
3328 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 4, APRIL 2024

Online Learning Aided Decentralized Multi-User
Task Offloading for Mobile Edge Computing

Xiong Wang , Member, IEEE, Jiancheng Ye , Member, IEEE, and John C.S. Lui , Fellow, IEEE

Abstract—Mobile edge computing facilitates users to offload
computation tasks to edge servers for meeting their stringent delay
requirements. Previous works mainly explore task offloading when
system-side information is given (e.g., server processing speed, cel-
lular data rate), or centralized offloading under system uncertainty.
But both generally fall short of handling task placement involv-
ing many coexisting users in an uncertain environment. In this
paper, we develop a multi-user offloading framework considering
unknown yet stochastic system-side information to enable a decen-
tralized user-initiated service placement under overlapping server
coverage. Specifically, we formulate the dynamic task placement
as an online multi-user multi-armed bandit process, and propose
a decentralized epoch based offloading (DEBO) to optimize user
rewards which are subjected under network delay. We consider
both cases without and with neighboring edge feedback once users’
tasks are processed, where the latter incorporates system-side
information sharing among edge servers for an enhanced task
placement. For both cases, we show that DEBO can gradually
deduce the optimal user-server assignment during dynamic offload-
ing, thereby achieving a close-to-optimal service performance and
tight O(log2T ) regret. Moreover, we generalize DEBO to various
common scenarios such as unknown reward gap, dynamic entering
or leaving of clients, and fair reward distribution, while further
exploring when users’ offloaded tasks require heterogeneous com-
puting resources. Particularly, we accomplish a sub-linear regret
for each of these instances. Real measurements based evaluations
corroborate the superiority of our offloading schemes over state-
of-the-art approaches in optimizing delay-sensitive rewards.

Index Terms—Bandit feedback, mobile edge computing, multi-
user offloading, uncertain system-side information.

Manuscript received 25 September 2022; revised 3 March 2023; accepted 1
May 2023. Date of publication 12 May 2023; date of current version 6 March
2024. The work was supported in part by Hubei Provincial Natural Science
Foundation of China under Grant 2022CFB611, in part by NSFC under Grant
62202185, in part by the Research Grants Council (RGC) under Grant GRF
14215722, and in part by The Chinese University of Hong Kong (CUHK) under
Grant 6905407. An earlier version of this paper was presented in the proceedings
of IEEE INFOCOM 2022 [DOI: 10.1109/INFOCOM48880.2022.9796961].
Recommended for acceptance by W. Liao. (Corresponding author: Jiancheng
Ye.)

Xiong Wang is with the National Engineering Research Center for Big
Data Technology and System, Services Computing Technology and System
Lab/Cluster and Grid Computing Lab, School of Computer Science and Tech-
nology, Huazhong University of Science and Technology, Wuhan 430074, China
(e-mail: xiongwang@hust.edu.cn).

Jiancheng Ye is with the Department of Electrical and Electronic Engineering,
The University of Hong Kong, Hong Kong (e-mail: jcye@connect.hku.hk).

John C.S. Lui is with the Department of Computer Science and En-
gineering, The Chinese University of Hong Kong, Hong Kong (e-mail:
cslui@cse.cuhk.edu.hk).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TMC.2023.3275851, provided by the authors.

Digital Object Identifier 10.1109/TMC.2023.3275851

I. INTRODUCTION

THE recent proliferation of smart devices has brought enor-
mous popularity of many intelligent mobile applications

(e.g., real-time face recognition, interactive gaming) which typ-
ically demand low latency and intensive computation [1]. Driven
by emerging 5 G and IoT, 90% of the data will be generated and
stored at the network edge [2], making it difficult for resource-
constrained mobile devices to handle such huge amount of
data. To address this challenge, mobile edge computing (MEC)
has emerged as a new paradigm to push cloud frontier near
to the network edge for supporting computation-intensive yet
delay-sensitive applications [3].

With the availability of computing functionalities at the edge,
MEC can facilitate mobile users to offload computation tasks to
nearby edge servers, which are usually co-located with small-
cell base stations or Wi-Fi access points. Under MEC, users need
to determine the service placement of their offloaded tasks so as
to shorten computing latency and enhance service performance.
A typical MEC system is often divided into cell regions due to
limited and overlapping radio coverage of edge servers as shown
in Fig. 1, where users can be served by nonidentical servers when
in their vicinity. This may lead to the performance disparity of
edge computing caused by user roaming across different service
regions. Therefore, one of the core problems is to make effective
offloading decision to meet users’ stringent delay requirements
and augment the computing services [4].

Compared to the server-managed offloading scheme, user-
initiated task placement enables a better personalized service
support tailored to their individual preference, especially when
edge servers are managed by different operators [5]. However,
user mobility along with the stochastic MEC environment would
give rise to a time-varying service performance. Worse yet, the
system-side information (e.g., server processing speed, trans-
mission data rate) is usually undisclosed to mobile users, which
forces the user-initiated offloading to depend on previously
perceived results.

There have been various efforts devoted to task offloading in
MEC systems, so as to mitigate task delay for improving com-
puting service. Nevertheless, they generally require the complete
system-side information to aid the task placement design [4],
[5], [6], which will be ineffective when this information is
unknown or stochastically changing. Few works address system
uncertainty via online learning based offloading schemes for
service augmentation [7], [8], [9]. However, they mainly focus
on centralized offloading with task placement decided by a single

1536-1233 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 03,2024 at 04:29:02 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: ONLINE LEARNING AIDED DECENTRALIZED MULTI-USER TASK OFFLOADING FOR MOBILE EDGE COMPUTING 3329

Fig. 1. MEC system with overlapping radio coverage.

user, while ignoring the mutual influence of coexisting users
and the capacity limitation of edge servers. In practice, users
in MEC systems need to share the edge resources to handle
computation-intensive tasks, and at the same time, are agnostic
of the system-side information and other users’ demands. A
critical question we want to address is “how to characterize a
decentralized offloading for many coexisting users in an uncer-
tain and stochastic MEC environment”. To answer this question,
researchers are faced with the following challenges.

First, unknown system-side information demands a learning
based adaptive offloading. In general, adaptive methods need to
balance the exploration-exploitation trade-off, while the goal
of achieving optimal performance for many coexisting users
further complicates the offloading design. Second, a fully decen-
tralized placement scheme without inter-user communications
is desired as users are unaware of each other’s existence when
the MEC system scales. Worse still, only noisy observations
can be perceived due to user mobility and the stochastic MEC
environment, and hence the design of decentralized offloading
scheme is forced to rely on bandit feedback. Though decen-
tralized policies have been proposed [10], [11], [12], they are
mainly built on the “collision-based” model, that is, all users
would get zero rewards if making the same action, which are
obviously inapplicable to model MEC systems. Third, users are
covered by different servers’ radio range and often have various
latency-sensitivity, which inevitably lead to distinct offloading
rewards. This requires balancing their delay-sensitive rewards to
ensure a fair edge resource allocation with the consideration of
server coverage overlapping. Fourth, edge servers are endowed
with limited computing capacity, whereas different computation
tasks could consume heterogeneous resource. The decentralized
offloading ought to achieve a theoretically good performance
while also respecting the capacity limit to avoid service block-
age.

In this paper, we propose a fully decentralized multi-user
offloading scheme for MEC which does not disclose the system-
side information. Considering different user latency-sensitivity,
we first devise a preference function to characterize the of-
floading reward subjected under task delay, which facilitates
mitigating computing latency by leveraging the perceived re-
ward feedback. On this basis, we formulate the dynamic task
placement as an online multi-user multi-armed bandit (MAB)

process due to the uncertain MEC environment, where offload-
ing to a reachable edge server is regarded as playing an arm.
Since users can also handle tasks locally using handheld mobile
devices whose information (processing speed) is given apriori,
we regard all users’ devices as a virtual edge server so as to
unify the local task execution and offloading to servers at the
same time. We develop a decentralized epoch based offloading
(DEBO) scheme to balance the offloading exploration and ex-
ploitation. As a result, the asymptotically optimal rewards can be
achieved by finally deriving the optimal user-server assignment
in a decentralized manner, only using historically perceived
observations. Besides, we advocate a heterogeneous DEBO
(H-DEBO) to accommodate users’ heterogeneous requirements.
We show that H-DEBO can ensure a good service performance
even when the oracle optimal assignment is unavailable. This
paper makes the following contributions.! We develop a decentralized offloading framework for a

dynamic MEC system with overlapping radio coverage.
Our scheme achieves close-to-optimal performance for
coexisting users without any inter-user communications or
the system-side information. To the best of our knowledge,
this is the first work that conducts a thorough analysis of
decentralized offloading under MEC system uncertainty.! We propose DEBO to divide the time horizon into epochs
for the dynamic task placement, where each epoch consists
of an exploration, matching and exploitation phase to make
the optimal placement decision, i.e., local processing or
offloading to server. We investigate both cases without and
with edge information sharing, in which the latter further
incorporates neighboring edge cooperation. For both cases,
DEBO attains a tight O(log2T ) performance regret by
merely using bandit reward feedback.! We extend DEBO to general settings, i.e., unknown reward
gap, dynamic user entering or leaving and fair reward distri-
bution, and further quantify a sub-linear regret for each of
these extensions. More importantly, we devise H-DEBO to
handle the heterogeneous offloading requirements, where
an O(log2T ) regret is attained by solving an APX-hard
assignment problem only with learned results.! Extensive evaluations based on real-world measurements
are performed to show the superiority of our offloading
schemes over the existing approaches. Specifically, we can
achieve 55.11% fairness improvement by only sacrificing
0.99% rewards when incorporating the fair reward distri-
bution into offloading design.

In the rest, we formulate the system model in Section II
and illustrate DEBO in Section III. Next, Section IV extends
DEBO to various settings and Section V presents H-DEBO.
Section VI shows the performance evaluation and Section VII
surveys related works. Finally, Section VIII concludes.

II. SYSTEM MODEL

We consider an MEC system with a set of mobile users N =
{1, 2, . . ., N}, and edge servers K = {1, 2, . . .,K} which can
provide computing services within their radio range {Cj , j ∈
K}. When the MEC system scales, users only retain local user

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 03,2024 at 04:29:02 UTC from IEEE Xplore.  Restrictions apply. 



