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Abstract—Queueing models serve as important building blocks
in many networking applications such as task scheduling in mobile
edge computing nodes, traffic scheduling in networks, congestion
control in Internet, etc. However, queueing theory often needs
to make strong assumptions about the arrival process or service
rewards at each queue. In addition, fairness in serving workload
among all queues is of great importance in many applications.
In this paper, we address how to optimize resource allocation
among multiple queues with a fairness guarantee and without any
a priori knowledge of these queues’ parameters. To characterize
queues with unknown parameters and the fairness requirement, we
formulate an online learning model with a varying and continuous
action space, as well as a nonlinear utility objective. We design an
online learning algorithm to tackle the problem. We prove that
our algorithm has a regret upper bound of O(

√
T log T ) and our

model has a regret lower bound of Ω(
√
T ), where T stands for the

number of decision rounds. The asymptotic closeness of upper and
lower bounds guarantees their near tightness and our algorithm’s
near optimality. We discuss our model’s real-world applications
in mobile edge computing, wireless networks, and crowdsourcing,
and conduct simulations to validate our algorithm’s effectiveness.

Index Terms—Fairness, linear bandits, queueing problems.

I. INTRODUCTION

QUEUEING models serve as important building blocks in
many networking applications, e.g., in mobile edge com-

puting, it is applied to schedule offloaded tasks to servers [1], [2],
[3], [4]. In 5G wireless networks, it is applied to schedule traffic
flows [5], [6], [7], [8]. In mobile crowdsourcing applications,
it is applied to design task allocation policies [9], [10], [11],
[12]. Essentially, queueing models enable one to study resource
allocation problems and devise various allocation policies. To
motivate our study, consider the following toy example in Table I
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TABLE I
A TWO-QUEUE TOY EXAMPLE

composed of two queues Qa, Qb and a single server S, where
B(·) stands for Bernoulli random variables (r.v.s) [13, § 2.2].

In the next time slot, the single server S can serve one unit of
queue length (job) of one queue. By allocating the server S to
Qa, one can earn a reward of 2 which is higher than the reward
of 1 from allocating the server to Qb. To maximize the total
reward, the one needs to serve Qa whenever it is non-empty.
In this case, queue Qb’s job would accumulate as time elapses
and its average queue length would be much longer than Qa’s,
which implies that the above policy is unfair. Since fairness is
of great importance in many applications, simply maximizing
the total reward may not be a suitable objective. For example,
in network bandwidth scheduling, although serving some flows
(e.g., video streams) can please some users, other flows (e.g.,
large file transfer) should be served fairly also.

The queue length of a flow represents the amount of back-
logged data, and it can affect the quality of experience (QoE) [14]
for its corresponding users. To measure “fairness” of balancing
the QoE among queues, the difference of queue lengths can be
used as a metric. In the example of Table I, after serving one job
of Qa, the expected queue difference is |(4−1 + 0.1)− (3 +
2× 0.9)| = 1.7, while if serving Qb instead, the queue differ-
ence would be |(4 + 0.1)− (3−1 + 2× 0.9)| = 0.3. Thus, in
terms of fairness, the server should be allocated to Qb instead
of Qa. This shows that a fair allocation may not be simply
serving the longest queue Qa. This counterintuitive observation
illustrates that to maintain fairness in queueing models, one
should consider not only the current queue lengths, but also
the job interarrival random variables [15, § 2.2].

From the above example, to balance reward and fairness,
one needs to know both the arrival processes of these queues
and the rewards of serving them. However, such information is
often unavailable in many real world applications. Take network
packet scheduling as an example. Since the network perfor-
mance depends on the number of flows and their routing paths
(both of which change frequently), it is difficult to know the
service rewards and arrival rates of each flow in advance.

In this paper, we develop an online learning framework
to address the above challenge. In particular, to tackle the

1536-1233 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 03,2024 at 05:40:57 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: ANALYZING QUEUEING PROBLEMS VIA BANDITS WITH LINEAR REWARD & NONLINEAR WORKLOAD FAIRNESS 3411

unknown environment and to satisfy the fairness requirement,
we propose the QLBF (Queueing Linear Bandits with nonlinear
Fairness guarantee) online learning model. We design an upper
confidence based online learning algorithm, called QLBF-UCB
(Upper Confidence Bound) to sequentially allocate the resource
among multiple queues.

Note that the QLBF model we study is a more general set-
ting than our motivating example. The QLBF model consists
of one resource allocator (server) with limited but arbitrarily
dividable resources, and multiple queues whose service rewards
and interarrival distributions are unknown a priori. Different
from classic queueing theory’s interests, like customer waiting
time and server idle time [16], QLBF focuses on online decision
making. In each time slot, the server assigns its resources to these
queues and then, after a deterministic service time, observes
the total service reward and the new arrivals of each queue.
In this model, both the action space and the new arrivals are
“continuous”. Besides a linear structure reward, we employ a
nonlinear variance function of these queue lengths to measure
QLBF’s fairness which can be mapped to many fairness metrics
in queueing applications. Combining the fairness and service
rewards, we define a “nonlinear utility” as QLBF’s objective.
Our online learning task aims to to maximize its total service
reward as well as maintain fairness among multiple queues. We
refer to Section VI for a detailed explanation of QLBF’s real-
world application scenarios, including bandwidth scheduling
of 5G wireless networks, resources scheduling of mobile-edge
computing nodes, and task allocation in mobile crowdsourcing.

More general than traditional queueing systems, the QLBF
model takes service rewards into consideration. The continuous
action space and state space further complicate the model,
making it difficult, if not impossible, to find an optimal policy
under its setting even when the model parameters are given.
We therefore choose a utility greedy policy as our learning
benchmark when designing algorithms. Extensive numerical
comparisons with other policies such as longest queue first,
shortest queue first, and round-robin validate the greedy policy’s
effectiveness. Our work focuses on studying the learnability of
the QLBF model and designing online learning algorithms to
address it.

Our QLBF-UCB algorithm extends the upper confidence
bound (UCB) algorithm [17] to address our new online learning
task. The algorithm’s UCB consists of two terms: the linear
structure reward’s and the nonlinear fairness term’s. We adapt
linear bandits’ techniques [18] to estimate the linear structure
reward’s UCB. Designing the nonlinear fairness term’s UCB
is more challenging. Because it depends on the unknown and
nonparametric arrival processes of multiple queues. To address
the issue, we employ the Dvoretzky-Kiefer-Wolfowitz inequal-
ity [19, Theorme 7.1] to construct the confidence band of the
arrivals’ cumulative distribution functions. We show that the
QLBF-UCB algorithm has an O(

√
T log T ) regret upper bound

and the QLBF model has a Ω(
√
T ) regret lower bound, where T

stands for the decision time horizon. The fact that there is only
a logarithmic factor missing in the lower bound implies that
QLBF-UCB is nearly optimal and our proposed bounds are
nearly tight. We conduct simulations to show QLBF-UCB’s

TABLE II
NOTATION

learning effectiveness in the QLBF model. The results validate
our sublinear regret bound.

The paper organizes as follows. Section II presents the related
work. Section III gives the detail of our QLBF model and
formulates the online learning problem. In Section IV, we devise
our QLBF-UCB algorithm and derive its UCB formula. Then,
we present QLBF-UCB theoretical regret bounds in Section V.
In Section VI, we discuss potential applications of our QLBF
model in 5G networks, mobile-edge computing systems, and
crowdsourcing. In Section VII, we provide simulations to vali-
date the efficacy of offline utility greedy policy and corroborate
our QLBF-UCB algorithm’s theoretical analysis results. Our
theoretical results’ rigorous proofs are presented in Section VIII.
At last, we conclude our paper in Section IX.

