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Abstract—To provide reliable and elastic Multi-access edge com-
puting services, one feasible solution is to federate geographically
proximate edge servers to form a logically centralized resource
pool. Optimization of such systems, however, becomes challenging.
In this paper, we study the problem of maximizing users’ QoE in a
MEC-based network, through jointly optimizing service caching,
resource allocation and task offloading decisions. We formulate a
mixed-integer nonlinear programming (MINLP) problem for the
task and establish its NP-hardness. To tackle it efficiently, we pro-
pose a novel two-stage algorithmic solution based on approximation
and decomposition theory. The proposed algorithm achieves high
system performance while at the same time, ensures all constraints
from different layers are satisfied. Meanwhile, the structure of
the algorithm also fits the multi-layer optimizing feature, mak-
ing it suitable to be implemented at different layers. In addition,
we propose a distributed and online version of our mechanism
with very limited information exchange between MEC servers,
and further demonstrate how the cost of service switches from
real MEC systems can be incorporated into our framework. We
evaluate our mechanisms through simulations with both synthetic
and real-world traces, and results indicate they are effective as
compared to representative baseline algorithms.

Index Terms—Distributed algorithm, MEC-based network,
resource allocation, service caching, task offloading.

I. INTRODUCTION

A. Background and Motivations

With the ever increasing popularity of mobile devices and
the proliferation of IoT in recent years, we have witnessed an
explosive growth of new applications such as augmented reality,
interactive gaming and autonomous driving. These applications
are typically resource-hungry and delay-sensitive. For example,
VR systems often require latency less than 10 ms in order to
make the VR world realistic [1], and the latency should be no
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more than 20 ms to ensure safety for autonomous cars [21].
Local execution of these applications is in general not feasible
since resources of mobile devices (e.g., battery, storage) are
limited. Relying on cloud to process and store data is also
problematic due to the excessively long delay and unstable
network connection.

To alleviate the tension between emerging applications and
the resource-constrained devices, a new network comput-
ing paradigm called Multi-access Edge Computing [43] [34]
(MEC), has been proposed. MEC allows users to execute their
applications at the network edge by deploying computing and
storage resources in close proximity to end users, and users
offloading their tasks to the MEC servers. For example, in
the VR application, one can offload the three most resource-
intensive components, namely, the tracker, mapper and object
recognizer [53] to the edge server, so as to enjoy fast response
and energy reductions. This also brings additional benefits such
as cost efficiency, context-awareness [45] [40], privacy/security
enhancement [6], etc. As a result, MEC is widely recognized as
a promising solution to enable emerging applications.

Whereas MEC is able to offer network computing services
with low latency, providing reliable and elastic MEC services
for the public remains a challenge. This is particularly true
for the fact that MEC servers are often resource-constrained
as compared with the cloud infrastructure (i.e., data centers),
and that they are sporadically distributed and deployed. There
is a trend that edge servers within the same geographic region
group together to form a shared resource pool (i.e., the open edge
computing environment [3] [4]), so as to improve the overall
system performance. In fact, researchers have shown that by
serving requests from nearby servers/BSs, users’ experience can
be significantly enhanced [20] [26].

As federating geographically close edge resources opens a
door to build cloud-computing-like MEC services, optimization
of such systems poses significant challenges to both academic
and industry community, for the following reasons. First, the
problem is intrinsically complicated as it involves address-
ing three different sub-problems, namely, resource allocation,
service caching (a.k.a service placement) and task schedul-
ing/offloading, each of which is nontrivial to tackle. Note that
these sub-problems are tightly coupled in that addressing one
without considering the others would probably lead to sub-
optimum. Second, as the system is comprised of different type of
resources at different layers (e.g., computing, communication,
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storage and networking), fully optimizing the system would
unavoidably require an elegant usage of these heterogeneous
resources, with a variety of constraints taken into account. Last,
a real MEC system is time-evolving in that both the system
(i.e., network condition) and user-generated workload fluctuate
over time. To deal with the uncertainty and dynamics, a desired
control mechanism should operate in an adaptive and distributed
manner. In addition, it should also be of low cost so that the
system can scale up.

B. Contributions

In this paper, we study the problem of maximizing users’
quality of experience (QoE) in a MEC-based network, through
jointly optimizing service caching, resource allocation and task
offloading decisions. We provide a unified framework to ad-
dress the aforementioned challenges and propose a multi-layer
optimization approach. More specifically, we formally define
user’s QoE as the weighted sum of task latency reduction and
energy savings at UEs, and formulate an optimization problem
for the task, with various constraints from different layers taken
into account. The derived problem is proven NP-hard and we
propose a novel solution by approximating it with another prob-
lem that is mathematically tractable (although still NP-hard).
We then decompose the approximate problem into multiple
sub-problems, where each of them can be efficiently solved by
existing algorithms. Based on the centralized algorithmic solu-
tion and problem structure, we further devise a distributed and
online mechanism that adapts to both workload and system vari-
ations, which at the same time requires very limited information
exchange between nearby servers. Moreover, our framework
allows us to explicitly incorporate the cost of service switches
from an MEC system to trade-off the cost of reconfiguration and
system performance. Simulation and numerical results illustrate
that our proposed mechanism can improve users’ QoE while
at the same time make the system stable, as compared with
representative baseline algorithms.

In summary, we make the following contributions:
1) We consider a heterogeneous multi-user and multi-server

environment, and propose a fine-grained task offloading scheme
where: 1) the tasks of each service are divided into multiple
sub-types based on their characteristics such as data size, compu-
tation intensity, etc. This makes our model more realistic and also
different from existing work that assumes the same type of tasks
of each service/application. The fine-grained characterization
of tasks enables us to further improve system performance
through fully leveraging this heterogeneity; 2) a probabilistic
task offloading strategy is designed for each user which allows it
to offload arbitrarily part of its tasks to a nearby server for remote
computing. This is unlike the widely adopted binary offloading
policy in the current literature, i.e., each user may offload the
whole application to one MEC server.

2) Instead of the delay requirements for each service or user,
we introduce a new QoS constraint called offloading rate into the
jointly optimizing task, which states that the proportion of tasks
for each service processed by the MEC-based network should
be no less than a preset threshold. This QoS requirement is

extracted/formed from the service providers’ point of view, i.e.,
based on the SLA (Service Level Agreement) between service
providers and the MEC infrastructure provider, and it has not
yet been considered in the previous work.

3) While there exists plenty of research on the optimization of
MEC systems, limited work however has been performed so far
in the multi-server environment [39] [8][58], regarding jointly
optimizing resource allocation, service caching and task offload-
ing, over the communication, networking, storage and comput-
ing layer. Moreover, although various optimization model and
algorithmic solutions have been proposed, most of them are
centralized and cannot be readily applied in a distributed and
decentralized environment. In this paper, we provide a unified
framework for the joint optimization task, taking into account
constraints from all involved layers. We model the problem as a
MINLP program, and propose an efficient two-stage algorithm
based on approximation and decomposition theory. Our problem
formulation allows us to develop a fully distributed and adaptive
algorithm for each MEC server, through limited information
exchange between neighboring nodes. Moreover, the derived
mechanism is also secure as there is no need for each server
to expose its local traffic information to neighboring nodes. We
further consider influential factors from a real MEC system, in
particular, service switches that can significantly degrade system
performance, and develop a cost-aware online algorithm for
optimal system control.

4) We evaluate our mechanism through both synthetic and
trace-driven simulations. Results indicate that our mechanism
outperforms the baselines, and the cost-aware online algorithm
converges quickly and that it is capable of achieving high perfor-
mance while at the same time maintain low system instability.

The remainder of this paper is organized as follows. In Sec-
tion II we introduce system model and problem formulation.
Section III describes our novel centralized algorithmic solution
to the problem. Section IV elaborates decentralized mechanism
and the cost-aware online algorithm. Section V presents nu-
merical studies and simulation results. We give related work in
Section VI and conclude the paper in Section VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Consider a Mobile-Edge Computing-based network as shown
in Fig. 1, which consists of multiple base stations (BSs), MEC
servers and user equipments (UEs). Each BS covers a specific
area for serving its associated UEs, and is connected via back-
haul links to other BSs. Moreover, each BS is equipped with one
or more servers (hereafter called MEC server) so that computing
tasks from UEs with stringent requirements (e.g., short delay,
high energy efficiency) can be offloaded. To make our model
generic, these BSs could be macro cells (eNBs), small cells
(SCeNBs), or femto cells (HeNBs), and the MEC servers could
be micro data centers, edge clouds or computing servers with
high capacities, accordingly. Note that unlike traditional cloud
data centers with abundant resources, MEC servers are often
resource-limited so that they can only accommodate a limited
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Fig. 1. A mobile-edge computing-based network.

number of services simultaneously, and process certain amount
of tasks per time interval.