3330 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 4, APRIL 2024

indices and need to make offloading decisions independently as
they are agnostic of each other. Considering the partial coverage
of edge servers, any user i could reach the servers Ki ⊂ K if and
only if being located in their radio range Cj , j ∈ Ki as denoted
by the shadow area in Fig. 1. Accordingly, we refer to Ki as
i’s reachable servers with Ki = |Ki|, and Nj as the covered
users by server j with Nj = |Nj |. Also, assume that Ki ∩Kk ̸=
∅, ∃i, k ∈ N , otherwise the MEC system is divided into disjoint
subsystems.

A. User Task Offloading

At any time t ∈ {1, 2, . . ., T}, each user will offload a
computation-intensive task to a reachable server or process the
task locally by his mobile device, where the total time horizon T
is unspecified. Suppose sj and fj are the potential transmission
rate and processing speed of server j, respectively. Also, denote
Θ = {(sj , fj), j ∈ K} as the system-side information, which is
often undisclosed to users [8], [9]. Regarding user i, the process-
ing speed of its device is li, which however is known to user i by
directly reading the CPU information. For consistency purposes,
we collectively refer to all users’ devices as the virtual edge
server K ′, so that any user i offloads or processes a task could
be unified by offloading the task to a server j ∈ Ki ∪ {K ′}.

An offloaded task from user i is typically characterized by the
task size bi (e.g., amount of cellular traffic) and required CPU
cycles per unit traffic γi [13]. If i’s task is handled by server
j ∈ Ki, it will experience an offloading delay dij , including the
transmission and processing time:

dij =
bi
sj

+
biγi
fj

. (1)

Similarly, when the task is executed by virtual server K ′ (pro-
cessed locally), the delay di,K ′ signifies the processing time as
there is no transmission involved:

di,K ′ =
biγi
li

. (2)

Along with the offloading delay dij , ∀j ∈ Ki ∪ {K ′}, user i
also associates an instant reward µij to represent its personal
preference on the service performance:

µij = vi − gi(dij), (3)

where vi is the intrinsic task value and gi(·) is a cost function
which increases with the delay, indicating the latency-sensitivity
of user i. We are interested in the non-trivial case where
vi > gi(dij), i.e., users acquire positive rewards after successful
task offloading. Due to unknown information Θ and system
uncertainty (e.g., user mobility, transmission/processing oscilla-
tion), each user can only perceive an i.i.d. random reward value
at time t, with µij = E[rij(t)], rij(t) ∈ [r, r], ∀i ∈ N , j ∈ Ki

where positive r and r are the lower and upper reward bounds.
In contrast, any user i could acquire the exact service reward
µi,K ′ ∈ [r, r] since its local processing speed li is acknowledged
beforehand.

In general, the knowledge difference between the rewards
of server offloading and local processing requires a distinct
offloading decision making. Specifically, the rewardµij , j ∈ Ki,

i.e., offloading to “real” server, is to be explored using observa-
tions rij(t) while µiK ′ , offloading to virtual server, is given
in advance. Besides, we will further investigate the case of
neighboring edge feedback, where edge servers would share
their current oscillated processing speed and transmission rate
with each other to enable an enhanced user task placement.
Hereinafter, we will leverage the prefix “virtual” to distinguish
“real” servers from mobile devices, and also use virtual server
and mobile device interchangeably in line with the context.

B. Server Computing Capacity

Compared to the cloud datacenter, an edge server essentially
has limited computing capacity [14], which we rephrase as max-
imum task service or endowed computing resource depending
on the user offloading requirement.

1) Maximum Task Service: When users need homogeneous
computing resource (memory, CPU, storage) to process their
offloaded tasks, the task service capacity Mj of server j ∈ K
represents how many tasks it can handle concurrently. If exces-
sive computation tasks arrive, the server will randomly choose
Mj tasks while abandoning the rest due to its limited capacity.
Once discarded, the user experiences a high delay and observes
a zero reward rij(t) = 0. Besides, denoteM =

∑K
j=1 Mj as the

total MEC service capacity of all edge servers.
2) Endowed Computing Resource: We also consider the sit-

uation where users may require heterogeneous resource for
processing their offloaded tasks, say running different types of
applications. For this case, the capacity Cj of any edge server
j ∈ K stands for the amount of its endowed computing resource.

C. Problem Formulation

1) Homogeneous Resource Requirement: Under the homo-
geneous requirement, computing capacity of each server implies
the maximum number of admitted tasks. At time t, denote
ai(t) ∈ Ki ∪ {K ′} as the selected (virtual) server decision of
user i with a(t) = {ai(t), i ∈ N}, and Nj(t) = {i, ai(t) = j}
as the user set choosing server j. Users aim to mitigate the
computing delay while avoiding task rejection due to violating
the server capacity. Let a∗ be the optimal offloading decisions
made by an omniscient oracle when the system-side information
Θ is known, which are the solution to the offline assignment
problem (OAP) below:

max
N∑

i=1

µiai

s.t. |Nj | ≤ Mj , ∀j ∈ K. (4)

Since mobile users are agnostic of each other, they can only
decidea(t) in a decentralized fashion. Accordingly, we quantify
the offloading performance by its regret, defined as the difference
between accumulated rewards of a(t) and that of the oracle
decisions a∗ to OAP:

R(T ) = T
N∑

i=1

µia∗
i
−

T∑

t=1

N∑

i=1

E[riai(t)(t)]. (5)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 03,2024 at 04:29:02 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: ONLINE LEARNING AIDED DECENTRALIZED MULTI-USER TASK OFFLOADING FOR MOBILE EDGE COMPUTING 3331

Note that E[riai(t)(t)] = µiai(t) if offloaded task is processed
remotely or locally, otherwise riai(t)(t) = 0 once being dis-
carded. For ease of exposition, we also refer to a∗ or a(t) as
an assignment between users N and servers K ∪ {K ′}.

2) Heterogeneous Resource Requirement: Consider each
user i requires a unique ci computing resource to handle his
offloaded task. Let C ′

j(t) =
∑

i∈Nj(t)
ci be the total resource

request for server j ∈ K at time t. Again, the optimal offloading
decision is marked as a∗, which can be obtained by solving the
heterogeneous offline assignment problem (H-OAP) given the
system-side information Θ:

max
N∑

i=1

µiai

s.t. C ′
j(t) ≤ Cj , ∀j ∈ K. (6)

Since the virtual server K ′ represents local task execution, it
has abundant capacity to handle all offloading requests. Dif-
ferent from OAP, H-OAP is a typical generalized assignment
problem (GAP) with no optimal solution for polynomial-time
algorithms [15]. Moreover, any centralized sub-optimal solution
a to GAP only ensures at most (1 + α)-approximate compound
reward, that is

∑N
i=1 µiai ≥ 1

1+α

∑N
i=1 µia∗

i
,α ≥ 1. As a conse-

quence, the offloading regret for the heterogeneous requirement
is defined by leveraging the highest guaranteed sub-optimal
reward 1

2

∑N
i=1 µia∗

i
, i.e., α = 1:

R̃(T ) =
T

2

N∑

i=1

µia∗
i
−

T∑

t=1

N∑

i=1

E[riai(t)(t)]. (7)

If the task is rejected due to any server capacity limitation, we
have riai(t)(t) = 0. Also, offloading decisions or assignment
a(t) should be determined by decentralized methods.

3) Model Discussion: Our main objective is to optimize the
offloading performance through dynamic task placement in a
decentralized fashion. This can only be achieved by online
learning based methods due to the undisclosed system-side
information and agnostic user coexistence. Another challenge is
that because edge servers can accommodate multiple tasks and
meanwhile users could merely send tasks to reachable servers,
previous collision-based indirect collaboration frameworks are
not applicable to our offloading design [10], [16]. Furthermore,
the available information difference between edge servers and
mobile devices calls for different reward explorations when de-
vising the task offloading schemes. Last but not least, APX-hard
H-OAP has no optimal solution in polynomial time caused by
heterogeneous offloading requests, which in fact demands a
distinct decentralized solution from the homogeneous OAP.

III. DECENTRALIZED TASK OFFLOADING SCHEME

In this section, we first discuss the design of offloading scheme
for the homogeneous request, with a server capacity denoting
the number of admitted tasks. In particular, the user-initiated
task placement is modeled as a multi-user MAB problem by
regarding offloading to an edge server as playing an arm, while
it needs to be tackled via decentralized techniques.

Algorithm 1: DEBO: Decentralized Epoch Based
Offloading.

Input: {Mj , j ∈ K}, M , T1, T2, ϵ
1: Initialization: Set V = {Vij = 0, ∀i ∈ N , j ∈ Ki} and

S = {Sij = 0, ∀i ∈ N , j ∈ Ki};
2: for epoch n = 1 to nT do
3: Exploration: r̃(n)= RO(V , S, T1);
4: Matching: a′= DAuction(r̃(n), µK ′ , T2, ϵ);
5: Exploitation: for remaining 2n time slots:
6: User i offloads tasks to (virtual) edge server a′i;

A. Epoch Based Time Division

To achieve satisfactory service performance or minimize the
offloading regret R(T ), we have to consider the exploration-
exploitation trade-off for offloading to each server. Since the
total time T is unspecified apriori, we divide the time horizon
into epochs {1, 2, . . ., nT }, where each epoch has a variable
number of time slots and nT is the last epoch index. To strike a
balance between offloading exploration and exploitation, every
epoch is composed of an exploration phase, matching phase and
exploitation phase.! Exploration phase: this phase lasts for T1 time slots in

each epoch. Users will randomly offload tasks to edge
servers K for acquiring the estimated rewards r̃(n) =

{r̃(n)ij , i ∈ N , j ∈ Ki}. Concretely, each r̃(n)ij is calculated
by using all explored observations from the beginning to
the current epoch n.! Matching phase: this phase has a length of T2 time
slots. Users leverage a decentralized auction, which will
be elaborated later, based on estimated rewards r̃(n) and
µK ′ = {µiK ′ , i ∈ N} to yield an assignment a′.! Exploitation phase: this phase occupies 2n time slots in
epoch n. All users offload tasks obeying the assignment a′

to fully exploit the corresponding rewards.
The fact that the exploitation takes an exponential number

of slots does not imply it occupies a long duration in practice,
rather, it means the exploitation phase needs to dominate both the
exploration and matching phases. In general, our epoch division
ensures the convergence ofa′ to the optimal assignmenta∗ given
an accurate reward estimation r̃(n). We underscore that local
processing rewards are involved in all three phases except for the
exploration phase as each µiK ′ in (3) can be directed computed.
Later analysis points out that this preclusion will shorten the
exploration length T1.

