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Abstract
We study contextual combinatorial bandits with
probabilistically triggered arms (C2MAB-T) un-
der a variety of smoothness conditions that cap-
ture a wide range of applications, such as contex-
tual cascading bandits and contextual influence
maximization bandits. Under the triggering prob-
ability modulated (TPM) condition, we devise the
C2-UCB-T algorithm and propose a novel anal-
ysis that achieves an Õ(d

p
KT ) regret bound,

removing a potentially exponentially large factor
O(1/pmin), where d is the dimension of contexts,
pmin is the minimum positive probability that any
arm can be triggered, and batch-size K is the
maximum number of arms that can be triggered
per round. Under the variance modulated (VM)
or triggering probability and variance modulated
(TPVM) conditions, we propose a new variance-
adaptive algorithm VAC2-UCB and derive a re-
gret bound Õ(d

p
T ), which is independent of the

batch-size K. As a valuable by-product, our anal-
ysis technique and variance-adaptive algorithm
can be applied to the CMAB-T and C2MAB set-
ting, improving existing results there as well. We
also include experiments that demonstrate the im-
proved performance of our algorithms compared
with benchmark algorithms on synthetic and real-
world datasets.

1. Introduction
The stochastic multi-armed bandit (MAB) problem is a
classical sequential decision-making problem that has been
widely studied (Robbins, 1952; Auer et al., 2002; Bubeck
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et al., 2012). As an extension of MAB, combinatorial multi-
armed bandits (CMAB) have drawn attention due to fruitful
applications in online advertising, network optimization,
and healthcare systems (Gai et al., 2012; Kveton et al.,
2015a; Chen et al., 2013; 2016a; Wang & Chen, 2017;
Merlis & Mannor, 2019). CMAB is a sequential decision-
making game between a learning agent and an environment.
In each round, the agent chooses a combinatorial action that
triggers a set of base arms (i.e., a super-arm) to be pulled
simultaneously, and the outcomes of these pulled base arms
are observed as feedback (typically known as semi-bandit
feedback). The goal of the agent is to minimize the ex-
pected regret, which is the difference in expectation for the
overall rewards between always playing the best action (i.e.,
the action with the highest expected reward) and playing
according to the agent’s own policy.

Motivated by large-scale applications with a huge number
of items (base arms), there exists a prominent line of work
that advances the CMAB model: the combinatorial con-
textual bandits (or C2MAB for short) (Qin et al., 2014; Li
et al., 2016; Takemura et al., 2021). Specifically, C2MAB in-
corporates contextual information and adds the simple yet
effective linear structure assumption to allow scalability,
which provides regret bounds that are independent of the
number of base arms m. Despite C2MAB’s success in lever-
aging contextual information for better scalability, existing
works fail to formulate the general arm triggering process,
which is essential to model a wider range of applications,
e.g., cascading bandits (CB) and influence maximization
(IM), and more importantly, they do not provide satisfying
results for settings with probabilistically triggered arms. For
example, Qin et al. (2014); Takemura et al. (2021) only con-
sider the deterministic semi-bandit feedback for C2MAB.
Li et al. (2016); Wen et al. (2017) implicitly consider the
arm triggering process for specific CB or IM applications
but only gives sub-optimal results with unsatisfying factors
(e.g., 1/pmin,K that could be as large as the number of
base arms), owing to loose analysis, weak conditions, or
inefficient algorithms that explore the unknown parameters
too conservatively.

To handle the above issues, we enhance the C2MAB frame-
work by considering an arm triggering process. Specifically,
we propose the general framework of contextual combi-
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Table 1. Summary of the main results for C2MAB-T, and additional results for CMAB-T and C2MAB.
C2MAB-T Algorithm Condition Coefficient Regret Bound

C3-UCB (Li et al., 2016)⇤ 1-norm B1 O(B1d
p
KT · log T/pmin)

(Main Result 1) C2-UCB-T (Algorithm 1) 1-norm TPM B1 O(B1d
p
KT · log T )

(Main Result 2) VAC2-UCB (Algorithm 2) VM Bv
†

O(Bvd
p
T · log T/

p
pmin)

(Main Result 3) VAC2-UCB (Algorithm 2) TPVM Bv , � � 1‡ O(Bvd
p
T · log T )

CMAB-T Algorithm Condition Coefficient Regret Bound
BCUCB-T (Liu et al., 2022) TPVM Bv , � � 1 O(Bv

p
m(logK)T · log T )

(Additional Result 1) BCUCB-T (Our new analysis) TPVM Bv , � � 1 O(Bv

p
m(logK)T · (log T )1/2)⇤⇤

C2MAB Algorithm Condition Coefficient Regret Bound
C2UCB (Qin et al., 2014) 2-norm B2

§
O(B2d

p
T log T )

C2UCB (Takemura et al., 2021) 1-norm B1 O(B1d
p
KT log T )

(Additional Result 2) VAC2-UCB (Algorithm 2) VM Bv O(Bvd
p
T log T )

⇤ This work is specified for contextual combinatorial cascading bandits, without formally defining the arm triggering process.
† Generally, coefficient Bv = O(B1

p
K) and the existing regret bound is improved when Bv = o(B1

p
K)

‡
� is a coefficient in TPVM condition: when � is larger, the condition is stronger with smaller regret but can include less applications.

⇤⇤ We also show improved distribution-dependent regret bound in Appendix C; § Almost all applications satisfy B2 = ⇥(B1

p
K).

natorial bandits with probabilistically triggered arms (or
C2MAB-T for short). At the base arm level, C2MAB-T
uses a time-varying feature map �t to model the contex-
tual information at each round t, and the mean outcome of
each arm i 2 [m] is a linear product of the feature vector
�t(i) 2 Rd and an unknown vector ✓⇤ 2 Rd (where d ⌧ m

to handle large-scale applications). At the (combinatorial)
action level, inspired by the non-contextual CMAB with
probabilistically triggered arms (or CMAB-T) works (Chen
et al., 2016b; Wang & Chen, 2017; Liu et al., 2022), we
formally define an arm-triggering process to cover more
general feedback models such as semi-bandit, cascading,
and probabilistic feedback. We also inherit smoothness con-
ditions for the non-linear reward function to cover different
application scenarios, such as CB, IM, and online probabilis-
tic maximum coverage (PMC) problems (Chen et al., 2016a;
Wang & Chen, 2017). With this formulation, C2MAB-T re-
tains C2MAB’s scalability while also enjoying CMAB-T’s
rich reward functions and general feedback models.

Contributions. Our main results are shown in Table 1.

First, we study C2MAB-T under the triggering probability
modulated (TPM) smoothness condition, a condition intro-
duced by Wang & Chen (2017) to remove a factor of 1/pmin

in the pioneer CMAB-T work (Chen et al., 2016a). This re-
sult follows a similar vein by devising C2-UCB-T algorithm
and proving a Õ(d

p
KT ) regret, which removes a 1/pmin

factor for prior contextual CB applications (Li et al., 2016)
(Main Result 1 in Table 1). The key technical challenge
is that the triggering group (TG) analysis (Wang & Chen,
2017) for CMAB-T cannot handle the triggering probability
determined by time-varying contexts. To tackle this issue,
we devise a new technique, called the triggering probability
equivalence (TPE), which links the triggering probabilities
with the random triggering event under expectation. In this

way, we no longer need to bound the regret caused by possi-
bly triggered arms, but only need to bound the regret caused
by actually triggered arms. As a result, we can then directly
apply the simple non-triggering C2MAB analysis to obtain
the regret bound for C2MAB-T. In addition, our TPE can
reproduce the results for CMAB-T in a similar way.

Second, we study the C2MAB-T under the variance mod-
ulated (VM) smoothness condition (Liu et al., 2022), in
light of the recent variance-adaptive algorithms to remove
the batch size dependence O(

p
K) for CMAB-T (Merlis

& Mannor, 2019; Liu et al., 2022; Vial et al., 2022). We
propose a new variance-adaptive algorithm VAC2-UCB and
prove a batch-size independent regret Õ(d

p
T/pmin) under

VM condition (Main Result 2 in Table 1). The main techni-
cal difficulty is to deal with the unknown variance. Inspired
by Lattimore et al. (2015), we use the UCB/LCB value to
construct an optimistic variance and on top of that, we prove
a new concentration bound to incorporate the triggered arms
and optimistic variance to get the desirable results.

Third, we investigate the stronger triggering probability and
variance modulated (TPVM) condition (Liu et al., 2022) in
order to remove the additional 1/ppmin factor. The key
challenge is that we cannot directly use TPE to link the
true triggering probability with the random trigger event as
before, since the TPVM condition only yields a mismatched
triggering probability associated with the optimistic vari-
ance used in the algorithm. Our solution is to bound this
additional mismatch by lower-order terms based on mild
conditions on the triggering probability, which achieves the
Õ(d

p
T ) regret bounds (Main Result 3 in Table 1).

As a valuable by-product, our TPE analysis and VAC2-UCB
algorithm can be applied to non-contextual CMAB-T and
C2MAB, improving the existing results by a factor

p
log T

(Additional Result 1 in Table 1) and
p
K (Additional Result
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2 in Table 1), respectively. Our empirical results on both
synthetic and real data demonstrate that the VAC2-UCB
algorithm outperforms the state-of-art variance-agnostic and
variance-aware bandit algorithms in the linear cascading
bandit application that satisfies the TPVM condition.

Related Work. The stochastic CMAB model has received
significant attention. The literature was initiated by (Gai
et al., 2012). Since, its regret has been improved by Kveton
et al. (2015b), Combes et al. (2015), Chen et al. (2016a).
There exist two prominent lines of work in the literature
related to our study: contextual CMAB and CMAB with
probabilistically triggered arms (C2MAB and CMAB-T).

For C2MAB works, Qin et al. (2014) is the first study,
which proposes C2UCB algorithm that considers reward
functions under 2-norm B2 smoothness condition. Then
Takemura et al. (2021) replaces the 2-norm smoothness con-
dition with a new 1-norm B1 smoothness condition, and
proves a O(B1d

p
KT log T ) regret bound. In this work,

we extend the C2MAB with triggering arms to cover more
application scenarios (e.g., contextual CB and contextual
IM). Moreover, we further consider the stronger VM con-
dition and propose a new variance-adaptive algorithm that
can achieve a

p
K factor improvement in the regret upper

bound for applications like PMC.

For CMAB-T works, Chen et al. (2016a) is the first work
that considers the arm triggering process to cover CB and IM
applications. The authors propose the CUCB algorithm, and
give an O(B1

p
mKT log T/pmin) regret bound under 1-

norm B1 smoothness condition. Then Wang & Chen (2017)
proposes the stronger 1-norm triggering probability modu-
lated (TPM) B1 smoothness condition, and use the trigger-
ing group (TG) analysis to remove a 1/pmin factor in the
previous regret. Recently, Liu et al. (2022) incorporates the
variance information, and proposes the variance-adaptive
algorithm BCUCB-T, which also uses the TG analysis and
further reduces the regret’s dependency on batch-size from
O(K) to O(logK) under the new variance and triggering
probability modulated (TPVM) condition. The smoothness
conditions considered in this work are mostly inspired by
the above works, but directly following their algorithm and
TG analysis fail to obtain any meaningful result for our
C2MAB-T setting. Conversely, our new TPE analysis can
be applied to CMAB-T, reproducing CMAB-T’s result un-
der the 1-norm TPM condition, and improving a factor of
(
p
log T ) under the TPVM condition.

There are also many studies considering specific appli-
cations under the C2MAB-T framework (by unifying
C2MAB and CMAB-T), including contextual CB (Li et al.,
2016; Vial et al., 2022), contextual IM (Wen et al., 2017), etc.
One can see that these applications fit into our framework
by verifying that they satisfy the TPM, VM, or TPVM con-
ditions; thus achieving improved results regarding K, pmin

factors. We defer a detailed theoretical and empirical com-
parison to Sections 3 to 5. Zuo et al. (2022) study the online
competitive IM and also uses C2MAB-T to denote their
contextual setting. However, their meaning of “contexts” is
the action of the competitor, which acts at the action level
and only affects the reward function (or regret) but not the
base arms’ estimation. This is very different from our set-
ting, where contexts act at the base arm level and hence one
cannot directly apply their results.

2. Problem Setting
We study contextual combinatorial bandits with probabilis-
tically triggered arms (C2MAB-T). We use [n] to represent
set {1, ..., n}. We use boldface lowercase letters and bold-
face CAPITALIZED letters for column vectors and matrices,
respectively. kxkp denotes the `p norm of vector x. For
any symmetric positive semi-definite (PSD) matrix M (i.e.,
x>Mx � 0, 8x), kxkM =

p

x>Mx denotes the matrix
norm of x regarding matrix M .

We specify a C2MAB-T problem instance using a tuple
([m],S,�,⇥, Dtrig, R), where [m] = {1, 2, ...,m} is the
set of base arms (or arms); S is the set of eligible actions
where S 2 S is an action;* � is the set of possible feature
maps where any feature map � 2 � is a function [m] ! Rd

that maps an arm to a d-dimensional feature vector (and
w.l.o.g. we normalize k�(i)k2  1); ⇥ ✓ R

d is the param-
eter space; Dtrig is the probabilistic triggering function to
characterize the arm triggering process (and feedback), and
R is the reward function.

In C2MAB-T, a learning game is played between a learn-
ing agent (or player) and the unknown environment in a
sequential manner. Before the game starts, the environ-
ment chooses a parameter ✓⇤

2 ⇥ unknown to the agent
(and w.l.o.g. we also assume k✓

⇤
k2  1). At the begin-

ning of round t, the environment reveals feature vectors
(�t(1), ...,�t(m)) for each arm, where �t 2 � is the fea-
ture map known to the agent. Given �t, the agent selects
an action St 2 S, and the environment draws Bernoulli
outcomes Xt = (Xt,1, ...Xt,m) 2 {0, 1}m for base arms†,
with mean E[Xt,i|Ht] = h✓⇤

,�t(i)i for each base arm
i. Here Ht denotes the history before the agent chooses
St and will be specified shortly after. Note that the out-
come Xt is assumed to be conditional independent across
arms given history Ht, similar to previous works (Qin et al.,
2014; Li et al., 2016; Vial et al., 2022). For convenience,
we use µt , (h✓⇤

,�t(i)i)i2[m] to denote the mean vector
and M , {h✓,�(i)ii2[m] : � 2 �,✓ 2 ⇥} to denote all
possible mean vectors generated by � and ⇥.

*S is a general action space. When S is a collection of subsets
of [m], we often refer to S 2 S as a super arm.