With multiple BSs/MEC servers,1 a computing task from UE
can be either performed at the UE where it originates, or be
offloaded to the local MEC server if the required service is
hosted and significant performance gains can be achieved. To
fully exploit the power of the network and enhance users’ QoE,
we allow tasks from each BS to be potentially routed to its
neighboring BSs through back-haul links. This occurs when,
i.e., the required service is not locally present but it happens to
be cached by a nearby BS. Throughout the paper, we assume
that a computing task will not be directed to the remote cloud
due to excessively long delay.

There are several fundamental problems with regard to how
to utilize the resources of the network and how tasks from UEs
are performed. Among them, service placement (a.k.a service
selection or service caching) aims at selecting appropriate ex-
ecution servers to instantiate service instances, and therefore it
can significantly impact system performance as it determines
whether an MEC server is able to process a specific type of
tasks. Service placement is generally hard to plan due to its
combinatorial nature, i.e., the problem is often modeled as a 0-1
programming problem. Moreover, for performance gains such
as shorter latency and reduced energy consumption, only when
the required service is allocated with adequate resources will a
task be offloaded, and this raises the service resource allocation
problem which manages the mapping of services to resources.
There are two kinds of resources in a MEC-based network –
dedicated and amortized. Resources such as CPU cycles and
network bandwidth are often regarded as dedicated in that serv-
ing a task requires a dedicated share of the resource, and the
total resource consumption is the sum of resource requirements
of tasks/services scheduled on the server. On the other hand,
storage resources for hosting services (code & data) is usually

1We use BS and MEC server exchangably throughout this paper.

considered amortized in that one copy of data would support all
tasks for the service.

In addition to service caching and service resource alloca-
tion, communication model is another important aspect that we
should take into account. Communication-related parameters
such as interference mode, channel gain, transmit power of UEs
can affect the key performance metrics of task offloading. For
example, data rate between UE and BS is a function of the
bandwidth allocation and power management. This implies that
optimization of communication (e.g., bandwidth allocation and
power management at UEs) should also be considered as part
of the overall task. Last but not least, the request scheduling
problem – which deals with how to distribute tasks among
servers within the capacity of the network, while at the same
time meet certain performance requirements.

Obviously, all the problems described above are tightly cou-
pled if we want to optimize the network performance, i.e.,
resource allocation should match the characteristics of user-
generated tasks, and requests be scheduled according to server
workload and network conditions. This naturally leads us to a
joint service placement, resource allocation, power management
and task/request scheduling optimization problem. The task is
intrinsically challenging due to its cross-layer optimizing feature
and the high heterogeneity and dynamics of both the system and
workload.

B. Problem Formulation

For simplicity of notations, we denote the set of BSs and
services as M and N , respectively. The number of BSs and
services are M and N . The set of UEs associated with each BS
k ∈M is denoted as L(k). Each task corresponds to a specific
service and thus the number of different tasks/task types (e.g.,
image processing, navigation) equals to the number of services.
We denote R as the set of different tasks, and sometimes use R
andN interchangeably as |R| = |N | = N . To fully leverage the
heterogeneity of workloads, we further divide each type of task
i ∈ R into multiple sub-types N (i) based on the parameters of
tasks (e.g., data size, computation intensity). For example, two
users requesting the same face recognition service may introduce
different computing demand due to different resolutions of their
images submitted to the MEC server, and accordingly these two
tasks are considered from different sub-types. This fine-grained
classification of tasks also makes our model more practical.
Table I gives main notations used in this work.

1) Communication Model: We assume that the available
transmission bandwidth at each BS k ∈M, denoted by Bk

(Hz), is divided among different UEs L(k). Moreover, the type
of fading on wireless channels between UEs and the BS is
frequency-flat block fading. The channel power gain Hk

u from

UEu ∈ L(k) to BS k can be represented byHk
u = hk

ug
k
0

( dk
0

dk
u

)θk

,

where hk
u is the small-scale fading channel power gain from

UE u to BS k, gk0 is the path-loss constant, θk is the path-loss
exponent, dk0 is the reference distance and dku is the distance from
UE u to BS k. Let αk

u ∈ [0, 1] denote the portion of bandwidth
allocated to UE u, and Nk

0 be the noise power spectral density
at the receiver of the BS. The data rate wk

u of UE u at BS k then
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TABLE I
MAIN NOTATIONS

can be characterized as follows [36]

wk
u =

{
αk
uB

k log2

(
1 + Hk

uP
k
u

αk
uN

k
0 Bk

)
, αk

u > 0

0, αk
u = 0

, (1)

where P k
u is the transmit power of UE u at BS k.

Let PMAX
u > 0 be the maximum transmit power that u can

allocate. Obviously, a valid bandwidth allocation at BSs and
power management of UEs in the network should satisfy

∑

u∈L(k)

αk
u ≤ 1,αk

u ∈ [0, 1], ∀k ∈M, u ∈ L(k) (2)

0 ≤ P k
u ≤ PMAX

u , ∀k ∈M, u ∈ L(k) (3)

2) Computing & Networking Model: Since tasks are
categorized into multiple sub-types, we use a tuple
Ak,u

ij (Lij , Cij , fk
u , p

k
u,K

k
u , w

k
u) to characterize a task Ak,u

ij
of type ij (sub-type j ∈ N (i) of task i) from UE u at BS
k, where Lij is the data size of the task, Cij is the required
computation intensity (number of CPU cycles per bit); fk

u ,
pku and Kk

u are CPU frequency, transmit power and energy
coefficient of the UE u where the task is generated, respectively.
And wk

u is the data rate between u and BS k.
Let T k,u,UE

ij and Ek,u,UE
ij be the latency and energy con-

sumption when task Ak,u
ij is computed at UE u, respectively.

We have

T k,u,UE
ij =

Lij × Cij

fk
u

, (4)

Ek,u,UE
ij = Kk

u × (LijCij)× fk
u
2
, (5)

where Lij × Cij denotes the computation workload (in CPU
cycles) of the task. (4) states that the latency is simply the time
needed to perform computation at UE if the task is not offloaded,
and (5) is due to [34].

Likewise, let F k
i be the amount of CPU resource at server k

that allocated to service i. We denote by T k,u,k
ij and Ek,u,k

ij the

latency and energy consumption when task Ak,u
ij is offloaded

locally at BS k, respectively. We have

T k,u,k
ij =

Lij

wk
u

+
Lij × Cij

F k
i

, (6)

Ek,u,k
ij = pku ×

Lij

wk
u

, (7)

where (6) indicates that when offloading, the latency of a task
includes the time to upload data and perform computation at the
MEC server2, and (7) reflects that the energy consumption at
UE is simply the energy taken for data uploading.3

In a Mobile-Edge Computing-based network, a task can be
potentially offloaded to a nearby BS. Let I(k) be the set of
neighbors of server k (not necessarily one-hop away). When
Ak,u

ij is routed to and computed at a server s ∈ I(k), the energy

consumption Ek,u,s
ij and delay T k,u,s

ij of performing the task can
be calculated as

T k,u,s
ij =

Lij

wk
u

+
Lij × Cij

F s
i

, (8)

Ek,u,s
ij = pku ×

Lij

wk
u

. (9)

where F s
i is the CPU resource allocated to service i at server

s. Notice that Ek,u,k
ij = Ek,u,s

ij from (7) and (9). This is for the
fact that back-haul links usually have much higher bandwidth
than access links [20]. In other words, we can approximately
conceive the benefit of scheduling a task from a local server to a
remote server is due to the superior computing resources at the
remote server.

In this work, we consider a probabilistic task/request schedul-
ing policy. Let Prk,u,sij ∈ [0, 1] be the probability that task Ak,u

ij

from server k is routed to server s ∈ I(k), and Prk,u,kij be the
probability that it is offloaded to the local server. We also denote
by Prk,u,UE

ij be the probability that Ak,u
ij is performed at UE. To

ensure that every task is processed, these task scheduling/routing
variables should satisfy
∑

s∈I(k)

Prk,u,sij +Prk,u,kij +Prk,u,UE
ij = 1, ∀k ∈M, u ∈ L(k).

(10)

2Following the common practice [16], we assume a negligible amount of
post-processing data to be transmitted back to the UE.