B. Decentralized Epoch Based Offloading

1) Algorithm Design: We now formally specify the proce-
dure of the decentralized epoch based offloading (DEBO) in
Algorithm 1. In epoch n, each user sequentially performs the
random offloading (RO) for the first T1 time slots, then the
decentralized auction (DAuction) for the next T2 time slots, then
the offloading exploitation for remaining 2n time slots.

2) Exploration of RO: Users will locally execute the RO as
presented in Algorithm 2. Since server j ∈ K can support Mj

tasks, so we consider that it has Mj resource units and there are

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 03,2024 at 04:29:02 UTC from IEEE Xplore.  Restrictions apply. 



3332 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 4, APRIL 2024

Algorithm 2: RO: Random Offloading.
Input: {Mj , j ∈ K}, M , V , S, T1

1: for T1 time slots do
2: Set Nj(t) = ∅, ∀j ∈ K;
3: for user i ∈ N do
4: Randomly choose an integer Hi in Li;
5: Offload a task to the server ai = j if

Hi ∈ (
∑j−1

l=1 Ml,
∑j

l=1 Ml]; ◃ Also send integer Hi

6: Nai(t) = Nai(t) ∪ {i};
7: if rij(t) > 0 then
8: Vij = Vij + 1, Sij = Sij + rij(t);
9: for edge server j ∈ K do

10: if |Nj(t)| ≤ Mj then
11: Process all offloaded tasks;
12: else
13: Randomly choose one task from users having the

same integer {i,Hi = H}, and abandon the rest;
14: return r̃(n) = S

V ; ◃ Element-wise division

totally K servers containing M units where the index ranges
(
∑j−1

l=1 Ml,
∑j

l=1 Ml] represent the Mj units in server j. For
user i, let Li = ∪j∈Ki(

∑j−1
l=1 Ml,

∑j
l=1 Ml] ⊂ [1,M ] denote

the resource units of its reachable servers Ki. Accordingly,
integer Hi in Line 4 entails the selected server index (resource
unit) for task offloading, and enables task abandonment if re-
ceived tasks exceed the server capacity in each slot (Line 13).
Note that V and S in Line 8 record the successful offloading
times (perceiving positive rewards) and accumulated rewards,
respectively, which leverage all observations during the explo-
ration to learn r̃(n). Intuitively, the computational complexity
and required extra message are both O(1) for each user in each
slot (Lines 4-5).

3) Matching of DAuction: The DAuction is shown in
Algorithm 3. Specifically, DAuction uses the estimated rewards
r̃(n) and local processing rewards µK ′ to decide the assigned
(virtual) edge server to each user, while the optimal assignment
a∗ will be deduced if every learned reward r̃(n)ij converges to
the expected value µij . In addition to the M resource units, L′

represents the resource index of the virtual server.
Denote range M(m) = (

∑j−1
l=1 Ml,

∑j
l=1 Ml] and server in-

dex j(m) = j, ifm ∈ (
∑j−1

l=1 Ml,
∑j

l=1 Ml], ∀j ∈ K. As for the
virtual server, i.e., m = L′, let M(m) = L′ and j(m) = K ′.
Lines 2-5 state the initialization of rewards R for each user
pertaining to (|Li|+ 1) resource units. To simplify notations,
assignment ai ∈ Li ∪ {L′} means that user i will offload tasks
to server j(ai) by holding the resource unit ai (Lines 12 and
14), while ai = 0 (Line 8) implies the user remains or returns
unassigned to any edge server. Based on whether we observe
a positive reward (e.g., task is processed), ai is updated ac-
cordingly. To derive the bid (Line 14), any user i will find the
resource unit m∗ with the highest value in Line 9 to offload a
task, and further attain the resource m′ with the second highest
value in Line 10 by precluding those units belonging to the
same server to expedite the auction process [19]. On servers’
side, they will allocate their resource units (i.e., handling the

Algorithm 3: DAuction: Decentralized Auction.

Input: {Mj , j ∈ K}, M , r̃(n), µK ′ , T2, ϵ
1: Initialization: R = {Rim, ∀i ∈ N ,m ∈ Li ∪ {L′}}, set

B = {Bim = 0, ∀i ∈ N ,m ∈ Li ∪ {L′}} and a = 0;
2: for i ∈ N do
3: for m ∈ Li do
4: Rim = r̃(n)ij if m ∈ (

∑j−1
l=1 Ml,

∑j
l=1 Ml];

5: RiL′ = µiK ′ ◃ Virtual edge server
6: for T2 time slots do
7: for user i ∈ N do
8: if ai = 0 then
9: Find m∗ ∈ argmaxm{Rim −Bim};

10: Find m′ ∈ argmaxm/∈M(m∗){Rim −Bim};
11: if m∗ = L′ then
12: Locally process the task and set ai = L′;
13: continue;
14: Offload to server j(m∗), bid

Bim∗ = Rim∗ − (Rim′ −Bim′) + ϵ, observe
reward, set ai = m∗ if task is processed and
ai = 0 if abandoned;

15: for edge server j ∈ K do
16: If the m ∈ (

∑j−1
l=1 Ml,

∑j
l=1 Ml]th unit is allocated

to user i, compare all received bids with Bim to
select the highest-bid user and allocate mth unit;

17: If the mth unit is not allocated, select the highest-bid
user to allocate the mth unit;

18: for i ∈ N do
19: a′i = j(ai);
20: return a′ = {a′i, i ∈ N};

offloaded tasks) to users who have the highest bids (Lines
15-17), and discard tasks from unassigned users. Note that the
auction is decentralized as any user i only needs to locally
maintain a reward vector {Rim,m ∈ Li ∪ {L′}}, a bidding
vector {Bim,m ∈ Li ∪ {L′}}, and server indices ai, a′i. In any
time slot, DAuction needs O(M) computation to select the
highest-value resource unit andO(1) additional message to send
the bid pertaining to each user.

C. Offloading With Edge Information Sharing

In practice, edge servers are often possessed by a private
owner, like a content delivery network provider, or managed
by different operators [20]. Occasionally, the owner can or-
chestrate its edge servers to share their information, like cur-
rent processing speed or transmission rate, or various operators
would exchange such information with each other. This shared
edge information will help mobile users make wiser offloading
decisions, which also benefits the edge servers in promoting their
computing service.

Specifically, when user i successfully offloads a task to server
j (task is processed), i not only attains a reward observation
rij(t), but also obtains the oscillated information of other
nearby servers Ki \ {j} to virtually compute the noisy rewards
rij′(t), j′ ∈ Ki \ {j} due to neighboring edge feedback [21].
Actually, this can be achieved since server j is able to piggyback

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 03,2024 at 04:29:02 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: ONLINE LEARNING AIDED DECENTRALIZED MULTI-USER TASK OFFLOADING FOR MOBILE EDGE COMPUTING 3333

the exchanged edge information when sending the processed
task results to user i. Therefore, as an enhancement, we further
explore the decentralized task placement and propose DEBO
with edge information sharing. Similarly, time horizon is still
divided into epochs {1, 2, . . ., nT }, where each epoch also
consists of the exploration, matching and exploitation phases.
In particular, the exploration phase will use the observed and
computed rewards to acquire the reward estimations r̃(n), which
are the basis for deriving the optimal user-server matching and
later reward exploitations. In broad strokes, the main difference
when we have neighboring edge feedback lies in the random
offloading. To be more specific, Lines 7-8 of RO in Algorithm 2
are changed to record the offloading times and accumulated
rewards for all reachable serversKi, rather than only for server j
when a user’s task is processed. By doing so, we can accelerate
the exploration phase, i.e., set a shorter T1. As for DAuction in
the matching phase and the exploitation phase, they will remain
unchanged. Next, we characterize DEBO without and with edge
information sharing as a whole.

D. Performance Analysis of DEBO

1) Main Regret Result: We now analyze the regret R(T )
in (5). Let ∆min = mina̸=a∗{

∑N
i=1 µia∗

i
−
∑N

i=1 µiai}, which
is the compound reward gap between the optimal and the
best sub-optimal assignments. W.l.o.g., assume there is a
unique optimal assignment a∗ to OAP, otherwise ∆min implies
the gap between the highest and second highest compound
rewards accordingly. Moreover, denote Mmin = minj∈K{Mj},
Lmax = maxi∈N{|Li|}, Lmin = mini∈N{|Li|}, Kmax =
maxi∈N{Ki}, Nmax = maxj∈K{Nj}, and υ = Nmax

Lmin−1 . Let
δmin = mini∈N minj,j′∈Ki∪{K ′},j ̸=j′{|µij − µij′ |} be the
minimum user reward gap with both ∆min, δmin > 0. In fact,
Lmax and Nmax are the potentially maximum server resource a
user may access and the largest population an edge server will
cover, respectively, and so do Lmin,Kmax.

Theorem 1: Let ϵ = max{∆min
5N , δmin

K+1 − 3∆min
4N(K+1)}, T1=

max
{
⌈ 32

9
4υN2Lmax(r−r)2

∆2
minMmin

⌉, ⌈ 81
32υ

16υL2
max

M2
min

⌉
}

or T1=max
{
⌈ 32

9
4υN2(r−r)2

∆2
min

⌉, ⌈ 81
32υ16

υ⌉
}

with edge information sharing,

and T2 = ⌈N(Lmax + 1) + NLmaxr
ϵ ⌉. The regret R(T ) of

DEBO is upper bounded by

R(T ) ≤
(
T1Nr + T2Nr

)
log2(T + 2) + 12N2Kmaxr

= O(log2T ). (8)

See Appendix A.2, available online for the proof. The regret
in (8) is obtained by bounding the error probability Pn that
a′ ̸= a∗ after the nth matching, which is shown in Lemma 4.
Since T1 in the edge information sharing case is smaller, (8)
also implies a theoretically tighter bound, or smaller coefficient
of O(log2T ), when we have information exchange.