II. RELATED WORKS

While there is a line of works applying restless bandits
model (with known parameters, i.e., offline) to study queueing
based scheduling tasks (e.g., see survey [20]), only few works
considered queueing model in the online learning context [21],
[22]. Krishnasamy et.al. [21] studied the case that an operator
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allocates jobs in a queue to multiple servers, where the servers
with different service rates are modeled as arms with different
reward means and the allocation of jobs in the single queue
decided by the operator. Stahlbuhk et.al. [22] proposed an algo-
rithm for this setting achieving constant regret when the arrival
rate of jobs is less then the optimal server (arm)’s service rate.
Our QLBF model is different from their settings in two ways:
(1) the QLBF model considers heterogeneous service rewards
among multiple queues as arms while their model only contained
one single queue as an operator; (2) QLBF’s action set is con-
tinuous and varying while previous works’ are fixed, finite, and
discrete.

Recently, fairness is of interest in sequential learning (e.g.,
MAB) [23], [24], [25], [26]. Joseph et.al. [23] first considered
fairness in classical and contextual bandits and provided algo-
rithms to achieve individual fairness in both setting. Li et.al. [24]
studied the sleeping semi-combinatorial bandits with fairness,
where, to guarantee the fairness, they required that the pull
fractions of arms should be greater than a pre-specified vector.
Following Li et.al. [24], Patil et.al. [27] proposed a fairness-
aware regret taking this fairness constraint into consider; Chen
et.al. [28] introduced this fairness constraint to the contextual
MAB model; [29], [30] studied this constraint in Federated
MAB model, etc. Bistritz et.al. [26] introduced the max-min
fairness into distributed multi-player bandits. Different from
their fairness measures, our QLBF model is the first to use the
variance of queue lengths as fairness metric, which can be easily
extended to classical Jain’s fairness index [31] and the newly
proposed quality of experience (QoE) fairness [32]. We also
note that variance was also included in the utility function of
Risk-averse multi-armed bandits (e.g., [33], [34]). Our utility
function is deferent from theirs as our variance (fairness) is of
queue lengths, while their variance only depended on rewards.
Wang et al. [35] introduced the fairness-of-exposure constraints
to MAB and linear bandits to avoid winner-takes-all allocation.
Their objective focused on maximizing the merit of fairness
which is different from our utility function taking both reward
and fairness into account.

UCB algorithms had been extensively studied both in general
MAB model [36], [37], [38] and in linear structured MAB
model [18], [39], [40]. Peter et.al. [38] were the first to achieve
the uniform sublinear regret bound in MAB via the UCB algo-
rithm. Abbasi-Yadkori et.al. [18] proposed a linear UCB algo-
rithm for linear structure MAB and a uniform UCB algorithm
for general MAB model. Although our model contains a linear
reward term as linear bandit did, the nonlinear fairness term in
our utility makes these linear bandit algorithm not applicable.
Using queue lengths as a varying environment shares a similarity
with MAB’s contextual setting (e.g., [41], [42], [43], [44]). Dif-
ferent from their settings, our utility function directly converts
the queue lengths to the fairness term instead of taking them as
side information.

III. MODEL AND PROBLEM FORMULATION

In this section, we step by step formulate the QLBF model:
first the queueing model, then the action and feedback, and

finally the fairness and utility function. Lastly, we define our
online learning problem and its performance criterion.

A. Queueing Model

Consider a finite number of K ∈ N+ queues. Each queue
is associated with one type of requests or tasks. We use a
discrete time system indexed by t ∈ N+ to characterize these
queues’ arrival processes. Let Λk,t ∈ R+ denote the amount
of requests arriving to queue k ∈ K ! {1, 2, . . . ,K} at time t.
Here, Λk,t is a random variable with a bounded support [0, b],
where b ∈ R+. The range of Λk,t is allowed to be discrete (e.g.,
modeling number of arrivals) or continuous (e.g., modeling fluid
queue). For each given queue k, the arrivals of Λk,t across t
are independent and identically distributed. Also, Λk,t across
k are independent. Let Lk,t ≥ 0 denote the length of the k-th
queue in time slot t. For simplicity, define Lt ! (Lk,t : k ∈ K),
Λt ! (Λk,t : k ∈ K) and denote D as the distribution that the
random vector Λt follows.

Let c ∈ R+ denote the server’s total amount of capacity (or
resources) which is arbitrarily dividable. The decision maker
needs to sequentially allocates the capacity to serve queues in
each time slot t. We consider a deterministic service time setting,
i.e., each service would finish at the end of each time slot. After
one time slot’s service, each queue length’s reduction is equal
to its allocated capacity.

B. Action and Feedback

Let Ak,t ∈ [0, c] denote the amount of capacity allocated to
queue k in time slot t and At ! (Ak,t ∈ [0, c] : k ∈ K) denote
the allocation vector.1 The total allocated capacities in one time
slot is no greater than c, i.e., ∥At∥1 ≤ c. As the queue length
represents the demand of its corresponding task, the assigned
capacity to each queue should not exceed the length in its
preceding time slot, i.e., Ak,t ≤ Lk,t−1 for any k ∈ K. Thus,
the space of all the feasible capacity allocations in time slot t is

At ! {A : 0 ≤ A ≤ Lt−1, ∥A∥1 ≤ c}.

We consider a linear reward function associated with each
action At ∈ At as follows:

Rt(At) ! AT
t µ
∗ + ηt, (1)

where µ∗ ! (µ∗k : k ∈ K) ∈ RK
+ and ηt ∈ R is a subgaussian

zero-mean noise [45, § 2.3]. Here, µ∗k can be interpreted as the
average per-unit service reward of queue k and it is unknown to
the decision maker. Also, all µ∗k are bounded, i.e., exists d ∈ R+

such that ∥µ∗∥2 ≤ d.
In time slot t, after allocating capacities according to At,

the total reward Rt and the number of new arrivals Λt will be
revealed to the decision maker. The queue length Lt is the total
arrivals up to time tminus the cumulative allocated capacities up

1Throughout this paper, we use boldface notations to represent K-dimension
vectors whose entries correspond to all K queues accordingly. When a notation
defined in boldface (e.g., At), is used in regular font (e.g., Ak,t), it stands for
an entry of this vector corresponding to a specific queue.
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to time t. So, the queue length Lt can be calculated as follows:

Lt =
t∑

l=1

(Λl −Al) = Lt−1 +Λt −At. (2)

C. Fairness and Utility Function

We measure the fairness via the variance of queue lengths.
Let V : RK → R+ denote the variance function, which is

V (Lt) !
1

K

K∑

k=1

(
Lk,t −

1

K

K∑

i=1

Li,t

)2

.

Note that our variance fairness definition can be easily ex-
tended to many other fairness metrics via multiplying a constant
factor, taking its reciprocal or square root. For example, the
coefficient of variation V (Lt)/(

∑K
i=1 Li,t/K) and its inverse

are classical fairness measures in network [31], [46], and the
recently proposed quality of experience (QoE) fairness [32],
[47] is one minus the normalized standard variance, i.e., 1−√
V (Lt)/maxL′ V (L′). For another thing, the min-max and

proportional fairness metrics [48, § III] are not suitable for
our model. Because both metrics are fairness conditions—one
allocation is either max-min (proportional) fair or not. Since the
min-max and proportional fairness metrics are not quantitative
expressions for queueing systems, both cannot be used in our
quantitative utility function.

