Introduction of Markov Decision Process

Prof. John C.S. Lui
Department of Computer Science \& Engineering
The Chinese University of Hong Kong

Q Motivation

- Review of DTMC
- Transient Analysis via z-transform
- Rate of Convergence for DTMC

2 Introduction

- Solution of Recurrence Relation

Q The Toymaker Example

- Introduction
- Problem Formulation
- Introduction
? The Value-Determination Operation
- The Policy-Improvement Routine
- Illustration: Toymaker's problem
- Introduction

Q Steady State [SP with Discounting

- Value Determination Operation

Policy-Improvement Routine
Q Policy Improvement Iteration
An Evamina

Motivation

Why Markov Decision Process?

- To decide on a proper (or optimal) policy.
- To maximize performance measures.
- To obtain transient measures.
- To obtain long-term measures (fixed or discounted).
- To decide on the optimal policy via an efficient method (using dynamic programming).

Review of DTMC

Toymaker

- A toymaker is involved in a toy business.
- Two states: state 1 is toy is favorable by public, state 2 otherwise.
- State transition (per week) is:

$$
\boldsymbol{P}=\left[p_{i j}\right]=\left[\begin{array}{ll}
\frac{1}{2} & \frac{1}{2} \\
\frac{2}{5} & \frac{3}{5}
\end{array}\right]
$$

- What is the transient measure, say state probability?

Transient State Probability Vector

Transient calculation

Assume the MC has N states.
Let $\pi_{i}(n)$ be the probability of system at state i after n transitions if its state at $n=0$ is known.
We have:

$$
\begin{align*}
\sum_{i=1}^{N} \pi_{i}(n) & =1 \tag{1}\\
\pi_{j}(n+1) & =\sum_{i=1}^{N} \pi_{i}(n) p_{i j} \text { for } n=0,1,2, . . \tag{2}
\end{align*}
$$

Transient State Probability Vector

Iterative method

In vector form, we have:

$$
\boldsymbol{\pi}(n+1)=\pi(n) \boldsymbol{P} \text { for } n=0,1,2, \ldots
$$

or

$$
\begin{aligned}
\boldsymbol{\pi}(1)= & \boldsymbol{\pi}(0) \boldsymbol{P} \\
\boldsymbol{\pi}(2)= & \boldsymbol{\pi}(1) \boldsymbol{P}=\boldsymbol{\pi}(0) \boldsymbol{P}^{2} \\
\boldsymbol{\pi}(3)= & \boldsymbol{\pi}(2) \boldsymbol{P}=\boldsymbol{\pi}(0) \boldsymbol{P}^{3} \\
\ldots & \cdots \\
\boldsymbol{\pi}(n)= & \boldsymbol{\pi}(0) \boldsymbol{P}^{n} \text { for } n=0,1,2, \ldots
\end{aligned}
$$

Illustration of toymaker

Assume $\pi(0)=[1,0]$

$n=$	0	1	2	3	4	5	\ldots
$\pi_{1}(n)$	1	0.5	0.45	0.445	0.4445	0.44445	\ldots
$\pi_{2}(n)$	0	0.5	0.55	0.555	0.5555	0.55555	\ldots.

Assume $\pi(0)=[0,1]$

$n=$	0	1	2	3	4	5	\ldots
$\pi_{1}(n)$	0	0.4	0.44	0.444	0.4444	0.44444	\ldots
$\pi_{2}(n)$	1	0.6	0.56	0.556	0.5556	0.55556	\ldots.

Note π at steady state is independent of the initial state vector.

Review of z-transform

Examples:

Time Sequence $f(n)$	z-transform $F(z)$
$f(n)=1$ if $n \geq 0,0$ otherwise	$\frac{1}{1-z}$
$k f(n)$	$k F(z)$
$\alpha^{n} f(n)$	$F(\alpha z)$
$f(n)=\alpha^{n}$, for $n \geq 0$	$\frac{1}{1-\alpha z}$
$f(n)=n \alpha^{n}$, for $n \geq 0$	$\frac{\alpha}{(1-\alpha z)^{2}}$
$f(n)=n$, for $n \geq 0$	$\frac{z}{(1-2)^{2}}$
$f(n-1)$, or shift left by one	$z F(z)$
$f(n+1)$, or shift right by one	$z^{-1}[F(z)-f(0)]$

z-transform of iterative equation

$$
\pi(n+1)=\pi(n) \boldsymbol{P} \quad \text { for } n=0,1,2, \ldots
$$

Taking the z-transform:

$$
\begin{aligned}
z^{-1}[\boldsymbol{\Pi}(z)-\boldsymbol{\pi}(0)] & =\boldsymbol{\Pi}(z) \boldsymbol{P} \\
\boldsymbol{\Pi}(z)-z \boldsymbol{\Pi}(z) \boldsymbol{P} & =\boldsymbol{\pi}(0) \\
\boldsymbol{\Pi}(z)(\boldsymbol{I}-z \boldsymbol{P}) & =\boldsymbol{\pi}(0) \\
\boldsymbol{\Pi}(z) & =\boldsymbol{\pi}(0)(\boldsymbol{I}-z \boldsymbol{P})^{-1}
\end{aligned}
$$

We have $\boldsymbol{\Pi}(z) \Leftrightarrow \pi(n)$ and $(\boldsymbol{I}-z \boldsymbol{P})^{-1} \Leftrightarrow \boldsymbol{P}^{n}$. In other words, from $\Pi(z)$, we can perform transform inversion to obtain $\pi(n)$, for $n \geq 0$, which gives us the transient probability vector.