3Since our goal is to optimize users’ QoE, we ignore energy consumption at
MEC servers.
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Since in MEC, users’ QoE is mainly related to latency and
energy consumption, we define the gain Gk,u,s

ij of offloading

task Ak,u
ij to the MEC server s as the weighted sum of latency

reduction and energy savings, which is as follows:

Gij
k,u,s(F s

i ,α
k
u, P

k
u )

= αij ×
Ek,u,UE

ij − Ek,u,s
ij

Ek,u,UE
ij

+ βij ×
T k,u,UE
ij − T k,u,s

ij

T k,u,UE
ij

(11)

where αij ∈ [0, 1] (βij = 1− αij) is a constant denoting the
relative weight between energy savings and latency reduc-
tion. When αij = 1, the problem becomes that of minimiz-
ing energy consumption, while αij = 0 means the goal is to
minimize task latency. Note that these two weights can vary
from task to task. Moreover, by setting FUE

i = fk
u we have

Gk,u,UE
ij (FUE

i ,αk
u, P

k
u ) = 0, i.e., local computation at UE brings

no gain.
3) Storage Model: We assume that each MEC server has

limited storage resources for hosting services.4 Let Sk be the
storage capacity at server k, and Si be the size of service i.
Denote by xk

i ∈ {0, 1} be a binary variable indicating whether
service i is cached at server k. We have the following storage
constraint at each server k

∑

i∈N
Si × xk

i ≤ Sk, ∀k ∈M (12)

4) Design Objectives: Let λ
k,u
ij be the arrival rate of task

Ak,u
ij , and F k be the total CPU resources at server k. Also

denote by W k be the communication capacity at server k, and
J (k) = I(k) ∪ {k}. With these notations, we can now for-
mulate the joint service placement, resource allocation, power
management and task scheduling problem for the MEC-based
network, with the goal to maximize users’ QoE, as the following
optimization problem:

Maximize:
{F s

i ,x
k
i ,α

k
u,P

k
u ,Prk,u,s

ij }
∑

i∈R

∑

j∈N (i)

∑

k∈M

∑

u∈L(k)

∑

s∈J (k)

λ
k,u
ij Gk,u,s

ij (F s
i ,α

k
u, P

k
u )Prk,u,sij

(13a)

s.t.
∑

i∈R
F k
i ≤ F k, ∀k, (13b)

∑

i∈N
Si × xk

i ≤ Sk, ∀k, (13c)

∑

s∈J (k)

Prk,u,sij ≤ 1, ∀i, j, k, u (13d)

∑

s∈I(k)

∑

u∈L(s)

∑

i∈N

∑

j∈N (i)

λ
s,u
ij × Lij × Prs,u,kij ≤W k, ∀k,

(13e)

4In line with the current technology, one can use a VM or container to provide
a service, which requires certain amount of resources (i.e., CPU, memory) from
the host machine. Since the capacity of hard disk is much larger than that of
memory, the service storage constraint that we considered in this work is mainly
for the memory.

∑
s∈J (k)

∑
u∈L(k)

∑
j∈N (i) λ

k,u
ij Prk,u,sij∑

u∈L(k)
∑

j∈N (i) λ
k,u
ij

≥ hk
i , ∀i, k,

(13f)
∑

u∈L(k)

αk
u ≤ 1, ∀k, (13g)

0 ≤ P k
u ≤ PMAX

u , ∀k, u, (13h)

0 ≤ F k
i ≤ FMAX, ∀i, k, (13i)

0 ≤ αk
u ≤ 1, ∀k, u, (13j)

0 ≤ Prk,u,sij ≤ xs
i , ∀i, j, k, u, s, (13k)

xk
i ∈ {0, 1}, ∀i, k, (13l)

where FMAX is the maximum amount of CPU resource that
a service can be allocated to by an MEC server. Note that
constraint (13d) is different from (10) since executing a task
at UE brings no performance gain and we therefore neglect it
in the above problem formulation. Constraint (13b) and (13c)
represent the CPU and storage resource limitations at an MEC
server, respectively, and (13e) states that the volume of tasks
scheduled to a server should not exceed its communication
capacity. Constraint (13k) tells that a request will be directed
to an MEC server only if the corresponding service is hosted at
that server.

Meanwhile, rather than the widely concerned delay con-
straints in most existing work, here we introduce a new re-
quirement (13f), which states that the proportion of tasks for
each service processed by the MEC-based network should be
no less than a preset threshold, i.e., hk

i ∈ [0, 1]. This constraint
can be actually regarded as a QoS requirement from service
providers. Indeed, from service providers’ point of view, the
most significant benefit of MEC is that delay-sensitive and
computation-intensive tasks can be executed at the network
edge, so that resource consumption at UEs can be dramatically
reduced. The MEC infrastructure provider may offer this option
to a service provider who has stringent offloading requirement,
i.e., as a new metric in their SLA (Service Level Agreement),
and this threshold can vary from service to service, and possibly
from BS to BS.

Theorem II.1: The offline joint optimization problem as stated
in (13) is NP-hard.

Proof: We prove the theorem by contradiction, by examining
the following problem (14), which is obtained by considering
the network with only one BS (BS k) and when all services are
of the same sizes (i.e., S1 = S2 = · · · = S), and under a fixed
bandwidth allocation, power assignment and request routing
{αk

u
′
, P k

u
′
, P rk,u,kij

′
}

Maximize:
{Fk

i }
∑

i∈R

∑

j∈N (i)

∑

u∈L(k)

λ
k,u
ij max{Gk,u,k

ij (F k
i ,α

k
u
′
, P k

u
′
), 0}Prk,u,kij

′

(14a)

s.t.
∑

i∈R
F k
i ≤ F k, (14b)
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Card(F k) ≤ Sk/S, (14c)

0 ≤ F k
i ≤ FMAX, ∀i, (14d)

where F k = (F k
1 , F

k
2 , . . . , F

k
N ), and Card(F k) is the cardinal-

ity function in F k, i.e., it equals to the number of non-zero
elements in F k.

Based on (11), we can see that the above problem is an instance
of problems of minimizing a sum of quasi-convex functions
with a convex constraint together with a cardinality constraint
(Observe that the function

∑
i∈R

∑
j∈N (i)

∑
u∈L(k) λ

k,u
ij Gk,u,k

ij

(F k
i ,α

k
u
′
, P k

u
′
)Prk,u,kij

′
is concave in F k). This problem is NP-

hard, since minimizing a sum of convex functions (which is also
convex) with a convex constraint and a cardinality constraint has
been shown NP-hard [10] [27].

Now suppose there exists a polynomial-time algorithm
to problem (13). Setting M = {k}, S1 = S2 = · · · = S, we
are able to obtain an optimal solution, say, {F k

i
∗
, xk

i
∗
,αk

u
∗
,

P k
u
∗
, P rk,u,kij

∗
}, where xk

i
∗
= 1 if F k

i
∗
> 0 and xk

i
∗
= 0 other-

wise. Obviously, this solution also solves problem (14) under the
same {αk

u
∗
, P k

u
∗
, P rk,u,kij

∗
}, and this contradicts the conclusion

that (14) is NP-hard. !

III. A TWO-STAGE ALGORITHM

A. Preliminaries

Given that problem (13) is NP-hard, we seek efficient heuristic
algorithms for approximate solution, by exploiting its structural
properties. Observe that the hardness of the problem lies in
the following facts: 1) lack of nice mathematical properties,
i.e., it is not convex. In particular, the objective function is
non-differentiable at the boundary of the feasible region, i.e.,
when F k

i = 0, or αk
u = 0, or P k

u = 0; and 2) the integer (0-1)
constraints at each server.