We note that the variance function V (Lt) is equal to V (Lt +
δ) where each queue length varies the same value δ, and the
smaller length vector is preferable. To differentiate between
V (Lt) and V (Lt + δ) in fairness measurement and motivate
the algorithm to minimize the queue length vector, we add a
2-norm regularization term ∥Lt∥22 to the variance function. Let
wt ! (wk,t : k ∈ K) denote a time-varying weight which cap-
tures the varying priorities among queues. These weights depend
on the instantaneous environment and may not be observed until
the tth allocation. So, the fairness associated with weighted
queue length vector wt ◦Lt is defined as

V (wt ◦Lt) + ξ ∥wt ◦Lt∥22 ,

where the ◦ operator stands for element-wise (Hadamard) prod-
uct and ξ ∈ R+ scales the regularizer.

This weight wt allows our fairness metric to balance the
service of queues in various ways, including balancing queue
delays. For example, (1) if the wk,t are the same for all k,
our fairness aims to uniformize all queues’ length; (2) if the
wk,t is equal to the reciprocal of the arrival rate for each queue
(e.g., assume the arrival rate is known or estimated with high
accuracy), our fairness is aim to balance all queues’ delay when
the system is stable (cf. Little’s Law [16, Theorem 1]). In a word,
our fairness function is versatile and, with well selected weights,
can be used to balance the delay of different queues.

As the queue length Lt is equal to Lt−1 +Λt −At and
the new arrivals Λt is unknown when making decisions, we
need to calculate the variation’s expectation with respect to
the interarrival random vector Λt. Therefore, we rewrite the

variation as V̄t(Λt;At,Lt−1,wt) which is equal to

V (wt ◦ (Lt−1 +Λt −At)) + ξ ∥wt ◦ (Lt−1 +Λt −At)∥22 .

We then take the expectation of the variation EΛt∼D[V̄t(Λt)] as
a penalty for measuring fairness. Finally, we define the utility
function u as follows

ut(At) ! E[Rt(At)]− s · EΛt∼D
[
V̄t(Λt;At,Lt−1,wt)

]
,

= AT
t µ
∗ − s · EΛt∼D

[
V̄t(Λt)

]
, (3)

where s ∈ R+ is a positive factor for controlling the relative
scale between both terms.

D. Online Learning Problem

The decision maker aims to maximize the total expected utility
in a finite time horizon T . Because the QLBF’s optimal policy is
difficult to find (and may not even exist due to the time-varying
weight wt) and our work focuses on the learnability of the
QLBF model, we take the one-step utility greedy action with
full information as our learning benchmark. The utility greedy
action in time slot t can be expressed as

A∗t ∈ argmax
A∈At

ut(A). (4)

We extensively validate the policy’s effectiveness in Section VI-
I-A.

Denote the actions and observations history up to time t as

Ht ! ((A1, R1,Λ1), (A2, R2,Λ2), . . . , (At, Rt,Λt)).

Then, the online learning problem is to design a policy

π : Ht−1 -→ At ∈ At

for any time t, such that the accumulated utility under those
actions in the algorithm is as large as possible.

To measure a learning algorithm’s performance, we define the
regret, which is the accumulative difference between the learning
algorithm’s action At = π(Ht−1)’s utility and the given bench-
mark action A∗t’s in each time slots as follows:

RegT !
T∑

t=1

(ut(A
∗
t)− ut(At)) . (5)

To minimize the regret RegT , we design the QLBF-UCB
algorithm in Section IV and derive its theoretical performance
guarantee in Section V.

IV. ALGORITHM DESIGN

In this section, we first present the main idea of QLBF-UCB,
which is to allocate resources according to the optimistic es-
timate of utility. Then, we derive the explicitly formulas to
calculate the utility function’s UCB.

A. The Main Idea of QLBF-UCB

Our QLBF-UCB algorithm shares the same principle as Lin-
UCB [18]: optimism in the face of uncertainty. Take the linear
reward term ATµ∗ as an example, where A ∈ At. Suppose we
can derive a confidence set Ct for reward mean vector µ∗ from
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history Ht−1 such that µ∗ is in the set with high probability.
Then, with the high probability, the maxµ∈Ct A

Tµ is no less
than ATµ∗ for any action A in the feasible action space At, and
it is named as upper confidence bound (UCB) of reward ATµ∗.
Themaxµ∈Ct A

Tµ is an optimistic estimate of the linear reward
term corresponding to action A. For simplicity, denote

UCBR
t (A) ! max

µ∈Ct
ATµ.

Similarly, after deriving a confidence space for the new arrival
distribution D (specifically, we later derive its cumulative dis-
tribution function (CDF) F ’s confidence function space Ft), the
optimism estimate of the penalty fairness term is minimizing
within the confidence space Ft, i.e., its lower confidence bound
(LCB), as follows

LCBfair
t (A) ! min

F ′∈Ft

EΛt∼F ′
[
V̄t(Λt)

]
.

We defer the derivations of UCBR
t and LCBfair

t to the next
subsection. Here, we assume that they are given and use them to
design our QLBF-UCB algorithm. The utility function has the
following upper bound with high probability,

ut(A) ≤ max
µ∈Ct

ATµ− s · min
F ′∈Ft

EΛt∼F ′
[
V̄t(Λt)

]

≤ UCBR
t (A)− s · LCBfair

t (A)

! LCBfair
t (A). (6)

To learn the utility greedy policy defined in (4) and reduce
the regret of this policy, our algorithm greedily selects the
action which maximizes UCBt(A). Namely, in time slot t, the
algorithm chooses an action from argmaxA∈At

UCBt(A). The
optimism in the face of uncertainty principle implies that our
algorithm design would have a good performance: Although
the performance of the QLBF-UCB algorithm does not always
improve in each time slot, the principle guarantess that the
algorithm converges to the one-step greedy policy in a fast speed.
Its rigorous analysis is presented in Section V.

We provide QLBF-UCB’s pseudo-code in Algorithm 1. The
remaining challenge is to derive expressions for LCBfair

t (A)
and UCBR

t (A). We present both terms’ derivations in the rest
of this section. Although the high-level idea of QLBF-UCB
algorithm is the same as the LinUCB, which is the well-known
optimism in the face of uncertainty principle in online learning,
introducing the nonlinear term into the objective brings new
challenges that are unique in QLBF-UCB. For one thing, we
need to derive a lower confidence bound for the nonlinear
fairness term which requires new techniques, e.g., utilizing the
Dvoretzky-Kiefer-Wolfowitz inequality. For another thing, after
deriving this lower bound, we also need to choose a suitable
ratio factor (see the

√
γ in (7)) in the QLBF-UCB algorithm to

make sure that the algorithm can enjoy a sublinear regret upper
bound.

We note that there is a line of work studying the bandit
convex optimization (BCO) initiated by Flaxman et al.[49]. For
example, Hazan and Levy [50] attained theO(

√
T ) regret bound

under the assumptions of strong convexity and smoothness;
Suggala et al. [51] replaced the strong convex loss assumption

Algorithm 1: The QLBF-UCB Algorithm.
Input: λ ∈ R+,K, T ∈ N+.
1: Initialize time index t = 1, confidence sets Ct,Ft with

their largest set radii (see (7) and (11)), and the initial
queue length Lt−1 as an all one vector.

2: while t ≤ T do
3: Update the UCBt(·) by Ct,Ft,Lt−1 via (6), (9) and

(12).
4: Select action At ∈ argmaxA∈At

UCBt(A).
5: Observe the linear reward Rt and new arrivals Λt.
6: Ht ← Ht−1 ∪ {(At, Rt,Λt)}.
7: Update confidence set Ct+1,Ft+1,Lt from history Ht

via (10), (8), and (2) respectively.
8: t← t+ 1.
9: end while

by quadratic loss assumption while still achieving the optimal
O(
√
T ) regret; Hazan and Levy [52] relaxed the strong con-

vexity assumption for all T time slots to the strong convexity
for a part of time slots (e.g., T 3/4) while still recovering the
O(
√
T ) bound. Although BCO’s function assumption covers

our nonlinear (quadratic utility) case, BCO’s learning setting is
adversarial, i.e., the reward functions change adversarially in
different time slots, while in our stochastic setting, the quadratic
(utility) function is fixed with an additive stochastic noise.
Therefore, these algorithms of BCO was not applicable to our
setting.

