Stochastic Processes, Baby Queueing Theory and the Method of Stages

John C.S. Lui

Department of Computer Science \& Engineering
The Chinese University of Hong Kong
www.cse.cuhk.edu.hk/~cslui

Outline

(1) Stochastic Processes

2 Queueing Systems

Outline

(1) Stochastic Processes

2 Queueing Systems

Stochastic Processes

- We have studied a probability system (S, Ω, P) and notion of random variable $X(w)$. Stochastic process can be defined as $X(t, w)$ where:

$$
F_{X(t)}(x)=\operatorname{Prob}[X(t) \leq x]
$$

Example:
(1) no. of job waiting in the queue as a function of time
(2) stock market index

- Markov process

$$
\begin{array}{r}
P\left[X\left(t_{n+1}\right)=x_{n+1} \mid X\left(t_{n}\right)=x_{n}, X\left(t_{n-1}\right)=x_{n-1}, \cdots, X\left(t_{1}\right)=x_{1}\right] \\
=P\left[X\left(t_{n+1}\right)=x_{n+1} \mid X\left(t_{n}\right)=x_{n}\right]
\end{array}
$$

Continue

- Discrete-time Markov Chain
- give example
- $P\left[X_{n}=j \mid X_{n-1}=i_{n-1}, X_{n-2}=i_{n-2}, \ldots, X_{1}=i_{1}\right]=P\left[X_{n}=j \mid\right.$ $\left.X_{n-1}=i_{n-1}\right] \quad$ (transition probability)
- Homogeneous Markov chain : if the transition probabilities are independent of n (or time)
- Irreducible Markov chain : if every state can be reached from every other states
- Periodic Markov chain : example : if I can reach state E_{j} in step γ, $2 \gamma, 3 \gamma, \cdots$ where γ is >1

Continue

- For an irreducible and aperiodic Markov Chain,we have

$$
\begin{aligned}
\pi_{j} & =\lim _{n \rightarrow \infty} \pi_{j}^{(n)} \\
\pi_{j} & =\sum_{i} \pi_{i} P_{i j} \text { and } \sum_{i} \pi_{i}=1
\end{aligned}
$$

- Example:

$$
P=\left[\begin{array}{ccc}
0 & \frac{3}{4} & \frac{1}{4} \\
\frac{1}{4} & 0 & \frac{3}{4} \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{2}
\end{array}\right]
$$

- What's the $\vec{\pi}=\left[\pi_{0}, \pi_{1}, \pi_{2}\right]$?

What's $\pi_{j}=\sum_{i} \pi_{i} P_{i j}$? (Another way to look at it)

$$
\begin{aligned}
& \pi_{0}=\pi_{0}(0)+\pi_{1}\left(\frac{1}{4}\right)+\pi_{2}\left(\frac{1}{4}\right) \\
& \pi_{1}=\pi_{0}\left(\frac{3}{4}\right)+\pi_{1}(0)+\pi_{2}\left(\frac{1}{4}\right) \\
& \pi_{2}=\pi_{0}\left(\frac{1}{4}\right)+\pi_{1}\left(\frac{3}{4}\right)+\pi_{2}\left(\frac{1}{2}\right)
\end{aligned}
$$

The above equations are linearly dependent!

$$
1=\pi_{0}+\pi_{1}+\pi_{2}
$$

Direct Solution:
$\pi_{0}=0.2, \pi_{1}=0.28, \pi_{2}=0.52 \Rightarrow \vec{\pi}=[0.2,0.28,0.52]$

Transient to limiting solution

- Define $\pi^{(n)}=\left[\pi_{0}^{(n)}, \pi_{1}^{(n)}, \cdots \pi_{k}^{(n)}\right]$
- Given $\pi^{(0)}$, we can perform:

$$
\begin{aligned}
\pi^{(1)} & =\pi^{(0)} P \\
\pi^{(2)} & =\pi^{(1)} P=\pi^{(0)} P^{2} \\
\vdots & =\vdots \\
\pi^{(n)} & =\pi^{(0)} P^{n} \\
\vdots & =\vdots \\
\pi & =\pi P
\end{aligned}
$$

- look at page 33. The limiting solution (or steady state probability) is INDEPENDENT of the initial vector.
- For Discrete time Markov Chain
- the number of time units that the system spends in the same state is GEOMETRICALLY DISTRIBUTED

$$
\left(1-P_{i i}\right) P_{i i}^{m} \quad \text { where } m \text { is the no. of additional steps }
$$

- Homogeneous continuous time Markov chain
- $\pi Q=0, \sum_{i} \pi_{i}=1$ and $Q[i, j]$ is the rate matrix

$$
\begin{aligned}
& q_{i j}=\text { rate from state } \mathrm{i} \text { to state } \mathrm{j} \\
& q_{i i}=-\sum_{j \neq i} q_{i j}=\text { rate of going out of state } \mathrm{i}
\end{aligned}
$$