Remark: If ∆min is too small, leading to a prohibitively long
exploration length T1, one can adjust it to a sufficiently large
value in practice since T1 in Theorem 1 simply provides a
loose upper bound. Moreover, the computational complexity

of DEBO is O((T1 +MT2) log2T ) if combining with previous
computation analysis for RO and DAuction.

In the following, we further demonstrate that our derived
log2T regret is tight by regrading a user as a super-user who
can control all users’ offloading decisions [22].

Proposition 1: The regret R(T ) defined in (5) of any offload-
ing scheme is at least Ω(log2T ).

Please refer to Appendix A.3, available online for the detailed
proof.

2) Exploration Error Probability: The goal of exploration
RO is to estimate rewards accurately for the use in the matching
phase, where the exploration error probability is presented in the
next lemma with its proof in Appendix B, available online.

Lemma 1: Let T1 = max
{⌈

32
9

4υN2Lmax(r−r)2

∆2
minMmin

⌉
,

⌈
81
32υ

16υL2
max

M2
min

⌉}
or T1 = max

{
⌈ 32

9
4υN2(r−r)2

∆2
min

⌉, ⌈ 81
32υ16

υ⌉
}

with edge information sharing. After the nth exploration, the
error probability satisfies

Pr
(
|r̃(n)ij − µij | >

3∆min

8N

)
≤ 3NKmaxe

−n, ∀i ∈ N , j ∈ Ki.

(9)
Lemma 1 states that each estimated reward r̃(n)ij is sufficiently

close to expected reward µij with high probability.
3) Decentralized Matching Error: Based on estimated and

local processing rewards µK ′ , users execute the DAuction to
yield the user-server assignment a′. If the compound reward
induced by a′ is within a gap of ∆min to the highest out-
come, then a′ is in fact the optimal assignment, or a′ = a∗.
Note that DAuction runs in a decentralized manner with each
server accommodating many tasks concurrently, which distin-
guishes it from existing auctions requiring inter-user communi-
cations [17], [19] or focusing on one-to-one match [11], [23].
Before characterizing the matching error, we first show that the
assignment in DAuction fulfills the ϵ-complementary slackness
(ϵ-CS).

Lemma 2: Denote ηm = maxi∈Nj{Bim} as the highest bid
among the bidding users, and η̃j(m) = minm∈M(m){ηm} as the
price of edge server j(m) in DAuction, then the resource unit
assignment a satisfies ϵ-CS, that is

Riai − η̃j(ai) ≥ maxm{Rim − η̃j(m)}− ϵ. (10)

See Appendix C.1, available online for the proof. ϵ-CS implies
that the assignment a′ attains at least near to the optimal reward.

Lemma 3: With a slight abuse of notation, let r̃(n)iK ′ =
µiK ′ , ∀i ∈ N in this lemma. Denote a(n) as the optimal assign-
ment under r̃(n), and ∆̃min = mini∈N ,j,j′∈Ki∪{K ′},j ̸=j′{|r̃

(n)
ij −

r̃(n)ij′ |}. If (K + 1)ϵ < ∆̃min, DAuction ensuresa′ = a(n). Also:

N∑

i=1

r̃(n)ia′
i
≥

N∑

i=1

r̃(n)
ia(n)

i

−Nϵ. (11)

Besides, DAuction will terminate with all users being assigned
to servers within T2 = ⌈N(Lmax + 1) + NLmaxr

ϵ ⌉ rounds.
See Appendix C.2, available online for the proof. In addition

to the common Nϵ gap [11], [17], [23], our proposed DAuction
further guarantees a (K + 1)ϵ matching error. By using this,

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 03,2024 at 04:29:02 UTC from IEEE Xplore.  Restrictions apply. 



3334 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 4, APRIL 2024

we can facilitate a more precise calibration of the minimum
increment ϵ in Theorem 1. This is because the server number
K is usually much smaller than the user number N , so one can
speed up DAuction by setting a larger ϵ.

4) Error Probability of DEBO: In line with Lemmas 1 and 3,
we present the error probability Pn that a′ ̸= a∗ with the proof
in Appendix C.3, available online.

Lemma 4: If setting the parameters as in Theorem 1, the error
probability Pn that a′ ̸= a∗ is bounded Pn ≤ 3NKmaxe−n.

This lemma ensures that a′ obtained from DAuction will be
optimal with increasingly high probability over epoch n.

IV. EXTENSION OF DECENTRALIZED OFFLOADING

The regret in Theorem 1 is materialized only when leveraging
the reward gaps ∆min, δmin and constant user number N . This
section extends previous regret analysis to show the robustness
of our offloading scheme in more general settings, i.e., unknown
reward gaps, dynamic user entering or leaving, and fair reward
distribution.

A. Unknown Reward Gap

The knowledge of reward gaps∆min, δmin may be unavailable
in practice, which requires us to set the exploration or matching
length adaptively. Remember that the exploration of RO aims
to acquire an accurate reward estimation, and the matching
of DAuction is to deduce the optimal user-server assignment.
Therefore, one can still harness DEBO in Algorithm 1 by pro-
longing exploration length T (n)

1 over epoch to ensure a bounded
exploration error probability, meanwhile reducing the minimum
increment ϵ(n), or extending matching length T (n)

2 , so as to
converge to the optimal assignment. Accordingly, we denote
this decentralized offloading under unknown reward gaps as
U-DEBO.

Theorem 2: Let ϵ(n) = c0n−ϑ, T (n)
1 = ⌈c1nϑ⌉ with-

out or with edge information sharing, and T (n)
2 =

⌈N(Lmax + 1) + NLmaxr
ϵ(n) ⌉ where c0, c1 are constants and

ϑ ∈ (0, 1). The regret R(T ) of U-DEBO is bounded by

R(T ) ≤ ⌈c1 logϑ2 (T + 2)⌉Nr log2(T + 2)

+ ⌈N(Lmax+ 1) + logϑ2 (T +2)NLmaxr/c0⌉

×Nrlog2(T+2)+Nr(2n0−1)+12N2Kmax=O
(
log1+ϑ2 T

)
,

(12)
where n0 is a finite integer.

Please refer to Appendix D.1, available online for the proof.
Note that there is a power (1 + ϑ) on log T , which stems from
cautiously elongating T (n)

1 and T (n)
2 to ensure a bounded error

probability analogous to that in Lemma 4.

B. Dynamic User Mobility

Mobile users may enter or leave the MEC system dynami-
cally, leading to a time-varying user population N . When this
happens, the user will notify its nearby edge server, so that the
remaining users could perceive the dynamic value of N from

servers without inter-user communications. Sharing a similar
spirit to [12], we postulate that signaling the entering or leaving
occurs at the beginning of each epoch.

DenoteN (n) as the user number in epochn. Note that the user
entering and leaving will have different impacts. For the leaving
case, even all users adhere to DEBO with unchanged parameters
T1 andT2 as in Theorem 1, it still yields anO(log2T ) regret. This
is because the error probability satisfies Pn ≤ 3N (n)Kmaxe−n

when running the RO and DAuction for longer time due to the
reduction of user number N (n). Nevertheless, adjusting T1 and
T2 along with N (n) can in fact reduce the empirical regret.
In contrast, the dynamic entering would cause an increase in
the population N (n), which brings about an unbounded error
probability Pn as newly joined users have not yet experienced
adequate explorations to acquire an accurate reward estimation
for attaining the optimal assignment in the matching phase.
It should be emphasized that we will observe a dynamically
changing optimal assignment a∗ in either leaving or entering
case. Similarly, refer to the decentralized offloading for dynamic
user mobility as D-DEBO, whose regret compared to varying
optimal assignments is quantified below.

Theorem 3: Suppose that the epoch n′ of the last user
entering satisfies n′≤O(log2T

ζ),ζ∈(0, 1). Let ϵ=max{ ∆min

5N(n) ,
δmin
K+1 − 3∆min

4N(n)(K+1)
}, T1= max

{
⌈ 32

9
4υ(N(n))2Lmax(r−r)2

∆2
minMmin

⌉,

⌈ 81
32υ

16υL2
max

M2
min

⌉
}

orT1 = max
{
⌈ 32

9
4υ(N(n))2(r−r)2

∆2
min

⌉, ⌈ 81
32υ16

υ⌉
}

with edge information sharing, and T2 =

⌈N (n)(Lmax + 1) + N(n)Lmaxr
ϵ ⌉. The regret R(T ) of D-DEBO

is bounded R(T ) ≤ O(T ζ).
See Appendix D.2, available online for the proof. The under-

lying reason for restricting the last entering time is to impede a
prohibitively large exploitation regret caused by the error-prone
reward estimation of newly joined users.

Remark: The entering or leaving caused by user mobility can
be phrased as shifting the original user-server assignment to a
new stable one. Considering this, let us discuss another case
which also leads to an update in the offloading scheme, i.e.,
computing capacity change. Every now and then, some edge
servers may fail or resume to provide computing service due
to shutdown, reboot, etc. Still suppose that server failure or
restoration takes place at the beginning of each epoch with
K(n) denoting the server number in epoch n. Note that Lmax is
regarded as the potentially maximum resource a user can reach,
which is assumed to be steady even the total computing capacity
varies. Following the same vein, we present the regret result
for the capacity change, where the proof is omitted since it is
analogous to Theorem 3.