B. Deriving UCB Expressions

Deriving LCBfair
t (A): We first estimate the CDF of arrival

distribution D from historical arrival vectors (Λs)
t−1
s=1. Denote

the CDF of queue k’s arrival distribution as F (k) and all queues’
joint CDF as

F !
K∏

k=1

F (k),

which is due to queues’ independence. We separately estimate
each queue k’s CDF via its empirical mean:

F̂ (k)
t−1(Λ) !

∑t−1
s=1 1{Λk,s ≤ Λ}

t− 1
, ∀Λ ∈ [0, b],

where 1{·} is the indicator function. Then, the joint CDF F̂t−1 is
equal to the multiplication of each queue’s empirical CDF, i.e.,
F̂t−1 =

∏K
i=1 F̂

(k)
t−1.

In the next lemma, we construct the confidence band for
estimated CDF F̂ (k)

t which is based on the Dvoretzky–Kiefer–
Wolfowitz inequality. Please refer to Section VIII for detail
proofs of our propositions, lemmas, and theorems.

Lemma 1: Denote a confidence band (function space) as

F (k)
t !
{
f ∈ Cb([0, b]) : L̂

(k)
t (Λ) ≤ f(Λ) ≤ Û (k)

t (Λ), ∀Λ ∈ [0, b]
}
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where the lower band function L̂(k)
t and Û (k)

t are defined as the
lower and upper band function respectively

L̂(k)
t ! max

{
F̂ (k)
t −

√
γt, 0

}
, Û (k)

t ! min
{
F̂ (k)
t +

√
γt, 1

}
,

and the factor
√
γt is defined as

√
γt !

√
1

2t
log (2K(t+ T )2). (7)

Then, the probability that the true CDF F (k) of queue k is in
space F (k)

t satisfies

P
(
F (k) ∈ F (k)

t , ∀t ≤ T
)
≥ 1− 1

2KT
.

As Lemma 1 holds for each queue and these queues’ arrival
Λk,t (across k) are independent, the joint CDF F is in the
function space

Ft !
{
f ∈ Cb

(
[0, b]K

)
: ∀Λ ∈ [0, b]K ,

×
K∏

k=1

L̂(k)
t (Λk) ≤ f(Λ) ≤

K∏

k=1

Û (k)
t (Λk)

}
(8)

with probability 1− 1/2 T .
With the confidence bands constructed in Lemma 1, we derive

the lower confidence bound of the fairness term in (9). We defer
its detailed derivation to Section VIII-A.

min
F∈Ft

EΛt∼F V̄t(Λt) ≥ V̄t(b · 1)

+
∑

1≤i<j≤K

∫ b

0

∫ b

0
Û (i)
t−1(Λi,t)Û

(j)
t−1(Λj,t)

× ∂2V̄t(b, . . . , b,Λi,t, b, . . . , b)

∂Λj,t∂Λi,t
dΛi,tdΛj,t

−
K∑

i=1

∫ qi,t

0
L̂(k)
t−1(Λi,t)

∂V̄t(b, . . . , b,Λi,t, b, . . . , b)

∂Λi,t
dΛi,t

−
K∑

i=1

∫ b

qi,t

Û (k)
t−1(Λi,t)

∂V̄t(b, . . . , b,Λi,t, b, . . . , b)

∂Λi,t
dΛi,t, (9)

where qk,t ! b1{zk,t≥b} + zk,t1{0<zk,t<b} and zk,t is the unique
zero of V̄t’s partial derivative with respect to Λk,t.

For practicality, we use the RHS of (9) as the closed-form
formula of the fairness term’s lower confidence bound, i.e.,
LCBfair

t (At). The reasons are that (1) the original LCBfair
t (A) is

defined as the result of the optimizationminF∈Ft EΛt∼F V̄t(Λt)
and it can be computationally expensive or even intractable, and
(2) the lower bound’s gap, depending on the space Ft’s radius√
γt, would shirk to zero as historical data accumulates so that

the RHS of (9) is close to the value of minF∈Ft EΛt∼F V̄t(Λt).
For the same reasons, we also abuse the notation UCBR

t as its
upper bound next.

Deriving UCBR
t (A): With all previous rewards {Rl}tl=1, we

apply the regularized least square estimator to estimate µ̂t:

min
µ

t∑

l=1

(Rl −AT
l µ)

2 + λ ∥µ∥22 ,

where λ ∈ R+ control the scale of the regularization term. The
estimator’s analytical solution in time slot t is

µ̂t = W−1
t

t∑

l=1

RlAl, where W t ! λI +
t∑

l=1

AlA
T
l .

To design the linear reward’s UCB, we need the confidence
set for estimated reward mean µ̂t−1 in the following lemma.
This result is adapted from LinUCB literature [18].

Lemma 2 ([18, Theorem 2]): Denote the confidence set Ct as
follows,

Ct !
{
µ ∈ RK : ∥µ̂t−1 − µ∥W t−1

≤
√

βt

}
, (10)

where ∥a∥A ! aTAa fora ∈ RK andA ∈ RK×K is the norm
induced by matrix A and

√
βt !

√
λd+ g

√

2 log(1/δ) + log

(
det(W t−1)

λK

)
(11)

in which g ∈ R+ is the variance proxy of the sub-gaussian noise
ηt. Then, the probability that there exists a time slot t in N+ such
that µ∗ lies inside Ct is no less than 1− δ, i.e.,

P (∀t ∈ N+,µ∗ ∈ Ct) ≥ 1− δ.

The above lemma provides a uniform confidence bound for
estimated µ̂t for any time t ∈ N+. As the regret in (5) is for
finite T time slots, we set δ = 1/2 T in later analysis. Noticing
that the confidence set in Lemma 2 has an ellipsoidal form, we
can derive the linear reward term’s UCB as follows:

max
µ∈Ct

Rt(A) ≤ AT µ̂t−1 +
√

βt ∥A∥W −1
t−1

. (12)

We use the RHS of (12) as UCBR
t (A)’s formula (see the reasons

at the end of Deriving LCBfair
t (A)). Its detailed derivation is

deferred to Section VIII-B.

V. REGRET ANALYSIS

In the section, we derive a sublinear regret upper bound for
the QLBF-UCB algorithm and a minimax regret lower bound for
the QLBF model, both of which together reveal the optimality
of the QLBF-UCB algorithm and the tightness of the regret upper
bound.

A. Regret Upper Bound

To assist the analysis of the regret upper bound of QLBF-
UCB, we start from bounding the instantaneous regret in each
single time slot, which is stated in the following lemma.

Lemma 3: With a probability of at least 1− δ − 1/2 T , the
instantaneous regret regt ! ut(A∗t)− ut(At) in time slot t sat-
isfies

regt ≤ 3 ∥At∥W −1
t−1

√
βt + 6 s

(
max
k,t

wk,t

)2√
γt,
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where
√
βt and

√
γt are parameters of reward confidence set

Ct and arrival random variable’s CDF’s confidence band Ft

respectively, and their definitions are in (11) and (7).
Lemma 3 states that the instantaneous regret regt is upper

bounded by a linear combination of confidence set parameters√
βt and

√
γt. As the time slot t elapses, both the confidence

set Ct and the confidence band Ft shrink, and thus the per time
slot regret regt decreases. This implies that QLBF-UCB should
converge to its benchmark policy. In the next theorem, we derive
QLBF-UCB’s cumulative regret upper bound.

