% higher than that under DRUM and latency
under RAW is 52% higher. In particular, for the 100% PUT
workloads, the latencies of all KV operations under the three
benchmarking mechanisms are 5.2 µs, 4.1 µs and 3 µs, respec-
tively. Similar results are also shown in Fig. 15(b) in terms
of throughput. Under DRUM, both read-intensive and write-
intensive workloads achieve more than 320Kops throughput
regardless of the workload composition. By contrast, through-
puts under SHARE and RAW are correlated with the workload
composition. For the read-intensive workloads, SHARE only
achieves 165 Kops throughput which is only 48.9% of the
DRUM’s throughput. The reason is that the sender side RNIC
resource contention also negatively impacts the performance.
As shown in Fig. 15(b), DRUM achieves on average 28.1%
higher throughput than SHARE and 39.2% higher throughput
than RAW for different types of workloads. Fig. 15(c) and (d)
demonstrate the latency and throughput of two-sided KV. First,
for the aspect of latency, we observe that the overall latency
is higher than that with one-sided KV. This is because, for
the KV application, PUT and GET operations need just one-
shot communication, which is suitable for one-sided verbs
like Write. Two-sided RDMA operations like SEND/RECV
in this use case inherently incur higher latency. The results
are consistent with the design guidelines for RDMA-enabled
KV applications [1]. Moreover, we observe that the benefit of
DRUM degrades in the two-sided KV case that it has only
10% to 21% latency reduction. The reason is that, with two-
sided verbs, the resource allocation algorithm of DRUM also
becomes more complicated by incurring more computation in
each iteration, resulting in a smaller performance gain.

Then, we turn to a more complicated application Redis. In
this experiment, we evaluate Redis with one-sided and two-
sided RDMA implementations, respectively. We test the basic
Redis operations to continuously push data with size uniformly
distributed in the range [10B, 512MB] into the remote memory
cache, pull data from the remote server, or just probe the
cache for data validation. The results are shown in Fig. 16.
When using RAW, the average latency for SET, GET and
PING are 16, 21.8 and 12.4, respectively. For comparison,
the average latencies under DRUM are 9.1, 9 and 7.1 µs,
respectively, with an improvement of 75.9.7%, 142.6% and

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 03,2024 at 06:01:40 UTC from IEEE Xplore. Restrictions apply.

2758 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 6, DECEMBER 2023

Fig. 16. Performance comparison of Redis application.

74.6%, respectively. The reason is that DRUM reacts to the
changing of data size by adjusting their requesting rates. Even
for PING operations with less variation, DRUM is still better,
because it is able to avoid large messages from blocking small
messages, which is beneficial for control messages such as
probing packets. A similar phenomenon can be seen for the
throughput comparison results, where DRUM achieves 37.8%
to 48.1% higher throughput under various workloads. We
then evaluate the case with two-sided Redis. From Fig. 16(c)
and (d), we observe that the performance gain of DRUM is
similar with the one-sided case. For each query message, Redis
has additional operations like hashing, and the data stored
in Redis can be larger than that in KV. Therefore, the time
budget for each message is large enough for DRUM algorithm
to compute the resource allocation. Consequently, the extra
computational overhead of DRUM for two-sided operations
can be overlooked. Moreover, because DRUM splits the large
message into small ones, two-sided verbs perform similarly
with one-sided for medium-sized messages. Therefore, for
Redis applications, either the one-sided or two-sided RDMA
implementation is suitable.
Test Case 4 (Overhead). We evaluate the overhead of DRUM
by collecting the CPU usage with the CPU profiling tool perf
top which measures the CPU usage of each function. Before
analyzing the evaluation results, we note that in the design of
DRUM, the busy-polling mode of RDMA is required. With
this setting, the system actively polls and schedules the CQE
in the completion queue. The benefit of this setting is to reduce
the latency caused by CQE event triggering and handling,
but the overhead is that one CPU core will be delicately
occupied for polling. This setting is also enabled in many
real-world RDMA use cases [1]. Therefore, in the test case,
we measure the extra CPU usage on other CPU cores except
for that dedicated core. The measurement results are shown in
Fig. 17. First, we randomly generate new RDMA connections,
and each connection is active for sending a random amount
of messages. We record the CPU usage for a few seconds.
As illustrated in 17(a), the average CPU usage is 13.5%.
Since DRUM algorithm is triggered whenever a new connec-
tion is established, so the peak usage is when connections
are initializing. In Fig. 17(a), at the initiation phase, the