Example: Toymaker

Given:

$$
\boldsymbol{P}=\left[\begin{array}{ll}
\frac{1}{2} & \frac{1}{2} \\
\frac{2}{5} & \frac{3}{5}
\end{array}\right]
$$

We have:

$$
\begin{gathered}
(\boldsymbol{I}-z \boldsymbol{P})=\left[\begin{array}{cc}
1-\frac{1}{2} z & -\frac{1}{2} z \\
-\frac{2}{5} z & 1-\frac{3}{5} z
\end{array}\right] \\
(\boldsymbol{I}-z \boldsymbol{P})^{-1}=\left[\begin{array}{cc}
\frac{1-\frac{3}{5} z}{(1-z)\left(1-\frac{1}{10} z\right)} & \frac{\frac{1}{2} z}{(1-z)\left(1-\frac{1}{10} z\right)} \\
\frac{2}{5} z & \frac{1-\frac{1}{2} z}{(1-z)\left(1-\frac{1}{10} z\right)}
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
(\boldsymbol{I}-z \boldsymbol{P})^{-1} & =\left[\begin{array}{ll}
\frac{4 / 9}{1-z}+\frac{5 / 9}{1-\frac{z}{10}} & \frac{5 / 9}{1-z}+\frac{-5 / 9}{1-\frac{2}{10}} \\
\frac{4 / 9}{1-z}+\frac{-4 / 9}{1-\frac{2}{10}} & \frac{5 / 9}{1-\frac{2}{10}}+\frac{4 / 9}{1-\frac{2}{10}}
\end{array}\right] \\
& =\frac{1}{1-z}\left[\begin{array}{cc}
4 / 9 & 5 / 9 \\
4 / 9 & 5 / 9
\end{array}\right]+\frac{1}{1-\frac{1}{10} z}\left[\begin{array}{cc}
5 / 9 & -5 / 9 \\
-4 / 9 & 4 / 9
\end{array}\right]
\end{aligned}
$$

Let $\boldsymbol{H}(n)$ be the inverse of $(\boldsymbol{I}-z \boldsymbol{P})^{-1}$ (or $\left.\boldsymbol{P}^{n}\right)$:

$$
\boldsymbol{H}(n)=\left[\begin{array}{ll}
4 / 9 & 5 / 9 \\
4 / 9 & 5 / 9
\end{array}\right]+\left(\frac{1}{10}\right)^{n}\left[\begin{array}{cc}
5 / 9 & -5 / 9 \\
-4 / 9 & 4 / 9
\end{array}\right]=\boldsymbol{S}+\boldsymbol{T}(n)
$$

Therefore:

$$
\boldsymbol{\pi}(n)=\boldsymbol{\pi}(0) \boldsymbol{H}(n) \text { for } n=0,1,2 \ldots
$$

A closer look into \boldsymbol{P}^{n}

What is the convergence rate of a particular MC? Consider:

$$
\begin{gathered}
\boldsymbol{P}=\left[\begin{array}{ccc}
0 & 3 / 4 & 1 / 4 \\
1 / 4 & 0 & 3 / 4 \\
1 / 4 & 1 / 4 & 1 / 2
\end{array}\right], \\
(\boldsymbol{I}-z \boldsymbol{P})=\left[\begin{array}{ccc}
1 & -\frac{3}{4} z & -\frac{1}{4} z \\
-\frac{1}{4} z & 1 & -\frac{3}{4} z \\
-\frac{1}{4} z & -\frac{1}{4} z & 1-\frac{1}{2} z
\end{array}\right] .
\end{gathered}
$$

A closer look into P^{n} : continue

We have

$$
\begin{aligned}
\operatorname{det}(\boldsymbol{I}-z \boldsymbol{P}) & =1-\frac{1}{2} z-\frac{7}{16} z^{2}-\frac{1}{16} z^{2} \\
& =(1-z)\left(1+\frac{1}{4} z\right)^{2}
\end{aligned}
$$

It is easy to see that $z=1$ is always a root of the determinant for an irreducible Markov chain (which corresponds to the equilibrium solution).

A closer look into P^{n} : continue

$$
\begin{aligned}
{[\boldsymbol{I}-z \boldsymbol{P}]^{-1}=} & \frac{1}{(1-z)[1+(1 / 4) z]^{2}} \\
& \times\left[\begin{array}{ccc}
1-\frac{1}{2} z-\frac{3}{16} z^{2} & \frac{3}{4} z-\frac{5}{16} z^{2} & \frac{1}{4} z+\frac{9}{16} z^{2} \\
\frac{1}{4} z-\frac{1}{16} z^{2} & 1-\frac{1}{2} z-\frac{1}{16} z^{2} & \frac{3}{4} z+\frac{1}{16} z^{2} \\
\frac{1}{4} z-\frac{1}{16} z^{2} & 1-\frac{1}{4} z-\frac{3}{16} z^{2} & 1-\frac{3}{16} z^{2}
\end{array}\right]
\end{aligned}
$$

Now the only issue is to find the inverse via partial fraction expansion.

A closer look into P^{n} : continue

$$
\begin{aligned}
{[\boldsymbol{I}-z \boldsymbol{P}]^{-1}=} & \frac{1 / 25}{1-z}\left[\begin{array}{lll}
5 & 7 & 13 \\
5 & 7 & 13 \\
5 & 7 & 13
\end{array}\right]+\frac{1 / 5}{(1+z / 4)}\left[\begin{array}{ccc}
0 & -8 & 8 \\
0 & 2 & -2 \\
0 & 2 & -2
\end{array}\right] \\
& +\frac{1 / 25}{(1+z / 4)^{2}}\left[\begin{array}{ccc}
20 & 33 & -53 \\
-5 & 8 & -3 \\
-5 & -17 & 22
\end{array}\right]
\end{aligned}
$$

A closer look into \boldsymbol{P}^{n} : continue

$$
\begin{aligned}
H(n)= & \frac{1}{25}\left[\begin{array}{lll}
5 & 7 & 13 \\
5 & 7 & 13 \\
5 & 7 & 13
\end{array}\right]+\frac{1}{5}(n+1)\left(-\frac{1}{4}\right)^{n}\left[\begin{array}{ccc}
0 & -8 & 8 \\
0 & 2 & -2 \\
0 & 2 & -2
\end{array}\right] \\
& +\frac{1}{5}\left(-\frac{1}{4}\right)^{n}\left[\begin{array}{ccc}
20 & 33 & -53 \\
-5 & 8 & -3 \\
-5 & -17 & 22
\end{array}\right] \quad n=0,1, \ldots
\end{aligned}
$$

A closer look into \boldsymbol{P}^{n} : continue

Important Points

- Equilibrium solution is independent of the initial state.
- Two transient matrices, which decay in the limit.
- The rate of decay is related to the characteristic values, which is one over the zeros of the determinant.
- The characteristic values are $1,1 / 4$, and $1 / 4$.
- The decay rate at each step is $1 / 16$.

Motivation

- An N-state MC earns $r_{i j}$ dollars when it makes a transition from state i to j.
- We can have a reward matrix $\boldsymbol{R}=\left[r_{i j}\right]$.
- The Markov process accumulates a sequence of rewards.
- What we want to find is the transient cumulative rewards, or even long-term cumulative rewards.
- For example, what is the expected earning of the toymaker in n weeks if he (she) is now in state i ?