†We assume Xt,i are Bernoulli for the ease of exposition, yet
our setting can handle any distribution with bounded Xt,i 2 [0, 1].
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After the action St is played on the outcome Xt, base
arms in a random set ⌧t ⇠ Dtrig(St,Xt) are triggered,
meaning that the outcomes of arms in ⌧t, i.e. (Xt,i)i2⌧t

are revealed as the feedback to the agent, and are in-
volved in determining the reward of action St. At the end
of round t, the agent will receive a non-negative reward
R(St,Xt, ⌧t), determined by St,Xt and ⌧t, and similar
to (Wang & Chen, 2017), the expected reward is assumed
to be r(St;µt) , E[R(St,Xt, ⌧t)], a function of the un-
known mean vector µt, where the expectation is taken
over the randomness of Xt and ⌧t ⇠ Dtrig(St,Xt). To
this end, we can give the formal definition of the history
Ht = (�s, Ss, ⌧s, (Xs,i)i2⌧s)s<t

S
�t, which contains all

information before round t, as well as the contextual infor-
mation �t at round t.

The goal of CMAB-T is to accumulate as much reward as
possible over T rounds by learning the underlying param-
eter ✓⇤. The performance of an online learning algorithm
A is measured by its regret, defined as the difference of
the expected cumulative reward between always playing
the best action S

⇤
t , argmaxS2S r(S;µt) in each round t

and playing actions chosen by algorithm A. For many re-
ward functions, it is NP-hard to compute the exact S⇤

t even
when µt is known, so similar to (Wang & Chen, 2017), we
assume that the algorithm A has access to an offline (↵,�)-
approximation oracle, which for mean vector µ outputs an
action S such that Pr [r(S;µ) � ↵ · r(S⇤;µ)] � �. The
T -round (↵,�)-approximate regret is defined as

Reg(T ) = E
hPT

t=1 (↵� · r(S⇤
t ;µt)� r(St;µt))

i
, (1)

where the expectation is taken over the randomness of out-
comes X1, ...,XT , the triggered sets ⌧1, ..., ⌧T , as well as
the randomness of algorithm A itself.

Remark 1 (Difference with CMAB-T). C2MAB-T strictly
generalizes CMAB-T by allowing a probably time-varying
feature map �t. Specifically, let ✓⇤ = (µ1, ..., µm) and fix
�t(i) = ei where ei 2 Rm is the one-hot vector with 1 at
the i-th entry and 0 elsewhere, one can easily reproduce the
CMAB-T setting in (Wang & Chen, 2017).

Remark 2 (Difference with C2MAB). C2MAB-T en-
hances the modeling power of prior C2MAB (Qin et al.,
2014; Takemura et al., 2021) by capturing the probabilistic
nature of the feedback (v.s. the deterministic semi-bandit
feedback). This enables a wider range of applications such
as combinatorial CB, multi-layered network exploration,
and online IM (Wang & Chen, 2017; Liu et al., 2022).

2.1. Key Quantities and Conditions

In the C2MAB-T model, there are several quantities and
assumptions that are crucial to the subsequent study. We
define triggering probability p

µ,Dtrig,S
i as the probability that

base arm i is triggered when the action is S, the mean vec-
tor is µ, and the probabilistic triggering function is Dtrig.
Since Dtrig is always fixed in a given application context,
we ignore it in the notation for simplicity, and use p

µ,S
i

henceforth. Triggering probabilities pµ,S
i ’s are crucial for

the triggering probability modulated bounded smoothness
conditions to be defined below. We define S̃ to be the set
of arms that can be triggered by S, i.e.,{i 2 [m] : pµ,S

i >

0, for any µ 2 M}, the batch size K as the maximum num-
ber of arms that can be triggered, i.e., K = maxS2S |S̃|,
and pmin = mini2[m],µ2M,S2S,pµ,S

i >0 p
µ,S
i .

Owing to the nonlinearity and the combinatorial structure
of the reward, it is essential to give some conditions for the
reward function in order to achieve any meaningful regret
bounds (Chen et al., 2013; 2016a; Wang & Chen, 2017;
Merlis & Mannor, 2019; Liu et al., 2022). For C2MAB-T,
we consider the following conditions.

Condition 1 (Monotonicity). We say that a C
2
MAB-T prob-

lem instance satisfies monotonicity condition, if for any ac-

tion S 2 S, any mean vectors µ,µ0
2 [0, 1]m such that

µi  µ
0
i for all i 2 [m], we have r(S;µ)  r(S;µ0).

Condition 2 (1-norm TPM Bounded Smoothness, (Wang
& Chen, 2017)). We say that a C

2
MAB-T problem instance

satisfies the triggering probability modulated (TPM) B1-

bounded smoothness condition, if for any action S 2 S,

any mean vectors µ,µ0
2 [0, 1]m, we have |r(S;µ0) �

r(S;µ)|  B1
P

i2[m] p
µ,S
i |µi � µ

0
i|.

Condition 3 (VM Bounded Smoothness, (Liu et al., 2022)).
We say that a C

2
MAB-T problem instance satisfies the vari-

ance modulated (VM) (Bv, B1)-bounded smoothness con-

dition, if for any action S 2 S, mean vector µ,µ0
2

(0, 1)m, for any ⇣,⌘ 2 [�1, 1]m s.t. µ0 = µ + ⇣ + ⌘,

we have |r(S;µ0) � r(S;µ)|  Bv

qP
i2S̃

⇣2
i

(1�µi)µi
+

B1
P

i2S̃ |⌘i|.

Condition 4 (TPVM Bounded Smoothness, (Liu et al.,
2022)). We say that a C

2
MAB-T problem instance sat-

isfies the triggering probability and variance modulated

(TPVM) (Bv, B1,�)-bounded smoothness condition, if for

any action S 2 S, mean vector µ,µ0
2 (0, 1)m, for

any ⇣,⌘ 2 [�1, 1]m s.t. µ0 = µ + ⇣ + ⌘, we have

|r(S;µ0) � r(S;µ)|  Bv

qP
i2[m](p

µ,S
i )�

⇣2
i

(1�µi)µi
+

B1
P

i2[m] p
µ,S
i |⌘i|.

Condition 1 indicates the reward is monotonically increasing
when the parameter µ increases. Condition 2, 3 and 4 all
bound the reward smoothness/sensitivity.

For Condition 2, the key feature is that the parameter change
in each base arm i is modulated by the triggering probabil-
ity p

µ,S
i . Intuitively, for base arm i that is unlikely to be

triggered/observed (small pµ,S
i ), Condition 2 ensures that
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a large change in µi (due to insufficient observation) only
causes a small change (multiplied by p

µ,S
i ) in reward, which

helps to save a pmin factor for non-contextual CMAB-T.

For Condition 3, intuitively if we ignore the denominator
(1�µi)µi of the leading Bv term, the reward change would
be O(Bv

p
K�) when the amount of parameter change

|µ
0
i�µi| = � for each arm i. This introduces a O(

p
K) fac-

tor reduction in the reward change and translates to a O(K)
improvement in the regret, compared with O(B1K�) re-
ward change when applying the non-triggering version of
Condition 2 (i.e., pµ,S

i = 1 if i 2 S̃ and p
µ,S
i = 0 other-

wise). However, for real applications, B1 = ⇥(B1

p
K)

which cancels the O(
p
K) improvement. To reduce Bv

coefficient, the leading Bv term is modulated by the inverse
of the variance Vi = (1�µi)µi, and thus allow applications
to achieve a Bv coefficient independent of K (or at least
Bv = o(B1

p
K), leading to significant savings in the regret

bound for applications like PMC (Liu et al., 2022). The rela-
tion between Condition 2 and 3 is generally not comparable,
but compared with Condition 2’s non-triggering counterpart
(i.e., 1-norm condition), Condition 3 is stronger.

Finally, for Condition 4, it combines both the triggering-
probability modulation from Condition 2 and the variance
modulation from Condition 3. The exponent � of pµ,S

i gives
additional flexibility to trade-off between the strength of the
condition and the regret, i.e., with a larger �, one can obtain
a smaller regret bound, while with a smaller �, the condition
is easier to satisfy to include more applications. In general,
Condition 4 is stronger than Condition 2 and Condition 3,
as the former degenerates to the other two conditions by
setting ⇣ = 0 and the fact that pµ,S

i  1 for i 2 S̃ and
p
µ,S
i = 0 otherwise, respectively. Conversely, by applying

the Cauchy-Schwartz inequality, one can verify that if a re-
ward function is TPM B1-bounded smooth, then it is TPVM
(B1

p
K/2, B1,�)-bounded smooth for any �  2 or simi-

larly VM (B1

p
K/2, B1)-bounded smooth, respectively.

In light of the above conditions that significantly advance the
non-contextual CMAB-T, the goal of subsequent sections
is to design algorithms and conduct analysis to derive the
(improved) results for the contextual setting. And later in
Section 5, we demonstrate how these conditions are applied
to applications, such as CB and online IM, to achieve both
theoretical and empirical improvements. Due to the space
limit, the detailed proofs are included in the Appendix.

3. Algorithm and Regret Analysis for
C2MAB-T under the TPM Condition

Our proposed algorithm C2-UCB-T (Algorithm 1) is a gen-
eralization of the C3-UCB algorithm originally designed for
contextual combinatorial cascading bandits (Li et al., 2016).
Our main contribution is to show an improved regret bound

Algorithm 1 C2-UCB-T: Contextual Combinatorial Upper
Confidence Bound Algorithm for C2MAB-T

1: Input: Base arms [m], dimension d, regularizer �, fail-
ure probability � = 1/T , offline oracle ORACLE.

2: Initialize: Gram matrix G1 = �I , vector b1 = 0.
3: for t = 1, ..., T do
4: ✓̂t = G�1

t bt.
5: for i 2 [m] do
6: µ̄t,i = h�t(i), ✓̂ti+ ⇢(�) k�t(i)kG�1

t
.

7: end for
8: St = ORACLE(µ̄t,1, ..., µ̄t,m).
9: Play St and observe triggering arm set ⌧t and obser-

vation set (Xt,i)i2⌧t .
10: Gt+1 = Gt +

P
i2⌧t

�t(i)�t(i)>.
11: bt+1 = bt +

P
i2⌧t

�t(i)Xt,i.
12: end for

by a factor of 1/pmin under the 1-norm TPM condition.

Recall that we define the data about the history as Ht =
(�s, Ss, ⌧s, (Xs,i)i2⌧s)s<t

S
�t. Different from the CUCB

algorithm (Wang & Chen, 2017) that directly estimates the
mean µt,i for each arm, Algorithm 1 estimates the under-
lying parameter ✓⇤ via a ridge regression problem over the
history data Ht. More specifically, we estimate ✓⇤ by solv-
ing the following `2-regularized least-square problem with
regularization parameter � > 0:

✓̂t = argmin
✓2⇥

X

s<t

X

i2⌧s

(h✓,�s(i)i �Xs,i)
2 + � k✓k22 . (2)

The closed form solution is precisely the ✓̂t

calculated in line 4, where the Gram matrix
Gt =

P
s<t

P
i2⌧s

�s(i)�s(i)> and the b-vector
bt =

P
s<t

P
i2⌧s

�s(i)Xs,i are computed in line 10 and
11. We claim that ✓̂t is a good estimator of ✓⇤ by bounding
their difference via the following lemma, which is also used
in (Qin et al., 2014; Li et al., 2016).
Proposition 1 (Theorem 2, (Abbasi-Yadkori et al., 2011)).

Let ⇢(�) =

r
log
⇣

(�+KT/d)d

�d·�2

⌘
+
p
�, then with probability

at least 1� �, for all t 2 [T ],
���✓̂t � ✓⇤

���
Gt

 ⇢(�).

Building on this, we construct an optimistic estimation of
each arm’s mean µ̄t,i in line 6, where ⇢(�) is in Proposi-
tion 1, h�t(i), ✓̂ti and ⇢(�) k�t(i)kG�1

t
are the empirical

mean and confidence interval towards the direction �t(i),
respectively. As a convention, we clip µ̄t,i into [0, 1] if
µ̄t,i > 1 or µ̄t,i < 0.

Thanks to Proposition 1, we have the following lemma for
the desired amount of the base arm level optimism,
Lemma 1. With probability at least 1� �, we have µt,i 

µ̄t,i  µt,i + 2⇢(�) k�t(i)kG�1
t

for all i 2 [m], t 2 [T ].

5
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Proof. See Appendix A.2. ⌅

After computing the UCB values µ̄t, the agent selects action
St via the offline oracle with µ̄t as input. Then base arms
in ⌧t are triggered, and the agent receives observation set
(Xt,i)i2⌧t as feedback to improve future decisions.
Theorem 1. For a C

2
MAB-T instance that satis-

fies monotonicity (Condition 1) and TPM smooth-

ness (Condition 2) with coefficient B1, C
2
-UCB-

T (Algorithm 1) with an (↵,�)-approximation ora-

cle achieves an (↵,�)-approximate regret bounded by

O

⇣
B1(

p
d log(KT/�) +

p
�)
p

KTd log(KT/�)
⌘
.

Discussion. Looking at Theorem 1, we achieve an
O(B1d

p
KT log T ) regret bound when d ⌧ K  m ⌧ T ,

which is independent of the number of arms m and the
minimum triggering probability pmin. Consider the combi-
natorial cascading bandits (Li et al., 2016) satisfying B1 = 1
(see Section 5), our result improves the Li et al. (2016) by a
factor of 1/pmin. Consider the linear reward function (Take-
mura et al., 2021) without triggering arms (i.e., pµ,S

i = 1 for
i 2 S, and 0 otherwise), one can easily verify B1 = 1 and
our regret matches the lower bound ⌦(d

p
KT ) Takemura

et al. (2021) up to logarithmic factors.

