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Renewal Theory

Another notation for transform

Given a discrete r.v G̃ with gi = Prob[g̃ = i]
1 G(Z ) =

∑∞
i=0 giZ i

2 E [Z G̃] =
∑∞

i=0 Z iProb[g̃ = i] =
∑∞

i=0 Z igi Therefore,E [Z G̃] = G(Z )

Given a continuous r.v X̃ with fX̃ (x)
1 F ∗

X̃
(s) =

∫∞
x=0 fX̃ (x)e−sxdx

2 E [e−sX̃ ] =
∫∞

x=0 e−sx fX̃ (x)dx
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Renewal Theory

Residual Life

X0 Y

time1! 2! 3! n-1! n!

A2 A3A1 An-1 An

........

X

Interarrival time of bus is exponential w/ rate λ while hippie arrives
at an arbitrary instant in time
Question: How long must the hippie wait, on the average, till the
bus comes along?
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Renewal Theory

Answer
Answer 1 : Because the average interarrival time is 1

λ , therefore 1
2λ

Answer 2 : Because of memoryless, it has to wait 1
λ

General Result:

fX (x)dx = kxf (x)dx =
xf (x)∫∞

0 xf (x)dx

fY (y) =
1− F (y)∫∞
0 xf (x)dx

F ∗(s) =
1− F ∗(s)

m1

rn =
mn+1

(n + 1)m1

Particularly, r1 = x̄2

2x̄
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Renewal Theory

Derivation

P[x < X ≤ x + dx ] = fX (x)dx = kxf (x)dx∫ ∞
x=0

fX (x)dx = k
∫ ∞

x=0
xf (x)dx ⇒ 1 = km1

Therefore,

fX (x) =
1

m1
xf (x)

fY (y) = ?

P[Y ≤ y |X = x ] =
y
x

P[y < Y ≤ y + dy , x < X ≤ x + dx ] =

(
dy
x

)(
xf (x)

m1

)
dx
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Renewal Theory

continue:

fY (y)dy =

∫ ∞
x=y

P[y < Y ≤ y + dy , x < X ≤ x + dx ]

=

∫ ∞
x=y

(
dy
x

)(
xf (x)

m1
)dx =

1− F (y)

m1
dy

fY (y) =
1− F (y)

m1
since f (y) =

dF (y)

dy

=
1− F ∗(s)

sm1
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M/G/1

M/G/1

A(t) = 1− e−λt t ≥ 0
a(t) = λe−λt t ≥ 0
b(t) = general

Describe the state
[N(t),Xo(t)]

N(t): The no. of customers present at time t
Xo(t): Service time already received by the customer in service at
time t (or remaining service time).
Rather than using this approach, we use the method of the
imbedded Markov Chain
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M/G/1

Imbedded Markov Chain [N(t), Xo(t)]
Select the "departure" points, we therefore eliminate Xo(t)
Now N(t) is the no. of customers left behind by a departure
customer.

1 For Poisson arrival: Pk (t) = Rk (t) for all time t . Therefore, pk = rk .
2 If in any system (even it’s non-Markovian) where N(t) makes

discontinuous changes in size(plus or minus)one, then

rk = dk = Prob[departure leaves k customers behind]

Therefore, for M/G/1,
pk = dk = rk
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M/G/1

i-2 i-1   i i+1 i+2   j

α0

α2

α1

α3

α j-i+1

αk = Prob[k arrivals during the service of a customer]

P =



α0 α1 α2 α3 · · ·
α0 α1 α2 α3 · · ·
0 α0 α1 α2 · · ·
0 0 α0 α1 · · ·
0 0 0 α0 · · ·
...

...
...

...
...

αk = P[ṽ = k ] =

∫ ∞
0

P[ṽ = k |x̃ = x ]b(x)dx =

∫ ∞
0

(λx)k

k !
e−λxb(x)dx

π = πP and
∑
πi = 1. Question: why not πQ = 0,

∑
πi = 1?
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M/G/1

The mean queue length
We have two cases.
Case 1: qn+1 = qn − 1 + vn+1 for qn > 0

server

queue

Cn Cn+1

Cn Cn+1

Cn Cn+1

qn+1qn

vn+1

t

t
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M/G/1

Case 2: qn+1 = vn+1 for qn = 0

server

queue

Cn Cn+1

Cn Cn+1

Cn Cn+1

qn+1qn

vn+1

t

t

=0

Let ∆k =

{
1 for k = 1,2, . . .
0 for k = 0

qn+1 = qn −∆qn + vn+1
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M/G/1

E [qn+1] = E [qn]− E [∆qn ] + E [vn+1]