Fig. 17. Evaluations on extra CPU usage.

CPU cost is high for computing the resource allocation and
allocating the resource mapping for shared memory region.
During the transmission, the CPU usage gradually decreases,
since the computation of DRUM is simple by closed-form
equations and the algorithm can converge very fast. The
fluctuation is due to some new connections being established.
We then measure the CPU usage with a varying number
of connections. From Fig. 17(b), we can see that the usage
is going higher with the increasing number of connections.
This is reasonable because more connections would cost the
algorithm to solve larger problems. Another observation is
that the increment of curve gradually slows down. This is
because DRUM serves only the top-k̃ connections to avoid
RNIC cache thrashing. Finally, we show how much CPU time
each specific function uses in Fig. 17(c). From the results,
we observe that the DRUM poller consumes 100% usage for
one core. This is because DRUM uses the busy-polling mode
to schedule the CQEs. For the other two main components,
the IO monitor consumes more CPU resources. The most
resource consuming functions are verb_convertor and
qp_map. verb_convertor is responsible for accessing
the imm_data domain of each request and identifying the
corresponding connections. qp_map consumes CPU because
it maintains a shared memory region and is responsible for
mapping and managing this region for different connections.
For DRUM scheduler, the main overhead lies in the allo-
cation rate computation by using our proposed algorithm.
The core function qp_sche consumes approximately 4.22%
CPU usage. The low CPU usage is due to the closed-form
computation and fast convergence of our algorithm in many
cases. Note that, from the results, we also observe that the
CPU overhead does not increase much when the number
of connections increases, which shows the scalability of our
method.

VI. RELATED WORK

RDMA suffers from the unfairness issue and performance
degradation in the shared data center network as reported
in [3], [4], [5], and [27]. Addressing this issue, various
resource management mechanisms for RDMA are proposed.
Freeflow [28] proposed a virtualization based software solution
to isolate the performance of RDMA-enabled applications.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 03,2024 at 06:01:40 UTC from IEEE Xplore. Restrictions apply.

SHEN et al.: ENABLING DISTRIBUTED AND OPTIMAL RDMA RESOURCE SHARING 2759

Chen et al. [3] designed the connection grouping mechanism,
allowing multiple applications to share one QP. LITE [4]
allowed applications to share resources by establishing a
shared memory pool in the kernel. Qiu [5] et al. proposed
a pooling mechanism between applications and RNIC driver
to manage RDMA resources. FaRM [26] applied QP sharing
in the kernel. Wang [24] optimized parameter settings for
applications when sharing the same network. Lu et al. [29]
explored the capability of RDMA in the multipath network
scenario, and addressed the issue of strict on-chip resource
of RNIC. 1RMA [30] presented a connection-free design of
new RDMA architecture where software handles congestion
control, and applications handle failure recovery and inter-
operation ordering as needed. Recently, Wang et al. [31]
proposed a remote-side offloading method to tackle the RDMA
scalability issue. Wang et al. [20] proposed Nem which
alleviates the resource contention at RNIC cache through
asynchronous resource sharing. While existing works provide
substantial system design insights to the RDMA resource
sharing issue, existing proposals lack sufficient theoretical
analysis, such that they are unable to guarantee the optimality
of resource scheduling.