Analysis. Here we explain how to prove a regret bound that
removes the 1/pmin factor under the 1-norm TPM condition.
The main challenge is that the mean vector µt and the trig-
gering probability p

µt,S
i are dependent on time-varying con-

texts �t(i), so it is impossible to derive any meaningful con-
centration inequality or regret bound based on Tt,i, which
is the number of times that arm i is triggered, and has been
used by the triggering group (TG) technique (Wang & Chen,
2017) to remove 1/pmin. To deal with this problem, we by-
pass the quantity Tt,i and use the triggering-probability

equivalence (TPE) technique that equalizes p
µt,S
i with

Et[I{i 2 ⌧t}], which in turn replaces the expected regret
produced by all possible arms with the expected regret pro-
duced by i 2 ⌧t to avoid pmin. To sketch our proof idea, we
assume the oracle is deterministic with � = 1 (the random-
ness of the oracle and � < 1 are handled in Appendix A),
and let filtration Ft�1 be the history data Ht (defined in
Section 2). Denote Et[·] = E[· | Ft�1], the t-round regret
Et[↵ · r(S⇤

t ;µt) � r(St;µt)]Et[r(St; µ̄t) � r(St;µt)],
based on Condition 1, Lemma 1 and definition of St. Then

Et[r(St; µ̄t)� r(St;µt)]
(a)
 Et

hP
i2S̃t

B1p
µt,St
i (µ̄t,i � µt,i)

i

(b)
= E

⇥P
i2S̃t

B1E⌧t [I{i 2 ⌧t}](µ̄t,i � µt,i) | Ft�1

⇤

(c)
= Et

⇥P
i2S̃t

I{i 2 ⌧t}B1(µ̄t,i � µt,i)
⇤

(d)
= Et

⇥P
i2⌧t

B1(µ̄t,i � µt,i)
⇤
, (3)

where (a) is by Condition 2, (b) is because µ̄t,i, µt,i, St

Algorithm 2 VAC2-UCB: Variance-Adaptive Contextual
Combinatorial Upper Confidence Bound Algorithm

1: Input: Base arms [m], dimension d, regularizer �, fail-
ure probability � = 1/T , offline oracle ORACLE.

2: Initialize: Gram matrix G1 = �I , regressand b1 = 0.
3: for t = 1, ..., T do
4: ✓̂t = G�1

t bt.
5: for i 2 [m] do
6: µ̄t,i = h�t(i), ✓̂ti+ 2⇢(�) k�t(i)kG�1

t

7:
¯
µt,i = h�t(i), ✓̂ti � 2⇢(�) k�t(i)kG�1

t

8: Set the optimistic variance V̄t,i as Equation (6).
9: end for

10: St = ORACLE(µ̄t,1, ..., µ̄t,m).
11: Play St and observe triggering arm set ⌧t and obser-

vation set (Xt,i)i2⌧t .
12: Gt+1 = Gt +

P
i2⌧t

V̄
�1
t,i �t(i)�t(i)>.

13: bt+1 = bt +
P

i2⌧t
V̄

�1
t,i �t(i)Xt,i.

14: end for

are Ft�1 measurable so that the only randomness is from
triggering set ⌧t and we can substitute p

µt,St
i with event

I{i 2 ⌧t} under expectation, (c) is by absorbing the ex-
pectation over ⌧t to Et, and (d) is a change of notation.
After applying the TPE, we only need to bound the regret
produced by i 2 ⌧t. Hence

Reg(T )E
hP

t2[T ] Et

⇥P
i2⌧t

B1(µ̄t,i � µt,i)
⇤i

(a)
 E

hP
t2[T ] Et

hP
i2⌧t

2B1⇢(�) k�t(i)kG�1
t

ii

(b)
 2B1⇢(�)E

hq
KT

P
t2[T ]

P
i2⌧t

k�t(i)k
2
G�1

t

i

(c)
 O(B1d

p
KT log T ). (4)

where (a) follows from Lemma 1, (b) is by Cauchy Schwarz
inequality over both i and t, and (c) is by the ellipsoidal
potential lemma (Lemma 5) in the Appendix.
Remark 3. In addition to the general C2MAB-T setting,
the TPE technique can also replace the more involved TG
technique (Wang & Chen, 2017) for CMAB-T. Such replace-
ment can save an unnecessary union bound over the group
index, which in turn reproduce Theorem 1 of Wang & Chen
(2017) under Condition 2, and improve Theorem 1 of Liu
et al. (2022) under Condition 4 by a factor of O(

p
log T ),

see Appendix C for details.

4. Variance-Adaptive Algorithm and Analysis
for C2MAB-T under VM/TPVM Condition

In this section, we propose a new variance-adaptive al-
gorithm VAC2-UCB (Algorithm 2) to further remove the
O(

p
K) factor and achieve Õ(Bvd

p
T ) regret bound for

applications satisfying stronger VM/TPVM conditions.
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Different from Algorithm 1, VAC2-UCB leverages the
second-order statistics (i.e., variance) to speed up the learn-
ing process. To get some intuition, we first assume the
variance Vs,i = Var[Xs,i] for each base arm i at round s

is known in advance. In this case, VAC2-UCB adopts the
weighted ridge-regression to learn the parameter ✓⇤:

✓̂t = argmin
✓2⇥

X

s<t

X

i2⌧s

(h✓,�s(i)i �Xs,i)
2
/Vs,i + � k✓k22 , (5)

where the first term is “weighted” by the true variance
Vs,i. The closed-form solution of the above estima-
tor is ✓̂t = G�1

t bt where the Gram matrix Gt =P
s<t

P
i2⌧s

V
�1
s,i �s(i)�s(i)> and the b-vector bt =P

s<t

P
i2⌧s

V
�1
s,i �s(i)Xs,i, which enjoys the similar form

(but uses different weights V̄s,i) of line 12 and line 13.

The intuition of using the inverse of Vs,i to re-weight the ob-
servation is that: the smaller the variance, the more accurate
the observation (�t(i), Xt,i) is, and thus more important for
the agent to learn unknown ✓⇤. In fact, the above estimator
✓̂t is closely related to the best linear unbiased estimator
(BLUE) (Henderson, 1975). Concretely, in the literature
of linear regression, Equation (5) is the lowest variance es-
timator of ✓⇤ among all unbiased linear estimators, when
the regularization term � = 0, Vs,i are the true variance
proxy of outcomes (Xs,i)s<t,i2⌧s and the context sequence
(�s(i))s<t,i2⌧s follows the fixed design in Equation (5).

For our C2MAB-T setting, one new challenge arises since
the variance Vs,i = µs,i(1 � µs,i) is not known a pri-
ori. Inspired by (Lattimore et al., 2015; Zhou et al.,
2021), we construct an optimistic estimation V̄s,i to re-
place the true variance Vs,i in Equation (5). Indeed, we
construct V̄t,i by solving the optimal value for the prob-
lem maxµ2[

¯
µt,i,µ̄t,i] µ(1� µ), whose closed form solution

immediately follows from the equation below,

V̄t,i =

8
><

>:

(1� µ̄t,i)µ̄t,i, if µ̄t,i 
1
2

(1�
¯
µt,i)

¯
µt,i, if

¯
µt,i �

1
2

1
4 , otherwise

(6)

where µ̄t,i and
¯
µt,i are UCB and LCB values to be intro-

duced later. Notice that with high probability the true µt,i

lies within LCB and UCB values and as they are getting
more accurate, the optimistic variance Vt,i is also approach-
ing the true variance Vt,i.

To guarantee ✓̂t is a good estimator, we prove a new lemma
(similar to Proposition 1) to guarantee the concentration
bound of ✓t but in face of the unknown variance. Note that
the sentinel work Lattimore et al. (2015) proves a similar
concentration bound, the difference is that we have multiple
arms triggered in each round instead of a single arm. To
address this, we replaced the original concentration bound
with the new one below that has an extra K

4 factor in N ,

which finally results in logK factor in the confidence radius
⇢(�).

Lemma 2. Let � > 0, N = (4d2K4
T

4)d so that ⇢(�) =⇣
1 +

p
� + 4

q
log
�
6TN
� log

�
3TN
�

��⌘
. We have for all

t  T , with probability at least 1� �,

���✓̂t � ✓⇤
���
2

Gt

 ⇢(�).

Proof. See Appendix B.1. ⌅

Building on this lemma, we construct µ̄t,i as an upper bound
of µt,i in line 6, and

¯
µt,i as a lower bound of µt,i in line 7,

based on our variance-adaptive ✓̂t, Gt. Note that the dou-
bling of the radius 2⇢(�) instead of using ⇢(�) in Lemma 2
is purely for the correctness of our technical analysis. As a
convention, we clip µ̄t,i,

¯
µt,i into [0, 1] if they are above 1

or below 0.

Lemma 3. With probability at least 1� �, we have µt,i 

µ̄t,i  µt,i + 3⇢(�) k�t(i)kG�1
t

, and µt,i �
¯
µt,i � µt,i �

3⇢(�) k�t(i)kG�1
t

for all i 2 [m].

Proof. This lemma follows from the similar derivation of
Lemma 1, where we have different definitions of µ̄t,i,

¯
µt,i

and the concentration now relies on Lemma 2. ⌅

After the agent plays St, the base arms in ⌧t are triggered,
and the agent receives observation set (Xt,i)i2⌧t as feed-
back. These observations (reweighted by optimistic variance
V̄t,i) are then used to update Gt and bt for future rounds.

4.1. Results and Analysis under VM condition

We first show a regret bound for VAC2-UCB that is inde-
pendent of batch size K when the VM condition holds.

Theorem 2. For a C
2
MAB-T instance that satis-

fies monotonicity (Condition 1) and VM smooth-

ness (Condition 3) with coefficient (Bv, B1), VAC
2
-

UCB (Algorithm 2) with an (↵,�)-approximation ora-

cle achieves an (↵,�)-approximate regret bounded by

O

⇣
Bvp
pmin

(
p

d log(KT/�) +
p
�)
p

Td log(KT/�)
⌘
.

Discussion. Looking at Theorem 2, we achieve an
O(Bvd

p
T log T/

p
pmin) regret bound when d ⌧ K 

m ⌧ T . For combinatorial cascading bandits (Li et al.,
2016) with Bv = 1, our regret is independent of m,K and
improves Li et al. (2016) by a factor O(

p
K/pmin).

In addition to the general C2MAB-T setting, one can verify
that for non-triggering C2MAB, pmin = 1, and we obtain
the batch-size independent regret bound O(Bvd

p
T log T ).

Recall Bv = O(B1

p
K) for any C2MAB-T instances, so

our regret bound reproduces O(B1d
p
KT log T ), and thus

matches the similar lower bound (Takemura et al., 2021) for

7
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Table 2. Summary of the coefficients, regret bounds and improvements for various applications.
Application Condition (Bv, B1,�) Regret Improvement

Online Influence Maximization (Wen et al., 2017) TPM (�, |V |,�) O(d|V |

p
|E|T log T ) Õ(

p
|E|)

Disjunctive Combinatorial Cascading Bandits (Li et al., 2016) TPVM (1, 1, 2) O(d
p
T log T ) Õ(

p
K/pmin)

Conjunctive Combinatorial Cascading Bandits (Li et al., 2016) TPVM (1, 1, 1) O(d
p
T log T ) Õ(

p
K/rmax)

Linear Cascading Bandits (Vial et al., 2022)⇤ TPVM (1, 1, 2) O(d
p
T log T ) Õ(

p
K/d)

Multi-layered Network Exploration (Liu et al., 2021b) TPVM (
p

1.25|V |, 1, 2) O(d
p
|V |T log T ) Õ(

p
n/pmin)

Probabilistic Maximum Coverage (Chen et al., 2013)⇤⇤ VM (3
p

2|V |, 1,�) O(d
p
|V |T log T ) Õ(

p
k)

|V |, |E|, n, k, L denotes the number of target nodes, the number of edges that can be triggered by the set of seed nodes, the number of layers, the number of
seed nodes and the length of the longest directed path, respectively; K is the length of the ordered list, rmax = ↵ ·maxt2[T ],S2S r(S;µt);
⇤ A special case of disjunctive combinatorial cascading bandits. ⇤⇤ This row is for C2MAB application and the rest of rows are for C2MAB-T applications.

the linear reward functions. For the more interesting non-
linear reward function with Bv = o(B1

p
K), our regret

improves non-variance-adaptive algorithm C2UCB, whose
regret is O(B1d

p
KT log T ) (Qin et al., 2014; Takemura

et al., 2021).

Analysis. At a high level, the improvement of
p
K

comes from the VM condition and the optimistic vari-
ance, which together save the use of Cauchy-Schwarz
inequality that generates a O(

p
K) factor in the step

(b) of Equation (4). In order to leverage the variance
information, we decompose the regret into term (I) and (II),

Reg(T )  E
hPT

t=1 r(St; µ̄t)� r(St;µt)
i

 E[
PT

t=1 |r(St; µ̄t)� r(St; µ̃t)|| {z }
(I)

+ |r(St;µt)� r(St; µ̃t)|| {z }
(II)

],

(7)
where µ̃t is the vector whose i-th entry is the
maximizer that achieves optimistic variance V̄t,i,
i.e., µ̃t,i = argmaxµ2[

¯
µt,i,µ̄t,i] µ(1 � µ). Now

we show a sketched proof to bound the term
(I) and one can bound the term (II) similarly.

E
hP

t2[T ] (I)
i (a)
 BvE

hPT
t=1

qP
i2S̃t

(µ̄t,i � µ̃t,i)2/V̄t,i

i

(b)


Bvp
pmin

· E
PT

t=1

qP
i2S̃t

p
µt,St
i (µ̄t,i � µ̃t,i)2/V̄t,i

�

(c)


Bvp
pmin

·

r
TE
hPT

t=1

P
i2S̃t

p
µt,St
i (µ̄t,i � µ̃t,i)2/V̄t,i

i

(d)


Bvp
pmin

·

r
TE
hPT

t=1

P
i2⌧t

(6⇢(�) k�t(i)kG�1
t
)2/V̄t,i

i

(e)
 O(Bvd

p
T log T/

p
pmin), (8)

where (a) is by Condition 3, (b) is by the definition of
p
µt,St
i � pmin for i 2 S̃t, (c) is by Cauchy–Schwarz over t

and the Jensen’s inequality, (d) follows from the TPE and
Lemma 3, (e) follows from Lemma 6.

4.2. Results and Analysis under TPVM Condition

Next, we show that VAC2-UCB can achieve regret bounds
that remove the O(

p
K) and O(1/

p
pmin) factor for appli-

cations satisfying the stronger TPVM conditions.

We first introduce a mild condition over the triggering prob-
ability (which is similar to Condition 2) to give our regret
bounds and analysis.

Condition 5 (1-norm TPM Bounded Smoothness for
Triggering Probability). We say that a C

2
MAB-T prob-

lem instance satisfies the triggering probability modu-

lated Bp-bounded smoothness condition over the trigger-

ing probability, if for any action S 2 S, any mean vec-

tors µ,µ0
2 [0, 1]m, and any arm i 2 [m], we have

|p
µ0,S
i � p

µ,S
i |  Bp

P
j2[m] p

µ,S
j |µj � µ

0
j |.

Now we state our main theorem as follows.