To solve the problem efficiently, we closely approximate
it with another one which is much easier to handle. More
specifically, we first impose a positive lower bound ϵ > 0 for
the concerned variables, i.e., F k

i ≥ ϵ, P k
u ≥ ϵ, and αk

u ≥ ϵ. This
ensures that the objective function is differentiable while at the
same time, the optimal value of the modified problem is expected
to be close to the original one, as long as ϵ ∈ (0, 1) is chosen suf-
ficiently small. Next, rather than targeting the problem directly,
we focus instead on the problem with no storage constraints.
This leads us to the following problem variant

Maximize:
{F s

i ,α
k
u,P

k
u ,Prk,u,s

ij }
∑

i∈R

∑

j∈N (i)

∑

k∈M

∑

u∈L(k)

∑

s∈J (k)

λ
k,u
ij Gk,u,s

ij (F s
i ,α

k
u, P

k
u )Prk,u,sij

(15a)

s.t. (13b), (13d), (13e), (13f), (13g) (15b)

ϵ ≤ P k
u ≤ PMAX

u , ∀k, u, (15c)

ϵ ≤ F k
i ≤ FMAX, ∀i, k, (15d)

ϵ ≤ αk
u ≤ 1, ∀k, u, (15e)

0 ≤ Prk,u,sij ≤ 1, ∀i, j, k, u, s, (15f)

Algorithm 1: Iterative Algorithm for Solving Problem (15).
1: Select an initial resource allocation and request routing

{F k
i
0
, P rk,u,sij

0
} subject to (13b)(13d)(13e)(13f)(13i)

(13k);
2: T ← 0; G0 ←∞;
3: for T ≤ TMAX do
4: Solve problem (16) with {F k

i
T
, P rk,u,sij

T
} and obtain

{αk
u
T
, P k

u
T };

5: Solve problem (23) with {αk
u
T
, P k

u
T } and obtain

{F k
i
T+1

, P rk,u,sij

T+1
}, and GT+1;

6: if |GT+1 −GT | < ξ then
7: break;
8: T ← T + 1.
9: Return {F s

i
T ,αk

u
T
, P k

u
T
, P rk,u,sij

T
}.

It is not hard to see that problem (15) is a nonlinear programming
problem (NLP) with a continuously differentiable objective
function and multiple linear constraints, i.e., the feasible region
is a polyhedron. Furthermore, the constraints are not coupled
with respect to different type of decision variables. This allows
us to apply general NLP solvers leveraging the information of
first-order or second-order derivatives. In this work, instead
of relying on these existing tools, we propose the following
algorithm which fully exploits the structural properties of the
problem:

Let G be the objective function of problem (15). Since
Maximize

{F s
i ,α

k
u,P

k
u ,Prk,u,s

ij }
G= Maximize

{F s
i ,Prk,u,s

ij }
{Maximize

{αk
u,P

k
u }

G}, we can solve

problem (15) by decomposing it into two sub-problems, where
the first (and lower-layer) problem is to determine the optimal
{αk

u, P
k
u } under a fixed {F s

i , P rk,u,sij }, and the second (and

upper-layer) problem is to obtain the optimal {F s
i , P rk,u,sij }

given a fixed {αk
u, P

k
u }. The algorithm works by iteratively

solving these two sub-problems until convergence, as depicted
in Algorithm 1 (here ξ > 0 is the parameter of accuracy).

More specifically, the lower-layer sub-problem we consider
can be formulated as follows:

Maximize:
{αk

u,P
k
u }

∑

i∈R

∑

j∈N (i)

∑

k∈M

∑

u∈L(k)

∑

s∈J (k)

λ
k,u
ij Gk,u,s

ij (F s
i ,α

k
u, P

k
u )Prk,u,sij

(16a)

s.t. (13g), (13h), (13j), (15c), (15e) (16b)

Note that since the objective function is separable and the
constraints are not coupled in terms of individual BSs, we can
tackle the above problem by solving M sub-problems, each one
for a particular BS. For example, the problem for BS k is

Maximize:
{αk

u,P
k
u }

∑

i∈R

∑

j∈N (i)

∑

u∈L(k)

∑

s∈J (k)

λ
k,u
ij Gk,u,s

ij (F s
i ,α

k
u, P

k
u )Prk,u,sij

(17a)
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s.t.
∑

u∈L(k)

αk
u ≤ 1, (17b)

ϵ ≤ P k
u ≤ PMAX

u , ∀u, (17c)

ϵ ≤ αk
u ≤ 1, ∀u, (17d)

The above problem can be solved by the following nonlinear
Gauss-Seidel method as proposed in [17] [36]

(1) Obtaining the optimal transmit power for a fixed band-
width allocation. The optimal transmit power {P k

u }, given {αk
u},

is achieved at either the stationary point of the objective function
or one of the boundary points, which can be calculated as
follows:

P k
u = argmax:

Pk
u∈{v∈H|ϵ≤v≤PMAX

u }
Gk, (18)

H =
{
ϵ, PMAX

u

}
∪
{
P k
u |

dGk

dP k
u

= 0

}
, (19)

where Gk =
∑

i∈R
∑

j∈N (i)

∑
s∈J (k) λ

k,u
ij Gk,u,s

i,j Prk,u,sij .
(2) Obtaining the optimal wireless bandwidth allocation for

a fixed transmit power. Given {P k
u }, the optimal wireless band-

width allocation {αk
u} can be obtained by solving the following

problem

Maximize:
{Pk

u }
∑

i∈R

∑

j∈N (i)

∑

u∈L(k)

∑

s∈J (k)

λ
k,u
ij Gk,u,s

ij (F s
i ,α

k
u, P

k
u )Prk,u,sij

(20a)

s.t. (17b), (17d) (20b)

The structure of problem (20) suggests a Lagrangian-based
method to solve it efficiently. More specifically, let G# be the
objective function and γ > 0 be the Lagrangian multiplier asso-
ciated with the constraint (17b), the partial Lagrangian function
can be written as follows:

L
(
{αk

u}, γ
)
= −1.0×G# + γ

⎛

⎝
∑

u∈L(k)

αk
u − 1

⎞

⎠ , (21)

Based on KKT conditions, the optimal allocation αk
u
∗ and opti-

mal Lagrangian multiplier γ∗ should satisfy

αk
u
∗
=

{
max{ϵ,ψu(γ∗)}, ∀u, γ∗ > 0
∑

u∈L(k) α
k
u
∗ ≤ 1

, (22)

where ψu(γ) denotes the root of −1.0×
∑

i∈R
∑

j∈N (i)
∑

s∈J (k) λ
k,u
ij ×

dGk,u,s
ij

dαu
× Prk,u,sij = γ, which is positive

and unique as −1.0× dGk,u,s
ij

dαu
> 0 decreases with αu. Let

γL = max
u

{−1.0×
∑

i∈R
∑

j∈N (i)

∑
s∈J (k) λ

k,u
ij ×

dGk,u,s
ij

dαu
×

Prk,u,sij |αu=1}, and define γU such that max{ϵ,ψu(γU)} < 1.
A bisection search over [γL, γU] can be leveraged for
the optimal γ∗. The search process terminates whenever
|
∑

u∈L(k) max{ϵ,ψu(γ∗)}− 1| < η, where η > 0 is the
accuracy of the algorithm.

In short, the Gauss-Seidel method iteratively updates the
transmit power and wireless bandwidth allocation until conver-
gence. The derived solution at each server is then adopted as the
solution to the lower-layer problem (16).

On the other hand, the upper-layer problem we consider is

Maximize:
{F s

i ,Prk,u,s
ij }

∑

i∈R

∑

j∈N (i)

∑

k∈M

∑

u∈L(k)

∑

s∈J (k)

λ
k,u
ij Gk,u,s

ij (F s
i ,α

k
u, P

k
u )Prk,u,sij

(23a)

s.t. (13b), (13d), (13e), (13f), (13k), (15d) (23b)

Based on (11), it can be seen that the above problem belongs
to the one of maximizing a sum of linear fractions with mul-
tiple linear constraints, to which efficient global optimization
algorithms have been recently proposed [11]. Alternatively,
we can also cast the problem as a Quadratically-Constrained
Quadratic Programming problem (QCQP, here actually bilinear)
that can be efficiently and approximately addressed [32] [7],
through introducing auxiliary variables zsi for each F s

i , and
new constraints F s

i × zsi = 1, ∀i, s. The objective function then
becomes quadratic in zsi and Prk,u,sij , and the constraints are
also quadratic.