Proposition 2: Suppose that the epoch n′ of the last server
restoration satisfies n′ ≤ O(log2T

ζ), ζ ∈ (0, 1). Let ϵ = max{
∆min
5N , δmin

K(n)+1
− 3∆min

4N(K(n)|!+1)

}
, T1=max

{
⌈ 32

9
4υN2Lmax(r−r)2

∆2
minMmin⌉, ⌈ 81

32υ
16υL2

max

M2
min

⌉
}

or T1=max
{
⌈ 32

9
4υN2(r−r)2

∆2
min

⌉,

⌈ 81
32υ16

υ⌉
}

with edge information sharing, and T2 =

⌈N(Lmax + 1) + NLmaxr
ϵ ⌉. The regret R(T ) of D-DEBO is

bounded R(T ) ≤ O(T ζ).

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 03,2024 at 04:29:02 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: ONLINE LEARNING AIDED DECENTRALIZED MULTI-USER TASK OFFLOADING FOR MOBILE EDGE COMPUTING 3335

C. Fair Reward Distribution

So far, we have focused on the utilitarian compound re-
ward optimization, which may cause unfair server resource
allocation. Because users with higher rewards are more likely
to be assigned to servers with faster transmission rate and
processing speed, thereby blocking other users from the “bet-
ter” edge servers. To address this issue, we explore the α-
fairness maximization to enable a fair reward distribution
among users, by changing the objective of OAP in (4) to
max

∑N
i=1 uα(µiai) [24], where uα(µiai) is defined:

uα(µiai) =

⎧
⎨

⎩

ln(1 + βµiai) ifα = 1,

µ1−α
iai

1−α ifα ∈ (0, 1).
(13)

When α = 1, it amounts to the proportional fairness. Slightly
different from the standard proportional fairness, we adjust
conventional lnµiai to ln(1 + βµiai),β > 0 so as to enable
the same fairness effect while further enhancing the model
adaptability [25], [26]. Besides, we confine the value α ∈ (0, 1]
rather than α ∈ (0,∞] in [24] as uα(µij) would be negative
if α > 1, which is infeasible in the task offloading situation.
Consistent with (13), let af be the optimal assignment to the
egalitarian fairness optimization, and define the fairness regret as
Rf (T ) = T

∑N
i=1 uα(µiaf

i
)−

∑T
t=1

∑N
i=1 uα(E[riai(t)(t)]).

We can still employ the DEBO in Algorithm 1 by replacing
the reward estimations with their fairness values. Nevertheless,
this operation is built on the premise that the fairness uα(r̃

(n)
ij )

is sufficiently accurate if the estimated reward r̃(n)ij converges to
the expected reward µij .

Lemma 5: Suppose the estimation error in RO Algorithm 2
satisfies |r̃(n)ij − µij | ≤ ∆, ∀i ∈ N , j ∈ Ki. For α = 1, the fair-
ness error fulfills

∣∣uα(r̃
(n)
ij )− uα(µij)

∣∣ ≤ β∆

1 + βr
. (14)

For α ̸= 1, the fairness error satisfies
∣∣uα(r̃

(n)
ij )− uα(µij)

∣∣ ≤ ∆

rα
. (15)

See Appendix E, available online for the proof. Based on this
lemma, we adapt the DEBO to a fair decentralized offloading
F-DEBO, where the input to DAuction is uα(r̃

(n)
ij ). Also, denote

∆f
min = mina ̸=af {

∑N
i=1 uα(µiaf

i
)−

∑N
i=1 uα(µiai)} and

δfmin = mini∈N minj,j′∈Ki∪{K ′},j ̸=j′{|uα(µij)− uα(µij′)|}.
Theorem 4 presents the fairness regret, while the proof is
omitted since it is similar to Theorem 1.

Theorem 4: Let ϵ = max{∆f
min

5N ,
δfmin
K+1 − 3∆f

min
4N(K+1)}, and

T2 = ⌈N(Lmax + 1) + NLmaxuα(r)
ϵ ⌉. Set T1 = max

{⌈ 32
9

4υN2Lmax(r−r)2β2

(∆f
min)

2Mmin(1+βr)2
⌉, ⌈ 81

32υ
16υL2

max

M2
min

⌉} or T1 = max

{⌈ 32
9

4υN2(r−r)2β2

(∆f
min)

2(1+βr)2
⌉, ⌈ 81

32υ16
υ⌉}with edge information sharing

whenα=1, andT1=max{⌈ 32
9

4υN2Lmax(r−r)2

(∆f
min)

2Mminrα
⌉,⌈ 81

32υ
16υL2

max

M2
min

⌉}

or T1 = max{⌈ 32
9

4υN2(r−r)2

(∆f
min)

2rα
⌉, ⌈ 81

32υ16
υ⌉} with edge

information sharing when α ∈ (0, 1). The fairness regret

Rf (T ) of F-DEBO is bounded:

Rf (T ) ≤ T1 Nuα(r) log2(T + 2)

+ T2 Nuα(r) log2(T + 2)

+ 12N2Kmaxuα(r)

= O(log2T ). (16)

Remark: The reward fairness among users in MAB is also
studied in [18] through maximizing the product of all users’ re-
wards in a centralized manner. Actually, our scheme can achieve
the same fairness goal yet in a decentralized fashion, since taking
a logarithm on the product is equivalent to maximizing the
proportional fairness in (13).

V. HETEROGENEOUS TASK OFFLOADING SCHEME

This section explores the task offloading under the heteroge-
neous resource requirement, where server capacity stands for its
endowed computing resource. Different from OAP, H-OAP is an
APX-hard GAP problem with no optimal solution in polynomial
time [15]. We will develop a new decentralized learning to
handle users’ heterogeneous requests.

A. Offline Problem Revisit

In contrast to OAP, one can only attain at most (1 +
α)-approximate assignment a to H-OAP, i.e.,

∑N
i=1 µiai ≥

1
1+α

∑N
i=1 µia∗

i
, where α ≥ 1 is the approximation ratio to the

following knapsack sub-problem:

max
∑

i∈Nj

µij

s.t. C ′
j ≤ Cj . (17)

In fact, α = 1 implies deriving the optimal solution to (17), and
that is why we set the benchmark for the regret definition in (7)
as 1

2

∑N
i=1 µia∗

i
. Besides, there is no capacity constraint for the

virtual server K ′.
To obtain a 2-approximate assignment, we first decouple the

knapsack sub-problems, then acquire the optimal solution to
each sub-problem sequentially. For this purpose, we introduce an
indicator I = {Ii, i ∈ N} to record the current assignments of
all users, say Ii = j means user iwill offload tasks to server j, so
as to enable the decoupling of (K + 1) sub-problems, including
the virtual edge server also. Specifically, initialize each user
as unassigned I = 0, and define the reward ∆µij to mark the
performance improvement if user i’s offloaded task is processed
by another edge server:

∆µij =

⎧
⎨

⎩
µij if Ii = 0,

µij − µij′ if Ii = j ′.
(18)

According to [15], we solve (17) corresponding to each server j
by using ∆µij , i ∈ N , i.e., gradually improve the offloading
reward when allocating servers’ computing resource. If the
solution to (17) results in user i being assigned to server j, then
update Ii = j and recalculate ∆µij when dealing with the next

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 03,2024 at 04:29:02 UTC from IEEE Xplore.  Restrictions apply. 



3336 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 4, APRIL 2024

sub-problem for server j → j + 1. As a result, the final indicator
I is guaranteed to be a 2-approximate assignment to H-OAP if
one can optimally tackle all (K + 1) sub-problems. Considering
the knapsack sub-problem is NP-hard, we implement a branch-
and-bound method to efficiently search its optimal solution for
ensuring α = 1 [27].

B. Heterogeneous Decentralized Offloading

1) Algorithm Design: The analysis of solving H-OAP pro-
vides us a guide for designing dynamic offloading under the
heterogeneous requirement. Similar to DEBO using learned
rewards to attain the user-server assignment because of the
unknown system-side information Θ, we also utilize the reward
estimation r̃(n) along with local processing rewards µK ′ to
deduce this assignment following the characterized indicator
decoupling approach. Concretely, we show the heterogeneous
decentralized epoch based offloading (H-DEBO) in Algorithm 4,
with each epoch also consisting of an exploration phase, match-
ing phase and exploitation phase. Denote Mmin = minj∈K{Cj}

maxi∈N {ci}
as the ratio between the minimum server capacity and maximum
user requirement.

2) Exploration Phase: Due to users’ heterogeneous requests,
random offloading by holding a specific resource unit in RO
(Line 4 in Algorithm 2) is no longer applicable, since it is
based on equally splitting the server capacity into multiple units.
Therefore, we propose a group offloading scheme which requires
each user to send a task to server in a round-robin fashion for
reward exploration, where the group size is Mmin so as not
to violate any server capacity. As any user i can only reach
servers Ki ∪K ′, the task will be locally handled (offloaded
to virtual server) when the user is not covered by a server
j, j ∈ K during the round-robin exploration. Lines 5-7 are for
group number Ng ≤ K while Lines 9-13 amount to Ng > K.
In particular, the estimated rewards only entail offloading to
servers K and exclude the virtual server even though tasks may
be handled locally (choose K ′). The exploration phase lasts for
exactly T1 time slots, i.e., T1 observations with at least ⌊T1/K⌋
samples from each server for reward estimation r(n). Note that
the group offloading remains decentralized as any user i can
determine its group only based on local user index i. The com-
putational complexity for each user is only O(1) in every time
slot.

Knowledgeable readers may ask why not each user directly
offloads tasks to the reachable servers to learn the rewards, which
can obviously reduce the exploration length. The main reasons
lie in twofold. First, users are agnostic of each other, nor do they
know the rest users covered by their reachable servers, and hence
they have to explore longer to attain sufficient reward observa-
tions. Second, different users may reach different server subsets,
which hinders the exploration coordination by offloading tasks
in parallel, thus a round-robin reward exploration is essential.

3) Matching and Exploitation Phases: Similar to previous
analysis, matching phase mainly entails solving the knapsack
sub-problem of (17) successively. To this end, users will compute
the rewards ∆r̃(n)ij , ∀j ∈ Ki, which are sent to each server for
updating the indicator I (i.e., offloaded task is processed) based

Algorithm 4: H-DEBO: Heterogeneous Decentralized
Epoch Based Offloading.