Theorem 3. For a C
2
MAB-T instance, when its reward

function satisfies monotonicity (Condition 1) and TPVM

smoothness (Condition 4) with coefficient (Bv, B1,�), and

its triggering probability p
µ,S
i satisfies 1-norm TPM smooth-

ness with coefficient Bp (Condition 5), if � � 2, then VAC
2
-

UCB (Algorithm 2) with an (↵,�)-approximation oracle

achieves an (↵,�)-approximate regret bounded by

O

⇣
Bvd

p

T log T +BvBpd
p

K log T/
p
pmin

⌘
, (9)

and if � � 1, then VAC
2
-UCB (Algorithm 2) achieves an

(↵,�)-approximate regret bounded by

O

⇣
Bvd

p

T log T +Bv

p
Bp(KT )1/4(d log T )3/4/

p
pmin

⌘
.

(10)

Discussion. The leading term of Theorem 3 is
O(Bvd

p
T log T ) when d ⌧ K  m ⌧ T , which re-

moves the 1/ppmin factor compared with Theorem 2. Also,
notice that Theorem 3 relies on an additional Bp-smoothness
condition over the triggering probability. However, we claim
that this condition is mild and almost always satisfies with
Bp = B1 for applications considered in this paper (see
Appendix D).

Analysis. We use the regret decomposition of Equation (7)
to the same term (I) and (II), and leverage on TPVM condi-

8
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tion (Condition 4) to obtain:

E

2

4
X

t2[T ]

(I)

3

5
(a)
 BvE

2

4
TX

t=1

sX

i2S̃t

(pµ̃t,St
i )�(µ̄t,i � µ̃t,i)2/V̄t,i

3

5.

(11)

However, we cannot use TPE as Equation (8) because
p
µ̃t,St
i 6= p

µt,St
i in general. To handle this mismatch, we

use the fact that triggering probability usually satisfies a
smoothness condition in Condition 5, and prove that the
mismatch only affect the lower-order term as follows:

By Condition 5, (pµ̃t,St
i )� is upper bounded by (pµt,St

i +

min{1,
P

j2S̃t
Bpp

µ,St
j |µt,j � µ̃t,j |})2 when � � 2,

and the regret is bounded by the terms as shown below:

Eq. (11)  E
PT

t=1 Bv

qP
i2S̃t

3pµt,St
i (µ̄t,i � µ̃t,i)2/V̄t,i

�

| {z }
leading term

+ BvBp

p
Kp

pmin
E
hPT

t=1

P
i2S̃t

p
µt,St
i (µ̄t,i �

¯
µt,i)2/V̄t,i

i

| {z }
lower-order term

,

where the leading term is of order O(Bv

p
T log T ) by using

the same derivation of step (c)-(e) in Equation (8), and the
lower order term is bounded by O(BvBp

p
K/pmin log T )

by TPE and the weighted ellipsoidal potential lemma
(Lemma 6). For � � 1, the lower-order term becomes
Bv

p
BpK

1/4

p
pmin

E
"
PT

t=1

✓P
i2S̃t

p
µt,St
i (µ̄t,i�

¯
µt,i)

2

V̄t,i

◆3/4
#

,

which results in a larger lower-order regret term. See
Appendix B.3 for details.

5. Applications and Experiments
We now move to applications and experimental results.
We first show how our theoretical results improve various
C2MAB and C2MAB-T applications under 1-norm TPM,
TPVM and VM smoothness conditions with their corre-
sponding B1, Bv,� coefficients. Then, we provide an em-
pirical comparison in the context of the contextual cascading
bandit application.

The instantiation of our theoretical results in the context of
a variety of specific C2MAB and C2MAB-T applications
is shown in Table 2. The final column of the table details
the improvement in regret that our results yield in each
case. For detailed settings, proofs, and the discussion of the
application results, see Appendix D.

Our experimental results are summarized in Figure 1, which
details experiments on the MovieLens-1M dataset‡. Experi-
ments on other data are included in the Appendix. Figure 1
illustrates that our VAC2-UCB algorithm outperforms C3-
UCB (Li et al., 2016), the variance-agnostic cascading ban-

‡grouplens.org/datasets/movielens/1m/

(a) All genres (b) Particular genre

Figure 1. Regret results for MovieLens data.

dit algorithm, and CascadeWOFUL (Vial et al., 2022), the
state-of-the-art variance-aware cascading bandit algorithm,
eventually incurring 45% and 25% less regret. For detailed
settings, comparisons, and discussions, see Appendix E.

6. Conclusion
This paper studies contextual combinatorial bandits with
probabilistically triggered arms (C2MAB-T) under a variety
of smoothness conditions. Under the triggering probability
modulated (TPM) condition, we design the C2-UCB-T algo-
rithm and propose a novel analysis to achieve an Õ(d

p
KT )

regret bound, removing a potentially exponentially large
factor O(1/pmin). Under the variance modulated condi-
tions (VM or TPVM), we propose a new variance-adaptive
algorithm VAC2-UCB and derive a regret bound Õ(d

p
T ),

which removes the batch-size K dependence. As valu-
able by-product, we find our TPE analysis technique and
variance-adaptive algorithm can be applied to the CMAB-
T and C2MAB setting, improving existing results as well.
Experiments show that our algorithm can achieve at least
13% and 25% improvement compared with benchmark al-
gorithms on synthetic and real-world datasets, respectively.
For the future study, it would be interesting to extend our
application scenarios. One could also relax the perfectly
linear assumption by introducing model mis-specifications
or corruptions.
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Appendix
The Appendix is organized as follows. Appendix A gives the detailed proofs for theorems and lemmas in Section 3.
Appendix B provides the detailed proofs for theorems and lemmas in Section 4. Appendix C shows how the triggering
probability equivalence technique can be applied to non-contextual CMAB-T to obtain improved results. Appendix D gives
the detailed settings, results and comparisons included in Table 2. Appendix E provides detailed experimental setups and
additional results. Appendix F summarizes the concentration bounds, facts, and technical lemmas used in this paper.

A. Proofs for C2MAB-T under the TPM Condition (Section 3)
A.1. Proof of Theorem 1

We first give/recall some definitions and events. Recall that in Algorithm 1, the gram matrix, the b-vector and the estimator
are

Gt = �I +
X

s<t

X

i2⌧s

�s(i)�s(i)
> (12)

bt =
X

s<t

X

i2⌧s

�s(i)Xs,i (13)

✓̂t = G�1
t bt. (14)

Let us use Wt to denote the nice event when the oracle can output solution S with r(S;µ) � ↵ · r(S⇤;µ) where
S
⇤ = argmaxS2S r(S;µ) for any µ at round t. We use Nt to denote the nice event when the

���✓̂t � ✓⇤
���
Gt

 ⇢(�) holds

for any t 2 [T ]. Define the filtration to be Ft�1 = (S1,�1, ⌧1, (X1,i)t2⌧1 , ..., St�1,�t�1, ⌧t�1, (Xt�1,i)t2⌧t�1 , St,�t)
that takes both history data Ht and action St to handle the randomness of the oracle, and let Et[·] = E[· | Ft�1]. Now we
bound the regret under nice event Wt and Nt,

Reg(T )
(a)
= E

2

4
X

t2[T ]

Et[↵ · r(S⇤
t ;µt)� r(St;µt)]

3

5

(b)
 E

2

4
X

t2[T ]

Et[↵ · r(S⇤
t ; µ̄t)� r(St;µt)]

3

5
(c)
 E

2

4
X

t2[T ]

Et[r(St; µ̄t)� r(St;µt)]

3

5

(d)
 E

2

4
X

t2[T ]

Et

2

4
X

i2S̃t

B1p
µt,St
i (µ̄t,i � µt,i)

3

5

3

5

(e)
= E

2

4
X

t2[T ]

Et

"
X

i2⌧t

B1(µ̄t,i � µt,i)

#3

5

(f)
 E

2

4
X

t2[T ]

Et

"
X

i2⌧t

2B1⇢(�) k�t(i)kG�1
t

#3

5 (g)
= 2B1⇢(�)E

2

4
X

t2[T ]

X

i2⌧t

k�t(i)kG�1
t

3

5

(h)
 2B1⇢(�)E

2

4
s
KT

X

t2[T ]

X

i2⌧t

k�t(i)k
2
G�1

t

3

5

(i)
 O

⇣
B1(

p
2d log T +

p
�)
p

2KT log T
⌘
 O(B1d

p

KT log T ). (15)

where (a) follows from the regret definition and the tower rule, (b) is by Condition 1 and Lemma 1 saying that µt,i  µ̄t,i, (c)
is by nice event Wt and the definition of St, (d) is by Condition 2 (e) follows from by the TPE trick Lemma 4, (f) by Lemma 1,
(g) by tower rule, (h) by Cauchy Schwarz inequality, and (i) by the ellipsoidal potential lemma (Lemma 5). Similar to (Wang
& Chen, 2017) The theorem is concluded by the definition of the (↵,�)-approximate regret, and considering event ¬Wt or
¬Nt, which contributes to at most (1� �)T�max + �T�max regret.
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A.2. Important Lemmas used for proving Theorem 1

Lemma 1. With probability at least 1� �, we have µt,i  µ̄t,i  µt,i + 2⇢(�) k�t(i)kG�1
t

for all i 2 [m], t 2 [T ].

Proof. For any i 2 [m], t 2 [T ], we have
���h✓̂t,�t(i)i � h✓⇤

,�t(i)i
���

=
���h✓̂t � ✓⇤

,�t(i)i
���

(a)


���✓̂t � ✓⇤
���
Gt

· k�t(i)kG�1
t

(b)
 ⇢(�) k�t(i)kG�1

t
,

where (a) by Cauchy-Schwartz, (b) by Proposition 1. Now use the definition of µt,i = h✓⇤
,�t(i)i and µ̄t,i = h✓̂t,�t(i)i+

⇢(�) k�t(i)kG�1
t

. ⌅

Lemma 4 (Triggering Probability Equivalence (TPE)). Et

hP
i2S̃t

B1p
µt,St
i (µ̄t,i � µt,i)

i
= Et

⇥P
i2⌧t

B1(µ̄t,i � µt,i)
⇤
.

Proof. We have

Et

2

4
X

i2S̃t

B1p
µt,St
i (µ̄t,i � µt,i)

3

5

(a)
= E

2

4
X

i2S̃t

B1E⌧t [I{i 2 ⌧t}](µ̄t,i � µt,i) | Ft�1

3

5

(b)
= Et

2

4
X

i2S̃t

I{i 2 ⌧t}B1(µ̄t,i � µt,i)

3

5

(c)
= Et

"
X

i2⌧t

B1(µ̄t,i � µt,i)

#
, (16)

(a) is because µ̄t,i, µt,i, St are Ft�1-measurable so that the only randomness is from triggering set ⌧t and we can substitute
p
µt,St
i with event I{i 2 ⌧t} under expectation, (b) is by absorbing the expectation over ⌧t to Et, and (c) is a simple change

of notation. Actually, TPE can be applied whenever the quantities (other than p
D,S
i ) are Ft�1-measurable, which would be

helpful for later sections. ⌅
Lemma 5 (Ellipsoidal Potential Lemma).

PT
t=1

P
i2⌧t

k�t(i)k
2
G�1

t
 2d log(1 +KT/(�d))  2d log T when � � K.

Proof.

det(Gt+1)
(a)
= det

 
Gt +

X

i2⌧t

�t(i)�t(i)
>

!

(b)
= det(Gt) · det

 
I +

X

i2⌧t

G
�1/2
t �t(i)(G

�1/2
t �t(i))

>

!

(c)
� det(Gt) ·

 
1 +

X

i2⌧t

k�t(i)k
2
G�1

t

!

(d)
� det(�I)

tY

s=1

 
1 +

X

i2⌧s

k�s(i)k
2
G�1

s

!
, (17)
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where (a) follows from the definition, (b) follows from det(AB) = det(A) det(B) and A+B = A1/2(I+A1/2BA1/2),
(c) follows from Lemma 14, (d) follows from repeatedly applying (c).

Since k�s(i)k
2
G�1

s


k�s(i)k2

�min(Gs)
 1/�  1/K, we have

P
i2⌧s

k�s(i)k
2
G�1

s
 1. Using the fact that 2 log(1 + x) � x for

any [0, 1], we have
X

s2t

X

i2⌧s

k�s(i)k
2
G�1

s

2
tX

s=1

log

 
1 +

X

i2⌧s

k�s(i)k
2
G�1

s

!

= 2 log
tY

s=1

 
1 +

X

i2⌧s

k�s(i)k
2
G�1

s

!

(a)
 2 log

✓
det(Gt+1)

det(�I)

◆

(b)
 2 log

✓
(� +KT/d)d

�d

◆
= 2d log(1 +KT/(�d))  2d log(T ),

where the (a) follows from Equation (17), (b) follows from Lemma 15. ⌅

B. Proofs for C2MAB-T under the VM or TPVM Condition (Section 4)
B.1. Proof of Lemma 2

Our analysis is inspired by the derivation of Theorem 3 by (Lattimore et al., 2015) to bound the key ellipsoidal radius���✓⇤
� ✓̂t

���
Gt

 ⇢ for the C2MAB-T setting, where multiple arms can be triggered in each round. Before we going into the
main proof, we first introduce some notations and events as follows.

Recall that for t � 1, Xt,i is a Bernoulli random variable with mean µt,i = h✓
⇤
,�t(i)i, suppose k✓⇤

k2  1, k�t(i)k  1,
we can represent Xt,i by Xt,i = µt,i + ⌘t,i, where noise ⌘t,i 2 [�1, 1], its mean E[⌘t,i | Ft�1] = 0, and its variance
Var[⌘t,i | Ft�1] = µt,i(1 � µt,i). Also note that in Algorithm 2, the gram matrices, the b-vector and the weighted
least-square estimator are the following.

Gt = � · I +
t�1X

s=1

X

i2⌧s

V̄
�1
s,i �s(i)�s(i)

>
, (18)

bt =
t�1X

s=1

X

i2⌧s

V̄
�1
s,i �s(i)Xs,i, (19)

✓̂t = G�1
t bt, (20)

where we set G0 = �I , and optimistic variances V̄s,i are defined as in Equation (6) of Algorithm 2.

Let us define Zt =
P

s<t

P
i2⌧s

⌘s,i�t(i)/V̄s,i, and the key of this proof is to bound Zt (this quantity is often denoted as
St in the self-normalized bound (Abbasi-Yadkori et al., 2011), but St is occupied to denote actions at round t in this work).

We finally define failure events F0 ✓ F1 ✓ ... ✓ FT be a sequence of events defined by

Ft = {9s  t such that kZskGs
+

p
� � ⇢}. (21)

These failure events are crucial in the sense that ✓⇤ lies in the confidence ellipsoid
���✓⇤

� ✓̂t
���
Gt

 ⇢ (see Lemma 8 for its
proof).