B. 2-Stage Algorithm

We now elaborate on our 2-stage algorithm. Let {F k
i
′
,αk

u
′
,

P k
u
′
, P rk,u,sij

′
} be the solution to problem (15), which satisfies all

CPU resource allocation, wireless bandwidth allocation, power
management and request routing constraints in problem (13).
Denote by H(k) be the set of services which have stringent
QoS requirements at BS k, i.e., H(k) = {i|hk

i > 0}. Note that
these services have priorities over the others and need to be
preferentially cached. To have the remaining storage constraints
satisfied, we formulate the following 0-1 programming problem
for each server k

Maximize:
{xk

i }

∑

i∈R
Gk

i (F
k
i
′
)× xk

i (24a)

s.t.
∑

i∈N
Si × xk

i ≤ Sk, (24b)

xk
i = 1, ∀i ∈ H(k) (24c)

xk
i ∈ {0, 1}, ∀i ∈ R \H(k) (24d)

where Gk
i (F

k
i
′
) is the aggregate gain from hosting service i at

server k, which can be characterized as

Gk
i (F

k
i
′
)

=
∑

j∈N (i)

∑

s∈J (k)

∑

u∈L(s)

λ
s,u
ij Gs,u,k

ij (F k
i
′
,αs

u
′, P s

u
′)Prs,u,kij

′

(25)

The above problem (24) is a 0-1 knapsack problem if we regard
services as items, the aggregate gain from hosting services as
values/profits, and the size of services as weights. This problem
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has been studied, and both greedy approximation algorithms
and fully polynomial-time approximation schemes [2] have been
proposed. In particular, if we adopt the greedy approximation al-
gorithms based on the ratios between values/profits and weights,
then this leads us to the following important quantity which we
call resource efficiency Ek

i (F
k
i
′
) of hosting service i at server k

with F k
i
′, defined as

Ek
i (F

k
i
′
) =

Gk
i (F

k
i
′
)

Si
(26)

Eq. (26) states that a high resource efficiency for hosting a service
can be expected when a large aggregate gain is achieved while
at the same time it consumes less storage resources.

Our 2-stage algorithm is based on the above solutions of ser-
vice placement at MEC servers. The main idea is to decompose
the original problem (13) into two sub-problems solved at each
stage, during which we ensure certain constraints are satisfied.
More specifically, at the very first stage we try to satisfy the
storage and 0-1 constraints (see (13c), (13l)), by solving prob-
lem (15) for the network and then evaluating resource efficiency
for services at each server (Algorithm 2, line 1–2). The services
obtained by solving the knapsack problem for each server k
are then selected for potential resource allocation. If there are
ties, then we select the services with the least consumed CPU
resources (line 3). Once services are selected, it remains to obtain
the appropriate resource allocation, task scheduling, bandwidth
allocation and power management for the network. Again this is
achieved through solving problem (15) at the second stage (line
4). Notice the difference is that now the problem is restricted to
the services we have selected at the first stage, i.e., the objective
function becomes
∑

k∈M

∑

i∈R(k)

∑

j∈N (i)

∑

u∈L(k)

∑

s∈J (k)

λ
k,u
ij Gk,u,s

ij (F s
i ,α

k
u, P

k
u )Prk,u,sij

whereR(k) is the set of services selected at server k. In addition,
we introduce a new routing constraint

Prk,u,sij = 0, if i /∈ R(s) (27)

which states that a request will not be directed to a server if the
corresponding service is not cached.

Obviously, all constraints can be simultaneously satisfied
when our algorithm terminates. Meanwhile, low complexity
can be expected given that problem (15) can be efficiently
solved, since evaluating resource efficiency for each service
incurs negligible computation cost (see (25)–(26)).

Remarks (insights behind our algorithm): The sub-problems
solving structure of our algorithm makes it suitable to be im-
plemented at different layers. For example, the Gauss-Seidel
iterative process for obtaining the appropriate wireless band-
width allocation and power management can be carried out at
the communication layer, whereas requests routing and service
caching can be operated at the network and service/application
layer, respectively. Meanwhile, it also admits a multi-time-scale
framework that depends on system stability and operation cost,
i.e., requests routing can be adjusted at a small time scale
whereas service caching decisions may be made at a larger time
scale.

Algorithm 2: A 2-Stage Algorithm.
1: Solve problem (15) and obtain a solution

{F k
i
′
,αk

u
′
, P k

u
′
, P rk,u,sij

′
};

2: Evaluate resource efficiency for services at each server
based on (26);

3: Rank the services at each server k according to their
resource efficiency, and select the top most services
sequentially until there is no storage resources left;

4: Solve problem (15) with the selected services at each
server and new constraints (27), and obtain the solution
{F s

i
∗,αk

u
∗
, P k

u
∗
, P rk,u,sij

∗
}.

C. Convergence and Complexity Analysis

The convergence of our two-stage algorithm is fully de-
termined by the block nonlinear Gauss-Seidel (GS) method
adopted for calculating bandwidth allocation and power man-
agement in the lower-layer sub-problem, given that the upper-
layer sub-problem can be well solved by the global optimization
algorithm [11]. Note that the GS method we adopted in this work
is actually for two blocks (with two different blocks of variables
updated iteratively), and it satisfies all the necessary conditions
and requirements for convergence as presented in [22], which
are as follows: 1) the objective function is continuously differ-
entiable; 2) the feasible set is the Cartesian product of closed,
nonempty and convex subsets; 3) the sub-problem for each block
is well defined, i.e., it has an optimal solution; and 4) The
Assumption 1 in [22] holds. As a result, the GS method adopted
is convergent. Furthermore, Algorithm 1 can also be viewed as
an instance of the two-block Gauss-Seidel method (with one
block of variables being {F k

i
T
, P rk,u,sij

T
} and the other one

{αk
u
T
, P k

u
T }), which again satisfies the above four conditions

and requirements, leading to the fact that Algorithm 1 is also
convergent. The convergence of Algorithm 2 is obvious since it
merely involves calling Algorithm 1 twice, i.e., at the first stage
we try to solve the problem with no storage constraints, and at
the second stage we solve it with a fixed service placement.

The complexity of the algorithm comprises of two parts,
namely, the iteration complexity (outer iterations) and the per-
iteration computation (inner iterations). The complexity of the
per-iteration computation can be easily characterized as all
sub-problems are well defined and can be efficiently solved by
existing algorithms, i.e., bi-section search over a line interval.
The iteration complexity is relatively difficult to characterize. M.
Patriksson in [44] has given a linear convergence rate of decom-
position algorithms such as GS for continuously differentiable
optimization problems over Cartesian products of convex sets,
within the framework of cost approximation algorithms. Z.Q.
Luo et al. [33] have proved that the sequence generated by
iterative methods such as block coordinate decent converges
at least linearly to a stationary point, by using the concept
of error bounds and under some mild assumptions. Since the
problem we address has identical structure properties, we expect
the same convergence rate, although it still requires rigorous
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mathematical proofs. All together, this implies polynomial-time
complexity of the two-stage algorithm.

IV. DECENTRALIZED MECHANISM

In this section, we present a distributed algorithm to perform
the joint optimization task for a MEC-based network, since
the 2-stage algorithm proposed in the above section requires a
central coordinator as well as the detailed information of work-
load and network conditions (e.g., task parameters, UEs/BSs
configurations), which is often impossible as global information
is generally hard to collect in many real-world applications
due to security, management concerns, etc. On the other hand,
decentralized mechanisms are able to achieve superior perfor-
mance through nodes collaboration and local computation, and
therefore they are more preferred. Moreover, the algorithm also
needs to be adaptive to deal with the dynamics and uncertainty
of both workload and network conditions.

A. Distributed and Adaptive Algorithm

Our distributed and adaptive algorithm is based on the fol-
lowing three design principles: 1) minimum information shar-
ing/exchange between a server and its neighbors; 2) confidential-
ity – each server should not expose its local traffic information
to other servers; and 3) to leverage the offline problem (13) and
its algorithmic solution as much as possible.

To start with, let Gk(F k,Prk,αk,P k, {F l}l∈I(k)) be the
objective function at server k, i.e.,

Gk =
∑

i∈R

∑

j∈N (i)

∑

u∈L(k)

∑

s∈J (k)

λ
k,u
ij Gk,u,s

ij Prk,u,sij

where {F k, Prk, αk, P k} are local decision variables and
{F l}l∈I(k) are computing resource allocations from nearby
nodes. Also, to design a fully distributed algorithm, we decouple
the constraint (13e) by introducing W s,k, which denotes the
available network bandwidth at server s that reserved to its
neighbor k ∈ I(s). We thus get the following problem

Maximize:
{F k,αk,Prk,Pk}

∑

k∈M
Gk(F k,αk,Prk,P k, {F l}l∈I(k))

(28a)

s.t. (13b) ∼ (13d), (13f) ∼ (13l) (28b)
∑

u∈L(s)

∑

i∈N

∑

j∈N (i)

λ
k,u,s
ij LijPrk,u,sij ≤W s,k, ∀k, s ∈ I(k),

(28c)

where the constraint (13e) is replaced by (28c), which tells that
the requests from server k routed to server s ∈ I(k) should not
exceed s’s network bandwidth allocated to k.

