Introduction to Transient Analysis

Prof. John C.S. Lui Department of Computer Science & Engineering The Chinese University of Hong Kong

Motivation

2 General Solution

- 3 Uniformization Method
 - Uniformization
 - Probabilistic Interpretation

Practical Issues

- Finite Sum
- Extension to non-homogeneous CTMC

Motivation

- 2 General Solution
- 3 Uniformization Method
 - Uniformization
 - Probabilistic Interpretation

Practical Issues

- Finite Sum
- Extension to non-homogeneous CTMC

4 A N

Motivation

- Motivation of why we need to perform transient analysis.
- Important questions are:
 - state of the model at the end of a time interval,
 - the time until an event occurs,
 - the residence time in a subset of states during a given interval,
 - the number of given events in an interval.

Motivation

General Solution

- Uniformization Method
 - Uniformization
 - Probabilistic Interpretation

Practical Issues

- Finite Sum
- Extension to non-homogeneous CTMC

A 10

Let { $X(t), t \ge 0$ } be a CTMC with finite state space $S = {s_i : i = 1, ..., M}$ and **Q** the transition rate matrix:

$$\boldsymbol{Q} = \begin{bmatrix} -q_1 & q_{12} & \cdots & q_{1M} \\ q_{21} & -q_2 & \cdots & q_{2M} \\ \vdots & \vdots & \cdots & \vdots \\ q_{M1} & q_{M2} & \cdots & -q_M \end{bmatrix}$$

(1)

where $q_i = \sum_{j=1, j \neq i}^M q_{ij}$.

Let $\Pi(t)$ be a $M \times M$ matrix where $\pi_{ij}(t)$ in $\Pi(t)$ is :

$$\pi_{ij}(t) = P[X(t) = s_j | X(0) = s_i]$$
(2)

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

Based on Kolmogorov's forward equation, we have:

$$\boldsymbol{\Pi}'(t) = \boldsymbol{\Pi}(t)\boldsymbol{Q} \tag{3}$$

Solving the above matrix equation, we have:

$$\boldsymbol{\Pi}(t) = \boldsymbol{e}^{\boldsymbol{Q}t} \tag{4}$$

Let $\pi(t) = [\pi_1(t), \dots, \pi_M(t)]$ be a 1 × *M* row vector such that $\pi_i(t)$ equal to the $P[X(t) = s_i]$. Therefore, we have:

$$\pi(t) = \pi(0)\Pi(t) \tag{5}$$

< 回 > < 三 > < 三 >

In general, finding $\pi(t)$ involves finding the corresponding eigenvalues and eigenvectors of **Q**, which is *computationally difficult*.

Motivation

General Solution

Uniformization Method

- Uniformization
- Probabilistic Interpretation

Practical Issues

- Finite Sum
- Extension to non-homogeneous CTMC

- T

Uniformization is a computational efficient method of performing transient analysis. Given a homogeneous CTMC X(t) and the corresponding rate matrix \boldsymbol{Q} , let us define a homogeneous DTMC X'(n) with the one-step transition probability matrix \boldsymbol{P} as:

$$\boldsymbol{P} = \boldsymbol{I} + \frac{\boldsymbol{Q}}{\Lambda} \tag{6}$$

where $\Lambda \ge \max_i \{q_i\}$, i.e., Λ is greater than or equal to the absolute diagonal value in **Q**. Therefore, we have:

$$\boldsymbol{\Pi}(t) = \boldsymbol{e}^{\boldsymbol{Q}t} = \boldsymbol{e}^{(\boldsymbol{P}-\boldsymbol{I})\wedge t} = \boldsymbol{e}^{\boldsymbol{P}\wedge t} \boldsymbol{e}^{-\Lambda t} = \sum_{n=0}^{\infty} \boldsymbol{P}^n \frac{(\Lambda t)^n}{n!} \boldsymbol{e}^{-\Lambda t} \qquad (7)$$
$$\boldsymbol{\pi}(t) = \boldsymbol{\pi}(0)\boldsymbol{\Pi}(t) = \sum_{n=0}^{\infty} \boldsymbol{\pi}(0) \boldsymbol{P}^n \frac{(\Lambda t)^n}{n!} \boldsymbol{e}^{-\Lambda t} = \sum_{n=0}^{\infty} \boldsymbol{\pi}(n) \frac{(\Lambda t)^n}{n!} \boldsymbol{e}^{-\Lambda t} \qquad (8)$$

DTMC Construction

We construct a DTMC X' with one step transition probability matrix **P** (where $\mathbf{P} = \mathbf{I} + \mathbf{Q}/\Lambda$). We construct X' from X such that:

- X' has the same state space as X.
- The residence time in *any* state before a transition occurs is exponential with rate Λ.
- The probability that X' make a transition from s_i to s_j ($i \neq j$) is equal to q_{ij}/Λ . Furthermore, X' make a transition back to the same state with probability $(1 q_i/\Lambda)$.