Let $v_{i}(n)$ be the expected total rewards in the next n transitions:

$$
\begin{align*}
v_{i}(n) & =\sum_{j=1}^{N} p_{i j}\left[r_{i j}+v_{j}(n-1)\right] \quad i=1, \ldots, N, n=1,2, \ldots \tag{3}\\
& =\sum_{j=1}^{N} p_{i j} r_{i j}+\sum_{j=1}^{N} p_{i j} v_{j}(n-1) \quad i=1, \ldots, N, n=1,2, \ldots \tag{4}
\end{align*}
$$

Let $q_{i}=\sum_{j=1}^{N} p_{i j} r_{i j}$, for $i=1, \ldots, N$ and q_{i} is the expected reward for the next transition if the current state is i, and

$$
\begin{equation*}
v_{i}(n)=q_{i}+\sum_{j=1}^{N} p_{i j} v_{j}(n-1) \quad i=1, \ldots, N, n=1,2, \ldots \tag{5}
\end{equation*}
$$

In vector form, we have:

$$
\begin{equation*}
\boldsymbol{v}(n)=\boldsymbol{q}+\boldsymbol{P} \boldsymbol{v}(n-1) \quad n=1,2, . . \tag{6}
\end{equation*}
$$

Example

Parameters

- Successful business and again a successful business in the following week, earns $\$ 9$.
- Unsuccessful business and again an unsuccessful business in the following week, loses \$7.
- Successful (or unsuccessful) business and an unsuccessful (successful) business in the following week, earns $\$ 3$.

Example

Parameters

- Reward matrix $\boldsymbol{R}=\left[\begin{array}{cc}9 & 3 \\ 3 & -7\end{array}\right]$, and $\boldsymbol{P}=\left[\begin{array}{cc}0.5 & 0.5 \\ 0.4 & 0.6\end{array}\right]$.
- We have $\boldsymbol{q}=\left[\begin{array}{c}0.5(9)+0.5(3) \\ 0.4(3)+0.6(-7)\end{array}\right]=\left[\begin{array}{c}6 \\ -3\end{array}\right]$. Use:

$$
\begin{equation*}
v_{i}(n)=q_{i}+\sum_{j=1}^{N} p_{i j} v_{j}(n-1), \quad \text { for } i=1,2, n=1,2, \ldots \tag{7}
\end{equation*}
$$

- Assume $v_{1}(0)=v_{2}(0)=0$, we have:

$n=$	0	1	2	3	4	5	\ldots
$v_{1}(n)$	0	6	7.5	8.55	9.555	10.5555	\ldots.
$v_{2}(n)$	0	-3	-2.4	-1.44	-0.444	0.5556	\ldots

Example

Observations

- If one day to go and if I am successful (unsuccessful), I should continue (stop) my business.
- If I am losing and I still have four or less days to go, I should stop.
- For large n, the long term average gain, $v_{1}(n)-v_{2}(n)$, has a difference of $\$ 10$ if I start from state 1 instead of state 2. In other words, starting from a successful business will have $\$ 10$ gain, as compare with an unsuccessful business.
- For large $n, v_{1}(n)-v_{1}(n-1)=1$ and $v_{2}(n)-v_{2}(n-1)=1$. In other words, each day brings a $\$ 1$ of profit.

z-transform reward analysis for toymaker

Equation (7) can be written:

$$
v_{i}(n+1)=q_{i}+\sum_{j=1}^{N} p_{i j} v_{j}(n), \quad \text { for } i=1,2, n=0,1,2, \ldots
$$

Apply z-transform, we have:

$$
\begin{aligned}
z^{-1}[\boldsymbol{v}(z)-\boldsymbol{v}(0)] & =\frac{1}{1-z} \boldsymbol{q}+\boldsymbol{P} \boldsymbol{v}(z) \\
\boldsymbol{v}(z)-\boldsymbol{v}(0) & =\frac{z}{1-z} \boldsymbol{q}+z \boldsymbol{P} \boldsymbol{v}(z) \\
(I-z P) \boldsymbol{v}(z) & =\frac{z}{1-z} \boldsymbol{q}+\boldsymbol{v}(0) \\
\boldsymbol{v}(z) & =\frac{z}{1-z}(I-z \boldsymbol{P})^{-1} \boldsymbol{q}+(I-z \boldsymbol{P})^{-1} \boldsymbol{v}(0)
\end{aligned}
$$

z-transform reward analysis for toymaker

Assume $\boldsymbol{v}(0)=\mathbf{0}$ (i.e., terminating cost is zero), we have:

$$
\begin{equation*}
\boldsymbol{v}(z)=\frac{z}{1-z}(I-z \boldsymbol{P})^{-1} \boldsymbol{q} . \tag{8}
\end{equation*}
$$

Based on previous derivation:

$$
(I-z P)^{-1}=\frac{1}{1-z}\left[\begin{array}{cc}
4 / 9 & 5 / 9 \\
4 / 9 & 5 / 9
\end{array}\right]+\frac{1}{1-\frac{1}{10} z}\left[\begin{array}{cc}
5 / 9 & -5 / 9 \\
-4 / 9 & 4 / 9
\end{array}\right]
$$

z-transform reward analysis for toymaker

$$
\begin{aligned}
\frac{z}{1-z}(I-z \boldsymbol{P})^{-1} & =\frac{z}{(1-z)^{2}}\left[\begin{array}{cc}
4 / 9 & 5 / 9 \\
4 / 9 & 5 / 9
\end{array}\right]+\frac{z}{(1-z)\left(1-\frac{1}{10} z\right)}\left[\begin{array}{cc}
5 / 9 & -5 / 9 \\
-4 / 9 & 4 / 9
\end{array}\right] \\
& =\frac{z}{(1-z)^{2}}\left[\begin{array}{cc}
4 / 9 & 5 / 9 \\
4 / 9 & 5 / 9
\end{array}\right]+\left(\frac{10 / 9}{1-z}+\frac{-10 / 9}{1-\frac{1}{10} z}\right)\left[\begin{array}{cc}
5 / 9 & -5 / 9 \\
-4 / 9 & 4 / 9
\end{array}\right]
\end{aligned}
$$