Theorem 1: With a probability of 1− δ − 1/2 T , the regret
of QLBF-UCB satisfies:

RegT ≤ 6

√

max{cd, 1}KT log

(
K2λ + Tc2

K2λ

)

×
(
√

λd+ g

√
2 log

1

δ
+K log

K2λ + Tc2

K2λ

)

+ 12 s

(
max
k,t

wk,t

)2√
2T log(2KT ),

where c is the limited resources of the server, d is 2-norm bound
of reward meanµ∗, i.e., ∥µ∗∥2 ≤ d, λ is the regularization factor
in linear reward term’s UCB, and g is the variance proxy of
reward’s sub-gaussian noise.

Theorem 1 provides a sublinear regret upper bound for QLBF-
UCB with probability 1− δ − 1/2 T . To derive an asymptotic
expected regret upper bound for our algorithm, we select the
δ = 1/2 T and take expectation of the regret over the probability
1− 1/T .

Corollary 2: Let δ = 1/2 T , the regret of QLBF-UCB has
the following asymptotic form

E[RegT ] ≤ O
(√

T log T
)
.

Corollary 2 states that the regret upper bound of QLBF-UCB
has a sublinear order of

√
T log T . If we consider the time

average regret, i.e., E[RegT ]
T , this regret upper bound becomes

O
(

logT√
T

)
. Notice that when T goes to infinity, the average

regret logT√
T

would go to 0. This implies our online QLBF-UCB
algorithm would converge to the offline benchmark policy.

B. Regret Lower Bound

We provide a minimax regret lower bound defined as

Reg∗T ! inf
π

sup
µ,D

Regπ
T (µ,D)

for the QLBF model. This lower bound implies that for any
given policy π, there exists an instance of the model (i.e., a pair
of reward mean µ∗ and the arrival distribution D), under which
the regret of this policy is no less than the bound.

Theorem 3: Assume K ≤ 2 T , then there exists a reward
mean vector µ and an arrival distribution D such that

Reg∗T ≥
c
√
KT

16
√
3
,

where c is the server’s finite capacity.
The main novelty in Theorem 3’s proof is constructing a spe-

cial environment (i.e., the reward meanµ and arrival distribution
D) for our QLBF model which can signify the lower bound. This
construction is different from the linear bandits’ lower bound
proof because one needs to take both the arrival distribution
of the model and the nonlinear fairness term of the utility into
consideration.

Compared with theO(
√
T log T ) upper bound in Corollary 2,

there is only a logarithmic factor absent in the lower bound in
term of time horizon T . That implies both the near-optimality of
our QLBF-UCB algorithm and the near-tightness of our upper
bound analysis in Theorem 1.

VI. APPLICATIONS

In this section, we discuss several Internet-related applications
of our QLBF model. Specifically, we provide a detailed discus-
sion in three scenarios: 5G networks’ bandwidth scheduling [7],
mobile-edge computing nodes’ resource scheduling [2], and
crowdsourcing’s task allocations [10]. We note that we focus
on motivating the service reward of queues and the fairness
among queues in the following application scenarios. Detailed
modeling of each application requires additional effort, which
is beyond the scope of this paper.

Bandwidth Scheduling of 5G Wireless Networks: In 2019,
5G (5th-generation) base stations started to provide commercial
services to consumers [8]. 5G networks — with much higher
capacities than 4 G network — are also required to efficiently
support multiple kinds of traffic [7], e.g., Ultra Reliable Low La-
tency Communication (URLLC), enhanced Mobile Broadband
(eMBB), etc. These traffic flows can form several transmission
queues and these queues may have different priorities. For
example, the URLLC traffic flow requires a very lower latency
and any new arrivals in its corresponding queue should be served
as soon as possible. These priorities can be mapped to the
rewards of serving different queues in our QLBF model, and
a 5G base station should aim to maximize its total transmission
rewards. For another thing, although traffic from eMBB allows
a little higher latency, the fairness among different traffic flows
should also be take into consideration so that each flow can
be transmitted timely. In this 5G networking application, the
queues interarrival distribution D depends on different traffic
flows, their service reward means µ depend on the priorities of
traffic flows, and the fairness is the variance of the lengths Lt of
traffic flows.

Resources Scheduling of Mobile-Edge Computing Nodes:
Mobile-edge computing (MEC) is a key technique in nowadays
networking systems, e.g., for Internet of Things (IoT) [2]. The
key difference between MEC and cloud computing lies in the
edge layer, which sits between the device layer, e.g., mobile
phones, and the cloud layer, e.g., cloud servers. The edge
computing nodes in this layer collect edge devices’ data and
computational tasks, execute these tasks with high speed, and
send back the results to devices. This procedure can reduce
edge devices’ latency [4]. An application of QLBF in MEC
is scheduling the edge computing node’s service for mobile
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devices’ offloading computational tasks [3]. Each edge devices’
offloading tasks form a queue in its corresponding edge com-
puting node. The edge node needs to decide how to serve each
devices’ offloading task queues with its limited computation
capacity. Serving computational tasks of different devices may
provides different rewards, e.g., a mobile phone’s task is more
urgent than a lamp’s. For another thing, the edge node should
also maintain the service fairness among these devices so that
the latency of each devices can be reduced in some degree. In
the MEC task scheduling, the queues interarrival distribution D
depends on the IoT devices’ features, their service reward means
µ are determined by the latency tolerance of the devices, and
the fairness is computed as the variance of the offloading task
lengths Lt of these devices.

Task Allocation in Mobile Crowdsourcing: Mobile Crowd-
sourcing is a powerful WWW approach [9], [10], [53] to obtain-
ing services, collecting public opinions, etc. When a platform
initiates a crowdsourcing task, a variety of individual workers
may come. Workers from different social groups, e.g., age,
gender, occupation, etc., constitute different queues and wait
for the platform’s task allocation. Workers in different groups
may have different abilities in this specific task and thus their
work outputs may have different qualities with respect to the
platform. This task can be uniformly divided into multiple small
tasks, each of which has a same and finite workload. Therefore,
the platform should determine how to allocate its small tasks
(e.g., in each time slot) to workers from different social groups
so as to increase the task’s final completion quality (e.g., total
reward). For another thing, the platform should consider the
fairness among different social groups. Because if some social
groups are not assigned tasks, these types of workers may not
come to the platform for future tasks, while for other kinds
tasks in the future, these workers may be able to provide high
quality outputs. Note that the number of workers and the finite
amount of workloads can be regarded as dividable values as in
QLBF when these quantities are large. In Crowdsourcing task
allocation, the queues interarrival distribution D depends on the
crowd characteristics of different social groups, their service
reward means µ are determined by the task output qualities of
social groups, and the fairness is computed as the variance of
the number of workers Lt of these social groups.

VII. EVALUATIONS

In this section, we conduct simulations to validate the effec-
tiveness of the utility greedy policy and illustrate the QLBF-
UCB’s performance in both its sublinear regret guarantee and
its performance over other scheduling policies.

We consider a QLBF model consisting ofK = 5 queues (e.g.,
edge devices) and these queues’ interarrivals are Bernoulli ran-
dom variable with parameters [0.5, 0.6, 0.7, 0.8, 0.9]. By default,
we set the total service capacity as the summation of arrival
means plus 0.1 times the summation of these queues’ standard
variances, i.e., 3.5 + 0.1σ ≈ 3.715. Note that the service ca-
pacity can be arbitrarily divided to serve jobs in queue. Each
queue is associated with a service reward that is the same to
its interarrival’s mean. The fairness weight vector wt is an all

Fig. 1. Comparison of offline policies: in Fig. 1(a) the utility greedy policy
outperforms other heuristic ones. Notably, in Fig. 1(b) and (c), the utility greedy
policy has the highest minimal queue length and smallest maximal queue length.
That implies the utility greedy policy enjoys a better fairness performance than
other heuristic ones.

one vector 1, the fairness term’s factor s is set to 1, and the
regularization scaler ξ inside fairness is set to 0.1. The scaler
λ of the regularized least square estimator for UCBR

t is set to
1. We run all simulations in 1000 time slots and the results are
averaged over 50 rounds.