DTMC Construction

We construct a DTMC X' with one step transition probability matrix **P** (where $\mathbf{P} = \mathbf{I} + \mathbf{Q}/\Lambda$). We construct X' from X such that:

- X' has the same state space as X.
- The residence time in *any* state before a transition occurs is exponential with rate Λ.

• The probability that X' make a transition from s_i to s_j ($i \neq j$) is equal to q_{ij}/Λ . Furthermore, X' make a transition back to the same state with probability $(1 - q_i/\Lambda)$.

イロト イヨト イヨト イヨト

DTMC Construction

We construct a DTMC X' with one step transition probability matrix **P** (where $\mathbf{P} = \mathbf{I} + \mathbf{Q}/\Lambda$). We construct X' from X such that:

- X' has the same state space as X.
- The residence time in *any* state before a transition occurs is exponential with rate Λ.
- The probability that X' make a transition from s_i to s_j ($i \neq j$) is equal to q_{ij}/Λ . Furthermore, X' make a transition back to the same state with probability $(1 q_i/\Lambda)$.

DTMC Construction

We construct a DTMC X' with one step transition probability matrix **P** (where $\mathbf{P} = \mathbf{I} + \mathbf{Q}/\Lambda$). We construct X' from X such that:

- X' has the same state space as X.
- The residence time in any state before a transition occurs is exponential with rate Λ.
- The probability that X' make a transition from s_i to s_j ($i \neq j$) is equal to q_{ij}/Λ . Furthermore, X' make a transition back to the same state with probability $(1 q_i/\Lambda)$.

First Observation

Note that the probability that X' moves from s_i to s_j (for $i \neq j$) given that the transition is for a different state from s_i is:

$$rac{q_{ij}/\Lambda}{q_i/\Lambda} = rac{q_{ij}}{q_i},$$

which is equal to the probability that X goes from s_i to s_j in a transition.

< < >> < <</p>

Second Observation

• Given that the process makes *n* transitions to the same state s_i before leaving it, the distribution of the residence time in this state is simply the sum of *n* random variables with exponential distribution and rate Λ . This is equal to the Erlangian-n distribution and the density function $E'_{n,\Lambda}(t)$ is given by:

$$E_{n,\Lambda}'(t) = \frac{\Lambda \left(\Lambda t\right)^{n-1} e^{-\Lambda t}}{(n-1)!}$$

 The probability that the process makes n – 1 self transitions before leaving s_i is:

$$\left(1-\frac{q_i}{\Lambda}\right)^{n-1}\frac{q_i}{\Lambda}$$

 Combining the last two expression (via theorem of total probability), then we see that the *total residence time* in s_i has an exponential distribution with rate q_i.

Second Observation

• Given that the process makes *n* transitions to the same state s_i before leaving it, the distribution of the residence time in this state is simply the sum of *n* random variables with exponential distribution and rate Λ . This is equal to the Erlangian-n distribution and the density function $E'_{n,\Lambda}(t)$ is given by:

$$\boldsymbol{E}_{n,\Lambda}^{'}(t) = \frac{\Lambda \left(\Lambda t\right)^{n-1} \boldsymbol{e}^{-\Lambda t}}{(n-1)!}$$

 The probability that the process makes n – 1 self transitions before leaving s_i is:

$$\left(1-\frac{q_i}{\Lambda}\right)^{n-1}\frac{q_i}{\Lambda}$$

Combining the last two expression (via theorem of total probability), then we see that the *total residence time* in s_i has an exponential distribution with rate q_i.