Next, we can prove by induction that the probability of kZtkGt
+
p
� � ⇢ given ¬Ft�1 is very small, for t = 1, ..., T (see its

proof in Lemma 7). Based on this, we can have Pr[¬FT ] = 1�Pr[F0]�
PT

t=1 Pr
⇥
kZtkGt

+
p
� � ⇢ and ¬Ft�1

⇤
� 1��

(as ¬F0 always holds), and thus by Equation (148), Lemma 2 is proved as desired.
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B.2. Proof of Theorem 2 under VM condition

Similar to Appendix A, we first give/recall some definitions and events. Recall that in Algorithm 2, the gram matrices,
the b-vector, and the weighted least-square estimator are defined in Equation (18) The optimistic variances V̄s,i are
defined as in Equation (6) of Algorithm 2. Let us use Wt to denote the nice event when the oracle can output solution
S with r(S;µ) � ↵ · r(S⇤;µ) where S

⇤ = argmaxS2S r(S;µ) for any µ at round t. We use Nt to denote the nice
event when the

���✓̂t � ✓⇤
���
Gt

 ⇢(�) holds for any t 2 [T ] (which can be implied by ¬FT ). Define the filtration to be

Ft�1 = (S1,�1, ⌧1, (X1,i)t2⌧1 , ..., St�1,�t�1, ⌧t�1, (Xt�1,i)t2⌧t�1 , St,�t) that takes both history data Ht and action St

to handle the randomness of the oracle, and let Et[·] = E[· | Ft�1].

Let µ̃t be the vector whose i-th entry is the maximizer that achieves V̄t,i, i.e., µ̃t,i = argmaxµ2[
¯
µt,i,µ̄t,i] µ(1� µ). Now we

bound the regret under nice event Wt and N (where Nt can be implied from ¬FT by derivation in Lemma 8),

Reg(T )
(a)
= E

"
TX

t=1

↵r(S⇤
t ;µt)� r(St;µt)

#
(22)

(b)
 E

"
TX

t=1

↵r(S⇤
t ; µ̄t)� r(St;µt)

#
(23)

(c)
 E

"
TX

t=1

r(St; µ̄t)� r(St;µt)

#
(24)

(d)
 E

2

64
TX

t=1

|r(St; µ̄t)� r(St; µ̃t)|| {z }
(I)

+ |r(St;µt)� r(St; µ̃t)|| {z }
(II)

3

75 , (25)

where (a) is by definition, (b) follows from Condition 1 and Lemma 3, (c) from event W and the definition of St, (d) from
triangle inequality.

Now we show how to bound term (I),

E

2

4
X

t2[T ]

(I)

3

5
(a)
 BvE

2

64
TX

t=1

vuut
X

i2S̃t

(µ̄t,i � µ̃t,i)2

V̄t,i

3

75

(b)


Bv
p
pmin

· E

2

64
TX

t=1

vuut
X

i2S̃t

p
µt,St
i

(µ̄t,i � µ̃t,i)2

V̄t,i

3

75

(c)


Bv
p
pmin

· E

2

4

vuutT

TX

t=1

X

i2S̃t

p
µt,St
i

(µ̄t,i � µ̃t,i)2

V̄t,i

3

5

(d)


Bv
p
pmin

·

vuuutTE

2

4
TX

t=1

X

i2S̃t

p
µt,St
i

(µ̄t,i � µ̃t,i)2

V̄t,i

3

5

(e)
=

Bv
p
pmin

·

vuutTE
"

TX

t=1

X

i2⌧t

(µ̄t,i � µ̃t,i)2

V̄t,i

#

(f)


Bv
p
pmin

·

vuutTE
"

TX

t=1

X

i2⌧t

(6⇢(�) k�t(i)kG�1
t
)2

V̄t,i

#

(g)
 O(Bvd

p

T log(KT )/
p
pmin), (26)

where (a) follows from Condition 3, (b) follows from the definition of pmin s.t. pµt,St
i � pmin for i 2 S̃t, (c) follows from
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Cauchy–Schwarz, (d) follows from Jensen’s inequality, (e) follows from the TPE trick, (f) follows from Lemma 3, (g)
follows from Lemma 6.

Now for the term (II) O(Bvd
p
T log(KT )/

p
pmin) follows from the similar derivation of Equation (26) by replacing

(µ̄t,i � µ̃t,i)2 with (µt,i � µ̃t,i)2. And the theorem is concluded by considering ¬Wt and ¬Nt, similar to Appendix A.

Lemma 6 (Weighted Ellipsoidal Potential Lemma).
PT

t=1

P
i2⌧t

k�t(i)k
2
G�1

t
/V̄t,i  2d log(1 +KT/(�d))  2d log T

when ¬FT and � � 4K.

Proof.

det(Gt+1)
(a)
= det

 
Gt +

X

i2⌧t

�t(i)�t(i)
>
/V̄t,i

!

(b)
= det(Gt) · det

 
I +

X

i2⌧t

G
�1/2
t �t(i)(G

�1/2
t �t(i))

>
/V̄t,i

!

(c)
� det(Gt) ·

 
1 +

X

i2⌧t

k�t(i)k
2
G�1

t
/V̄t,i

!

(d)
� det(�I)

tY

s=1

 
1 +

X

i2⌧s

k�s(i)k
2
G�1

s
/V̄t,i

!
, (27)

where (a) follows from the definition, (b) follows from det(AB) = det(A) det(B) and A+B = A1/2(I+A1/2BA1/2),
(c) follows from Lemma 14, (d) follows from repeatedly applying (c).

If V̄s,i = 1
4 , k�s(i)k

2
G�1

s
/V̄s,i 

4k�s(i)k2

�min(Gs)
 4/�  1/K, else if V̄s,i <

1
4 , and since ¬FT , by Lemma 9,

k�s(i)k
2
G�1

s
/V̄s,i 

1
⇢(�)

1p
� 

1
�  1/(4K). Therefore, we have

P
i2⌧s

k�s(i)k
2
G�1

s
 1. Using the fact that

2 log(1 + x) � x for any [0, 1], we have

X

s2t

X

i2⌧s

k�s(i)k
2
G�1

s
/V̄s,i

2
tX

s=1

log

 
1 +

X

i2⌧s

k�s(i)k
2
G�1

s
/V̄s,i

!

= 2 log
tY

s=1

 
1 +

X

i2⌧s

k�s(i)k
2
G�1

s
/V̄s,i

!

(a)
 2 log

✓
det(Gt+1)

det(�I)

◆

(b)
 2 log

✓
(� +KT/d)d

�d

◆
= 2d log(1 + 4dK2

T
2
/(�d))  4d log(KT ),

where the (a) follows from Equation (17), (b) follows from Lemma 15 by setting L = k�s(i)k
2
/V̄s,i  4dKs (from

Lemma 11). ⌅

B.3. Proof of Theorem 3 Under TPVM Condition

In this section, we consider two cases when � � 2 and � � 1. Recall that to use the TPVM condition (Condition 4), we
need one additional condition over the triggering probability (Condition 5).

B.3.1. WHEN � � 2

.
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We inherit the same notation and events as in Appendix A.1, and start to bound term (I) in Equation (26) differently,

E
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4
X
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5
(a)
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(g)
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(i)
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p
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p
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d log(KT )) = O(Bvd
p

T log(KT )), (36)

where (a) follows from Condition 4, (b) is by applying Condition 5 for triggering probability p
µ̄t,S̃t
i and p

µ̄t,S̃t
i , p

µt,S̃t
i  1,

(c) follows from
p
a+ b 

p
a+

p
b, (d) follows from same derivation from Equation (26), (e) follows from p

µ̃t,St
i � p

i
min,

(f) follows from Cauchy-Schwarz, (g) follows from V̄t,i  1/4, (h) follows from µ̃t,i, µt,i 2 [µ̄t,i,
¯
µt,i] by event Nt, (i)

follows from the similar analysis of (d)-(g) in Equation (26) inside the square-root without considering the additional
Bv

p
T/

p
pmin.

For the term (II), one can easily verify it follows from the similar deviation of the term (I) with the difference in constant
terms. And Theorem 3 is concluded by considering small probability ¬Wt and Nt events.

B.3.2. WHEN � � 1

We inherit the same notation and events as in Appendix A.1, and start to bound term (I) in Equation (28) as follows,
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T log(KT ) +Bv
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(KT )1/4
p
pmin

(d log(KT ))3/4
◆

= O(Bvd
p

T log(KT )), (46)

where (a) follows from Condition 4, (b) is by applying Condition 5 for triggering probability p
µ̄t,S̃t
i and p

µ̄t,S̃t
i , p

µt,S̃t
i  1,

(c) follows from
p
a+ b 

p
a+

p
b, (d) follows from same derivation from Equation (26), (e) follows from p

µ̃t,St
i � p

i
min,

(f) follows from Cauchy-Schwarz, (g) follows from V̄t,i  1/4, (h) follows from µ̃t,i, µt,i 2 [µ̄t,i,
¯
µt,i] by event Nt, (i)

follows from Holder’s inequality with p = 4, q = 4/3, (j) follows from the similar analysis of (d)-(g) in Equation (26) inside
the square-root without considering the additional Bv

p
T/

p
pmin.

For the term (II), one can easily verify it follows from the similar deviation of the term (I) with the difference in constant
terms. And Theorem 3 is concluded by considering small probability ¬Wt and Nt events.

C. Proofs for TPE Trick to Improve Non-Contextual CMAB-T
We first introduce some definitions that are used in (Wang & Chen, 2017) and (Liu et al., 2022). Recall that non-contextual
CMAB-T is a degenerate case when �t(i) = ei and ✓⇤ = µ, where µ , EXt⇠D[Xt | Ht] is the mean of the true outcome
distribution D.
Definition 1 ((Approximation) Gap). Fix a distribution D 2 D and its mean vector µ, for each action S 2 S , we define the

(approximation) gap as �S = max{0,↵r(S⇤;µ)� r(S;µ)}. For each arm i, we define �min
i = infS2S:pD,S

i >0, �S>0 �S ,
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�max
i = supS2S:pD,S

i >0,�S>0 �S . As a convention, if there is no action S 2 S such that p
D,S
i > 0 and �S > 0, then

�min
i = +1,�max

i = 0. We define �min = mini2[m] �
min
i and �max = maxi2[m] �

max
i .

Definition 2 (Event-Filtered Regret). For any series of events (Et)t2[T ] indexed by round number t, we define the

Reg
A
↵,µ(T, (Et)t2[T ]) as the regret filtered by events (Et)t2[T ], or the regret is only counted in t if E happens in t. Formally,

Reg
A
↵,µ(T, (Et)t2[T ]) = E

2

4
X

t2[T ]

I(Et)(↵ · r(S⇤;µ)� r(St;µ))

3

5 . (47)

For simplicity, we will omit A,↵,µ, T and rewrite Reg
A
↵,µ(T, (Et)t2[T ]) as Reg(T, Et) when contexts are clear.

C.1. Reproducing Theorem 1 of (Wang & Chen, 2017) under 1-norm TPM Condition

Theorem 4. For a CMAB-T problem instance ([m],S,D, Dtrig, R) that satisfies monotonicity (Condition 1), and TPM

bounded smoothness (Condition 2) with coefficient B1, if � � 1, CUCB (Wang & Chen, 2017) with an (↵,�)-approximation

oracle achieves an (↵,�)-approximate distribution-dependent regret bounded by

Reg(T ) 
X

i2[m]

48B2
1K log T

�min
i

+ 2B1m+
⇡
2

3
·�max. (48)

And the distribution-independent regret,

Reg(T )  14B1

p
mKT log T + 2B1m+

⇡
2

3
·�max. (49)

The main idea is to use TPE trick to replace S̃t (arms that could be probabilistically triggered by action St) with ⌧t (arms
that are actually triggered by action St) under conditional expectation, so that we can use the simpler Appendix B.2 of Wang
& Chen (2017) to avoid the much more involved Appendix B.3 of Wang & Chen (2017). Such replacement bypasses the
triggering group analysis (and its counter Nt,i,j) in Appendix B.3, which uses Nt,i,j to associate Tt,i with the counters for
S̃t. For our simplified analysis, we can directly associate the Tt,i with the arm triggering for the arms ⌧t that are actually
triggered/observed and eventually reproduce the regret bounds of (Wang & Chen, 2017).

We follow exactly the same CUCB algorithm (Algorithm 1 (Wang & Chen, 2017)), conditions (Condition 1, 2 (Wang
& Chen, 2017)). We also inherit the event definitions of N

s
t (Definition 4 (Wang & Chen, 2017)) that for every

arm i 2 [m], |µ̂t�1,i � µi| < ⇢t,i =
q

3 log t
2Tt�1,i

, and the event Ft being {r(St; µ̄) < ↵ · opt(µ)}. Let us fur-
ther denote �St = ↵r(S⇤;µ) � r(St;µ), ⌧t be the arms actually triggered by St at time t. Let filtration Ft�1 be
(�1, S1, ⌧1, (X1,i)i2⌧1 , ...,�t�1, St�1, ⌧t�1, (Xt�1,i)i2⌧t�1 ,�t, St), and let Et[·] = E[· | Ft�1] We also have that Ft�1,
Tt�1,i, µ̂t,i are measurable.

Proof. Under event N s
t and ¬Ft, and given filtration Ft�1, we have

�St

(a)
 B1

X

i2[m]

p
D,St
i (µ̄t,i � µi) (50)

(b)
 ��St + 2B1

X

i2[m]

p
D,St
i (µ̄t,i � µi) (51)

= �

P
i2[m] p

D,St
i �St

P
i2[m] p

D,St
i

+ 2B1

X
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D,St
i (µ̄t,i � µi) (52)

(c)
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✓
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2B1K
+ (µ̄t,i � µi)
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(53)

(d)
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p
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�
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i

2B1K
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(
1,

s
6 log T

Tt�1,i

)!
, (54)
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where (a) follows from exactly the Equation (10) of Appendix B.3 in Wang & Chen (2017), (b) is by the reverse amortization
trick that multiplies two to both sides of (a) and rearranges the terms, (c) is by p

D,St
i  1 and �min

i  �St , (d) by event N s
t

so that (µ̄t,i � µi)  min{1, 2⇢t,i} =
n
1,
q

6 log T
Tt�1,i

o
.

Let

i,T (`) =

8
>><

>>:

2B1, if ` = 0,

2B1

q
6 log T

` , if 1  `  Li,T ,
0, if ` > Li,T ,

(55)

where Li,T = 24B2
1K

2 log T
(�min

i )2
.