- meaning of $\pi Q=0$

$$
\sum_{j} \pi_{i} q_{i j}=0 \quad \forall i
$$

- Poisson Process:

$$
\begin{aligned}
P_{k}(t) & =\frac{(\lambda t)^{k}}{k!} e^{-\lambda t} \quad \text { for } k=0,1,2, \ldots \\
G(Z) & =\sum_{k=0}^{\infty} P_{k}(t) Z^{k}=\sum_{k=0}^{\infty} \frac{(\lambda t)^{k}}{k!} e^{-\lambda t} Z^{k} \\
& =e^{-\lambda t} \sum_{k=0}^{\infty} \frac{(\lambda t Z)^{k}}{k!}=e^{-\lambda t} e^{\lambda t Z}=e^{\lambda t(Z-1)} \\
E[K] & =\frac{d}{d Z} G(Z)\left|Z_{=1}=\lambda t e^{\lambda t(Z-1)}\right|_{Z=1}=\lambda t \\
\sigma_{k}^{2} & =\bar{K}^{2}-(\bar{K})^{2}, \text { since }\left.\frac{d^{2}}{d Z} G(Z)\right|_{Z=1}=\overline{K^{2}}-\bar{K} \\
\frac{d^{2}}{d Z^{2}} G(Z) & =\left.(\lambda t)^{2} e^{\lambda t(Z-1)}\right|_{Z=1}=(\lambda t)^{2} \\
\rightarrow \sigma_{K}^{2} & =(\lambda t)^{2}+\lambda t-(\lambda t)^{2}=\lambda t
\end{aligned}
$$

- Given a Poisson, what is the distribution of it's interarrival ?

$$
\begin{aligned}
F_{A}(t) & =\operatorname{Prob}[X \leq t]=1-P[X>t]=1-e^{-\lambda t} \\
f_{A}(t) & =\frac{d F_{A}(t)}{d t}=\lambda e^{-\lambda t} \quad t \geq 0 \quad \text { EXPONENTIAL!! }
\end{aligned}
$$

\rightarrow constant rate!!

- Poisson arrival \rightarrow exponential interarrival time.

Outline

1) Stochastic Processes

(2) Queueing Systems

Baby Queueing Theory: $M / M / 1$

Poisson arrival (or the interarrival time is exponential) and service time is exponentially distributed. Arrival is $\lambda e^{-\lambda t}$ and service is $\mu e^{-\mu t}$.

$$
Q=\left[\begin{array}{cccc}
-\lambda & \lambda & 0 & \cdots \\
\mu & -(\lambda+\mu) & \lambda & \cdots \\
0 & \mu & -(\lambda+\mu) & \cdots \\
\vdots & \vdots & \vdots &
\end{array}\right.
$$

- we can use $\pi Q=0$ and $\sum \pi_{i}=1$
- For each state, flow in = flow out
- Using this, we have:

$$
\begin{aligned}
-\pi_{0} \lambda & +\mu \pi_{1}=0 \\
\pi_{0} \lambda & -\pi_{1}(\lambda+\mu)+\mu \pi_{2}=0 \\
\pi_{i-1} \lambda & -\pi_{i}(\lambda+\mu)+\mu \pi_{i+1}=0 \quad i \geq 1
\end{aligned}
$$

- Stability condition: $\frac{\lambda}{\mu}<1$

Solution

Here, we can use flow-balance concept:

$$
\begin{aligned}
& \pi_{0} \lambda=\pi_{1} \mu \quad \rightarrow \quad \pi_{1}=\pi_{0}\left(\frac{\lambda}{\mu}\right) \\
& \pi_{1} \lambda=\pi_{2} \mu \quad \rightarrow \quad \pi_{2}=\pi_{1}\left(\frac{\lambda}{\mu}\right)=\pi_{0}\left(\frac{\lambda}{\mu}\right)^{2} \\
& \pi_{2} \lambda=\pi_{3} \mu \quad \rightarrow \quad \pi_{3}=\pi_{2}\left(\frac{\lambda}{\mu}\right)=\pi_{0}\left(\frac{\lambda}{\mu}\right)^{3}
\end{aligned}
$$

In general, $\pi_{i}=\pi_{0}\left(\frac{\lambda}{\mu}\right)^{i} \quad i \geq 0$,

$$
\begin{aligned}
\sum_{i} \pi_{i} & =1 \\
\pi_{0}\left[1+\left(\frac{\lambda}{\mu}\right)+\left(\frac{\lambda}{\mu}\right)^{2}+\cdots\right] & =1 \\
\pi_{0}\left[\sum_{i=0}^{\infty}\left(\frac{\lambda}{\mu}\right)^{i}\right] & =1 \\
\pi_{0}\left[\frac{1}{1-\frac{\lambda}{\mu}}\right] & =1 \\
\pi_{0} & =1-\frac{\lambda}{\mu} \\
\pi_{i}=\left(1-\frac{\lambda}{\mu}\right)\left(\frac{\lambda}{\mu}\right)^{i} \quad i \geq 0 &
\end{aligned}
$$