Let $\boldsymbol{F}(n)=[z /(1-z)](\boldsymbol{I}-z \boldsymbol{P})^{-1}$, then

$$
\boldsymbol{F}(n)=n\left[\begin{array}{ll}
4 / 9 & 5 / 9 \\
4 / 9 & 5 / 9
\end{array}\right]+\frac{10}{9}\left[1-\left(\frac{1}{10}\right)^{n}\right]\left[\begin{array}{cc}
5 / 9 & -5 / 9 \\
-4 / 9 & 4 / 9
\end{array}\right]
$$

Given that $\boldsymbol{q}=\left[\begin{array}{c}6 \\ -3\end{array}\right]$, we can obtain $\boldsymbol{v}(n)$ in closed form.

z-transform reward analysis for toymaker

$$
\boldsymbol{v}(n)=n\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\frac{10}{9}\left[1-\left(\frac{1}{10}\right)^{n}\right]\left[\begin{array}{c}
5 \\
-4
\end{array}\right] \quad n=0,1,2,3 \ldots
$$

When $n \rightarrow \infty$, we have:

$$
v_{1}(n)=n+\frac{50}{9} \quad ; v_{2}(n)=n-\frac{40}{9} .
$$

- For large $n, v_{1}(n)-v_{2}(n)=10$.
- For large n, the slope of $v_{1}(n)$ or $v_{2}(n)$, the average reward per transition, is 1 , or one unit of return per week. We can the average reward per transition the gain.

Asymptotic Behavior: for long duration process

- We derived this previously:

$$
\boldsymbol{v}(z)=\frac{z}{1-z}(I-z \boldsymbol{P})^{-1} \boldsymbol{q}+(I-z \boldsymbol{P})^{-1} \boldsymbol{v}(0) .
$$

- The inverse transform of $(\boldsymbol{I}-z \boldsymbol{P})^{-1}$ has the form of $\boldsymbol{S}+\boldsymbol{T}(n)$.
- \boldsymbol{S} is a stochastic matrix whose i th row is the limiting state probabilities if the system started in the i th state,
- $\boldsymbol{T}(n)$ is a set of differential matrices with geometrically decreasing coefficients.

Asymptotic Behavior: for long duration process

- We can write $(\boldsymbol{I}-\boldsymbol{z P})^{-1}=\frac{1}{1-z} \mathbf{S}+\boldsymbol{T}(z)$ where $\mathcal{T}(z)$ is the z-transform of $\boldsymbol{T}(n)$. Now we have

$$
\boldsymbol{v}(z)=\frac{z}{(1-z)^{2}} \boldsymbol{S} \boldsymbol{q}+\frac{z}{1-z} \mathcal{T}(z) \boldsymbol{q}+\frac{1}{1-z} \boldsymbol{S} \boldsymbol{v}(0)+\mathcal{T}(z) \boldsymbol{v}(0)
$$

- After inversion, $\boldsymbol{v}(n)=n \mathbf{S q}+\boldsymbol{T}(1) \boldsymbol{q}+\boldsymbol{S v}(0)$.
- If a column vector $\boldsymbol{g}=\left[g_{i}\right]$ is defined as $\boldsymbol{g}=\boldsymbol{S} \boldsymbol{q}$, then

$$
\begin{equation*}
\boldsymbol{v}(n)=n \boldsymbol{g}+\boldsymbol{T}(1) \boldsymbol{q}+\boldsymbol{S} \boldsymbol{v}(0) \tag{9}
\end{equation*}
$$

Asymptotic Behavior: for long duration process

- Since any row of \boldsymbol{S} is $\boldsymbol{\pi}$, the steady state prob. vector of the MC, so all g_{i} are the same and $g_{i}=g=\sum_{i=1}^{N} \pi_{i} q_{i}$.
- Define $\boldsymbol{v}=\boldsymbol{T}(1) \boldsymbol{q}+\boldsymbol{S v}(0)$, we have:

$$
\begin{equation*}
\boldsymbol{v}(n)=n \boldsymbol{g}+\boldsymbol{v} \quad \text { for large } n . \tag{10}
\end{equation*}
$$

Example of asymptotic Behavior

For the toymaker's problem,

$$
\begin{aligned}
(I-z P)^{-1} & =\frac{1}{1-z}\left[\begin{array}{cc}
4 / 9 & 5 / 9 \\
4 / 9 & 5 / 9
\end{array}\right]+\frac{1}{1-\frac{1}{10} z}\left[\begin{array}{cc}
5 / 9 & -5 / 9 \\
-4 / 9 & 4 / 9
\end{array}\right] \\
& =\frac{1}{1-z} S+\mathcal{T}(z)
\end{aligned}
$$

Since

$$
\begin{gathered}
\boldsymbol{S}=\left[\begin{array}{ll}
4 / 9 & 5 / 9 \\
4 / 9 & 5 / 9
\end{array}\right] ; \quad \boldsymbol{T}(1)=\left[\begin{array}{cc}
50 / 81 & -50 / 81 \\
-40 / 81 & 40 / 81
\end{array}\right] \\
\boldsymbol{q}=\left[\begin{array}{c}
6 \\
-3
\end{array}\right] ; \quad \boldsymbol{g}=\mathbf{S q}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
\end{gathered}
$$

By assumption, $\boldsymbol{v}(0)=0$, then $\boldsymbol{v}=\mathcal{T}(1) \boldsymbol{q}=\left[\begin{array}{c}50 / 9 \\ -40 / 9\end{array}\right]$.
Therefore, we have $v_{1}(n)=n+\frac{50}{9}$ and $v_{2}(n)=n-\frac{40}{9}$.

Toymaker's Alternatives

- Suppose that the toymaker has other alternatives.
- If he has a successful toy, use advertising to decrease the chance that the toy will fall from favor.
- However, there is a cost to advertising and therefore the expected profit will generally be lower.
- If in state 1 and advertising is used, we have:

$$
\left[p_{1, j}\right]=[0.8,0.2] \quad\left[r_{1, j}\right]=[4,4]
$$

- In other words, for each state, the toymaker has to make a decision, advertise or not.