Take the limit as n→∞, E [q̃] = E [q̃]− E [∆q̃] + E [ṽ ]

We get,

E [∆q̃] = E [ṽ ] = average no. of arrivals in a service time

On the other hand,

E [∆q̃] =
∞∑

k=0

∆kP[q̃ = k ]

= ∆0P[q̃ = 0] + ∆1P[q̃ = 1] + · · ·
= P[q̃ > 0]

Therefore E [∆q̃] = P[q̃ > 0]. Since we are dealing with single
server, it is also equal to P[busy system]=ρ = λ/mu = λx̄ .
Therefore,

E [ṽ ] = ρ
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M/G/1

Since we have

qn+1 = qn −∆qn + vn+1

q2
n+1 = q2

n + ∆2
qn + v2

n+1 − 2qn∆qn + 2qnvn+1 − 2∆qnvn+1

Note that : (∆qn )2 = ∆qn and qn∆qn = qn

lim
n→∞

E [q2
n+1] = lim

n→∞
{E [q2

n ] + E [∆2
qn ] + E [v2

n+1]−

2E [qn] + 2E [qnvn+1]− 2E [∆qnvn+1]}
0 = E [∆q̃] + E [ṽ2]− 2E [q̃] + 2E [q̃]E [ṽ ]− 2E [∆q̃]E [ṽ ]

E [q̃] = ρ+
E [ṽ2]− E [ṽ ]

2(1− ρ)

Now the remaining question is how to find E [ṽ2].
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M/G/1

Let V (Z ) =
∑∞

k=0 P[ṽ = k ]Z k

V (Z ) =
∞∑

k=0

∫ ∞
0

(λx)k

k !
e−λxb(x)dxZ k

=

∫ ∞
0

e−λx

( ∞∑
k=0

(λxZ )k

k !

)
b(x)dx

=

∫ ∞
0

e−λxeλxZ b(x)dx

=

∫ ∞
0

e−(λ−λZ )xb(x)dx

Look at B∗(s) =
∫∞

0 e−sxb(x)dx . Therefore,

V (Z ) = B∗(λ− λZ )
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M/G/1

From this, we can get E [ṽ ],E [ṽ2], . . .

dV (Z )

dZ
=

dB∗(λ− λZ )

dZ
=

dB∗(λ− λZ )

d(λ− λZ )
• d(λ− λZ )

dZ

= −λdB∗(y)

dy
dV (Z )

dZ

∣∣∣
Z=1

= −λdB∗(y)
dy

∣∣∣
y=0

= +λx̄ = ρ
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M/G/1

d2V (Z )
dZ 2 = v̄2 − v̄ , since V (Z ) = B∗(λ− λZ )

d2V (Z )

dZ 2 =
d

dZ
[−λdB∗(y)

dy
] = −λd2B∗(y)

dy2
dy
dZ

d2V (Z )

dZ 2 |Z=1 = λ2 dB2∗(y)

dy2 |y=0 = λ2B∗(2)(0)

v̄2 − v̄ = λ2x̄2 ⇒ v̄2 = v̄ + λ2x̄2

Go back, since

E [q̃] = ρ+
E [ṽ2]− E [ṽ ]

2(1− ρ)

E [q̃] = ρ+
λ2x̄2

2(1− ρ)
= ρ+ ρ2 (1 + C2

b)

2(1− ρ)

This is the famous Pollaczek - Khinchin Mean Value Formula.
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M/G/1

For M/M/1, b(x) = µe−µx , x̄ = 1
µ ; x̄2 = 2

µ2

q̄ = ρ+
λ2x̄2

2(1− ρ)
= ρ+

2λ
2

µ2

2(1− ρ)
= ρ+ ρ2 2

2(1− ρ)

q̄ =
ρ

1− ρ
= N̄ in M/M/1

For M/D/1, x̄ = x ; x̄2 = x2

q̄ = ρ+ ρ2 1
2(1− ρ)

=
ρ

1− ρ
− ρ2

2(1− ρ)

→ It’s less than M/M/1 !
For M/H2/1, let b(x) = 1

4λe−λx + 3
4(2λ)e−2λx ; x̄ = 5

8λ ; x̄2 = 56
64λ2

q̄ = ρ+
56
64

2(1− ρ)
where ρ = λx̄ =

5
8

; q̄ = 1.79
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M/G/1

Distribution of Number in the System

qn+1 = qn −∆qn + vn+1

Z qn+1 = Z qn−∆qn +vn+1

E [Z qn+1 ] = E [Z qn−∆qn +vn+1 ] = E [Z qn−∆qn · Z vn+1 ]

Taking limit as n→∞

Q(Z ) = E [Z q−∆q ] · E [Z v ] = E [Z q−∆q ]V (Z )→ (1)