A. The Effectiveness of Utility Greedy Policy

We validate the effectiveness of the benchmark policy in this
subsection. With known model parameters, we compare the
utility greedy policy with three scheduling policies: shortest
queue first, longest queue first and round-robin. The shortest
(longest) queue first policy sorts these queues according to
their weighted queue lengths, i.e., wt ◦Lt, into the ascending
(descending) order and then assign the capacity according to the
order. For the round-robin policy, we first arrange these queues
in a circular order and then choose the start queue in turn at
each time slot to allocate capacity. In all policies, we assign as
much capacity as possible (i.e., up to its queue length) to each
queue and the remaining capacity, if any, would be assigned to
its next (according to queues’ order) until there is no capacity or
no requests left in queue.

Fig. 1 shows simulations under the default model parameters.
Fig. 1(a) shows the utility greedy policy outperforms the other
three heuristic policies. The utility greedy policy has the smallest
queue length range because it has the largest minimal queue
length in Fig. 1(b) and the smallest maximal queue length in
Fig. 1(c). This implies that the greedy policy maintains a good
fairness performance.

Then, we vary the default parameters to provide a more exten-
sive comparison of these policies’ performance in Fig. 2. Among
all these experiments, the greedy policy (red bars) always out-
performs the other policies. We start from altering these queues’

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 03,2024 at 05:40:57 UTC from IEEE Xplore.  Restrictions apply. 



3418 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 4, APRIL 2024

Fig. 2. Effectiveness of utility greedy policy: in various QLBF environments
among all four sub-figures, the utility greedy policy always outperforms other
heuristic policies. That implies the utility greedy policy is a good offline
benchmark.

Fig. 3. Fairness vs. reward of offline policies when s ∈ {0.25, 0.5, 0.75, 1}
(as in Fig. 2(c)): offline policies’ rewards are similar and for fairness, the utility
greedy policy’s is much better than others.

service rewards in Fig. 2(a). We call the default reward setting as
“Posi-Cor.” because the higher the queue’s interarrival mean, the
higher its service reward. We invert the reward means of these
queue and name the case as “Nega-Corr.” We also randomly
select two service reward mean vector [0.6, 0.8, 0.7, 0.9, 0.5] and
[0.7, 0.8, 0.9, 0.5, 0.6] to represent the general cases. In Fig. 2(b),
we vary the default capacity c = 3.5 + 0.1σ’s interarrival vari-
ance factor 0.1 to 0.075, 0.05 and 0.025 to see the capacity’s
impact on the accumulative utilities of these policies. Next,
we vary the fairness term’s factor s from the default 1.0 to
0.75, 0.5, 0.25 to check how the different degrees of fairness
consideration influences these policies in Fig. 2(c). We also
separately plot the reward and fairness of Fig. 2(c)’s utilities
in Fig. 3. This figure shows that the rewards of four policies
are similar and the utility greedy policy enjoys a much better
fairness than others. This implies that utility greedy policy is
able to maximize the total reward while maintain the fairness.
Lastly, in Fig. 2(c), we vary the fairness’ regularization scaler ξ
from its default value 0.1 to 0.075, 0.05 and 0.025.

These extensive numerical simulations show that the greedy
policy is a good benchmark policy as it is highly effective
comparing with the other known heuristic policies.

Fig. 4. Regret of QLBF-UCB: QLBF-UCB enjoys a sublinear regret perfor-
mance. That corroborates our regret upper bound in Theorem 1 and shows that
the QLBF-UCB algorithm converges to the offline benchmark policy in a fast
speed.

Fig. 5. QLBF-UCB vs. offline policies in utility: after time slot 600, the QLBF-
UCB algorithms outperforms the longest queue first policy and the accumulative
utility of QLBF-UCB is comparable to the utility greedy policy’s which is the
learning benchmark.

B. The Effectiveness of Our QLBF-UCB Algorithm

In this subsection, we validate the QLBF-UCB algorithm’s
learning effectiveness on the utility greedy policy.

We start from validating QLBF-UCB’s sublinear regret in
learning the utility greedy policy in Fig. 4. Fig. 4’s simulations
are conducted under the same model parameters varying setting
as that in Fig. 2. All these curves confirms the attractive sublinear
regrets of QLBF-UCB.

We then compare the QLBF-UCB algorithm which needs to
learn model parameters with pervious offline policies (which
know model parameters). In Fig. 5, at the beginning (before
time slot 200 around), the QLBF-UCB’s performance (yellow)
is not as good as the utility greedy policy (blue) and the longest
queue first policy (red dashed). As time elapses, after time slot
600, the QLBF-UCB algorithms outperforms the longest queue
first policy and its accumulative utility is comparable to the
utility greedy policy’s (blue) (which is our learning benchmark).
We note that our QLBF-UCB algorithm also outperforms the
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LinUCB (cyan) algorithm which only aims to maximize the
total rewards.

From these simulations, we show that our proposed QLBF-
UCB algorithm has a sublinear regret performance and can
effectively learn the greedy benchmark policy effectively.

VIII. PROOFS OF LEMMAS AND THEOREMS

A. The Fairness Term’s LCB Derivation

In this subsection, we show how to derive the nonlinear fair-
ness term’s LCB, i.e., LCBfair

t (A). We first present a proposition
to show how to calculate the expected fairness term itself if
the arrival distribution D’s CDF is given. Next, we replace the
fairness calculation formula’s CDF with CDF’s upper and lower
confidence functions constructed by Lemma 1 accordingly and
obtain an explicit calculation formula for LCBfair

t (A).
The following proposition states a formula to calculate the

fairness term EΛt∼F V̄t(Λt) from the CDF of arrival distribu-
tion D.

Proposition 1: Given the CDF function F of the arrival dis-
tribution D, the expected fairness in time slot t can be calculated
as follows

EΛt∼F V̄t(Λt)

= V̄t(b · 1)−
K∑

i=1

∫ b

0
F (k)(Λi,t)

∂V̄t(b, . . . , b,Λi,t, b, . . . , b)

∂Λi,t
dΛi,t

+
∑

1≤i<j≤K

∫ b

0

∫ b

0
F (k)(Λi,t)F

(j)(Λj,t)

× ∂2V̄t(b, . . . , b,Λi,t, b, . . . , b,Λj,t, b, . . . , b)

∂Λj,t∂Λi,t
dΛi,tdΛj,t.

Proof of Proposition 1: We prove the proposition via induction
with respect to the number of queues K.

WhenK equals to 1, i.e.,Λt ∈ R is a one dimensional random
variable (supported in [0, b]), we have

EΛt∼F V̄t(Λt) =

∫ b

0
V̄t(Λ1,t)dF

(1)(Λ1,t)

= V̄t(Λ1,t)F
(1)(Lt)|bΛ1,t=0

−
∫ b

0
F (1)(Λ1,t)dV̄t(Λ1,t)

= V̄t(b)−
∫ b

0
F (1)(Λ1,t)

∂V̄t(Λ1,t)

∂Λ1,t
dΛ1,t,

which fits the proposition.
Suppose when K = m− 1, the proposition holds. Then we

show that the proposition still holds when K = m.