Inpit: {Cj , j ∈ K}, {ci, i ∈ N}, Mmin, K, T1

1: Initialization: Set estimated rewards
r̃(n) = {r̃(n)ij = 0, ∀i ∈ N , j ∈ Ki};

2: for epoch n = 1 to nT do
3: Users form Ng groups with group size being Mmin;

◃ Start Exploration Phase
4: for t = 1 to T1 do
5: if Ng ≤ K then
6: Users in group k offload tasks to server

[(t− 1)%K + k]%(K + 1), if unreachable,
choose K ′;

7: Update r̃(n)ij , j ∈ Ki using rij(t), j ∈ Ki;
8: else
9: for g = 1 to ⌊Ng/K⌋ do

10: Users in group k, k = (g − 1)K + 1, . . ., gK
offload tasks to server
[(t− 1)%K + k − (g − 1)K]%(K + 1), if
unreachable, choose K ′;

11: Update r̃(n)ij , j ∈ Ki using rij(t), j ∈ Ki;
12: Users in group k, k = ⌊Ng/K⌋K + 1, . . ., Ng

offload tasks to server
[(t− 1)%K + k − ⌊Ng/K⌋K]%(K + 1), if
unreachable, choose K ′;

13: Update r̃(n)ij , j ∈ Ki using rij(t), j ∈ Ki;
14: Initialize the indicator vector I = {Ii = 0, i ∈ N};

◃ Start Matching Phase
15: for edge server j ∈ K do
16: if edge server j ∈ Ki then
17: Each user i computes ∆r̃(n)ij similar to (18),

offloads a task and sends ∆r̃(n)ij to server j;
18: Server j performs branch-and-bound to solve (17)

with the input {∆r̃(n)ij , i ∈ N};
19: Each user i updates Ii = j if assigned to server j;
20: else
21: Each user i offloads a task to virtual server K ′;
22: Each user i updates Ii = K ′ if µiK ′ > r̃(n)iIi

or Ii = 0;
23: Set a′ = I; ◃ Assignment from matching
24: for remaining 2n time slots do
25: Each user i offloads tasks to the assigned server a′i;

◃ Exploitation Phase

on branch-and-bound method, that is offloading tasks to servers
according to the results in Lines 18-19. Otherwise they will
process the tasks themselves, but the indicator I will not be
renewed (Lines 20-21). After offloading tasks to all servers K,
users finally determine the assignments by comparing with their
local execution (Line 22). If every estimated reward r̃(n)ij closely
approaches the expected reward µij , the obtained a′ will be a
2-approximate assignment. Also, the matching phase lasts for
(K + 1) time slots corresponding to (K + 1) (virtual) servers.
Each user hasO(1) computation to obtain∆r̃(n)ij and each server
incurs O(NCj) to run branch-and-bound, then total computa-
tion isO((T1 +NCjK) log2T )due to at mostO(log2T ) epochs.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 03,2024 at 04:29:02 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: ONLINE LEARNING AIDED DECENTRALIZED MULTI-USER TASK OFFLOADING FOR MOBILE EDGE COMPUTING 3337

Finally, users will exploit the assignment a′ for 2n time slots,
while other dominated exploitation length enables the same
effect.

C. Performance Analysis of H-DEBO

Now we analyze the regret R̃(T ) in (7). Mark reachable server
intersection as Ki,i′ = Ki ∩Ki′ . Let δ(1)min = mini,i′∈N ,i̸=i′

minj∈Ki,i′ ∪{K ′},k∈Ki′ ∪{K ′},j ̸=k |µij − (µi′j − µi′k)|, δ(2)min =
mini,i′∈N ,i̸=i′ minj∈Ki,i′ ∪{K ′},j′∈Ki∪{K ′}, k∈Ki′ ∪{K ′},j ̸=j′,j ̸=k

|(µij−µij′)−(µi′j − µi′k)|, δmin = mini∈N minj,j′∈Ki∪{K ′},j ̸=j′

{|µij−µij′ |}. Denote δ′min=min{δ(1)min, δ
(2)
min, δmin}, Mmax=

maxj∈K{Cj}
mini∈N {ci} and Kmin = mini∈N{Ki}. The following theorem

states the regret with its proof being presented in Appendix F,
available online.

Theorem 5: Let T1 =
⌈

25M
2
max(r−r)2

2(δ′
min

)2
K

⌉
or T1 =

⌈
25M

2
max(r−r)2 K

2(δ′
min

)2Kmin

⌉
with edge information sharing if Ng ≤ K,

and T1 =
⌈

25M
2
max(r−r)2

2(δ′
min

)2
(K+N)

⌉
or T1 =

⌈
25M

2
max(r−r)2(K+N)

2(δ′
min

)2Kmin

⌉

with edge information sharing if Ng > K. The regret R̃(T ) of
H-DEBO is upper bounded by

R̃(T ) ≤
[
T1

Nr

2
+ (K + 1)

Nr

2

]
log2(T + 2) + 4N2Kmaxr

= O(log2T ).
(19)

Remark: All extensions in Section IV can be applied to H-
DEBO, which are omitted due to page limit. Akin to DEBO, we
could adjust δ′min to a larger value in practice to prevent too large
T1. Besides, the accumulated rewards may exceed T

2

∑N
i=1 µia∗

i

which is in fact a theoretically lower bound.

VI. PERFORMANCE EVALUATION

In this section, we show the evaluated results of proposed
decentralized offloading schemes and baseline methods.

A. Evaluation Setup

1) Parameter Setting: Consider the MEC system (divided
into cells) is composed of K = 3 to K = 5 edge servers and
N = 8 to N = 12 mobile users. In line with the real measure-
ments [13], task size bi is distributed in [500,1600] KB with
required CPU cycles per bit being γi = 1000. Server processing
speed fj is in [4,8] GHz, and cellular transmission rate sj is set in
[9,11] Mbps according to the typical 4 G uplink speed [28]. The
CPU speeds of mobile devices are in [1,2] GHz. Server capacity
for maximum task service Mj is an integer in [1,4], while for
endowed computing resource Cj is randomly in [2,2.5] with
user resource requirement ci ∈ [0.5, 1]. The reward preference
function of (3) is µij = vi − ρidij with task value vi ∈ [3, 3.5]
and ρi ∈ [0.2, 0.5]. The random reward observation rij(t) ∈
[µij − 0.3, µij + 0.3], and also let r = 0.3, r = 3.8 accordingly.
The total number of time slots is T = 6× 106.

2) Benchmark Algorithms: To show the effectiveness of our
proposed DEBO, its extensions and H-DEBO, we introduce the
following algorithms as benchmarks for comparison.

Fig. 2. Influence of information sharing on rewards.

! DM-Non0: decentralized multi-user MAB with non-zero
rewards [31]. To the best of our knowledge, this is the only
work that studies non-collision model, where the reward of
any individual user also depends on the user number play-
ing the same arm. As original DM-Non0 mainly applies to
the case where any user can get access to all arms (all edge
servers), we adapt it to our problem that each user can only
pull partial arms (reachable servers).! M-UCB: upper confidence bound (UCB) which pulls arm
with the highest confidence bound of the average re-
ward [29]. Considering there are multiple users, suppose
that they independently execute UCB for task offloading,
namely M-UCB.! M-EXP3: exponential-weight algorithm for exploration
and exploitation (EXP3) that pulls arms following the
exponential-weight probability [30]. For our problem, mul-
tiple users locally choose edge servers based on EXP3, i.e.,
M-EXP3.

The optimal assignment a∗ to OAP is obtained through Hun-
garian algorithm [32] by splitting each server j into Mj copies,
and is utilized to compute the regret R(T ) in (5).

B. Influence of Edge Information Sharing

Information sharing among edge servers enables a better
reward exploration. For brevity, we mainly evaluate DEBO
without and with such information exchange, respectively, given
edge server K = 4 and mobile user N = 10.

Accumulated/Average Rewards: We show the accumulated
and time average rewards of DEBO in Fig. 2. The results
indicate that the edge information sharing facilitates a more
accurate estimated rewards within a shorter exploration, thereby
improving the accumulated and time average rewards. Note that
DEBO still achieves favorable performance with a time average
reward of 22.948 even without neighboring edge feedback, while
that for the sharing case is 22.983, slightly higher indeed.

Accumulated/Average Regret and Ratio: Also, we exhibit the
accumulated/average regrets when information sharing exists or
not in Fig. 3(a) and (b). Consistent with the reward observation,
DEBO with edge information exchange yields lower regrets than
the non-sharing case. We then display the ratio between time
average rewards and the optimal result in Fig. 3(c), where both
cases attain a near to optimal result.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 03,2024 at 04:29:02 UTC from IEEE Xplore.  Restrictions apply. 



3338 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 4, APRIL 2024

Fig. 3. Offloading regret and reward ratio over time with and w/o sharing.

Fig. 4. Offloading rewards over time.

To avoid redundancy, we next evaluate the performance of
DEBO, its extensions and baseline methods mainly considering
the case without edge information sharing.

C. Evaluation Results Over Time

We carry out the evaluations given K = 4 and N = 10. In
particular, we simulate both proportional fairness (α = 1) and
the fairness case with α = 0.5, where the legend of the former
is F-DEBO and that of the latter is α-DEBO, respectively. Later
regret results of F-DEBO and α-DEBO are computed by using
the fairness regret metric Rf (T ).

Accumulated/Average Rewards: The accumulated and time
average rewards of our proposed and baseline algorithms are
shown in Fig. 4. One can see that our algorithms outperform
the benchmarks as we can always achieve higher accumulated
and time average rewards. Particularly, DEBO yields the highest
rewards since more information is assumed known in advance,
meanwhile U-DEBO, F-DEBO and α-DEBO also have satis-
factory performances with comparable rewards to DEBO. As
for D-DEBO, we consider that a user will enter or leave the
MEC system with a certain probability at the beginning of each
epoch. D-DEBO leads to slightly lower rewards mainly because
dynamic user leaving will cause a reduction in the compound
reward

∑N(n)

i=1 µiai . The average rewards of DEBO and its exten-
sions will stabilize over time, and approach the optimal results,
respectively. Moreover, H-DEBO actually attains favorable out-
come with large accumulated and average rewards. DM-Non0
has lower rewards since it is originally designed for the case
where all servers can be reached. The baseline method M-UCB
has inferior performance to our proposed decentralized schemes

due to the lack of coordination among users. M-EXP3 yields the
lowest rewards owing to stochastic task offloading. Therefore,
strawman extension of single-user UCB and EXP3 to multi-user
scenarios is insufficient to obtain satisfactory performances.