E [Z q−∆q ] = Z 0−0Prob[q = 0] +
∞∑

k=1

Z k−1Prob[q = k ]

= Z 0Prob[q = 0] +
1
Z

[Q(Z )− P[q = 0]]

= Prob[q = 0] +
1
Z

[Q(Z )− P[q = 0]]
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M/G/1

Continue
Putting them together, we have:

Q(Z ) = V (Z )(Prob[q = 0] +
1
Z

[Q(Z )− P[q = 0]])

But P[q = 0] = 1− ρ, we have:

Q(Z ) = V (Z )[
(1− ρ)(1− 1

Z )

1− V (Z )
Z

] = B∗(λ− λZ )[
(1− ρ)(1− Z )

B∗(λ− λZ )− Z
]

This is the famous P-K Transform equation.
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M/G/1

Example

Q(Z ) = B∗(λ− λZ )
(1− ρ)(1− Z )

B∗(λ− λZ )− Z

For M/M/1 : B∗(s) =
µ

s + µ

Q(Z ) = (
µ

λ− λZ + µ
)

(1− ρ)(1− Z )

[ µ
(λ−λZ+µ) ]− Z

=
1− ρ

1− ρZ
=

(1− ρ)

1− ρZ

Therefore,
P[q̄ = k ] = (1− ρ)ρk k ≥ 0

This is the same as
P[Ñ = k ] = (1− ρ)ρk
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M/G/1

Continue

Q(Z ) = B∗(λ− λZ )
(1− ρ)(1− Z )

B∗(λ− λZ )− Z

For M/H2/1 : B∗(s) =
1
4

λ

s + λ
+

3
4

2λ
s + 2λ

=
7λs + 8λ2

4(s + λ)(s + 2λ)

Q(Z ) =
(1− ρ)(1− z)[8 + 7(1− z)]

8 + 7(1− z)− 4z(2− z)(3− z)

=
(1− ρ)[1− 7

15z]

[1− 2
5z][1− 2

3z]
= (1− ρ)

[
1
4

1− 2
5z

+
3
4

1− 2
3z

]

Where ρ = λx̄ = 5
8

Pk = Prob[q̃ = k ] =
3
32

(
2
5

)k

+
9

32

(
2
3

)k

k = 0,1,2, · · ·
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M/G/1

We know qn+1 = qn −∆qn + vn+1. From the r.v. equation, we derived:

q̄ = ρ+
λ2x̄2

2(1− ρ)
= ρ+ ρ2 (1 + C2

b)

2(1− ρ)
, (1)

where C2
b =

σ2
b

x̄2

Q(Z ) = V (Z )
(1− ρ)(1− 1

Z )

1− V (Z )
Z

=
B∗(λ− λZ )(1− ρ)(1− Z )

B∗(λ− λZ )− Z
(2)

because V (Z ) = B∗(λ− λZ )

Q(Z ) = S∗(λ− λZ ) = B∗(λ− λZ )
(1− ρ)(1− Z )

B∗(λ− λZ )− Z
(3)

→ W ∗(s) =
s(1− ρ)

s − λ+ λB∗(s)
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M/G/1

Distribution of Waiting Time

Cn

Cn

Cn

xn

vn Cn

Cn

Cn

xn

wn

q n

V ∗(z) = B∗(λ− λz) Q(z) = S∗(λ− λz)

S∗(λ− λZ ) = B∗(λ− λZ )
(1− ρ)(1− Z )

B∗(λ− λZ )− Z

Let s = λ− λz, then z = 1− s
λ

S∗(s) = B∗(s)
s(1− ρ)

s − λ+ λB∗(s)
What is W ∗(s)?
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M/G/1

For M/M/1,

S∗(s) = B∗(s)
s(1− ρ)

s − λ+ λB∗(s)
B∗(s) =

µ

s + µ

= [
µ

s + µ
][

s(1− ρ)

s − λ+ λ µ
s+µ

]

= [µ][
s(1− ρ)

s2 + sµ− sλ
]

=
sµ(1− ρ)

s[s + µ− λ]
=

µ(1− ρ)

s + µ− λ

=
µ(1− ρ)

s + µ(1− ρ)

s(y) = µ(1− ρ)e−µ(1−ρ)y y ≥ 0
S(y) = 1− e−µ(1−ρ)y y ≥ 0
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M/G/1