It is not hard to see that the above problem is the one with
coupled objectives but the constraints are not coupled. One way
to decompose it is to introduce auxiliary variables and add addi-
tional equality constraints, and then apply the Lagrangian-dual
based approaches [51]. More specifically, for each server k
we introduce auxiliary variables {F kl}l∈I(k) for the coupled
arguments {F l}l∈I(k), and the equality constraints to enforce

consistency

Maximize:
{F k,αk,Prk,Pk,{F kl}}

∑

k∈M
Gk(F k,αk,Prk,P k, {F kl}l∈I(k))

(29a)

s.t. (13b) ∼ (13d), (13f) ∼ (13l), (28c) (29b)

F kl = F l, ∀k, l ∈ I(k) (29c)

Let γkl be the consistency prices [51] for the equality con-
straint (29c), we get the following relaxed problem

Maximize:
{F k,αk,Prk,Pk,{F kl}}

∑

k∈M
Gk − γkl

T (F kl − F l) (30a)

s.t. (13b) ∼ (13d), (13f) ∼ (13l), (28c) (30b)

Next, denote by g(γkl) the optimal value of problem (30), the
dual problem is given by

Minimize:
{γkl}

g({γkl}) (31)

It is well known that the dual problem is convex even when the
original problem is not [12].

A key observation of problem (30) is that it is separa-
ble in terms of individual servers. That is, given {γkl}l∈I(k)
and F l, server k can fully determines its local variables
(F k,αk,Prk,P k, {F kl}). This property together with the
standard dual-based decomposition method leads us to the fol-
lowing fully distributed algorithm:

Step 1: at each time t, based on the received F l(t) from
neighbors, each serverk updates its consistency prices according
to the following rule (here β is the step size)

γkl(t+ 1) = γkl(t) + β(F l(t)− F kl(t)), ∀l ∈ I(k)

Step 2: at each time t, based on the received consistency prices
from neighbors, each server k locally solves its optimization
problem:

Maximize:
{F k,αk,Prk,Pk,{F kl}}

Gk+

⎛

⎝
∑

l:k∈I(l)

γlk

⎞

⎠
T

F k−
∑

l∈I(k)

γkl
TF kl

(32a)

s.t. (13b) ∼ (13d), (13f) ∼ (13l), (28c) (32b)
∑

i∈R
F kl
i ≤ F l, ∀l ∈ I(k) (32c)

ϵ ≤ F kl
i ≤ FMAX, ∀i ∈ R, l ∈ I(k) (32d)

here, the constraints (13b)∼(13d), (13f)∼(13l) and (28c) are for
server k only.

Step 3: at each time t, after calculation each server k broad-
casts to its neighbors the following three messages: 1) its com-
puting capacity F k and service resource allocations {F k

i (t)},
i.e., the resource allocated to each service i at time t; 2) available
network bandwidth reserved to its neighbors {W k,s(t)}; and 3)
the consistency prices {γkl(t)}, as shown in Fig. 2.

Note that problem (32) essentially has the same properties
as problem (13) (the added terms in the objective function are
linear). As a result, the same 2-stage algorithms proposed in
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Fig. 2. Information exchange between neighbors in the proposed distributed
mechanism.

Section III with the following two adaptations, can be applied:
1) the algorithm is executed locally at server k and incurs less
computational cost, and 2) the aggregate gain Gk

i (F
k
i
′
) for eval-

uating resource efficiency becomes the objective function value
of (32), which reflects the fact that in the distributed environment
each server k can only use its local traffic information.

It remains to specify the bandwidth allocations {W s,k} in
order to implement the distributed algorithm. There are several
ways to do this. One possible choice is for each servers to equally
allocate its bandwidth among its neighbors I(s), i.e., W s,k =
W s

|I(s)| , ∀k ∈ I(s). A more reasonable choice is to distribute
its bandwidth based on bandwidth allocations from its neigh-
bors I(s), i.e., W s,k = W s × Wk,s∑

p∈I(s) W
p,s , ∀k ∈ I(s). Alter-

natively, we can also design bandwidth allocation schemes with
incentive mechanisms such as in P2P-like systems [55] [29], so
that MEC servers from different network operators are willing
to collaborate and contribute their resources. Whereas we rec-
ognize that bandwidth allocation can essentially impact system
performance, the design of optimal bandwidth allocation scheme
is out of the scope of this paper, and we leave it for our future
work.

B. Cost-Aware Solution

We now focus on the jointly optimizing task in a more real-
istic scenario where service switches can occur frequently in a
stochastic MEC-based network, i.e., when some new services
“replace” the existing ones in an MEC server due to workload
variations or change of network condition. According to the
current technology, services are often hosted by virtual machines
or containers, whose image (data and code) needs to be fetched
and loaded into system before the service is available. Note that
during this period of time, tasks cannot be executed at the server
but instead they can only be performed at UE or be offloaded
to other servers if the service is present. Likewise, allocating
a service with different amount of resources also causes de-
lays of the service. As a result, frequent service switches can
significantly degrade system performance. The cost of service
switches requires optimal control policy be cost-aware, i.e., it
achieves high system performance while at the same time incurs
less service switches.

To capture the cost of service switches into our algorithm
design, we first give a formal definition of service switches.

Definition IV.1: We define switch of a service i at server k at
time t as allocating resources to service i from F k

i
t to F k

i
t+1.

Service switches can be classified into two categories accord-
ing to their operation cost. The first one is to download a new
service from remote cloud or a nearby server and then start it,
i.e., F k

i
t
= 0 and F k

i
t+1 ̸= 0. The second one is to re-allocate

resources to an existing service, i.e., F k
i
t ̸= 0 and F k

i
t+1 ̸= 0.

Denote by ∆T k,t,dl
i and ∆T k,t,rl

i the time needed for these two
kinds of switches for service i at server k at time t, respectively5.
In general, we have ∆T k,t,rl

i < ∆T k,t,dl
i .

Accordingly, at arbitrary time t we can divide the set of ser-
vices at server k into two disjoint sets At

k and Bt
k (At

k ∩Bt
k = ∅

and At
k ∪Bt

k = R), which corresponds to the set of services
that are hosted at the current time t and that are not present but
may be hosted at time slot t+ 1, respectively. Let ∆T be the
length of a time slot. To ensure system stability and low operation
cost, we set ∆T > ∆T k,t,dl

i . Given that during service switches
tasks can only be processed at UEs or nearby servers, we can
now formulate a cost-aware optimization problem for server k
at time t as follows:

Maximize:{
Fk

i
t+1

,xk
i
t+1

,Prk,u,s
ij

t+1
,αk

u
t+1,Pk

u
t+1

}

∑

i∈R

∑

j∈N (i)

∑

u∈L(k)

∑

s∈I(k)

λ
k,u
ij

t
×Gk,u,s

ij

t
× Prk,u,sij

t+1
(33a)

+
∑

i∈At
k

∑

j∈N (i)

∑

u∈L(k)

λ
k,u
ij

t
Gk,u,k

ij

t+1
Prk,u,kij

t+1∆T−∆T k,t,rl
i

∆T

(33b)

+
∑

i∈Bt
k

∑

j∈N (i)

∑

u∈L(k)

λ
k,u
ij

t
Gk,u,k

ij Prk,u,kij

t+1∆T −∆T k,t,dl
i

∆T

(33c)

s.t., (13b) ∼ (13d), (13f) ∼ (13l), (28c) (33d)

It is not hard to see that problem (33) is identical with the
problem we consider in Section IV-A, with the only difference
being in the objective functions. The first term (33a) of the
objective function denotes the gains from offloading tasks to
the nearby servers, whereas the sum of the rest terms denotes the
gains from performing tasks at serverk, which is further split into
two separate ones ((33a) and (33c)) that respectively corresponds

to the setAt
k andBt

k. Notice that ∆T−∆Tk,t,rl
i

∆T

(∆T−∆Tk,t,dl
i

∆T

)
rep-

resents the fraction of time that requests from UEs can be served
by the MEC serverk due to resource re-allocation (caching a new
service), and thus it captures the cost of service switches during
service selection. Problem (33) has exactly the same properties
as the problem we addressed in Section IV-A and therefore the
same algorithm can be applied. Here we want to emphasize
that whereas services are relatively stable, ∆T k,t,dl

i (∆T k,t,rl
i )

5∆T k,t,rl
i and ∆T k,t,dl

i can be specified by the network operator, or be
measured online at each server as system operates.
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can vary from server to server and time to time, depending
on the network conditions, server computing workload, or their
hardware capacity, etc.

V. PERFORMANCE EVALUATION

In this section, we perform numerical studies, first to show
the efficacy of our centralized algorithm on optimizing system
performance, i.e., reducing task delays and energy consumption
at UEs, and second to evaluate the performance of our cost-aware
online/decentralized algorithm. We use both synthetic and trace-
driven simulations.