EΛt∼F V̄t(Λt)

=

∫ b

0

∫ b

0
· · ·
∫ b

0︸ ︷︷ ︸
m−1

V̄t(Λt) dF
(1)(Λ1,t) . . . dF

(m−1)(Λm−1,t)︸ ︷︷ ︸
m−1

× dF (m)(Λm,t)

=

∫ b

0

[
V̄t(b, . . . , b,Λm,t)

−
m−1∑

i=1

∫ b

0
F (i)(Λi,t)

∂V̄t(b, . . . , b,Λi,t, b, . . . , b,Λm,t)

∂Λi,t
dΛi,t

+
∑

1≤i<j≤m−1

∫ b

0

∫ b

0
F (i)(Λi,t)F

(j)(Λj,t)

× ∂2V̄t(b, . . . , b,Λi,t, b, . . . , b,Λj,t, b, . . . , b,Λm,t)

∂Λj,t∂Λi,t

× dΛi,tdΛj,t

]
dF (m)(Λm,t)

= V̄t(b · 1)−
m−1∑

i=1

∫ b

0
F (i)(Λi,t)

∂V̄t(b, . . . , b,Λi,t, b, . . . , b)

∂Λi,t
dΛi,t

+
∑

1≤i<j≤m−1

∫ b

0

∫ b

0
F (i)(Λi,t)F

(j)(Λj,t)

× ∂2V̄t(b, . . . , b,Λi,t, b, . . . , b,Λj,t, b, . . . , b)

∂Λj,t∂Λi,t
dΛi,tdΛj,t

+

∫ b

0
F (m)(Λm,t)

[
∂V̄t(b, . . . , b, b)

∂Λm,t
−

m−1∑

i=1

∫ b

0
F (i)(Λi,t)

× ∂2V̄t(b, . . . ,Λi,t, . . . , b,Λm,t)

∂Λm,t∂Λi,t
dΛi,t

]
dΛm,t

= V̄t(b · 1)−
m∑

i=1

∫ b

0
F (i)(Λi,t)

∂V̄t(b, . . . , b,Λi,t, b, . . . , b)

∂Λi,t
dΛi,t

+
∑

1≤i<j≤m

∫ b

0

∫ b

0
F (i)(Λi,t)F

(j)(Λj,t)

× ∂2V̄t(b, . . . , b,Λi,t, b, . . . , b,Λj,t, b . . . , b)

∂Λj,t∂Λi,t
dΛi,tdΛj,t,

where we utilize the supposition in K = m− 1 case in the
second equation, the third equation applies integral by part and
the property that variance function’s third and above derivatives
are zero. This validates that the proposition holds when K = m.
By the principle of induction, we conclude the proof.

To derivate the LCBfair
t (A)’s lower bound in (9), we calculate

the fairness term EΛt∼F̂t−1
V̄t(Λt) by Proposition 1 and sepa-

rately bound its two integral terms as follows.
To bound

∫ b
0 F̂ (k)(Λi,t)

∂V̄t(b,...,b,Λi,t,b,...,b)
∂Λi,t

dΛi,t, we note
that the partial derivative inside the integral is equal to

2w2
i,t(Li,t−1 + Λi,t −Ai,t) +

2wi,t

K
(wi,t(Li,t−1 + Λi,t −Ai,t)

− 1

K

K∑

j=1

(wj,t(Lj,t−1 + Λi,t −Ai,t))).

It is an increasing linear function and we denote the derivative’s
unique zero as zk,t. Define qk,t ! b1{zk,t≥b} + zk,t1{0<zk,t<b}.

We can separate the integral
∫ b
0 to two parts

∫ qk,t

0 and
∫ b
qk,t

.
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When Λi,t ≤ qk,t (resp. Λi,t > qk,t), the derivative is negative
(resp. positive) and we can replace the F̂ (i)

t−1 by its lower bound
L(k)
t−1 (resp. upper bounded by U (k)

t−1).
To bound the double integral term at last, we note that the

partial second derivative of V̄t with respect to two different
arrivals is

∂2V̄t(b, . . . , b,Λi,t, b, . . . , b,Λj,t, b, . . . , b)

∂Λj,t∂Λi,t
= −2wi,twj,t

K2
,

which is always negative. So, we can replace
F̂ (k)(Λi,t)F̂ (j)(Λj,t) by its upper bound U (k)(Λi,t)U (j)(Λj,t).

B. Reward Term’s UCB Derivation

Recall that the confidence set of reward mean µ∗ in (10) has
an ellipsoidal form and can be rewritten as follows:

Ct =
{
µ ∈ RK : ∥µ̂t−1 − µ∥W t−1

≤
√

βt

}

=
{
µ̂t−1 +

√
βtW

− 1
2

t−1x : ∥x∥2 ≤ 1,x ∈ RK
}
,

where the matrixW− 1
2

t−1 is the “square root” of the inverse matrix

W−1
t−1, i.e., W−1

t−1 = W
− 1

2
t−1 ·W

− 1
2

t−1.
So, the UCBR

t (A)defined asmaxµ∈Ct A
Tµ can be calculated

as follows:

UCBR
t (A) = max

µ∈Ct
ATµ

= AT µ̂t−1 + max
∥x∥2≤1

√
βtA

TW
− 1

2
t−1x

= AT µ̂t−1 +
√

βt ∥A∥W −1
t−1

,

where the last equality holds when choosing x =
W
− 1

2
t−1A

∥A∥
W−1

t−1

.

C. Proof of Lemma 1

We first state the Dvoretzky-Kiefer-Wolfowitz inequality for
one dimension random variable in the following lemma. Based
on the random variable’s empirical cumulative distribution func-
tion F̂t(x), this lemma constructs a confidence band that contains
the true CDF function F (x) with the confidence 1− δ.

Lemma 4 ([19, Theorme 7.1]): Denote ϵt =
√

1
2t log

2
α . The

true CDF function F (x) is inside the confidence band
{
f ∈ Cb :

max{F̂t(x)− ϵt, 0} ≤ f(x) ≤ min{F̂t(x) + ϵt, 1}, ∀x
}

with a confidence of 1− α. That is,

P (max{F̂t(x)− ϵt, 0} ≤ F (x) ≤ min{F̂t(x) + ϵt, 1}, ∀x)

≥ 1− α.

Denote the event Et ! {max{F̂t(x)− ϵt, 0} ≤ F (x) ≤
min{F̂t(x) + ϵt, 1}, ∀x}. Substituting α with αt ! 1

K(t+T )2

and the band distance ϵt with
√
γt in Lemma 4, we have

P (¬Et) ≤ αt. Then, we apply union bound to derive a con-
fidence band holding for all t ∈ {1, . . . , T},

P (∃t ≤ T,¬Et) ≤
T∑

t=1

P (¬Et) ≤
n∑

t=1

αt

≤
∫ T

t=1

1

K(t+ T )2
dt ≤ 1

2KT
.

D. Proof of Lemma 3

We start from bounding the per time regret as follows

regt = ut(A
∗
t)− ut(At))

≤ UCB(A∗t)− ut(At) ≤ UCB(At)− ut(A), (13)

where the first inequality is from UCB’s definition in (6) which
holds with probability (1− δ)(1− 1/2 T ), and the second is
from the utility greedy action’s definition.