Accumulated/Average Regret and Ratio: The accumulated
and time average regrets are shown in Fig. 5(a) and (b), where
H-DEBO is excluded as we can not derive the optimal assign-
ment to H-OAP. Note that our proposed algorithms give rise
to orderly lower regrets than the benchmarks. The regrets of
DEBO, U-DEBO, F-DEBO and α-DEBO are negligibly small.
Also, the regret of D-DEBO is very low, which is because the
optimal assignment will be changing when we have dynamic
user entering or leaving. The reward ratios of all algorithms
are displayed in Fig. 5(c), which indicate that the ratios of
DEBO and its extensions will converge to steady values close
to 1, namely their regrets are sub-linear in terms of the total
time horizon T . As for DM-Non0, M-UCB and M-EXP3, there
exist performance gaps between their ratios and 1. Though the
setting of D-DEBO is different from other algorithms due to
the dynamic environment, here we show its results together
with others’ not for comparison but mainly to demonstrate its
sub-linear regrets and save space.

D. Evaluation Results Over User Number

Varying the number of usersN from 8 to 12 while keeping the
server number K = 4 unchanged, we obtain the time average
rewards and regret in each case.

Rewards, Regret and Ratio: The time average rewards, regret
and reward ratio over user number N are shown in Figs. 6, 7,
and 8, respectively. With the increase of N , the rewards of all
algorithms will tend to increase. Besides, our proposed DEBO,
U-DEBO, F-DEBO, α-DEBO and H-DEBO always achieve
better performances than baseline methods DM-Non0, M-UCB
and M-EXP3 pertaining to the rewards, regret and reward
ratio.

Fairness Demonstration: F-DEBO and α-DEBO are pro-
posed to ensure a more equitable reward distribution among
users by introducing the α-fairness. Previously, we have already
shown that they have comparable rewards to DEBO. Fig. 9
further displays their maximum gaps of users’ time average
rewards. We can observe that the gap (fairness) is significantly
reduced (enhanced) owing to the fairness consideration. In

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 03,2024 at 04:29:02 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: ONLINE LEARNING AIDED DECENTRALIZED MULTI-USER TASK OFFLOADING FOR MOBILE EDGE COMPUTING 3339

Fig. 5. Offloading regret and reward ratio over time.

Fig. 6. Rewards versus N .

Fig. 7. Regret versus N .

Fig. 8. Reward ratio versus N .

Fig. 9. Reward gap versus N .

Fig. 10. Rewards versus K.

Fig. 11. Regret versus K.

particular, F-DEBO (α-DEBO) accomplishes 56.54% (58.52%)
fairness improvement with only sacrificing 0.49% (0.97%) com-
pound reward on average.

E. Evaluation Results Over Server Number

We last explore the influence of the server number by varying
K from 3 to 5 given fixed user number N = 10.

Rewards, Regret and Ratio: Similarly, we exhibit the time
average rewards, regret and reward ratio in Figs. 10–12, re-
spectively. When K becomes large, rewards of all methods
will increase accordingly, while our proposed DEBO, U-DEBO,
F-DEBO, α-DEBO and H-DEBO consistently attain better per-
formance than benchmarks in terms of the rewards, regret and
ratio. Surprisingly, M-UCB also achieves near-optimal result
when K = 5. This is because users rarely encounter any colli-
sions when total server capacity is adequate, i.e., the multi-user
offloading indeed degenerates to single-user task placement. In

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 03,2024 at 04:29:02 UTC from IEEE Xplore.  Restrictions apply. 



3340 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 4, APRIL 2024

Fig. 12. Reward ratio versus K.

Fig. 13. Reward gap versus K.

Fig. 14. Running time.

contrast, DM-Non0 and M-EXP3 still perform poor with low
rewards and high regrets.

Fairness Demonstration: According to Fig. 13, F-DEBO and
α-DEBO still enhance the fairness of server resource allocation
to mobile users. More concretely, F-DEBO (α-DEBO) achieves
51.75% (50.39%) fairness increase with merely 1.51% (1.37%)
rewards reduction.

F. Extended Results

Lastly, we extend previous results to further involve compu-
tational complexity, task delay, and larger network scale.

Computation and Delay: As aforementioned, we have theo-
retically illustrated that the computational complexity of DEBO
and H-DEBO is low indeed. To verify this, we display their
running time when N = 10,K = 4 using an Intel i7-11 Win-
dows machine. From Fig. 14, we observe that the accumulated
running time is sub-linear over T , which is several or tens of
seconds, respectively. Moreover, we show the time average task
delay of our proposed and baseline methods in Fig. 15. Even we
aim to optimize the accumulated rewards, we can see that our
algorithms still have lower task delay than benchmarks. Note that
DM-Non0 has smaller delay at the beginning mainly because

Fig. 15. Task delay.

Fig. 16. Results of large-scale MEC.

there is a long period of group offloading without violating any
server capacity.

Large MEC Network: We finally validate the scalability of
our offloading schemes to a larger MEC network. Specifically,
we show the time average rewards and regret in Fig. 16 when
the user number N = 20 and server number K = 8. We can
see that DEBO, U-DEBO, F-DEBO, α-DEBO and H-DEBO
also perform better than benchmarks, especially pertaining to
the regret. Though M-UCB has relatively high rewards, it is still
sub-optimal as its regret is large. Overall, our algorithms can be
extended to a larger MEC network.

VII. RELATED WORK

In this article, we study the decentralized task offloading in a
dynamic MEC system with unknown system-side information.
Let us briefly survey the related works.

MEC Task Offloading: Emerging MEC enables users to of-
fload their computation-intensive tasks to local edge servers [1].
Chen et al. propose a response updating method to make the
offloading decision given the full system-side information [9].
Considering system uncertainty, Ouyang et al. explore the user-
managed service placement by formulating task offloading as a
contextual MAB problem, which mainly focuses on the single-
user case [8]. Following this line, Zhang et al. study central-
ized task offloading under undisclosed task reward and limited
server capacity, while they allow a certain degree of capacity
violation [33]. Mitsis et al. explore the task offloading for users
and service pricing for edge servers, where each edge server em-
ploys reinforcement learning, especially the UCB policy, to at-
tain the optimal service price [34]. Wu et al. propose a multi-user
MAB method to solve the task offloading problem in a two-tier
edge computing system, including mobile users, edge servers
and core cloud. However, they do not consider limited server

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 03,2024 at 04:29:02 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: ONLINE LEARNING AIDED DECENTRALIZED MULTI-USER TASK OFFLOADING FOR MOBILE EDGE COMPUTING 3341

capacity since edge servers can further offload computation to
the cloud [35]. To improve the offloading efficiency in the edge
computing, a delay-optimal cooperative mobile edge caching
scheme is proposed to enhance the MEC service quality with low
complexity [36]. Similarly, authors in [37] consider the service
caching and propose a novel service-oriented network slicing ap-
proach to efficiently manage the multi-dimensional network re-
source. So far, decentralized multi-user task offloading with lim-
ited computing capacity and bandit feedbacks still remains open.

Decentralized Multi-User MAB: MAB is a representative
model for the sequential decision making, where a decentral-
ized framework is developed in [17] for communication based
multi-user MAB. Bistritz et al. first characterize a fully decen-
tralized bandit policy with heterogeneous rewards based on the
theory of unperturbed chain [10]. Later works further apply this
framework to the wireless channel allocation [11]. However,
these existing researches are built on the collision-based reward
model, which actually allows an indirect communication signal
for decentralized coordination. To the best of our knowledge,
only [31] exploits non-zero rewards even collision occurs, but
the reward depends on the user number making the same action
as long as the number is under a uniform predefined value for
all arms.

Fairness in MAB: Fairness issue in online learning has at-
tracted a surge of interests. Nevertheless, previous works mainly
study arm fairness in single-user scenarios where the selection
probability of each arm is to be higher than a predefined pro-
portion [38], or multi-user reward fairness through centralized
decision making [18]. A collision based multi-user reward fair-
ness is also explored in [22].

VIII. CONCLUSION

In this article, we study a fully decentralized task offloading
for a dynamic MEC system with the unknown system-side
information and overlapping server coverage. We divide the
time horizon into epochs and propose DEBO considering both
cases without and with edge information sharing. For both
cases, DEBO can ensure an O(log2T ) regret of the dynamic
task offloading in a decentralized manner. On this basis, we
also extend DEBO to handle situations such as the unknown
reward gap, dynamic user entering or leaving, and fair reward
distribution, where sub-linear regrets are obtained for all exten-
sions. Incorporating users’ heterogeneous resource requests, we
further develop H-DEBO which achieves an O(log2T ) regret
and satisfactory offloading rewards. Extensive evaluations show
the superiority of our proposed algorithms compared to existing
benchmarks.

REFERENCES

[1] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30–39, 2017.

[2] R. Kelly, “Internet of Things data to top 1.6 Zettabytes by 2020,” Campus
Technol., vol. 9, pp. 1536–1233, 2016.

[3] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637–646,
Oct. 2016.

[4] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795–2808, Oct. 2016.

[5] Y. Li, H. C. Ng, L. Zhang, and B. Li, “Online cooperative resource
allocation at the edge: A privacy-preserving approach,” in Proc. IEEE
28th Int. Conf. Netw. Protoc., 2021, pp. 1–11.

[6] S. Sundar and B. Liang, “Offloading dependent tasks with communication
delay and deadline constraint,” in Proc. IEEE Conf. Comput. Commun.,
2018, pp. 37–45.

[7] Y. Sun, S. Zhou, and J. Xu, “EMM: Energy-aware mobility management
for mobile edge computing in ultra dense networks,” IEEE J. Sel. Areas
Commun., vol. 35, no. 1, pp. 2637–2646, Nov. 2017.