It follows that

�St = Et[�St ]
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= Et
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6 log T

Tt�1,i

)!#
(58)

(c)
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"
X

i2⌧t

i,T (Tt�1,i)

#
, (59)

where (a) follows from Equation (54), (b) follows from the TPE trick to replace pD,St
i = Et[I{i 2 ⌧t}], (c) follows from that if

Tt�1,i  Li,T , we have min{
q

6 log T
Tt�1,i

, 1} 
1

2B1
i,T (Tt�1,i), and if Tt�1,i � Li,T +1, then min

n
1,
q

6 log T
Tt�1,i

o


�min
i

2B1K
,

so �
�min

i
2B1K

+min
n
1,
q

6 log T
Tt�1,i

o
 0 = i,T (Tt�1,i).

Now we apply the definition of the event-filtered regret,

Reg(N s
t ,¬Ft) = E

"
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#
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(c)
= E
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4
X
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TT�1,iX

s=0

i,T (s)

3

5 (63)



X
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Li,TX
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= 2B1m+
X
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Li,TX
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6 log T
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(d)
 2B1m+
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Z Li,T
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r
6 log T

s
· ds (66)
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 2B1m+
X

i2[m]

48B2
1K log T

�min
i

, (67)

where (a) follows from Equation (59), (b) follows from the tower rule, (c) follows from that Tt�1,i is increased by 1 if
and only if i 2 ⌧t, (d) is by the sum & integral inequality

R U
L�1 f(x)dx �

PU
i=L f(i) �

R U+1
L f(x)dx for non-increasing

function f .

Following Wang & Chen (2017) to handle small probability events ¬N s
t and Ft, we have

Reg(T ) 
X

i2[m]

48B2
1K log T

�min
i

+ 2B1m+
⇡
2

3
·�max, (68)

and the distribution-independent regret is

Reg(T )  14B1

p
mKT log T + 2B1m+

⇡
2

3
·�max. (69)

⌅

C.2. Improving Theorem 1 of (Liu et al., 2022) under TPVM Condition

We first show the regret bound of using our TPE technique in Theorem 5 and its prior result in Proposition 2.
Theorem 5. For a CMAB-T problem instance ([m],S,D, Dtrig, R) that satisfies monotonicity (Condition 1), and TPVM

bounded smoothness (Condition 4) with coefficient (Bv, B1,�), if � � 1, BCUCB-T (Liu et al., 2022) with an (↵,�)-
approximation oracle achieves an (↵,�)-approximate distribution-dependent regret bounded by

O

0

@
X

i2[m]

B
2
v logK log T

�̃min
i,�

+
X

i2[m]

B1 log

✓
B1K

�min
i

◆
log T

1

A , (70)

where �̃min
i,� = minS:pD,S

i >0,�S>0 �St/(p
D,St
i )��1

. And the distribution-independent regret,

Reg(T )  O

⇣
Bv

p
m(logK)T log T +B1m log(KT ) log T

⌘
. (71)

Proposition 2 (Theorem 1, Liu et al. (2022)). For a CMAB-T problem instance ([m],S,D, Dtrig, R) that satisfies mono-

tonicity (Condition 1), and TPVM bounded smoothness (Condition 4) with coefficient (Bv, B1,�), if � � 1, BCUCB-T with

an (↵,�)-approximation oracle achieves an (↵,�)-approximate regret bounded by

O

0

@
X

i2[m]

log

✓
BvK

�min
i

◆
B

2
v logK log T

�min
i

+
X

i2[m]

B1 log
2

✓
B1K

�min
i

◆
log T

1

A . (72)

And the distribution-independent regret,

Reg(T )  O

⇣
Bv

p
m(logK)T log(KT ) +B1m log2(KT ) log T

⌘
. (73)

Looking at our regret bound (Theorem 5), there are two improvements compared with Proposition 2: (1) the min gap is
improved to �̃min

i,� � �min
i , (2) we remove a O(log(BvK

�min
i

)) for the leading term. For (2), it translates to a O(
p
log T )

improvement for the distribution-independent bound.

Proof. Similar to Appendix C.1, the main idea is to use TPE trick to replace S̃t (arms that could be probabilistically
triggered by action St) with ⌧t (arms that are actually triggered by action St) under conditional expectation to avoid the
usage of much more involved triggering group analysis (Wang & Chen, 2017). Such replacement bypasses the triggering
group analysis (and its counter Nt,i,j) (Liu et al., 2022), which uses Nt,i,j to associate Tt,i with the counters for S̃t. By
doing so, we do not need a union bound over the group index j, which saves a log(BvK/�min

i (or log(B1K/�min
i ) factor.
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We follow exactly the same BCUCB-T algorithm (Algorithm 1 (Liu et al., 2022)), conditions (Condition 1, 2, 3 (Liu et al.,
2022)). We also inherit the event definitions of N s

t (Definition 6 (Liu et al., 2022)) that (1) for every base arm i 2 [m],

|µ̂t�1,i � µi|  ⇢t,i, where ⇢t,i =

r
6V̂t�1,i log t

Tt�1,i
+ 9 log t

Tt�1,i
; (2) for every base arm i 2 [m], V̂t�1,i  2µi(1� µi) +

3.5 log t
Tt�1,i

.

We use the event Ft being {r(St; µ̄) < ↵ · opt(µ)}. Let us further denote �St = ↵r(S⇤;µ) � r(St;µ), ⌧t be the arms
actually triggered by St at time t. Let filtration Ft�1 be (�1, S1, ⌧1, (X1,i)i2⌧1 , ...,�t�1, St�1, ⌧t�1, (Xt�1,i)i2⌧t�1 ,�t, St),
and let Et[·] = E[· | Ft�1] We also have that Ft�1, Tt�1,i, µ̂t,i are measurable.

We follow the same regret decomposition as in Lemma 9 of Liu et al. (2022), to decompose the event-filtered regret
Reg(T,N s

t ,¬Ft) into two event-filtered regret Reg(T,Et,1) and Reg(T,Et,2) under events N s
t ,¬Ft.

Reg(T )  Reg(T,Et,1) +Reg(T,Et,2), (74)

where event Et,1 = {�St  2et,1(St)}, event Et,2 = {�St  2et,2(St)}, et,1(St) =

4
p
3Bv

qP
i2S̃t

( log t
Tt�1,i

^
1
28 )(p

D,St
i )�,et,2(St) = 28B1

P
i2S̃t

( log t
Tt�1,i

^
1
28 )(p

D,St
i ).

C.2.1. BOUNDING THE Reg(T,Et,1) TERM

We bound the leading Reg(T,Et,1) term under two cases when � 2 [1, 2) and � 2 [2,1).

(a) When � 2 [1, 2),

Let c1 = 4
p
3, �̃St = �St/(p

D,S
i )��1. Given filtration Ft�1 and event Et,1, we have
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where (a) follows from event Et,1, (b) is by the reverse amortization trick that multiplies two to both sides of (a) and
rearranges the terms, (c), (d) are by definition of K, �̃St .

It follows that
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where (a) follows from Equation (79), (b) follows from TPE trick to replace pD,St
i = Et[I{i 2 ⌧t}]. (c) is because we define

a regret allocation function
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Lemma 16.
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where (a) follows from Equation (82), (b) follows from the tower rule, (c) follows from that Tt�1,i is increased by 1 if and
only if i 2 ⌧t.

(b) When � 2 [2,1),

Let �̃St,� = �St/(p
D,St
i )��1, �̃St = �St/p

D,St
i . Note that �̃S,� = �̃S when � = 2, �̃S,� � �̃S when � � 2, and

�̃S,�  �̃S , when �  2, for any i, S. Given filtration Ft�1 and under event Et,1, we have
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2

4
X

i2[m]

p
D,St
i

 
8c21B

2
v

log t
Ti,t�1

�̃St,�

�
�̃St

K

!3

5 (96)

= Et

"
X

i2⌧t

 
8c21B

2
v

log t
Ti,t�1

�̃St,�

�
�̃St

K

!#
(97)

 Et

"
X

i2⌧t

i,T (Tt�1,i)

#
(98)

where the last inequality is by Lemma 17 and we define a regret allocation function
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where (a) follows from Equation (98), (b) follows from the tower rule, (c) follows from that Tt�1,i is increased by 1 if and
only if i 2 ⌧t.
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C.2.2. BOUNDING THE Reg(T,Et,2) TERM

Let c2 = 28. Given filtration Ft�1 and event Et,2, we have
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where (a) follows from event Et,2, (b) is by the reverse amortization trick that multiplies two to both sides of (a) and
rearranges the terms, (c) follows from p

D,St
i  1.

It follows that
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regret allocation function
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where Li,T,1 = 4c2B1 log T
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, Li,T,2 = 4c2B1K log T
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. And (a) follows from Equation (109), (b) from the TPE, (c) follows
from Lemma 18.
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where (a) follows from Equation (109), (b) follows from the tower rule, (c) follows from that Tt�1,i is increased by 1 if and
only if i 2 ⌧t. ⌅

Similar to (Wang & Chen, 2017, Appendix B.3), for the distribution-independent regret bound, we fix a gap � to be decided
later and we consider two events on �St : {�St  �} and {�St > �}.

For the former case, the regret is trivially Reg(T, {�St  �})  T�. For the later case, under {�St > �} it is also straight-
forward to replace all �min

i with � and derive Reg(T, {�St > �})  O
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v logK log T
� +mB1 log(
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D. Applications
For convenience, we show our table again in Table 3.

Table 3. Summary of the coefficients, regret bounds and improvements for various applications.
Application Condition (Bv, B1,�) Regret Improvement

Online Influence Maximization (Wen et al., 2017) TPM (�, |V |,�) †
O(d|V |

p
|E|T log T ) Õ(

p
|E|)

Disjunctive Combinatorial Cascading Bandits (Li et al., 2016) TPVM (1, 1, 2) O(d
p
T log T ) Õ(

p
K/pmin)‡

Conjunctive Combinatorial Cascading Bandits (Li et al., 2016) TPVM (1, 1, 1) O(d
p
T log T ) Õ(

p
K/rmax)

Linear Cascading Bandits (Vial et al., 2022)⇤ TPVM (1, 1, 2) O(d
p
T log T ) Õ(

p
K/d)‡

Multi-layered Network Exploration (Liu et al., 2021b) TPVM (
p

1.25|V |, 1, 2) †
O(d

p
|V |T log T ) Õ(

p
n/pmin)

Probabilistic Maximum Coverage (Chen et al., 2013)⇤⇤ VM (3
p
2|V |, 1,�) O(d

p
|V |T log T ) Õ(

p
k)

† |V |, |E|, n, k, L denotes the number of target nodes, the number of edges that can be triggered by the set of seed nodes, the number of layers, the number of seed
nodes and the length of the longest directed path, respectively; ‡ K is the length of the ordered list, rmax = ↵ ·maxt2[T ],S2S r(S;µt);
⇤ A special case of disjunctive combinatorial cascading bandits. ⇤⇤ This row is for C2MAB application and the rest of rows are for C2MAB-T applications.

D.1. Online Influence Maximization Bandit (Wang & Chen, 2017) and Its Contextual Generalization (Wen et al.,
2017)

Following the setting of (Wang & Chen, 2017, Section 2.1), we consider a weighted directed graph G(V,E, p), where V is
the set of vertices, E is the set of directed edges, and each edge (u, v) 2 E is associated with a probability p(u, v) 2 [0, 1].
When the agent selects a set of seed nodes S ✓ V , the influence propagates as follows: At time 0, the seed nodes S are
activated; At time t > 1, a node u activated at time t� 1 will have one chance to activate its inactive out-neighbor v with
independent probability p(u, v). The influence spread of S is denoted as �(S) and is defined as the expected number of
activated nodes after the propagation process ends. The problem of Influence Maximization is to find seed nodes S with
|S|  k so that the influence spread �(S) is maximized.

For the problem of online influence maximization (OIM), we consider T rounds repeated influence maximization tasks and
the edge probabilities p(u, v) are assumed to be unknown initially. For each round t 2 [T ], the agent selects k seed nodes as
St, the influence propagation of St is observed and the reward is the number of nodes activated in round t. The agent’s goal
is to accumulate as much reward as possible in T rounds. The OIM fits into CMAB-T framework: the edges E are the set of
base arms [m], the (unknown) outcome distribution D is the joint of m independent Bernoulli random variables for the edge
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set E, the action S are any seed node sets with size k at most k. For the arm triggering, the triggered set ⌧t is the set of edges
(u, v) whose source node u is reachable from St. Let Xt be the outcomes of the edges E according to probability p(u, v)
and the live-edge graph G

live
t (V,Elive) be a induced graph with edges that are alive, i.e., e 2 E

live iff Xt,e = 1 for e 2 E.
The triggering probability distribution Dtrig(St, Xt) degenerates to a deterministic triggered set, i.e., ⌧t is deterministically
decided given St and Xt. The reward R(St, Xt, ⌧t) equals to the number activated nodes at the end of t, i.e., the nodes that
are reachable from St in the live-edge graph G

live
t . The offline oracle is a (1� 1/e� ", 1/|V |)-approximation algorithm

given by the greedy algorithm from (Kempe et al., 2003).

Now consider OIM’s contextual generalization for large-scale OIM, we follow Wen et al. (2017), where each edge e = (u, v)
is associated with a known feature vector xe 2 Rd and an unknown parameter ✓⇤

2 Rd, and the edge probability is
p(u, v) = hxe,✓⇤

i. By Lemma 2 of (Wang & Chen, 2017), B1 = C̃  |V |, where C̃ is the largest number of nodes
any node can reach and batch size K  |E|, so by Theorem 1, C2-UCB-T obtain a worst-case Õ(d|V |

p
|E|T ) regret

bound. Compared with IMLinUCB algorithm (Wen et al., 2017) that achieves Õ(d(|V |� k)|E|
p
T ), our regret achieves a

improvement up to a factor of Õ(
p
|E|).

Now for the claim of the triggering probability satisfies Bp = B1, it follows from the Theorem 4 of Li et al. (2020) by
identifying f(S,w, v) = p

w,S
i .

D.2. Contextual Combinatorial Cascading Bandits (Li et al., 2016)

Contextual Combinatorial cascading bandits have two categories: conjunctive cascading bandits and disjunctive cascading
bandits (Li et al., 2016). We also compare with a special case of linear cascading bandits that also uses variance-adaptive
algorithms and achieve very competitive results.

Disjunctive form. For the disjunctive form, we want to select an ordered list S of K items from total L items, so as to
maximize the probability that at least one of the outcomes of the selected items are 1. Each item is associated with a
Bernoulli random variable with mean µt,i 2 [0, 1] at round t, indicating whether the user will be satisfied with the item if
he scans the item. To leverage the contextual information, Li et al. (2016) assumes µt,i = hxt,i,✓⇤

i, where xt,i 2 Rd is
the known context at round t for arm i, ✓ 2 Rd is the unknown parameter to be learned. This setting models the movie
recommendation system where the user sequentially scans a list of recommended items and the system is rewarded when the
user is satisfied with any recommended item. After the user is satisfied with any item or scans all K items but is not satisfied
with any of them, the user leaves the system. Due to this stopping rule, the agent can only observe the outcome of items
until (including) the first item whose outcome is 1. If there are no satisfactory items, the outcomes must be all 0. In other
words, the triggered set is the prefix set of items until the stopping condition holds.