W ∗(s) =
s(1− ρ)

s − λ+ λ µ
s+µ

=
s(1− ρ)(s + µ)

s2 + sµ− sλ

=
s(1− ρ)(s + µ)

s[s + µ− λ]
=

(1− ρ)(s + µ)

s + µ− λ

= (1− ρ) +
λ(1− ρ)

s + µ− λ
= (1− ρ) +

λ(1− ρ)

s + µ(1− ρ)

w(y) = (1− ρ)µ0(y) + λ(1− ρ)e−µ(1−ρ)y y ≥ 0
W (y) = 1− ρe−µ(1−ρ)y y ≥ 0

1

1−ρ
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M/G/1

Let U(t) =the unfinished work in the system at time t

U(t)

Y
1

I 1

x
1

x
2

x
3

x
4

x
5

x
6

Y
2

I 2 Y
3

S

Q
C1

C1

C1

C2

C2

C2

C3

C3

C3

C4

C4

C4

C5

C5

C5

C6

C6

C6

Yi are the i th busy period; Ii is the i th idle period.
The function U(t) is INDEPENDENT of the order of service!!! The
only requirement to this statement hold is the server remains busy
where there is job.
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M/G/1

For M/G/1

A(t) = P[tn ≤ t ] = 1− e−λt t ≥ 0
B∗(x) ⇔ P[Xn ≤ x ]

Let

F (y) = P[In ≤ y ]

= idle-period distribution
G(y) = P[Yn ≤ y ]

= busy-period distribution

F (y) = 1− e−λt t ≥ 0

G(y) is not that trivial! Well, thanks to Takacs, he came to the
rescue.
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M/G/1

The Busy Period

The busy period is independent of order of service
Each sub-busy period behaves statistically in a fashion identical to
the major busy period.
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M/G/1

The duration of busy period Y , is the sum of 1 + ṽ random
variables where

Y = x1 + Xṽ + · · ·+ X1

where x1 is the service time of C1, Xṽ is the (ṽ + 1)th sub-busy
period and ṽ is the r.v. of the number of arrival during the service
of C1.
Let G(y) = P[Y ≤ y ] and G∗(s) =

∫∞
0 e−sydG(y) = E [e−sY ]

E [e−sY |x1 = x , ṽ = k ] = E [e−s(x+Xk+1+Xk +···+X2)]

= E [e−sx ]E [e−sXk+1 ]E [e−sXk ] · ·E [e−sX2 ]

= e−sx [G∗(s)]k

E [e−sY |x1 = x ] =
∞∑

k=0

E [e−sY |x1 = x , ṽ = k ]P[ṽ = k ]
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M/G/1

E [e−sY |x1 = x ] =
∞∑

k=0

e−sx [G∗(s)]k
(λx)k

k !
e−λx

= e−x [s+λ−λG∗(s)]

E [e−sY ] = G∗(s) =

∫ ∞
0

E [e−sY |x1 = x ]dB(x)

=

∫ ∞
0

e−x [s+λ−λG∗(s)]dB(x)

Therefore, we have

G∗(s) = B∗[s + λ− λG∗(s)]
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M/G/1

G∗(s) = B∗[s + λ− λG∗(s)]
Since,

gk = E [Y k ] = (−1)kG∗(k)(0) and x̄k = (−1)kB∗(k)(0)

g1 = (−1)G∗(1)(0) = −B∗(1)(0)
d
ds

[s + λ− λG∗(s)]|s=0

= −B∗(1)(0)[1− λG∗(1)(0)]

g1 = x̄(1 + λg1)

Therefore g1 = x̄
1−p where ρ = λx̄

The average length of busy period for M/G/1 is equal to the
average time a customer spends in an M/M/1 system

g2 = G∗(2)(s)|s=0 =
d
ds

[B∗(1)[s + λ− λG∗(s)][1− λG∗(1)(s)]|s=0

= B∗(2)(0)[1− λG∗(1)(0)]2 + B∗(1)(0)[−λG∗(2)(0)] =
x̄2

(1− ρ)3
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M/G/1

The number of customers served in a busy period
Let Nbp = r.v. of no. of customers served in a busy period.

fn = Prob[Nbp = n]

F (Z ) = E [Z Nbp ] =
∞∑

n=1

fnZ n

E [Z Nbp |ṽ = k ] = E [Z 1+Mk +Mk−1+···+M1 ]

(where Mi = no. of customers served in the i th sub-busy period)

E [Z Nbp |ṽ = k ] = E [Z ]E [Z Mk ] · · ·E [Z M1 ] = E [Z ](E [Z Mi ])k

= Z [F (Z )]k
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M/G/1

Continue

F (Z ) =
∞∑

k=0

E [Z Nbp |ṽ = k ]P[ṽ = k ]

=
∞∑

k=0

Z [F (Z )]kP[ṽ = k ]

= ZV [F (Z )]

⇒ F (Z ) = ZB∗(λ− λF (Z ))
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