[8] T. Ouyang, R. Li, X. Chen, Z. Zhou, and X. Tang, “Adaptive user-
managed service placement for mobile edge computing: An online
learning approach,” in Proc. IEEE Conf. Comput. Commun., 2019,
pp. 1468–1476.

[9] L. Chen and J. Xu, “Task replication for vehicular cloud: Contextual
combinatorial bandit with delayed feedback,” in Proc. IEEE Conf. Comput.
Commun., 2019, pp. 748–756.

[10] I. Bistritz and A. Leshem, “Distributed multi-player bandits-a game of
thrones approach,” in Proc. 32nd Int. Conf. Neural Inf. Process. Syst.,
2018, pp. 7222–7232.

[11] S. M. Zafaruddin, I. Bistritz, A. Leshem, and D. Niyato, “Dis-
tributed learning for channel allocation over a shared spectrum,”
IEEE J. Sel. Areas Commun., vol. 37, no. 10, pp. 2337–2349,
2019.

[12] S. J. Darak and M. K. Hanawal, “Multi-player multi-armed bandits for
stable allocation in heterogeneous ad-hoc networks,” IEEE J. Sel. Areas
Commun., vol. 37, no. 10, pp. 2350–2363, Oct. 2019.

[13] J. Kwak, Y. Kim, J. Lee, and S. Chong, “DREAM: Dynamic re-
source and task allocation for energy minimization in mobile cloud
systems,” IEEE J. Sel. Areas Commun., vol. 33, no. 12, pp. 2510–2523,
Dec. 2015.

[14] Y. Jararweh, A. Doulat, O. Al-Qudah, E. Ahmed, M. Al-Ayyoub, and E.
Benkhelifa, “The future of mobile cloud computing: Integrating cloudlets
and mobile edge computing,” in Proc. 23rd Int. Conf. Telecommun., 2016,
pp. 1–5.

[15] R. Cohen, L. Katzir, and D. Raz, “An efficient approximation for the
generalized assignment problem,” Inf. Process. Lett., vol. 100, no. 4,
pp. 162–166, 2006.

[16] H. Tibrewal, S. Patchala, M. K. Hanawal, and S. J. Darak, “Distributed
learning and optimal assignment in multiplayer heterogeneous networks,”
in Proc. IEEE Conf. Comput. Commun., 2019, pp. 1693–1701.

[17] N. Nayyar, D. Kalathil, and R. Jain, “On regret-optimal learning in de-
centralized multiplayer multiarmed bandits,” IEEE Trans. Control Netw.
Syst., vol. 5, no. 1, pp. 597–606, Mar. 2018.

[18] S. Hossain, E. Micha, and N. Shah, “Fair algorithms for multi-agent multi-
armed bandits,” Adv. Neural Inf. Proc. Syst., vol. 34, pp. 24005–24017,
2021.

[19] D. P. Bertsekas and D. A. Castanon, “The auction algorithm for the
transportation problem,” Ann. Operations Res., vol. 20, no. 1, pp. 67–96,
1989.

[20] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architecture
and computation offloading,” IEEE Commun. Surveys Tut., vol. 19, no. 3,
pp. 1628–1656, Third Quarter 2017.

[21] T. Ouyang, X. Chen, Z. Zhou, R. Li, and X. Tang, ”Adaptive user-
managed service placement for mobile edge computing via contextual
multi-armed bandit learning,” IEEE Trans. Mobile Comput., vol. 22, no. 3,
pp. 1313–1326, Mar. 2023.

[22] I. Bistritz, T. Z. Baharav, A. Leshem, and N. Bambos, “My fair bandit:
Distributed learning of max-min fairness with multi-player bandits,” in
Proc. Int. Conf. Mach. Learn., 2020, pp. 930–940.

[23] O. Naparstek and A. Leshem, “Fully distributed optimal channel assign-
ment for open spectrum access,” IEEE Trans. Signal Process., vol. 62,
no. 2, pp. 283–294, Jan. 2014.

[24] H. Shi, R. V. Prasad, E. Onur, and I. G. M. M. Niemegeers, “Fairness
in wireless networks:issues, measures and challenges,” IEEE Commun.
Surveys Tut., vol. 16, no. 1, pp. 5–24, First Quarter 2014.

[25] F. Kelly, “Charging and rate control for elastic traffic,” Eur. Trans. Telecom-
mun., vol. 8, no. 1, pp. 33–37, 1997.

[26] X. Wang, R. Jia, X. Tian, and X. Gan, “Dynamic task assignment in
crowdsensing with location awareness and location diversity,” in Proc.
IEEE Conf. Comput. Commun., 2018, pp. 2420–2428.

[27] R. E. Neapolitan and K. Naimipour, Foundations of Algorithms Using C
Pseudocode. Boston, MA, USA: Jones and Bartlett, 2004.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 03,2024 at 04:29:02 UTC from IEEE Xplore.  Restrictions apply. 



3342 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 4, APRIL 2024

[28] 4G4U, “4 G speed tests,” Aug. 22, 2019, Accessed: May 19, 2023.
[Online]. Available: https://www.4g4u.org/4g-speed-tests/

[29] P. Auer, N. C. Bianchi, and P. Fischer, “Finite-time analysis of the multi-
armed bandit problem,” Mach. Learn., vol. 47, no. 2, pp. 235–256, 2002.

[30] P. Auer, N. C. Bianchi, Y. Freund, and R. E. Schapire, “The nonstochastic
multiarmed bandit problem,” SIAM J. Comput., vol. 32, no. 1, pp. 48–77,
2002.

[31] A. Magesh and V. V. Veeravalli, “Decentralized heterogeneous multi-
player multi-armed bandits with non-zero rewards on collisions,” IEEE
Trans. Inf. Theory, vol. 68, no. 4, pp. 2622–2634, 2022.

[32] H. W. Kuhn, “The hungarian method for the assignment problem,” Nav.
Res. Logistics Quart., vol. 2, no. 1/2, pp. 83–97, 1955.

[33] X. Zhang, R. Zhou, Z. Zhou, J. C. S. Lui, and Z. Li, “An online learning-
based task offloading framework for 5G small cell networks,” in Proc. 49th
Int. Conf. Parallel Process., 2020, pp. 1–11.

[34] G. Mitsis, E. E. Tsiropoulou, and S. Papavassiliou, “Price and risk aware-
ness for data offloading decision-making in edge computing systems,”
IEEE Syst. J., vol. 16, no. 4, pp. 6546–6557, Dec. 2022.

[35] B. Wu, T. Chen, and X. Wang, “Multi-agent multi-armed bandit learning
for online management of edge-assisted computing,” IEEE Trans. Com-
mun., vol. 69, no. 12, pp. 8188–8199, Dec. 2021.

[36] S. Zhang, P. He, K. Suto, P. Yang, L. Zhao, and X. Shen, “Cooperative edge
caching in user-centric clustered mobile networks,” IEEE Trans. Mobile
Comput., vol. 17, no. 8, pp. 1791–1805, Aug. 2018.

[37] S. Zhang, W. Quan, J. Li, W. Shi, P. Yang, and X. Shen, “Air-ground
integrated vehicular network slicing with content pushing and caching,”
IEEE J. Sel. Areas Commun., vol. 36, no. 9, pp. 2114–2127, Sep. 2018.

[38] F. Li, J. Liu, and B. Ji, “Combinatorial sleeping bandits with fair-
ness constraints,” in Proc. IEEE Conf. Comput. Commun., 2019,
pp. 1702–1710.

[39] T. L. Lai and H. Robbins, “Asymptotically efficient adaptive allocation
rules,” Adv. Appl. Math., vol. 6, no. 1, pp. 4–22, 1985.

[40] X. Wang, J. Ye, and J. C. S. Lui, “Decentralized task offloading in edge
computing: A multi-user multi-armed bandit approach,” in Proc. IEEE
Conf. Comput. Commun., 2022, pp. 1199–1208.

Xiong Wang (Member, IEEE) received the BE de-
gree in electronic information engineering from the
Huazhong University of Science and Technology,
Wuhan, China, in 2014, and the PhD degree in elec-
tronic engineering from Shanghai Jiao Tong Univer-
sity, Shanghai, China, in 2019. He was a post-doctoral
fellow with Department of Computer Science and
Engineering, The Chinese University of Hong Kong,
Hong Kong, China, from 2019 to 2021. He is currently
an associate professor in School of Computer Science
and Technology, Huazhong University of Science and

Technology, Wuhan, China. His research interests include distributed machine
learning system, federated learning, network flow control, mean field analysis,
cloud/edge computing.

Jiancheng Ye (Member, IEEE) received the BE de-
gree in network engineering from Sun Yat-sen Uni-
versity, Guangzhou, China, in 2008, the MPhil degree
in computer science and engineering from the Hong
Kong University of Science and Technology, Hong
Kong, in 2011, and the PhD degree in computer
networking from the University of Hong Kong, Hong
Kong, in 2018. He was a software engineer with Har-
monic Inc., from 2011 to 2014, and a post-doctoral
fellow with The University of Hong Kong, from 2018
to 2019. His research interests include congestion

control, queue management, optimization of computer networks, edge com-
puting, and online learning.

John C.S. Lui (Fellow, IEEE) received the PhD de-
gree in computer science from the University of Cal-
ifornia, Los Angeles. He is currently the Choh-Ming
Li chair professor with the Department of Computer
Science and Engineering, The Chinese University of
Hong Kong. His current research interests include
machine learning, online learning (e.g., multi-armed
bandit, reinforcement learning), network science, fu-
ture internet architectures and protocols, network eco-
nomics, network/system security, large scale storage
systems. He is an elected member of the IFIP WG 7.3,

Fellow of ACM, Senior Research Fellow of the Croucher Foundation and was
the past chair of the ACM SIGMETRICS (2011-2015). He received various
departmental teaching awards and the CUHK Vice-Chancellor’s Exemplary
Teaching Award. John is a co-recipient of the best paper award in the IFIP WG
7.3 Performance 2005, IEEE/IFIP NOMS 2006, SIMPLEX 2013, and ACM
RecSys 2017.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 03,2024 at 04:29:02 UTC from IEEE Xplore.  Restrictions apply. 