A. Benchmarks

We adopt the following three benchmarks for a comprehensive
performance comparison:

(1) Random-Caching: This is the algorithm that randomly
selects services to accommodate at each server (within its storage
capacity).

(2) Most-Caching: This algorithm caches at each MEC server
as many services as possible so as to keep the highest service
diversity.

(3) NLP-Solver: This algorithm solves problem (15) using a
standard NLP solver – Ipopt [54].

Note that for benchmarks (1) and (2), resource allocations,
power management and requests routing are determined opti-
mally by running our proposed algorithms, i.e., line 4 in Algo-
rithm 2. For benchmark (3), we adopt the same procedure for
selecting services as in Algorithm 2 (line 3), but with the differ-
ence that resource allocation, power management and requests
routing are determined by the Ipopt solver.

B. Evaluation Setup

For synthetic-workload simulations, we assume there are 50
services in system, i.e., N = 50. Among them, 3 services have
QoS requirements with offloading rate randomly set from [0.1,
0.3]. The number of sub-types of each task is randomly picked
from {1, 2, 3, 4, 5}, and these sub-types follow a Zipf distribution
with skewdness parameter 1.2. Task parameters are configured
as follows: the data size of each task Lij is randomly selected
from {500 KB, 2000 KB, 3000 KB, 5000 KB, 10000KB}, and
the computation intensity Cij from {100 b/cycle, 200 b/cycle,
300 b/cycle, 400 b/cycle, 500 b/cycle}. Note that these settings
represent workload of a typical face recognition application [16]
leveraging MEC. Meanwhile, we assume the number of UEs at
each BS is chosen from 30 ∼ 50, and their CPU frequency is
picked randomly from {0.5 GHz, 0.8 GHz, 1.0 GHz, 1.2 GHz};
The maximum transmission power of UEs is 2Watt, which is
typical for a smartphone uploading data in commercial 4 G LTE
networks [24]. The energy coefficient of all UEs are set equally
as Kk

u = K = 0.18 ∗ 10−12.
For task arrival process, we assume the aggregate request

rate at each MEC server is chosen uniformly from the inter-
val [0.5× 104req/s, 1× 104req/s], and these requests are for
a subset ⌈N/4⌉ of services following a Zipf distribution with
skewdness parameter 0.8. For tasks – UEs mapping, we assume

Fig. 3. Three network topologies adopted in simulation.

requests for a specific service at each MEC server are generated
by a subset of UEs that are randomly selected.

CPU resources and storage capacity of MEC servers are
uniformly drawn from [50 GHz, 100 GHz] and [50 GB, 100 GB],
respectively. The size of each service is picked from [3 GB,
10 GB]. In addition, we set the maximum CPU resource that a
service can be allocated to as FMAX = 10 GHz.

Communication-related parameters are configured as follows:
the wireless bandwidth of each BS is set 40 MHz, and UEs
are located at a distance of 100 m ∼150 m away from BS.
The small scale fading channel power gains are assumed to be
exponentially distributed with unit mean. As in [36], we set
gk0 = g0 = −40 dB, dk0 = d0 = 1m, θk = θ = 4, Nk

0 = N0 =
−174 dBm/Hz. Moreover, the communication capacity of each
MEC server is drawn uniformly from [5 Gbps, 20 Gbps]. Unless
otherwise specified, the weight for each task is set as αij = α =
0.5. Finally, to fully assess the performance, we adopt three
different network topologies – a line with 5 nodes, a hexagon,
and a triangle, as shown in Fig. 3, where we allow each server
to forward its local traffic to nodes that are one-hop away. Note
that each node in the triangle represents a 4-node mesh, which
can reflect more realistic settings on geographical relationship
and the possibility of clustering servers.

C. Simulation Results

1) Performance of Centralized Mechanism: We first evaluate
the performance of our algorithm in a centralized environment,
i.e., when task parameters are given a priori and only a single
time slot is considered (therefore no cost of service switch is
incurred). Figs. 4–7 show system gains achieved by the four
algorithms, with varying computing capacity, communication
capacity, network bandwidth and weight parameter. From these
figures, we can see that: 1) The NLP solver does not always
provide the optimal performance, which is out of our expec-
tation. In fact, in most cases it does not perform any better
than our 2-stage algorithm; 2) Our proposed algorithm gives the
best performance on average among the four algorithms, and
as much as 18% improvement (see Fig. 6(a)) can be observed
when it is compared with NLP solver; 3) The Most-Caching
algorithm, which caches as many services as possible at each
MEC server, also does not provide satisfactory performance as
compared to the optimal solution; and 4) The Random-Caching
algorithm, as we expected, performs worst. Moreover, according
to Figs. 4–6, it is clear that except for Random-Caching, the
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Fig. 4. Performance comparison of our algorithm and the baselines under varying communication capacity.

Fig. 5. Performance comparison of our algorithm and the baselines under varying computing capacity.

Fig. 6. Performance comparison of our algorithm and the baselines under varying storage capacity.

Fig. 7. Performance comparison of our algorithm and the baselines under varying weight parameter.

aggregate gains achieved by each algorithm over each topology
increases as the capacity of the network grows. It is also clear that
for each algorithm, the larger network scale, the higher aggregate
gains.

Fig. 7 illustrates that system gains achieved by each algorithm
can be impacted by the weight parameter α. In particular, it is
observed that gains grow as α becomes larger. Recall that α

is the weight denoting the relative importance of optimizing
energy consumption (see (11)), which implies that the larger
α, the more total energy savings. This property is validated in
Fig. 8 where the actual delay reductions and energy savings are
depicted. It can be seen that total energy savings is an increasing
function in α, whereas total delay reductions is non-increasing.
In our experiment, since energy savings is much larger than
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Fig. 8. Delay and energy consumption achieved by our algorithm and Most-
Caching over the triangle topology.

Fig. 9. Performance comparison of different algorithms under Abilene
topology.

delay reductions, increasing α naturally leads to an increase in
system gains, as shown in Fig. 7. Similar trends can be observed
over other topologies, and these observations suggest that in
practice we can tune system performance through regulating this
parameter α, i.e., balancing delays and energy consumption.

We also evaluate the performance of our algorithm under a
real-world (and more complex) network topology – the Abilene
network, with the same parameter settings as described above.
The results are depicted in Fig. 9, where we can see that our
algorithm again provides the best performance among these
benchmarks, and the results are in accordance with that under
the three synthetic topologies.

Since the original problem is NP-hard, it would be interesting
to see the gap between our solution and the optimal one. To this
end, we compare it with the solution to another optimization
problem which is formulated as the one without the network

Fig. 10. Convergence of our algorithm over three network topologies.

bandwidth constraints and QoS requirements. Obviously, the
solution to this optimization problem provides an upper bound
for the original problem. Note that the MEC-based network then
can be conceived as a Single-Server Multi-User system, where
the set of MEC servers is regarded as a super-server whose
computing, storage and radio resources are the sum of resources
of individual servers, and the set of UEs consists of UEs from
all servers. Meanwhile, it is also clear that for this problem,
the optimal routing strategy is binary offloading, i.e., each UE
either computes its task locally, or offloads it to the super-server.
Although the problem is still NP-hard, for small scale problems
the optimal solution can be found through exhaustive search.
We make the following observations about this “super-server”
system which facilitates the search of optimal solution: 1) A task
will not be offloaded to the MEC server if the corresponding
service is not hosted; 2) Given communication bandwidth and
transmit power allocation at UEs, the problem of determining
the optimal computing resource allocation among a given set
of services is convex. The search of optimal solution to this
“super-server” system then involves solving a series of convex
optimization problems (and running GS algorithms), with each
one corresponding to a specific task offloading strategy. Our
numerical studies indicate that, for the network with 2 servers, 8
services (the tasks of each service are of the same sub-type), and
8 UEs at each BS/server, our algorithm achieves 82% ∼ 91% of
the optimal performance.

Next, to see how fast our algorithm is, we trace the aggregate
gains returned by Algorithm 1, as shown in Fig. 10, where
the drop of gains corresponds to selecting a subset of services
to accommodate at each server. It can be seen that over all
topologies our algorithm is stable and that it takes less than
8 iterations to converge.