Then, we substitute the reward’s UCB expression in (12) and
fairness’ LCB expression in (9) into (13)’s RHS and get

UCB(At)− ut(At)

= UCBR
t (At)−AT

t µ
∗ − s(LCBfair

t (At)− EΛt∼F̂t−1
V̄t(Λt))

= AT
t µ̂t +

√
βt ∥At∥W −1

t−1
−AT

t µ
∗

− s
K∑

i=1

[ ∫ qi,t

0
L(i)
t−1(Λi,t)

dV̄t(b, . . . , b,Λi,t, b, . . . , b)

dΛi,t
dΛi,t

+

∫ b

qi,t

U (i)
t−1(Λi,t)

dV̄t(b, . . . , b,Λi,t, b, . . . , b)

dΛi,t
dΛi,t

−
∫ b

0
F (i)
t−1(Λi,t)

dV̄t(b, . . . , b,Λi,t, b, . . . , b)

dΛi,t
dΛi,t

]

+ s
∑

1≤i<j≤K

(
−2wi,twj,t

K2

)

×
[ ∫ b

0
U (i)
t−1(Λi,t)dΛi,t

∫ b

0
U (i)
t−1(Λj,t)dΛj,t

−
∫ b

0
F (i)
t−1(Λi,t)dΛi,t

∫ b

0
F (i)
t−1(Λj,t)dΛj,t

]

≤ 3
√
βt ∥At∥W −1

t−1
+ s

∑

1≤i<j≤K

(
−2wi,twj,t

K2

)

×
[
√
γt

∫ b

0
[F (i)

t−1(x) + F (j)
t−1(x)]dx+ γt

]

≤ 3
√
βt ∥At∥W −1

t−1
+ 6s

[
max

k
wk,t

]2√
γt,

where the qi,t is defined at the end of Section VIII-A, and in
the first inequality we omit the forth term (the

∑K
i=1 summation

term) because it is subtracting a positive term.
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E. Proof of Theorem 1

Lemma 3 divides the instantaneous per time regret into two
terms: 3∥At∥W −1

t−1

√
βt and 6[maxi wi,t]

2√γt. We separately
bound both.

We adapt the standard LinUCB’s regret result to the first term
(Theorem 19.2 in [54]), and get the following

T∑

t=1

3 ∥At∥W−1
t−1

√
βt≤6

√

max{cd, 1}Kn log

(
K2λ+Tc2

K2λ

)

×
(
√

λd+ g

√
2 log

1

δ
+K log

K2λ + Tc2

K2λ

)
.

Note that the summation of
√
γt can be bounded as follows.

T∑

t=1

√
γt =

T∑

t=1

√
1

t
log(2K(t+ T )2)

≤
T∑

t=1

√
2

t
log[K(t+ T )] ≤

T∑

t=1

√
2

t
log(2KT )

=
√
2 log(2KT )

T∑

t=1

1√
t
≤ 2
√
2T log(2KT ).

We then bound the second part
∑T

t=1 6[maxi wk,t]2
√
γt ≤

12[maxk,t wk,t]2
√

2T log(2KT ). The above two summation
bounds together lead to the theorem.

F. Proof of Theorem 3

To illustrate the minimax lower bound, we construct a poten-
tial worst case environment in QLB-F model.

Let ∆ !
√

K/T

4
√
3

and µ ∈ {±∆}K , and for i ∈ K define

τi ! T ∧min

{
t :

t∑

s=1

A2
i,s ≥

T

K

}

where a ∧ b = min{a, b}. The reward mean vector µ can be
chosen in {±∆}K and without loss of generality we assume that
there is at least one k ∈ K such that µk = ∆. For the fairness
part, let the initial queue length be L0 = l · 1, where l ∈ R+

is large enough such that the queue length constraint for action
is vacuum (i.e., the available action set has only the capacity
constraint ∥A∥1 ≤ c). There also exists a corresponding arrival
distribution (in each time slot, there are c constant new arrivals
in arm k and zero arrival in other arms) such that the fairness
term is always a constant, i.e., Lt = l · 1 always.

In the above environment, the optimal action is to assign all
capacity c to the arm k in all time slots. As the distribution D ad-
heres to reward mean vector, our parameter space depends only
on µ. The following proof mechanism is similar to LinUCB’s
lower bound in an unit ball action space in Theorem 24.2 [54].
With the special construction, we have

Reg∗T (µ,D)≥Eµ,D

[
T∑

t=1

(
c∆−

K∑

i=1

Ai,tµi

)]

=
c∆√
K

Eµ,D

[
T∑

t=1

K∑

i=1

(
1√
K
− Ai,t

c
√
K

sign(µi)

)]

≥ c∆

2
Eµ,D

[
T∑

t=1

K∑

i=1

(
1√
K
− Ai,t

c
√
K

sign(µi)

)2
]

≥ c∆

2

K∑

i=1

Eµ,D

×
[

τi∑

t=1

(
1√
K
− Ai,t

c
√
K

sign(µi)

)2
]
,

where the first inequality holds as the optimal action’s fairness
penalty is zero, and the second is by ∥At/c

√
K∥22 ≤ 1.

For any i ∈ K and x ∈ {±1}, define Hi(x) =∑τi
t=1(1/

√
K −Ai,tx)2 and select µ′ ∈ {±∆}K such that

µ′j = µj for any j ̸= i and µ′i = −µi. Then, we adapt Theorem
24.2 [54]’s intermediate result to our case as follows

Eµ,D[Hi(1)] + Eµ,D[Hi(−1)] ≥
T

K
.

We apply the average hammer over any possible arm i ∈ K
whose µi = ∆,

∑

µ∈{±∆}K ,D

Reg∗T (µ,D)

≥ ∆
√
K

2

K∑

i=1

∑

µ∈{±∆}K
Eµ[Hi(sign(µi))]

=
∆
√
K

2

K∑

i=1

∑

µ−i∈{±∆}K−1

∑

µi∈{±∆}

Eµ[Hi(sign(µi))]

≥ ∆
√
K

2

K∑

i=1

∑

µ−i∈{±∆}K−1

T

K
= 2K−2c∆T.

Finally, we substitute ∆ back to
√

K/T

4
√
3

. That shows there ex-

ists a pair ofµ andD such that Reg∗T (µ,D) ≥ c
√
KT/(16

√
3).

IX. CONCLUSION

In this paper, we proposed QLBF, an online learning model
derived from many queueing applications, e.g., mobile com-
puting nodes’ resources and network bandwidth scheduling,
manufacturing assignment, etc. The QLBF model abstracts a
system consisting of a resources allocator (server) with dividable
and limited capacities, and multiple queues whose unit service
rewards and arrival distributions are all unknown. To maximize
the reward and maintain the fairness from serving these queues,
we construct a utility function containing a linear reward term
and a nonlinear fairness term. The model’s fairness is measured
by the variance of queue lengths in the system, which can
represent the fairness in many applications. We choose a utility
greedy offline policy as the learning benchmark, and focus on
the QLBF model’s online learnability. To maximize the total
utility in an online environment, we designed the QLBF-UCB
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algorithm that is based on deriving upper confidence bounds
(UCBs) for both the reward and the fairness terms. The algorithm
enjoys a sublinear regret upper bound that is close to the model’s
regret lower bound, which reveals that the designed algorithm
is nearly optimal and both upper and lower bounds are nearly
tight. We also discuss several potential applications of QLBF
model including mobile edge computing, 5G wireless network,
and mobile crowdsourcing. Finally, we conduct simulations to
validate the greedy policy’s effectiveness in offline environment
and our online QLBF-UCB algorithm’s performance in learning
the greedy policy.

The utility function contains a factor s balancing the impor-
tance of reward and fairness. Although, practically, one can
start from several choices of s and then select the one with
good performance, how to select a proper s factor to avoid
overbalancing with theoretical guarantee is a interesting future
direction. Besides maximizing the integrated utility function
alone, another approach to tackling the linear reward and non-
linear fairness terms is the multi-objective optimization. For
example, one can study the Pareto optimality [55] of both
objectives in this problem and devise algorithms to achieve this
optimality. We leave this direction as a potential future work.
Another interesting future work is to consider the case of the
time-dependent reward mean µt which covers more realistic
applications. One can model it as the non-stationary bandits
with change points problem and extend our current QLBF-UCB
algorithm to address it. The high-level idea of the extension of
LinUCB to non-stationary environment [56] might be helpful
for this extension.
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