Theoretically, the network resource scheduling optimization
was modeled as a NUM problem [9], [11], [12]. Previous
efforts [11], [12], [13] in resource management for TCP/IP net-
works have been successful in deriving NUM-based resource
scheduling solutions. For example, Guo et al. [32] proposed
an instance of NUM to optimize the bandwidth allocation.
Also, [8] provided a relaxation-based approach to solve the
NUM with non-convex utility functions. While none of prior
methods considered RDMA, we have proposed a prelimi-
nary version of NUM model and designed a distributed and
optimal solution [33] based on ADMM [18], characterizing
the inherent complexities of RDMA networks. Compared
with traditional Dual Decomposition [11] based method to
solve NUM, ADMM is easier to tune and guarantees fast
convergence both theoretically and in practice. In this paper,
we analyze more comprehensively on both one-sided and two-
sided RDMA operations and address the theoretical challenges
of the underlying problem.

VII. CONCLUSION

In this paper, we have introduced a distributed solution to
optimal RDMA resource scheduling and presented how to
model, analyze and implement it with the real-world RDMA
network deployment considerations. Characterizing the inher-
ent complexities in RDMA networks, we have abstracted
the problem as a multi-block utility maximization problem
with coupling variables. To efficiently solve it, we have
presented a distributed and modular algorithm based on
ADMM, and demonstrated the parallelism and convergence
guarantee through theoretical analysis. We have implemented a
kernel-level software module to enable the end-to-end optimal
resource sharing in the RDMA network and considered its
real-world deployment. Through large-scale simulations and
testbed experiments, we have shown that, compared with
the state-of-the-art methods, our method has a number of
unique advantages, such as achieving higher network utility
and higher overall throughput when multiple applications share

the RDMA network. Such advantages are highly desirable for
resource management in large-scale shared RDMA networks.

REFERENCES

[1] A. Kalia, M. Kaminsky, and D. G. Andersen, “Design guidelines for
high performance RDMA systems,” in Proc. USENIX Annu. Tech. Conf.,
2016, pp. 437–450.

[2] R. Mittal et al., “Revisiting network support for RDMA,” in Proc. Conf.
ACM Special Interest Group Data Commun., Aug. 2018, pp. 313–326.

[3] Y. Chen, Y. Lu, and J. Shu, “Scalable RDMA RPC on reliable connection
with efficient resource sharing,” in Proc. 14th EuroSys Conf., Mar. 2019,
p. 19.

[4] S.-Y. Tsai and Y. Zhang, “LITE kernel RDMA support for datacenter
applications,” in Proc. 26th Symp. Operating Syst. Princ., Oct. 2017,
pp. 306–324.

[5] H. Qiu et al., “Toward effective and fair RDMA resource sharing,” in
Proc. 2nd Asia–Pacific Workshop Netw., Aug. 2018, pp. 8–14.

[6] Mellanox OFED for Linux User Manual. Accessed: Oct. 7, 2022.
[Online]. Available: http://www.mellanox.com/related-docs/prod_
software/Mellanox_OFED_Linux_User_Manual_v4_3.pdf

[7] M. Zhang and J. Huang, “Mechanism design for network utility maxi-
mization with private constraint information,” in Proc. IEEE INFOCOM
Conf. Comput. Commun., Apr. 2019, pp. 919–927.

[8] M. Ashour, J. Wang, C. Lagoa, N. Aybat, and H. Che, “Non-concave
network utility maximization: A distributed optimization approach,” in
Proc. IEEE INFOCO Conf. Comput. Commun., May 2017, pp. 1–9.

[9] S. Ramakrishnan and V. Ramaiyan, “Completely uncoupled algorithms
for network utility maximization,” IEEE/ACM Trans. Netw., vol. 27,
no. 2, pp. 607–620, Apr. 2019.

[10] L. Vigneri, G. Paschos, and P. Mertikopoulos, “Large-scale network
utility maximization: Countering exponential growth with exponenti-
ated gradients,” in Proc. IEEE INFOCOM Conf. Comput. Commun.,
Apr. 2019, pp. 1630–1638.