Without loss of generality, let the action be {1, ...,K}, then the reward function is r(S;µ) = 1�
QK

j=1(1� µj) and the
triggering probability is p

µ,S
i =

Qi�1
j=1(1 � µj). Let µ̄ = (µ̄1, ..., µ̄K) and µ = (µ1, ..., µK), where µ̄ = µ + ⇣ + ⌘

with µ̄,µ 2 (0, 1)K , ⇣,⌘ 2 [�1, 1]K . By Lemma 19 in Liu et al. (2021a), disjunctive CB satisfies Condition 4 with
(Bv, B1,�) = (1, 1, 2). Also, we can verify that disjunctive CB also satisfies Bp = B1 = 1 as follows:

���pµ̄,S
i � p

µ,S
i

���

=

������

iY

j=1

(1� µj)�
iY

j=1

(1� µ̄j)

������
(120)

=
iX

j=1

|µ̄j � µj | (1� µ1)...(1� µj�1)(1� µ̄j+1)...(1� µ̄i) (121)



iX

j=1

|µ̄j � µj | (1� µ1)...(1� µj�1) (122)

=
iX

j=1

|µ̄j � µj | p
µ,S
j . (123)

Now by Theorem 3, VAC2-UCB obtains a regret bound of O(d
p
T log T ). Compared with Corollary 4.5 in Li et al. (2016)

that yields a O(d
p
KT log T/pmin) regret, our results improves by a factor of O(

p
K/pmin).
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Conjunctive form. For the conjunctive form, the learning agent wants to select K paths from total L paths (i.e., base arms)
so as to maximize the probability that the outcomes of the selected paths are all 1. Each item is associated with a Bernoulli
random variable with mean µt,i at round t, indicating whether the path will be live if the package will transmit via this path.
Such a setting models the network routing problem (Kveton et al., 2015a), where the items are routing paths and the package
is delivered when all paths are alive. The learning agent will observe the outcome of the first few paths till the first one that
is down, since the transmission will stop if any of the path is down. In other words, the triggered set is the prefix set of paths
until the stopping condition holds.

Without loss of generality, let the action be {1, ...,K}, then the reward function is r(S;µ) = 1 �
QK

j=1(µj) and the
triggering probability is p

µ,S
i =

Qi�1
j=1(µj). Let µ̄ = (µ̄1, ..., µ̄K) and µ = (µ1, ..., µK), where µ̄ = µ + ⇣ + ⌘

with µ̄,µ 2 (0, 1)K , ⇣,⌘ 2 [�1, 1]K . By Lemma 20 in Liu et al. (2021a), conjunctive CB satisfies Condition 4 with
(Bv, B1,�) = (1, 1, 1). Also, we can verify that conjunctive CB also satisfies Bp = B1 = 1 as follows:

���pµ̄,S
i � p
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i

���

=

������

iY

j=1

µj �

iY

j=1

µ̄j

������
(124)

=
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=
iX

j=1

|µ̄j � µj | p
µ,S
j . (127)

Now by Theorem 3, VAC2-UCB obtains a regret bound of O(d
p
T log T ). Compared with Corollary 4.6 in Li et al. (2016)

that yields a O(d
p
KT log T/rmax) regret, our results improves by a factor of O(

p
K/rmax).

Linear Cascading Bandit. Linear cascading bandit (Vial et al., 2022) is a special case of combinatorial cascading bandit (Li
et al., 2016). The former assumes that action space S is the collection of all permutations whose size equals to K (i.e., a
uniform matroid). In this case, the items in the feasible solutions are exchangeable (a critical property for matroids), i.e.,
S � {e1}+ {e2} 2 S , for any S 2 S, e1, e2 2 [m]. Based on this property, their analysis can get the correct results. For the
latter, however, S (i.e., ⇥ in [16]) consists of arbitrary feasible actions (perhaps with different sizes), e.g., S 2 S could refer
to any path that connects the source and the destination in network routing applications.

Other than the above difference, linear cascading bandits follow the same setting as disjunctive contextual combinatorial
bandits. Following the similar argument of disjunctive contextual combinatorial bandits, the regret bound of VAC2-UCB is
O(d

p
T log T ). Compared with CascadeWOFUL that achieves Õ(

p
d(d+K)T ) by Theorem 4 in Vial et al. (2022), our

regret improves a factor of Õ(
p

1 +K/d). For the empirical comparison, see Section 5 for details.

D.3. Multi-layered Network Exploration Problem (MuLaNE) (Liu et al., 2021b)

We consider the MuLaNE problem with random node weights. After we apply the bipartite coverage graph, the corresponding
graph is a tri-partite graph (n, V,R) (i.e., a 3-layered graph where the first layer and the second layer forms a bipartite graph,
and the second and the third layer forms another bipartite graph), where the left nodes represent n random walkers; Middle
nodes are |V | possible targets V to be explored; Right nodes R are V nodes, each of which has only one edge connecting
the middle edge. The MuLaNE task is to allocate B budgets into n layers to explore target nodes V and the base arms are
A = {(i, u, b) : i 2 [n], u 2 V, b 2 [B]}.

With budget allocation k1, ..., kL, the (effective) base arms consist of two parts:

(1) {(i, j) : i 2 [n], j 2 V }, each of which is associated with visiting probability xi,j 2 [0, 1] indicating whether node j

will be visited by explorer i given ki budgets. All these base arms corresponds to budget ki, i 2 [n] are triggered.

(2) yj 2 [0, 1] for j 2 V represents the random node weight. The triggering probability p
µ,S
j = 1�

Q
i2[n] (1� xi,j).
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For its contextual generalization, we assume xi,j = h�x(i, j),✓⇤
i, yj = h�y(j),✓⇤

i, where �x(i, j),�y(j) are the known
features for visiting probability and the node weights for large-scale MuLaNE applications, respectively. Let effective
base arms µ = (x,y) 2 (0, 1)(n|V |+|V |)

, µ̄ = (x̄, ȳ) 2 (0, 1)(n|V |+|V |), where x̄ = ⇣x + ⌘x + x, ȳ = ⇣y + ⌘y + y, for
⇣,⌘ 2 [�1, 1](n|V |+|V |). For the target node j 2 V , the per-target reward function rj(S;x,y) = yj(1�

Q
i2[n](1� xi,j)).

Denote p̄
µ,S
j = 1�

Q
i2[n] (1� x̄i,j). Based on Lemma 21 in Liu et al. (2022), contextual MuLaNE satisfies Condition 4

with (Bv, B1,�) = (
p
1.25|V |, 1, 2). To validate that this application satisfies Condition 5 with Bp = B1 = 1, we have
���pµ̄,S

j � p
µ,S
j

���

=

������

Y

i2[n]

(1� xi,j)�
Y

i2[n]

(1� x̄i,j)

������
(128)

=
X

i2[n]

|x̄i,j � xi,j | (1� x1,j)...(1� xi�1,j)(1� x̄i+1,j)...(1� x̄i,j) (129)

=
X

i2[n]

|x̄i,j � xi,j | . (130)

By Theorem 3, we obtain O(d
p

|V |T log T ), which improves the result O(d
p

n|V |T log T/pmin) that follows the result
of C3UCB algorithm (Li et al., 2016) by a factor of O(

p
n/pmin).

D.4. Probabilistic Maximum Coverage Bandit (Chen et al., 2016a; Merlis & Mannor, 2019)

In this section, we consider the probabilistic maximum coverage (PMC) problem. PMC is modeled by a weighted bipartite
graph G = (L, V,E), where L are the source nodes, V is the target nodes and each edge (u, v) 2 E is associated with a
probability p(u, v). The task of PMC is to select a set S ✓ L of size k so as to maximize the expected number of nodes
activated in V , where a node v 2 V can be activated by a node u 2 S with an independent probability p(u, v). PMC can
naturally models the advertisement placement application, where L are candidate web-pages, V are the set of users, and
p(u, v) is the probability that a user v will click on web-page u.

PMC fits into the non-triggering CMAB framework: each edge (u, v) 2 E corresponds to a base arm, the action is the set of
edges that are incident to the set S ✓ L, the unknown mean vectors µ 2 (0, 1)E with µu,v = p(u, v) and we assume they
are independent across all base arms. In this context, the reward function r(S;µ) =

P
v2V (1�

Q
u2S(1� µu,v)).

In this paper, we consider a contextual generalization by assuming that p(u, v) = h�(u, v),✓⇤
i, where �(u, v) 2 Rd is

the known context and ✓⇤
2 Rd is the unknown parameter. By Lemma 24 in Liu et al. (2022), PMC satisfies Condition 3

with (Bv, B1) = (3
p

2|V |, 1). Following Theorem 2, VAC2-UCB obtains O(d
p
|V |T log T ), which improves the C3UCB

algorithm’s bound O(d
p

k|V |T log T ) (Li et al., 2016) by a factor of O(
p
k).

E. Experiments
Synthetic data. We consider the same disjunctive linear cascading bandit setting as in (Vial et al., 2022), where the goal is
to choose K 2 {2i}8i=2 out of m = 100 items to maximize the reward. Notice that the linear cascading bandit problem is a
simplified version of the contextual cascading bandit problem where the feature vectors of base arms are fixed in all rounds
(see Appendix D.2 for details). For each K, we sample the click probability µi of item i uniformly in [ 2

3K ,
1
K ] for i  K and

in [0, 1
3K ] for i > K. We vary d 2 {2i}8i=2 to generate the same µ and compute unit-norm vectors ✓⇤ and �(i) satisfying

µi = h✓
⇤
,�(i)i. We compare VAC2-UCB to C3-UCB (Li et al., 2016) and CascadeWOFUL (Vial et al., 2022): C3-UCB

is the variance-agnostic cascading bandit algorithm (essentially the same as CascadeLinUCB (Zong et al., 2016) in the
linear cascading setting by using the tunable parameter � = 1) and CascadeWOFUL is the state-of-the-art variance-aware
cascading bandit algorithm. As shown in Figure 2, the regret of our VAC2-UCB algorithm has superior dependence on
K and d over that of C3-UCB. When d = K = 10, VAC2-UCB achieves sublinear regret; it incurs 75% and 13% less
regret than C3-UCB and CascadeWOFUL after 100, 000 rounds. Notice that CascadeWOFUL is also variance-aware but
specifically designed for cascading bandits, while our algorithm can be applied to general C2MAB-T.

Real data. We conduct experiments on the MovieLens-1M dataset which contains user ratings for m ⇡ 4000 movies.
Following the same experimental setup in (Vial et al., 2022), we set d = 20,K = 4, and the goal is to choose K out
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Figure 2. Results for synthetic data

of m movies to maximize the reward of the cascading recommendation. We use their learned feature mapping � from
movies to the probability that a uniformly random user rated the movie more than three stars. We point the reader to
Section 6 of (Vial et al., 2022) for more details. In each round, we sample a random user Jt and define the potential
click result Xt,i = I{user Jt rated movie i more than 3 stars}. In other words, we observe the actual feedback of user Jt
instead of using the Bernoulli click model. Figure 1a shows that VAC2-UCB outperforms C3-UCB and CascadeWOFUL,
incurring 45% and 25% less regret after 100, 000 rounds. To model platforms like Netflix that recommend movies in specific
categories, we also run experiments while restricting the candidate items to movies of a particular genre. Figure 1b shows
that VAC2-UCB is superior for all genres compared to C3-UCB and CascadeWOFUL.

F. Concentration Bounds, Facts, and Technical Lemmas
In this section, we first give key concentration bounds and then provide lemmas that are useful for the analysis.

F.1. Concentration Bounds

We mainly use the following concentration bounds, which is essentially a modification of the Freedman’s version of the
Bernstein’s inequality (Bernstein, 1946; Freedman, 1975).

Proposition 3 (Theorem 9, Lattimore et al. (2015)). Let � 2 (0, 1) and X1, ..., Xn be a sequence of random variables

adapted to filtration {Ft} with E[Xt | Ft�1] = 0. Let Z ✓ [n] be such that I{t 2 Z} is Ft�1-measurable and let Rt be

Ft�1 measurable such that |Xt|  Rt almost surely. Let V =
P

t2Z Var[Xt | Ft�1] +
P

t/2Z R
2
t /2, R = maxt2Z Rt,

and S =
Pn

t=1 Xt. Then Pr[S � f(R, V )]  �, where f(r, v) = 2(r+1)
3 log 2

�r,v
+
q

2(v + 1) log 2
�r,v

, and �r,v =
�

3(r+1)2(v+1) .

F.2. Facts

Fact 1. For any positive-definite matrices A,B > 0d
and any vectors x,y 2 Rd

. It holds that

1. If A  B, then A�1
� B�1

.

2. If A  B, then kxkA  kxkB .

3. Suppose A has maximum eigenvalue �max, then kAxk2  �max · kxk2 and �max  trace(A).

F.3. Technical Lemmas

Recall that event Ft is defined in Equation (21), gram matrix Gt is defined in Equation (18), optimistic variance V̄t,i is
defined in Equation (6), Rv is defined in Equation (132).

Lemma 7. Pr
⇥
kZtkGt

+
p
� � ⇢ and ¬Ft�1

⇤
 �/T , for t = 1, ..., T .
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Proof of lemma 7. Let v 2 Rd and define

Vs,i,v =

(
Var[⌘s,i | Fs�1]h�s(i),vi2/V̄ 2

s,i, if V̄s,i <
1
4

h�s(i),vi2/V̄s,i, otherwise.
(131)

Rv = max
s<t,i2⌧s

{h�s(i),vi/V̄s,i : V̄s,i <
1

4
} (132)

By applying the Proposition 3, with probability at least 1� �/T it holds that

hZt,vi =
X

s<t

X

i2⌧s

⌘s,ih�s(i),vi/V̄s,i 
2(Rv + 1)

3
log

1

�v
+

s
2(1 +

X

s<t

X

i2⌧s

Vs,i,v) log
1

�v
(133)

where �v = 3�
T (1+Rv)2(1+

P
s<t

P
i2⌧s

Vs,i,v)2
.