2) Performance of Decentralized Mechanism: We use sim-
ulations to evaluate the performance of our algorithm in a
decentralized environment. To this end, we set the length of
each time slot as ∆T = 200 sec. Both the gains by different
algorithms and the number of service switches incurred in each
time slot are investigate. Figs. 11–13 give the aggregate gains
achieved in one slot at each server as the iteration process goes
on, where the network bandwidth of each server is assumed
to be evenly distributed among its neighbors, and there is no
cost of service switches. From these figures, we can see that
over all topologies and at all servers, our algorithm outperforms
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Fig. 11. Performance of our decentralized algorithm over line topology.

Fig. 12. Performance of our decentralized algorithm over hexagon topology.

Fig. 13. Performance of our decentralized algorithm over triangle topology.

Most-Caching in that: 1) it converges faster, for example, it
takes less than 20 iterations to get an optimal service selection
and resource allocation; and 2) it is much smoother as there is
no sudden drop in aggregate gains when selecting a subset of
services to host, which, on the other hand, can be observed in
other baseline algorithms such as Most-Caching. Moreover, the
proposed algorithm is effective that up to 110% (with the average
75%) performance enhancement can be achieved as compared
with Most-Caching.

To investigate the performance of our cost-aware online al-
gorithm in real-world setting, we adopt trace-driven simulations
where the dataset consists of taxicab traces from [46] and wire-
less trace from [52]. More specifically, from taxicab we extract
36 mobile users and their location updates every 100 seconds,
and assign them to 6 Voronoi cells that are at least 5 km apart.

The wireless trace is used to generate requests, which contains
packet inter-arrival times generated by 5 applications from 36
wireless devices. As in [20], we associate each device with a
user in taxicab, and each application with a service. To have
enough services in system, we further divide each application
into 10 different services so that we have 50 services in total.
Meanwhile, to simulate the task arrival process, we stretch time
axis in each trace by 60 (so a second in trace now becomes a
minute). The length of each time slot is set as ∆T = 100 sec,
and the time for a service switch (i.e., the time to load a new
service from cloud or nearby servers) as ∆T = 20 sec.

Fig. 14 gives performance of our decentralized cost-aware
algorithm in this trace-driven simulation. We can see that due to
user mobility and non-stationary workload arrivals, the system
is not stable and that gains achieved at each server fluctuate
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Fig. 14. Performance of our decentralized algorithm in trace-driven simulation.

over time. However, we are still able to maintain low service
switches at each server while at the same time retain high system
performance, i.e., up to 45% gain enhancement can be expected
by our algorithm as compared with Most-Caching. These results
indicate that in practice, our mechanism can be adopted by the
MEC service providers to improve their network performance.

VI. RELATED WORK

The issues of service placement, resource allocation and task
offloading/scheduling in MEC have been extensively studied
for the past few years. Below we introduce some representative
work on these topics.

Early work on service placement and request scheduling
mainly focus on offline solutions. [47] [23] propose near-
optimal algorithms with a constant approximation factor to
address the joint service placement and request scheduling
problem. [18] considers data-intensive applications, in par-
ticular, content caching, but ignores constraints from other
resources such as computation and communication. To ad-
dress this issue, [47] and [23] propose to take into account
multi-dimensional constraints when they try to maximize the
number of satisfied requests by edge servers. In [9], the au-
thors consider latency requirements on different services, and
develop a set of uncoordinated strategies. [57] models the
collaborative service placement problem as a matching prob-
lem and propose an efficient decentralized algorithm based
on matching theory. Their goal is to minimize traffic load
directed to cloud. Chen et al. [14] propose a parallel Gibbs-
sampling based decentralized solution, taking into account ser-
vice heterogeneity, spatial demand coupling and decentralized
coordination.

Most recent work on service placement and request schedul-
ing are primarily about online solutions. [38] [5] assume pre-
dictable system dynamics such as user mobility and propose
online service placement schemes. However, in practice these
assumptions are too strong. Xue et al. [56] model the considered
task as a queue control/stabilization problem, and adopt a Lya-
punov optimization approach. [20] proposes a two-time-scale
framework to balance the cost of system reconfiguration and
performance of serving requests, and develop a greedy algorithm
based on set function optimization theory. Similarly, [42] [20]
consider the operation cost of service migration and develop

efficient mechanisms to trade off the cost and performance.
Online learning schemes such as MAB-based optimization
approaches and Thompson-sampling based learning algo-
rithms [41] are also applied.

A significant amount of work is dedicated to resource al-
location in MEC. Again, these work can be categorized into
offline solutions and online solutions. Offline solutions generally
assume availability of tasks and users, and then make radio or
computation resource allocations according to different opti-
mization objectives, i.e., to minimize task delay [19], energy
consumption [50], or the weighted sum of them [15]. Online
solutions, on the other hand, do not require prior knowledge and
make resource allocation decisions dynamically as the system
operates. For example, [28] [30] study the problem of minimiz-
ing energy consumption of all users while satisfying their delay
requirements, through jointly optimizing radio resource alloca-
tion and task offloading. They propose a MDP-based approach.
Authors in [35] [37] develop a Lyapunov-based online algorithm
for radio and computation resource allocation, with the aim to
minimize the long-term weighted sum of energy consumption
of user devices and MEC servers. Machine learning techniques
were recently applied. For example, [48] and [25] develop a
model-free reinforcement learning based online task offloading
approach to optimize the communication resource utilization.
Regularization techniques [60] and MAB-based optimization
theory [13] were also used to design efficient online algorithms
for resource allocation.

Given that there has been a flurry of recent researches on
MEC optimization, relatively few work has been dedicated to the
problem of joint resource allocation, service caching and com-
putation offloading in a multi-user multi-server environment.
Authors in [39] study the joint communication, computation,
caching and control in Big Data MEC systems, where the
block successive upper bound minimization method is applied
to solve the formulated problem. Apostolopoulos et al. [8]
consider users’ risk-seeking behavior when offloading their
tasks, and use the principles of Prospect Theory and Tragedy
of the Commons to formulate the problem. They propose a
low-complexity algorithm based on a non-cooperative game
formulation. Zhou et al. [59] investigate the problem of joint
optimization of computation offloading and service caching in
MEC-based smart grid, and propose CCORAM method, which
comprises of a gradient descent allocation algorithm and a
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game-based computing strategy. However, their approach cannot
be applied in a distributed environment. Li et al. [31] aim at
minimizing the energy consumption at UEs, through control-
ling power management and computing resources at UEs, in
addition to task offloading decisions. They propose a two-stage
heuristic based on genetic algorithms. Again, their solution is
centralized. In [20], authors study the problem of maximizing
the satisfied requests for a MEC-based network through jointly
optimizing request routing and service placement, and propose
a polynomial-time algorithm based on set function optimization
theory. However, they do not consider the communication mod-
els in their system. Likewise, Ren et al. [49] study the problem
of optimally offloading tasks between different Edge Service
Providers (ESPs) and within each ESP, and propose an efficient
two-layer offloading scheme to maximize the revenue of ESPs.
Shen et al. [58] investigate the distributed computation offload-
ing problem with delay constraints, and formulate the problem as
a delay-constrained long-term stochastic optimization problem
without prior knowledge. They propose TODG, a distributed
online algorithm, to address the joint optimization problem.

Our work differs from the above in that: 1) we adopt a new
QoS requirement called offloading rate requirement, while most
existing work use delay constraints; 2) we consider a generic
MEC-based network where each MEC server can collaborate
with neighboring servers, whereas in some work an edge-cloud
architecture is adopted and there’s no collaboration among MEC
nodes; 3) we consider all the four layers of communication,
networking, computing and storage, and provide a unified frame-
work for the joint optimization task; on the other hand, only 2 or
3 of the four layers are involved in most work; 4) we propose a
novel concept called resource efficiency for service selection,
and adopt a nested two-block Gauss-Seidel (GS) method to
address the joint optimization problem; moreover, we devise
a fully distributed algorithm based on the centralized solution,
which at the same time guarantees that only limited information
(instead of the raw task profile) needs to be exchanged between
neighboring nodes to achieve a network-wide optimum. This
provides us a sense of security/privacy protection; 5) We incor-
porate the cost of service switches from a real MEC system into
the online algorithm design, which makes our mechanism more
practical.

VII. CONCLUSION

We study the problem of maximizing users’ QoE in a MEC-
based network through jointly optimizing service caching, re-
source allocation and task offloading. We adopt a multi-layer
optimization approach and propose a novel two-stage algorithm
based on approximation and decomposition theory. Distributed
and online algorithms are also developed, with the special em-
phasis on limited/confidential information exchange between
nodes and tradeoff between the cost of service switches and sys-
tem performance. The efficiency of our algorithms are validated
via numerical studies and trace-driven simulations.
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