Toymaker's Alternatives

- In general we have policy 1 (no advertisement) and policy 2 (advertisement). Use superscript to represent policy.
- The transition probability matrices and rewards in state 1 (successful toy) are:

$$
\begin{aligned}
& {\left[p_{1, j}^{1}\right]=[0.5,0.5],\left[r_{1, j}^{1}\right]=[9,3]} \\
& {\left[p_{1, j}^{2}\right]=[0.8,0.2],\left[r_{1, j}^{2}\right]=[4,4]}
\end{aligned}
$$

- The transition probability matrices and rewards in state 2 (unsuccessful toy) are:

$$
\begin{aligned}
& {\left[p_{2, j}^{1}\right]=[0.4,0.6],\left[r_{2, j}^{1}\right]=[3,-7]} \\
& {\left[p_{2, j}^{2}\right]=[0.7,0.3],\left[r_{2, j}^{2}\right]=[1,-19]}
\end{aligned}
$$

Toymaker's Sequential Decision Process

- Suppose that the toymaker has n weeks remaining before his business will close down and n is the number of stages remaining in the process.
- The toymaker would like to know as a function of n and his present state, what alternative (policy) he should use to maximize the total earning over n-week period.
- Define $d_{i}(n)$ as the policy to use when the system is in state i and there are n-stages to go.
- Redefine $v_{i}^{*}(n)$ as the total expected return in n stages starting from state i if an optimal policy is used.
- We can formulate $v_{i}^{*}(n)$ as

$$
v_{i}^{*}(n+1)=\max _{k} \sum_{j=1}^{N} p_{i j}^{k}\left[r_{i j}^{k}+v_{j}^{*}(n)\right] \quad n=0,1, \ldots
$$

- Based on the "Principle of Optimality", we have

$$
v_{i}^{*}(n+1)=\max _{k}\left[q_{i}^{k}+\sum_{j=1}^{N} p_{i j}^{k} v_{j}^{*}(n)\right] \quad n=0,1, \ldots
$$

In other words, we start from $n=0$, then $n=1$, and so on.

The numerical solution

- Assume $v_{i}^{*}=0$ for $i=1,2$, we have:

$n=$	0	1	2	3	4	\cdots
$v_{1}(n)$	0	6	8.20	10.222	12.222	\cdots
$v_{2}(n)$	0	-3	-1.70	0.232	2.223	\cdots
$d_{1}(n)$	-	1	2	2	2	\cdots
$d_{2}(n)$	-	1	2	2	2	\cdots

Lessons learnt

- For $n \geq 2$ (greater than or equal to two weeks decision), it is better to do advertisement.
- For this problem, convergence seems to have taken place at $n=2$. But for general problem, it is usually difficult to quantify.
- Some limitations of this value-iteration method:
- What about infinite stages?
- What about problems with many states (e.g., n is large) and many possible policies (e.g., k is large)?
- What is the computational cost?

Preliminary

- From previous section, we know that the total expected earnings depend upon the total number of transitions (n), so the quantity can be unbounded.
- A more useful quantity is the average earnings per unit time.
- Assume we have an N-state Markov chain with one-step transition probability matrix $\boldsymbol{P}=\left[p_{i j}\right]$ and reward matrix $\boldsymbol{R}=\left[r_{i j}\right]$. Assume ergodic MC, we have the limiting state probabilities π_{i} for $i=1, \ldots, N$, the gain g is

$$
g=\sum_{i=1}^{N} \pi_{i} q_{i} ; \quad \text { where } q_{i}=\sum_{j=1}^{N} p_{i j} r_{i j} i=1, \ldots, N .
$$

A Possible five-state Markov Chain SDP

- Consider a MC with $N=5$ states and $k=5$ possible alternatives. It can be illustrated by

- X indicate the the chosen policy, we have $d=[3,2,2,1,3]$.
- Even for this small system, we have $4 \times 3 \times 2 \times 1 \times 5=120$ different policies.

Suppose we are operating under a given policy with a specific MC with rewards. Let $v_{i}(n)$ be the total expected reward that the system obtains in n transitions if it starts from state i. We have:

$$
\begin{align*}
& v_{i}(n)=\sum_{j=1}^{N} p_{i j} r_{i j}+\sum_{j=1}^{N} p_{i j} v_{j}(n-1) \quad n=1,2, \ldots \\
& v_{i}(n)=q_{i}+\sum_{j=1}^{N} p_{i j} v_{j}(n-1) \quad n=1,2, \ldots \tag{11}
\end{align*}
$$

Previous, we derived the asymptotic expression of $\boldsymbol{v}(n)$ in Eq. (9) as

$$
\begin{equation*}
v_{i}(n)=n\left(\sum_{i=1}^{N} \pi_{i} q_{i}\right)+v_{i}=n g+v_{i} \quad \text { for large } n . \tag{12}
\end{equation*}
$$

For large number of transitions, we have:

$$
\begin{aligned}
n g+v_{i} & =q_{i}+\sum_{j=1}^{N} p_{i j}\left[(n-1) g+v_{j}\right] \quad i=1, \ldots, N \\
n g+v_{i} & =q_{i}+(n-1) g \sum_{j=1}^{N} p_{i j}+\sum_{j=1}^{N} p_{i j} v_{j} .
\end{aligned}
$$

Since $\sum_{j=1}^{N} p_{i j}=1$, we have

$$
\begin{equation*}
g+v_{i}=q_{i}+\sum_{j=1}^{N} p_{i j} v_{j} \quad i=1, \ldots, N \tag{13}
\end{equation*}
$$

Now we have N linear simultaneous equations but $N+1$ unknown (v_{i} and g). To resolve this, set $v_{N}=0$, and solve for other v_{i} and g. They will be called the relative values of the policy.

On Policy Improvement

- Given these relative values, we can use them to find a policy that has a higher gain than the original policy.
- If we had an optimal policy up to stage n, we could find the best alternative in the ith state at stage $n+1$ by

$$
\arg \max _{k} q_{i}^{k}+\sum_{j=1}^{N} p_{i j}^{k} v_{j}(n)
$$

- For large n, we can perform substitution as

$$
\arg \max _{k} q_{i}^{k}+\sum_{j=1}^{N} p_{i j}^{k}\left(n g+v_{j}\right)=\arg \max _{k} q_{i}^{k}+n g+\sum_{j=1}^{N} p_{i j}^{k} v_{j} .
$$

- Since $n g$ is independent of alternatives, we can maximize

$$
\begin{equation*}
\arg \max _{k} q_{i}^{k}+\sum_{j=1}^{N} p_{i j}^{k} v_{j} \tag{14}
\end{equation*}
$$

- We can use the relative values $\left(v_{j}\right)$ from the value-determination operation for the policy that was used up to stage n and apply them to Eq. (14).
- In summary, the policy improvement is:
- For each state i, find the alternative k which maximizes Eq. (14) using the relative values determined by the old policy.
- The alternative k now becomes d_{i} the decision for state i.
- A new policy has been determined when this procedure has been performed for every state.