Since v could be a random variable in later proofs, we use the covering argument trick (Chap.20, Lattimore & Szepesvári
(2020)) to handle v. Specifically, we define the covering set ⇤ = {j · " : j = �

C
" ,�

C
" + 1, ..., C

" � 1, C
" }

d, with size
N = |⇤| = (2C/")d and parameters C, " will be determined shortly after. By applying union bound on Equation (133), we
have with probability at least 1� � that

hZt,vi 
2(Rv + 1)

3
log

N

�v
+

s
2(1 +

X

s<t

X

i2⌧s

Vs,i,v) log
N

�v
for all v 2 ⇤. (134)

Now we can set v = G�1
t Zt, and it follows from Lemma 12 that kvk1  kZtk1  2dK2

t
2 = C, where the last

inequality follows from Lemma 13. Based on our construction of the covering set ⇤, there exists v0
2 ⇤ with v0

 v, and
kv0

� vk1  ", such that

kZtk
2
G�1

t
= hZt,vi  kZtk1 "+ hZt,v

0
i (135)

 kZtk1 "+
2(Rv + 1)

3
log

N

�v
+

s
2(1 +

X

s<t

X

i2⌧s

Vs,i,v) log
N

�v
(136)

 kZtk1 "+
2(Rv + 1)

3
log

N

�v
+

r
2(1 + kZtk

2
G�1

t
) log

N

�v
(137)

where Equation (136) uses the fact that Rv0  Rv, Vs,i,v0  Vs,i,v,
1

�v0


1
�v0

for any v0
 v, Equation (137) follows from

the following derivation,
X

s<t

X

i2⌧s

Vs,i,v 

X

s<t

X

i2⌧s

h�s(i),vi
2
/V̄s,i (138)

=
X

s<t

X

i2⌧s

(G�1
t Zt)

>�s(i)�s(i)
>G�1

t Zt/V̄s,i (139)

= (G�1
t Zt)

>

 
X

s<t

X

i2⌧s

�s(i)�s(i)
>
/V̄s,i

!
G�1

t Zt (140)

 (G�1
t Zt)

>Gt(G
�1
t Zt) (141)

= kZtk
2
Gt

, (142)

where Equation (138) follows from ¬Fs�1 implies
���✓⇤

� ✓̂s
���
Gs

 ⇢ for s < t by Lemma 8 and thus V̄t,i � Var[⌘s,i |

Fs�1], Equation (139) follows from definition of v, Equation (141) follows from
P

s<t

P
i2⌧s

�s(i)�s(i)>/V̄s,i < Gt.

Now we set " = 1/C = 1/(2K2
t
2
d), we have

kZtk
2
G�1

t
 RHS of Equation (137) (143)
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 C"+
2(2 kZtkG�1

t
/⇢+ 1)

3
log

N

�v
+

r
2(1 + kZtk

2
G�1

t
) log

N

�v
(144)

 1 + 2 log
N

�v
+

r
2(1 + kZtk

2
G�1

t
) log

N

�v
(145)

where Equation (144) is to bound Rv by Lemma 10, Equation (145) is by the definition of ⇢ as an upper bound.

By rearranging and simplifying Equation (145), we have

kZtkG�1
t

+
p
�  1 +

p
� + 4

r
log

N

�v
(146)

 1 +
p
� + 4

s

log

✓
6TN

�
(1 + kZtk

2
G�1

t
)

◆
, (147)

where the last inequality is because of �v 
3�

T (1+kZtk2

G�1
t

)
from the definition of �v, Lemma 10, and Equation (141).

Finally, we solve the above equation and set ⇢ = 1 +
p
� + 4

q
log
�
6TN
� log( 3TN

� )
�

, which completes the reduction on t

to show the probability Pr[kZtkG�1
t

+
p
� � ⇢] � 1� �/T under event ¬Ft�1. ⌅

Lemma 8. If ¬Ft holds, then it holds that,

���✓⇤
� ✓̂t

���
Gt

 ⇢. (148)

Proof. We have

���✓⇤
� ✓̂t

���
Gt

=

�����G
�1
t (
X

s<t

X

i2⌧s

�s(i)Xs,i/V̄s,i)�G�1
t Gt✓

⇤

�����
Gt

(149)

=

�����G
�1
t Zt +G�1

t (
X

s<t

X

i2⌧s

�s(i)�s(i)
>✓⇤

/V̄s,i)�G�1
t Gt✓

⇤)

�����
Gt

(150)

=
��G�1

t Zt � �G�1
t ✓⇤��

Gt
(151)

 kZtkG�1
t

+ � k✓⇤
kG�1

t
(152)

 kZtkG�1
t

+
p
� (153)

 ⇢�
p
� +

p
� = ⇢, (154)

where Equation (149)-(151) follow from definition and math calculation, Equation (152) from Gt � G0 = �I and
k✓k2  1, Equation (153) from that if ¬Ft holds, then kZtkGt

+
p
�  ⇢. ⌅

Lemma 9. For any s < t,

k�s(i)kG�1
t

V̄s,i


k�s(i)kG�1
s

V̄s,i
, and if ¬Ft�1 holds and V̄s,i <

1
4 ,

k�s(i)kG�1
s

V̄s,i


2
⇢  1 for any

i 2 [m].

Proof. The first inequality is by Gt � Gs and Fact 1. For the second inequality, when ¬Ft�1 holds,
���✓⇤

� ✓̂s
���
Gs

 ⇢ as

in Equation (148), and since V̄s,i <
1
4 , it follows from the definition of V̄s,i Equation (6) that at least one of the following is

true:

V̄s,i �
1

2
(h�s(i), ✓̂s + 2⇢ k�s(i)kG�1

s
i) � ⇢ k�s(i)kG�1

s
/2, (155)

V̄s,i �
1

2
(1� h�s(i), ✓̂s + 2⇢ k�s(i)kG�1

s
i) � ⇢ k�s(i)kG�1

s
/2, (156)

which concludes the second inequality. ⌅
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Lemma 10. Let v = G�1
t bt, if ¬Ft�1, then Rv 

2kZtkG�1
t

⇢ .

Proof. For all s < t and i 2 [m], we have h�s(i),vi/V̄s,i 
2h�s(i),vi

k�s(i)kG�1
t

·⇢ = 2h�s(i),G
�1
t Zti

k�s(i)kG�1
t

·⇢ 

2k�s(i)kG�1
t

·kG�1
t Ztk

Gt

k�s(i)kG�1
t

·⇢ =

2kZtkG�1
t

⇢ , where the first inequality follows from Lemma 9, the last inequality follows from the Cauchy-Schwarz inequality.
⌅

Lemma 11. If ¬Ft, then k�t(i)k
2
2 /V̄t,i  4dKt.

Proof. If V̄t,i = 1
4 , the inequality trivially holds since k�t(i)k  1. Consider V̄t,i <

1
4 , and �max be the maximum

eigenvalue of Gt. Then, it holds that k�t(i)k
2
2 /V̄t,i 

k�t(i)k2
2

⇢k�t(i)kG�1
t


k�t(i)k2

k�t(i)kG�1
t

=

���G1/2
t G�1/2

t �t(i)
���
2

k�t(i)kG�1
t


p
�max, where

the first inequality follows from Lemma 9, the second inequality is by ⇢ � 1, k�t(i)k  1, and the last is by Fact 1.3.

Now Assume k�s(i)k
2
2 /V̄s,i  4s for s < t, which always holds for t = 1. By reduction, we consider round t, it

holds that k�t(i)k
2
2 /V̄t,i 

p
�max 

p
trace(Gt) =

q
�d+

Pt�1
s=1

P
i2⌧s

k�s(i)k
2
2 /V̄s,i 

q
Kd+

Pt�1
s=1 4dK

2s 
p

d(K + 2K2t(t� 1))  4dKt, where the first inequality follows from the analysis in the last paragraph, the third
inequality follows from reduction over s < t, and the last inequality is by math calculation. ⌅

Lemma 12. If ¬Ft, then k�t(i)k1 /V̄t,i  4dKt.

Proof. Similar to the proof of Lemma 11, k�t(i)k1 /V̄t,i 
p
d k�t(i)k2 /V̄t,i 

p
dk�t(i)k2

⇢k�t(i)kG�1
t


k�t(i)k2

k�t(i)kG�1
t

=
���G1/2

t G�1/2
t �t(i)

���
2

k�t(i)kG�1
t


p
�max  4dKt, where the first inequality uses Cauchy-Schwarz, the second inequality uses

⇢ �
p
d, and the rest follows from the proof of Lemma 11. ⌅

Lemma 13. If ¬Ft�1, then kZtk1  2dK2
t
2
.

Proof. kZtk1 =
��P

s<t

P
i2⌧s

⌘s,i�s(i)/V̄s,i

��
1


P

s<t

P
i2⌧s

���s(i)/V̄s,i

��
1


P

s<t

P
i2⌧s

4dKt  2dK2
t
2,

where the first inequality follows from ⌘s,i 2 [�1, 1], the second inequality follows from Lemma 12. ⌅

Lemma 14 (Lemma A.3, (Li et al., 2016)). Let xi 2 Rd
, 1  i  n. Then we have

det

 
I +

nX

i=1

xix
>
i

!
� 1 +

nX

i=1

kxk22 .

Lemma 15 (Lemma 11, (Abbasi-Yadkori et al., 2011)). Let xi 2 Rd
with kxik

2
2  L, 1  i  n and let Gt =

�I +
Pt�1

i=1 xix>
i , then

det(Gt+1)  (� + tL
2
/d)d.

Lemma 16. Equation (82) holds.

Proof. When Tt�1,i > Li,T,2 = 8c21B
2
vK log T

(�̃min
i )2

,

we have (82, i)  8c21B
2
v log T

Tt�1,i,·�̃St

�
�̃St
K <

(�̃min
i )2

K�̃St

�
�̃St
K  0 = i,T (Tt�1,i).

When Li,T,1 < Tt�1,i  Li,T,2,

We have (82, i)  8c21B
2
v log T

Tt�1,i,·�̃St

�
�̃St
K <

8c21B
2
v log T

Tt�1,i,·�̃St


8c21B

2
v log T

Tt�1,i·�̃i
min

= i,T (Tt�1,i,j
St
i
).

When Tt�1,i  Li,T,1,

33



Contextual Combinatorial Bandits with Probabilistically Triggered Arms

We further consider two different cases Tt�1,i 
4c21B

2
v log T

(�̃St )
2 or 4c21B

2
v log T

(�̃St )
2 < Tt�1,i  Li,T,1 = 4c21B

2
v log T

(�̃min
i )2

.

For the former case, if there exists i 2 ⌧t so that Tt�1,i 
4c21B

2
v log T

(�̃St )
2 , then we know

P
q2S̃t

q,T (Tt�1,q) � i,T (Tt�1,i) =

2
q

4c21B
2
v log T

Tt�1,i
� 2�̃St > �St , which makes eq. (82) holds no matter what. This means we do not need to consider this

case for good.

For the later case, when 4c21B
2
v log T

(�̃St )
2 < Tt�1,i, we know that (82, i) 

8c21B
2
v log T

�̃St

1
Tt�1,i

=

2

r
4c21B

2
v log T

(�̃St )
2

1
Tt�1,i

q
4c21B

2
v log T

Tt�1,i
 2
q

4c21B
2
v log T

Tt�1,i
= i,T (Tt�1,i).

When ` = 0,

We have (82, i)  8c21B
2
v

�̃St

·
1
28 �

�̃St
K 

c21B
2
v

�̃St


c21B

2
v

�̃min
i

= i,T (Tt�1,i).

Combining all above cases, we have �St  E[
P

i2⌧t
i,T (Tt�1,i)]. ⌅

Lemma 17. Equation (98) holds.

Proof. When Tt�1,i > Li,T,2 = 8c21B
2
vK log T

�̃min
i ·�̃min

i,�

,

we have (98, i)  8c21B
2
v log T

Tt�1,i,·�̃St,�
�

�̃St
K <

�̃min
i ·�̃min

i,�

K�̃St,�
�

�̃St
K  0 = i,T (Tt�1,i).

When Li,T,1 < Tt�1,i  Li,T,2,

We have (98, i)  8c21B
2
v log T

Tt�1,i·�̃St,�
�

�̃St
K <

8c21B
2
v log T

Tt�1,i,·�̃St,�


8c21B
2
v log T

Tt�1,i·�̃i,�
min

= i,T (Tt�1,i).

When Tt�1,i  Li,T,1,

We further consider two different cases Tt�1,i 
4c21B

2
v log T

�̃St,�·�̃St

or 4c21B
2
v log T

�̃St,�·�̃St

< Tt�1,i  Li,T,1 = 4c21B
2
v log T

�̃min
i,� ·�̃min

i

.

For the former case, if there exists i 2 ⌧t so that Tt�1,i 
4c21B

2
v log T

�̃St,�·�̃St

, then we know
P

q2S̃t
q,T (Tt�1,q) � i,T (Tt�1,i) =

2
q

4c21B
2
v log T

Tt�1,i
� 2

q
�̃St,� · �̃St � �St , which makes eq. (98) holds no matter what. This means we do not need to

consider this case for good.

For the later case, when 4c21B
2
v log T

�̃St,�·�̃St

< Tt�1,i, we know that (98, i) 
8c21B

2
v log T

�̃St,�

1
Tt�1,i

=

2

r
4c21B

2
v log T

(�̃St,�)
2

1
Tt�1,i

q
4c21B

2
v log T

Tt�1,i
 2

r
�̃St

�̃St,�

q
4c21B

2
v log T

Tt�1,i
 2
q

4c21B
2
v log T

Tt�1,i
= i,T (Tt�1,i).

When ` = 0,

We have (98, i)  8c21B
2
v

�̃St,�
·

1
28 �

�̃St
K 

c21B
2
v

�̃St,�


c21B
2
v

�̃min
i,�

= i,T (Tt�1,i).

Combining all above cases, we have �St  E[
P

i2⌧t
i,T (Tt�1,i)]. ⌅

Lemma 18. Equation (109) holds.

Proof. When Tt�1,i > Li,T,2 = 4c2B1K log T
�min

i
,

we have (109, i)  4c2B1
log T
Tt�1,i

�
�St
K <

�min
i
K �

�St
K  0 = i,T (Tt�1,i).

When Tt�1,i  Li,T,2,

We have (109, i)  4c2B1
log T
Tt�1,i

�
�St
K <

4c2B1 log T
Tt�1,i

= 
i,j

St
i ,T

(N
t�1,i,j

St
i
).

When Tt�1,i  Li,T,1,
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If there exists i 2 S̃t so that Tt�1,i  Li,T,1, then we know
P

q2S̃t
i,T (Tt�1,q) � i,T (Tt�1,i) = �max

i � �St , which
makes eq. (109) holds no matter what. This means we do not need to consider this case for good.

Combining all above cases, we have �St  Et[
P

i2⌧t
i,T (Tt�1,i)]. ⌅
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