Second Observation

• Given that the process makes *n* transitions to the same state s_i before leaving it, the distribution of the residence time in this state is simply the sum of *n* random variables with exponential distribution and rate Λ . This is equal to the Erlangian-n distribution and the density function $E'_{n,\Lambda}(t)$ is given by:

$$\boldsymbol{E}_{n,\Lambda}^{'}(t) = \frac{\Lambda \left(\Lambda t\right)^{n-1} \boldsymbol{e}^{-\Lambda t}}{(n-1)!}$$

 The probability that the process makes n – 1 self transitions before leaving s_i is:

$$\left(1-\frac{q_i}{\Lambda}\right)^{n-1}\frac{q_i}{\Lambda}$$

• Combining the last two expression (via theorem of total probability), then we see that the *total residence time* in *s_i* has an exponential distribution with rate *q_i*.

Third Observation

Since the total residence time and transition probabilities of X and X' are the same, we can make the following conclusion:

$$\pi_{ij}'(t) = \mathcal{P}[X'(t) = s_j | X'(0) = s_i] = \mathcal{P}[X(t) = s_j | X(0) = s_i] = \pi_{ij}(t)$$

Therefore, the process CTMC X is *equivalent* to the DTMC X' subordinated to a Poisson process.

Motivation

2 General Solution

3 Uniformization Method

- Uniformization
- Probabilistic Interpretation

Practical Issues

- Finite Sum
- Extension to non-homogeneous CTMC

Computational Procedure

Therefore, given Q, we need to find $\Pi(t)$. We first get P, then solve for $\pi(n) = \pi(0)P^n$ and then *weight* it by the probability that in the interval *t*, there are *n* Poisson arrival events.

$$\pi(t) = \pi(0)\Pi(t) = \sum_{n=0}^{\infty} \pi(0) \mathbf{P}^n \frac{(\Lambda t)^n}{n!} e^{-\Lambda t} = \sum_{n=0}^{\infty} \pi(n) \frac{(\Lambda t)^n}{n!} e^{-\Lambda t}$$
(9)

So, given P, find $\pi(n)$, which is just a vector matrix multiplication. Since in most cases, P is a *sparse matrix*, therefore, it is efficient to compute. Then weighted the X' via an Poisson probability that there will be *n* Poisson arrival events. To avoid the infinite summing series, we can use *truncation* and at the same time, know the error in advance! For example, if we only consider N + 1 transitions, we have:

$$\pi(t) = \sum_{n=0}^{N} \pi(n) e^{-\Lambda t} \frac{(\Lambda t)^n}{n!} + \epsilon(N)$$
(10)

where $\epsilon(N)$ is the error when the series is truncated after *N* terms. One important advantage of the uniformization method is that it is possible to find *N* in advance for a given tolerance since $||\pi(n)||_{\infty} \leq 1$ or:

$$\epsilon(N) = \sum_{n=N+1}^{\infty} \pi(n) e^{-\Lambda t} \frac{(\Lambda t)^n}{n!}$$

$$\leq \sum_{n=N+1}^{\infty} e^{-\Lambda t} \frac{(\Lambda t)^n}{n!} = 1 - \sum_{n=0}^{N} e^{-\Lambda t} \frac{(\Lambda t)^n}{n!}$$
(11)

Non-homogeneous CTMC

Consider a non-homogeneous CTMC that has *different* transition rates for different interval of times. That is, for each interval $[t_{i-1}, t_i)$, the corresponding rate matrix is Q_i (we are assuming that X_i to be time homogeneous). To extend this transient solution technique, let P_i be the transition probability matrix of process X_i after uniformization, we have:

$$\pi(t) = \sum_{n=0}^{\infty} \pi_i(n) e^{-\Lambda_i t} \frac{(\Lambda_i t)^n}{n!} \quad \text{for } t_{i-1} \leq t < t_i \quad (12)$$

$$\pi_i(n) = \pi_i(n-1)\boldsymbol{P}_i \tag{13}$$

$$\pi_i(0) = \pi(t_{i-1})$$
(14)

< 回 > < 三 > < 三 >

Let ϵ be the component-wise error bound, we spread the error into all intervals (weighted) by:

$$\epsilon_i = \frac{t_i - t_{i-1}}{t} \epsilon \tag{15}$$

And N_i can be computed based on ϵ_i by:

$$\epsilon_i \leq 1 - \sum_{n=0}^{N_i} e^{-\Lambda_i t} \frac{(\Lambda_i t)^n}{n!}$$
(16)