[11] D. Palomar and M. Chiang, “A tutorial on decomposition methods for
network utility maximization,” IEEE J. Sel. Areas Commun, vol. 24,
no. 8, pp. 1439–1451, Aug. 2006.

[12] M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle, “Layering
as optimization decomposition: A mathematical theory of network
architectures,” Proc. IEEE, vol. 95, no. 1, pp. 255–312, Jan. 2007.

[13] W.-C. Liao, M. Hong, H. Farmanbar, X. Li, Z.-Q. Luo, and H. Zhang,
“Min flow rate maximization for software defined radio access net-
works,” IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1282–1294,
Jun. 2014.

[14] TensorFlow-RDMA. Accessed: Oct. 7, 2022. [Online]. Available:
https://github.com/tensorflow

[15] Spark-RDMA. Accessed: Oct. 7, 2022. [Online]. Available:
https://github.com/Mellanox/SparkRDMA

[16] J. Mo and J. Walrand, “Fair end-to-end window-based congestion
control,” IEEE/ACM Trans. Netw., vol. 8, no. 5, pp. 556–567, Oct. 2000.

[17] C. Feng, H. Xu, and B. Li, “An alternating direction method approach to
cloud traffic management,” IEEE Trans. Parallel Distrib. Syst., vol. 28,
no. 8, pp. 2145–2158, Aug. 2017.

[18] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122,
Jan. 2011.

[19] Convex Optimization for Python. Accessed: Oct. 7, 2022. [Online].
Available: https://www.cvxpy.org/

[20] X. Wang, H. Song, C.-T. Nguyen, D. Cheng, and T. Jin, “Maximizing
the benefit of RDMA at end hosts,” in Proc. IEEE INFOCOM Conf.
Comput. Commun., May 2021, pp. 1–10.

[21] T. Li et al., “Revisiting acknowledgment mechanism for transport
control: Modeling, analysis, and implementation,” IEEE/ACM Trans.
Netw., vol. 29, no. 6, pp. 2678–2692, Dec. 2021.

[22] D. Firestone et al., “Azure accelerated networking: Smartnics in the
public cloud,” in Proc. 15th USENIX Symp. Networked Syst. Design
Implement., 2018, pp. 51–66.

[23] D. Kim, S. Lee, and K. Park, “A case for SmartNIC-accelerated private
communication,” in Proc. 4th Asia–Pacific Workshop Netw., Aug. 2020,
pp. 30–35.

[24] K. Wang, F. Dong, D. Shen, C. Zhang, J. Zhang, and J. Luo, “Towards
tunable RDMA parameter selection at runtime for datacenter applica-
tions,” in Proc. IEEE 24th Int. Conf. Comput. Supported Cooperat. Work
Design (CSCWD), May 2021, pp. 49–54.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 03,2024 at 06:01:40 UTC from IEEE Xplore. Restrictions apply.

2760 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 6, DECEMBER 2023

[25] Redis. Accessed: Oct. 7, 2022. [Online]. Available: https://redis.io/
[26] A. Dragojevi, D. Narayanan, M. Castro, and O. Hodson, “FaRM: Fast

remote memory,” in Proc. 11th USENIX Symp. Networked Syst. Design
Implement., 2014, pp. 401–414.

[27] A. Kalia, M. Kaminsky, and D. G. Andersen, “FaSST: Fast, scalable and
simple distributed transactions with two-sided RDMA datagram RPCs,”
in Proc. 12th USENIX Symp. Operating Syst. Design Implement., 2016,
pp. 185–201.

[28] D. Kim et al., “FreeFlow: Software-based virtual RDMA networking for
containerized clouds,” in Proc. NSDI, 2019, pp. 113–126.

[29] Y. Lu et al., “Multi-path transport for RDMA in datacenters,” in
Proc. 15th USENIX Symp. Networked Syst. Design Implement., 2018,
pp. 357–371.