The Policy Iteration Method

(1) Value-Determination Method: use $p_{i j}$ and q_{i} for a given policy to solve

$$
g+v_{i}=q_{i}+\sum_{j=1}^{N} p_{i j} v_{j} \quad i=1, \ldots, N
$$

for all relative values of v_{i} and g by setting $v_{N}=0$.
(2) Policy-Improvement Routine: For each state i, find alternative k that maximizes

$$
q_{i}^{k}+\sum_{j=1}^{N} p_{i j}^{k} v_{j}
$$

using v_{i} of the previous policy. The alternative k becomes the new decision for state i, q_{i}^{k} becomes q_{i} and $p_{i j}^{k}$ becomes $p_{i j}$.
(3) Test for convergence (check for d_{i} and g), if not, go back to step 1 .

Toymaker's problem

For the toymaker we presented, we have policy 1 (no advertisement) and policy 2 (advertisement).

state i	alternative (k)	$p_{i 1}^{k}$	p_{12}^{k}	$r_{i 1}^{k}$	$r_{i 2}^{k}$	q_{i}^{k}
1	no advertisement	0.5	0.5	9	3	6
1	advertisement	0.8	0.2	4	4	4
2	no advertisement	0.4	0.6	3	-7	-3
2	advertisement	0.7	0.3	1	-19	-5

Since there are two states and two alternatives, there are four policies, $(A, A),(\bar{A}, A),(A, \bar{A}),(\bar{A}, \bar{A})$, each with the associated transition probabilities and rewards. We want to find the policy that will maximize the average earning for indefinite rounds.

Start with policy-improvement

- Since we have no a priori knowledge about which policy is best, we set $v_{1}=v_{2}=0$.
- Enter policy-improvement which will select an initial policy that maximizes the expected immediate reward for each state.
- Outcome is to select policy 1 for both states and we have

$$
\boldsymbol{d}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \boldsymbol{P}=\left[\begin{array}{ll}
0.5 & 0.5 \\
0.4 & 0.6
\end{array}\right] \quad \boldsymbol{q}=\left[\begin{array}{c}
6 \\
-3
\end{array}\right]
$$

- Now we can enter the value-determination operation.

Value-determination operation

- Working equation: $g+v_{i}=q_{i}+\sum_{j=1}^{N} p_{i j} v_{j}$, for $i=1, \ldots, N$.
- We have

$$
g+v_{1}=6+0.5 v_{1}+0.5 v_{2}, \quad g+v_{2}=-3+0.4 v_{1}+0.6 v_{2} .
$$

- Setting $v_{2}=0$ and solving the equation, we have

$$
g=1, \quad v_{1}=10, \quad v_{2}=0
$$

- Now enter policy-improvement routine.

Policy-improvement routine

State i	Alternative k	Test Quantity $q_{i}^{k}+\sum_{j=1}^{N} p_{i j}^{k} v_{j}$	
1	1	$6+0.5(10)+0.5(0)=11$	X
1	2	$4+0.8(10)+0.2(0)=12$	$\sqrt{ }$
2	1	$-3+0.4(10)+0.6(0)=1$	X
2	2	$-5+0.7(10)+0.3(0)=2$	$\sqrt{ }$

- Now we have a new policy, instead of (\bar{A}, \bar{A}), we have (A, A). Since the policy has not converged, enter value-determination.
- For this policy (A, A), we have

$$
\boldsymbol{d}=\left[\begin{array}{l}
2 \\
2
\end{array}\right] \quad \boldsymbol{P}=\left[\begin{array}{ll}
0.8 & 0.2 \\
0.7 & 0.3
\end{array}\right] \quad \boldsymbol{q}=\left[\begin{array}{c}
4 \\
-5
\end{array}\right]
$$

Value-determination operation

- We have

$$
g+v_{1}=4+0.8 v_{1}+0.2 v_{2}, \quad g+v_{2}=-5+0.7 v_{1}+0.3 v_{2}
$$

- Setting $v_{2}=0$ and solving the equation, we have

$$
g=2, \quad v_{1}=10, \quad v_{2}=0
$$

- The gain of the policy (A, A) is thus twice that of the original policy, and the toymaker will earn 2 units per week on the average, if he follows this policy.
- Enter the policy-improvement routine again to check for convergence, but since v_{i} didn't change, it converged and we stop.

The importance of discount factor β.

Working equation for SDP with discounting

- Let $v_{i}(n)$ be the present value of the total expected reward for a system in state i with n transitions before termination.

$$
\begin{aligned}
v_{i}(n) & =\sum_{j=1}^{N} p_{i j}\left[r_{i j}+\beta v_{j}(n-1)\right] \quad i=1,2, \ldots, N, i=1,2, \ldots \\
& =q_{i}+\beta \sum_{j=1}^{N} p_{i j} v_{j}(n-1) \quad i=1,2, \ldots, N . i=1,2, \ldots(15)
\end{aligned}
$$

- The above equation also can represent the model of uncertainty (with probability β) of continuing another transition.

Z-transform of $\boldsymbol{v}(n)$

$$
\begin{align*}
\boldsymbol{v}(n+1) & =\boldsymbol{q}+\beta \boldsymbol{P} \boldsymbol{v}(n) \\
z^{-1}[\mathbf{v}(z)-\boldsymbol{v}(0)] & =\frac{1}{1-z} \boldsymbol{q}+\beta \boldsymbol{P} \mathbf{v}(z) \\
\boldsymbol{v}(z)-\boldsymbol{v}(0) & =\frac{z}{1-z} \boldsymbol{q}+\beta \boldsymbol{P} \mathbf{v}(z) \\
(\boldsymbol{I}-\beta z \boldsymbol{P}) \boldsymbol{v}(z) & =\frac{z}{1-z} \boldsymbol{q}+\boldsymbol{v}(0) \\
\boldsymbol{v}(z) & =\frac{z}{1-z}(\boldsymbol{I}-\beta z \boldsymbol{P})^{-1} \boldsymbol{q}+(\boldsymbol{I}-\beta z \boldsymbol{P})^{-1} \boldsymbol{v}(0) \tag{16}
\end{align*}
$$

Example

Using the toymaker's example, we have

$$
\boldsymbol{d}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] ; \quad \boldsymbol{P}=\left[\begin{array}{cc}
1 / 2 & 1 / 2 \\
2 / 5 & 3 / 5
\end{array}\right] ; \quad \boldsymbol{q}=\left[\begin{array}{c}
6 \\
-3
\end{array}\right]
$$

In short, he is not advertising and not doing research.
Also, there is a probability that he will go out of business after a week $\left(\beta=\frac{1}{2}\right)$. If he goes out of business, his reward will be zero $(\boldsymbol{v}(0)=0)$.