[30] A. Singhvi et al., “1RMA: Re-envisioning remote memory access for
multi-tenant datacenters,” in Proc. Annu. Conf. ACM Special Interest
Group Data Commun. Appl., Technol., Architectures, Protocols Comput.
Commun., Jul. 2020, pp. 708–721.

[31] X. Wang et al., “StaR: Breaking the scalability limit for RDMA,” in
Proc. IEEE 29th Int. Conf. Netw. Protocols (ICNP), Nov. 2021, pp. 1–11.

[32] J. Guo, F. Liu, J. C. S. Lui, and H. Jin, “Fair network bandwidth alloca-
tion in IaaS datacenters via a cooperative game approach,” IEEE/ACM
Trans. Netw., vol. 24, no. 2, pp. 873–886, Apr. 2016.

[33] D. Shen, J. Luo, F. Dong, X. Guo, K. Wang, and J. C. S. Lui,
“Distributed and optimal RDMA resource scheduling in shared data
center networks,” in Proc. IEEE INFOCOM Conf. Comput. Commun.,
Jul. 2020, pp. 606–615.

Dian Shen received the bachelor’s, master’s, and
Ph.D. degrees from Southeast University, China,
in 2010, 2012, and 2018, respectively. He was a
Visiting Researcher with The Chinese University of
Hong Kong from 2021 to 2022. He is currently an
Associate Professor with the School of Computer
Science and Engineering, Southeast University. His
research interests include cloud computing, virtual-
ization, and data center networks.

Junzhou Luo (Member, IEEE) received the B.S.
degree in applied mathematics and the M.S. and
Ph.D. degrees in computer network from South-
east University, China, in 1982, 1992, and 2000,
respectively. He is currently a Full Professor with
the School of Computer Science and Engineering,
Southeast University. His research interests include
network security and management, cloud computing,
and wireless LAN. He is a member of ACM. He is
the Co-Chair of the IEEE SMC Technical Commit-
tee on Computer Supported Cooperative Work in
Design.

Fang Dong (Member, IEEE) received the B.S. and
M.S. degrees in computer science from the Nanjing
University of Science and Technology, China, in
2004 and 2006, respectively, and the Ph.D. degree in
computer science from Southeast University, China,
in 2011. He is currently a Professor with the School
of Computer Science and Engineering, Southeast
University. His current research interests include
cloud computing, task scheduling, and big data
processing.

Xiaolin Guo received the bachelor’s degree from
the Nanjing University of Science and Technology,
China, in 2018. She is currently pursuing the Ph.D.
degree in computer science with Southeast Univer-
sity, China. Her main research interests include edge
computing and in-network computing.

Ciyuan Chen is currently pursuing the integrated
master’s and Ph.D. degree with the School of Com-
puter Science and Engineering, Southeast University.
Her research interests include data center networks,
cloud (edge) intelligence, and optimization theory.

Kai Wang received the master’s degree from South-
east University, China, in 2020. He has worked
with Alibaba Cloud. He is currently working with
NetEase Service Mesh Group. His main research
interests include data center networks and cloud
computing.

John C. S. Lui (Fellow, IEEE) received the Ph.D.
degree in computer science from the University
of California at Los Angeles. He is currently the
Choh-Ming Li Chair Professor with the Depart-
ment of Computer Science and Engineering, The
Chinese University of Hong Kong (CUHK). His
current research interests include quantum networks,
machine learning, online learning (e.g., multi-armed
bandit and reinforcement learning), network science,
future internet architectures and protocols, network
economics, network/system security, and large-scale

storage systems. He is elected as a member of the IFIP WG 7.3, a Fellow
of ACM, and a Senior Research Fellow of the Croucher Foundation. He has
received various departmental teaching and research awards, including the
CUHK Vice Chancellor’s Exemplary Teaching Award and the Research
Excellence Award from CUHK.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 03,2024 at 06:01:40 UTC from IEEE Xplore. Restrictions apply.