What is the $\boldsymbol{v}(n)$?

Using Eq. (16), we have

$$
\begin{aligned}
\boldsymbol{v}(z) & =\frac{z}{1-z}(\boldsymbol{I}-\beta z \boldsymbol{P})^{-1} \boldsymbol{q}=\mathcal{H}(z) \boldsymbol{q} . \\
\left(\boldsymbol{I}-\frac{1}{2} z \boldsymbol{P}\right) & =\left[\begin{array}{cc}
1-\frac{1}{4} z & -\frac{1}{4} z \\
-\frac{1}{5} z & 1-\frac{3}{10} z
\end{array}\right] \\
\left(\boldsymbol{I}-\frac{1}{2} z \boldsymbol{P}\right)^{-1} & =\left[\begin{array}{cc}
\frac{1-\frac{3}{10} z}{\left(1-\frac{1}{2} z\right)\left(1-\frac{1}{20} z\right)} & \frac{1}{\left(1-\frac{1}{2} z\right)\left(1-\frac{1}{20} z\right)} \\
\frac{1}{5} z & \frac{1-\frac{1}{4} z}{\left(1-\frac{1}{2} z\right)\left(1-\frac{1}{20} z\right)} \\
\left(1-\frac{1}{2} z\right)\left(1-\frac{1}{20} z\right)
\end{array}\right] \\
\mathcal{H}(z) & =\left[\begin{array}{ll}
\frac{z\left(1-\frac{3}{10} z\right)}{(1-z)\left(1-\frac{1}{2} z\right)\left(1-\frac{1}{20} z\right)} & \frac{\frac{1}{4} z^{2}}{(1-z)\left(1-\frac{1}{2} z\right)\left(1-\frac{1}{20} z\right)} \\
\frac{\frac{1}{5} z^{2}}{(1-z)\left(1-\frac{1}{2} z\right)\left(1-\frac{1}{20} z\right)} & \frac{z\left(1-\frac{1}{4} z\right)}{(1-z)\left(1-\frac{1}{2} z\right)\left(1-\frac{1}{20} z\right)}
\end{array}\right]
\end{aligned}
$$

$\mathcal{H}(z)=\frac{1}{1-z}\left[\begin{array}{cc}\frac{28}{19} & \frac{10}{19} \\ \frac{8}{19} & \frac{30}{19}\end{array}\right]+\frac{1}{1-\frac{1}{2} z}\left[\begin{array}{cc}-\frac{8}{9} & -\frac{10}{9} \\ -\frac{8}{9} & -\frac{10}{9}\end{array}\right]+\frac{1}{1-\frac{1}{20} z}\left[\begin{array}{cc}-\frac{100}{171} & \frac{100}{171} \\ \frac{80}{171} & -\frac{80}{171}\end{array}\right]$
$\boldsymbol{H}(n)=\left[\begin{array}{cc}\frac{28}{19} & \frac{10}{19} \\ \frac{8}{19} & \frac{30}{19}\end{array}\right]+\left(\frac{1}{2}\right)^{n}\left[\begin{array}{cc}-\frac{8}{9} & -\frac{10}{9} \\ -\frac{8}{9} & -\frac{10}{9}\end{array}\right]+\left(\frac{1}{20}\right)^{n}\left[\begin{array}{cc}-\frac{100}{171} & \frac{100}{171} \\ \frac{80}{171} & -\frac{80}{171}\end{array}\right]$
Since $\boldsymbol{q}=\left[\begin{array}{c}6 \\ -3\end{array}\right]$, we have

$$
\boldsymbol{v}(n)=\left[\begin{array}{c}
\frac{138}{19} \\
-\frac{42}{19}
\end{array}\right]+\left(\frac{1}{2}\right)^{n}\left[\begin{array}{l}
-2 \\
-2
\end{array}\right]+\left(\frac{1}{20}\right)^{n}\left[\begin{array}{c}
-\frac{100}{19} \\
\frac{80}{9}
\end{array}\right]
$$

Note that $n \rightarrow \infty, v_{1}(n) \rightarrow \frac{138}{19}$ and $v_{2}(n) \rightarrow-\frac{42}{19}$, which is NOT a function of n as the non-discount case.

What is the present value $\boldsymbol{v}(n)$ as $n \rightarrow \infty$?

From Eq. (15), we have $\boldsymbol{v}(n+1)=\boldsymbol{q}+\beta \boldsymbol{P} \boldsymbol{v}(n)$, hence

$$
\begin{aligned}
\boldsymbol{v}(1) & =\boldsymbol{q}+\beta \boldsymbol{P} \boldsymbol{v}(0) \\
\mathbf{v}(2) & =\boldsymbol{q}+\beta \boldsymbol{P} \boldsymbol{q}+\beta^{2} \boldsymbol{P}^{2} \boldsymbol{v}(0) \\
\boldsymbol{v}(3) & =\boldsymbol{q}+\beta \boldsymbol{P} \boldsymbol{q}+\beta^{2} \boldsymbol{P}^{2} \boldsymbol{q}+\beta^{3} \boldsymbol{P}^{3} \boldsymbol{v}(0) \\
\vdots & =\vdots \\
\boldsymbol{v}(n) & =\left[\sum_{j=0}^{n-1}(\beta \boldsymbol{P})^{j}\right] \boldsymbol{q}+\beta^{n} \boldsymbol{P}^{n} \boldsymbol{v}(0) \\
\boldsymbol{v} & =\lim _{n \rightarrow \infty} \boldsymbol{v}(n)=\left[\sum_{j=0}^{\infty}(\beta \boldsymbol{P})^{j}\right] \boldsymbol{q}
\end{aligned}
$$

What is the present value $\boldsymbol{v}(n)$ as $n \rightarrow \infty$?

Note that $\boldsymbol{v}(0)=\mathbf{0}$. Since \boldsymbol{P} is a stochastic matrix, all its eigenvalues are less than or equal to 1 , and the matrix $\beta \boldsymbol{P}$ has eigenvalues that are strictly less than 1 because $0 \leq \beta<1$. We have

$$
\begin{equation*}
\boldsymbol{v}=\left[\sum_{j=0}^{\infty}(\beta \boldsymbol{P})^{j}\right] \boldsymbol{q}=(\boldsymbol{I}-\beta \boldsymbol{P})^{-1} \boldsymbol{q} \tag{17}
\end{equation*}
$$

Note: The above equation also provides a simple and efficient numerical method to compute \boldsymbol{v}.

Another way to solve \boldsymbol{v}

Direct Method

Another way to compute \boldsymbol{v}_{i} is to solve N equations:

$$
\begin{equation*}
v_{i}=q_{i}+\beta \sum_{j=1}^{N} p_{i j} v_{j} \quad i=1,2, \ldots, N \tag{18}
\end{equation*}
$$

Consider the present value of the toymaker's problem with $\beta=\frac{1}{2}$ and

$$
\boldsymbol{P}=\left[\begin{array}{ll}
1 / 2 & 1 / 2 \\
2 / 5 & 3 / 5
\end{array}\right] \quad \boldsymbol{q}=\left[\begin{array}{c}
6 \\
-3
\end{array}\right] .
$$

We have $v_{1}=6+\frac{1}{4} v_{1}+\frac{1}{4} v_{2}$ and $v_{2}=-3+\frac{1}{5} v_{1}+\frac{3}{10} v_{2}$, with solution $v_{1}=\frac{138}{19}$ and $v_{2}=-\frac{42}{19}$.

Value Determination for infinite horizon

- Assume large n (or $n \rightarrow \infty$) and that $\boldsymbol{v}(0)=0$.
- Evaluate the expected present reward for each state i using

$$
\begin{equation*}
v_{i}=q_{i}+\beta \sum_{j=1}^{N} p_{i j} v_{j} \quad i=1,2, \ldots, N . \tag{19}
\end{equation*}
$$

for a given set of transition probabilities $p_{i j}$ and the expected immediate reward q_{i}.

Policy-improvement

- The optimal policy is the one that has the highest present values in all states.
- If we had a policy that was optimal up to stage n, for state $n+1$, we should maximize $q_{i}^{k}+\beta \sum_{j=1}^{N} p_{i j} v_{j}(n)$ with respect to all alternative k in the $i^{\text {th }}$ state.
- Since we are interested in the infinite horizon, we substitute v_{j} for $v_{j}(n)$, we have $q_{i}^{k}+\beta \sum_{j=1}^{N} p_{i j} v_{j}$.
- Suppose that the present value for an arbitrary policy have been determined, then a better policy is to maximize

$$
q_{i}^{k}+\beta \sum_{j=1}^{N} p_{i j}^{k} v_{j}
$$

using v_{i} determined for the original policy. This k now becomes the new decision for the $i^{\text {th }}$ state.

Iteration for SDP with Discounting

(1) Value-Determination Operation: Use $p_{i j}$ and q_{i} to solve th set of equations

$$
v_{i}=q_{i}+\beta \sum_{j=1}^{N} p_{i j} v_{j} \quad i=1,2, \ldots, N .
$$

(2) Policy-Improvement Routing: For each state i, find the alternative k^{*} that maximizes

$$
q_{i}^{k}+\beta \sum_{j=1}^{N} p_{i j}^{k} v_{j}
$$

using the present values of v_{j} from the previous policy. Then k^{*} becomes the new decision for the i th state, $q_{i}^{k^{*}}$ becomes q_{i} and $p_{i j}^{k^{*}}$ becomes $p_{i j}$.
(3) Check for convergence of policy. If not, go back to step 1, else halt.

Consider the toymaker's example with $\beta=0.9$, we choose the initial policy that maximizes the expected immediate reward, we have

$$
\boldsymbol{d}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \boldsymbol{P}=\left[\begin{array}{ll}
0.5 & 0.5 \\
0.4 & 0.6
\end{array}\right] \quad \boldsymbol{q}=\left[\begin{array}{c}
6 \\
-3
\end{array}\right]
$$

Using the Value-Determination Operation, we have

$$
v_{1}=6+0.9\left(0.5 v_{1}+0.5 v_{2}\right) \quad v_{2}=-3+0.9\left(0.4 v_{1}+0.6 v_{2}\right)
$$

The solution is $v_{1}=15.5$ and $v_{2}=5.6$.

Policy-improvement routine

State i	Alternative k	Value Test Quantity $q_{i}^{k}+\beta \sum_{j=1}^{N} p_{i j}^{k} v_{j}$	
1	1	$6+0.9[0.5(15.5)+0.5(5.6)]=15.5$	X
1	2	$4+0.9[0.8(15.5)+0.2(5.6)]=16.2$	$\sqrt{ }$
2	1	$-3+0.9[0.4(15.5)+0.6(5.6)]=5.6$	X
2	2	$-5+0.9[0.7(15.5)+0.3(5.6)]=6.3$	$\sqrt{ }$

- Now we have a new policy, instead of (\bar{A}, \bar{A}), we have (A, A). Since the policy has not converged, enter value-determination.
- For this policy (A, A), we have

$$
\boldsymbol{d}=\left[\begin{array}{l}
2 \\
2
\end{array}\right] \quad \boldsymbol{P}=\left[\begin{array}{ll}
0.8 & 0.2 \\
0.7 & 0.3
\end{array}\right], \quad \boldsymbol{q}=\left[\begin{array}{c}
4 \\
-5
\end{array}\right]
$$

Value-Determination Operation

Using the Value-Determination Operation, we have

$$
v_{1}=4+0.9\left(0.8 v_{1}+0.2 v_{2}\right) \quad v_{2}=-5+0.9\left(0.7 v_{1}+0.3 v_{2}\right)
$$

The solution is $v_{1}=22.2$ and $v_{2}=12.3$, which indicate a signficant increase in present values.

Policy-improvement routine

State i	Alternative k	Value Test Quantity $q_{i}^{k}+\beta \sum_{j=1}^{N} p_{i j}^{k} v_{j}$	
1	1	21.5	X
1	2	22.2	$\sqrt{ }$
2	1	11.6	X
2	2	12.3	$\sqrt{ }$

- The present value $v_{1}=22.2$ and $v_{2}=12.3$.
- Now we have the same policy (A, A). Since the policy remains the same, and the present values are the same. We can stop.