($\rho=\frac{\lambda}{\mu}=$ system utilization $=\operatorname{Prob}[$ system or server is busy])
$\bar{N}=E[$ number of customer in the system $]=\sum_{i=0}^{\infty} i \pi_{i}$
$=\sum_{i=0}^{\infty} i(1-\rho) \rho^{i}=(1-\rho) \sum_{i=0}^{\infty} i \rho^{i}$
$=(1-\rho) \rho \sum_{i=0}^{\infty} i \rho^{i-1}=(1-\rho) \rho \sum_{i=0}^{\infty} \frac{\partial \rho^{i}}{\partial \rho}$
$=(1-\rho) \rho \frac{\partial}{\partial \rho} \sum_{i=0}^{\infty} \rho^{i}$
$=(1-\rho) \rho \frac{\partial}{\partial \rho}\left[\frac{1}{1-\rho}\right]=(1-\rho) \rho\left[\frac{1}{(1-\rho)^{2}}\right]$
$=\frac{\rho}{1-\rho}$

- E [number of customer waiting in the queue] = ?

$$
\begin{aligned}
\sum_{k=1}^{\infty}(k-1) P_{k} & =\frac{\rho}{1-\rho}-\sum_{k=1}^{\infty} P_{k} \\
& =\frac{\rho}{1-\rho}-\rho
\end{aligned}
$$

\rightarrow a special form, not only for $M / M / 1$

Little's Result

- Little's Result : $\bar{N}=\lambda \bar{T}$
$\bar{T}=\frac{\bar{N}}{\lambda}=\frac{\frac{1}{\mu}}{1-\rho} \rightarrow$ that is why $\lambda=\mu$ is unstable

Discourage Arrivals

$$
\lambda_{k}=\frac{\alpha}{k+1} \quad k=0,1,2, \cdots \quad \mu_{k}=\mu
$$

$$
\begin{aligned}
p_{0} \alpha=p_{1} \mu \rightarrow & p_{1}=p_{0} \frac{\alpha}{\mu} \\
p_{1} \frac{\alpha}{2}=p_{2} \mu \rightarrow & p_{2}=p_{1} \frac{\alpha}{\mu} \frac{1}{2}=p_{0}\left(\frac{\alpha}{\mu}\right)^{2}\left(\frac{1}{2}\right) \\
p_{2} \frac{\alpha}{3}=p_{3} \mu \rightarrow & p_{3}=p_{2} \frac{\alpha}{\mu} \frac{1}{3}=p_{0}\left(\frac{\alpha}{\mu}\right)^{3}\left(\frac{1}{3}\right)\left(\frac{1}{2}\right) \\
& \vdots \\
& p_{i}=p_{0}\left(\frac{\alpha}{\mu}\right)^{i}\left(\frac{1}{i!}\right) \quad i \geq 0
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{i=0}^{\infty} p_{i}=1 \\
& \sum_{i=0}^{\infty} p_{0}\left(\frac{\alpha}{\mu}\right)^{i}\left(\frac{1}{i!}\right)=1 \\
& p_{0} \sum_{i=0}^{\infty} \frac{\left(\frac{\alpha}{\mu}\right)^{i}}{i!}=1 \\
& p_{0} e^{\frac{\alpha}{\mu}}=1 \\
& p_{0}=e^{-\frac{\alpha}{\mu}} \\
& p_{i}=e^{-\left(\frac{\alpha}{\mu}\right)}\left(\frac{\alpha}{\mu}\right)^{i}\left(\frac{1}{i!}\right) \quad i \geq 0 \\
& \bar{N}=? \\
& \bar{T}=?
\end{aligned}
$$

$$
\begin{gathered}
\rho=? \frac{\lambda}{\mu}=\left(1-e^{-\frac{\alpha}{\mu}}\right) \\
\lambda=\sum_{k=0}^{\infty} \frac{\alpha}{(k+1)} p_{k}=\sum_{k=0}^{\infty} \frac{\alpha}{k+1} \cdot \frac{e^{-\frac{\alpha}{\mu}}\left(\frac{\alpha}{\mu}\right)^{k}}{k!} \\
=\alpha e^{-\frac{\alpha}{\mu}} \sum_{k=0}^{\infty} \frac{\left(\frac{\alpha}{\mu}\right)^{k}}{(k+1)!}=\mu e^{-\frac{\alpha}{\mu}} \sum_{k=0}^{\infty} \frac{\left(\frac{\alpha}{\mu}\right)^{k+1}}{(k+1)!} \\
=\mu e^{-\frac{\alpha}{\mu}}\left(e^{\frac{\alpha}{\mu}}-1\right)=\mu\left(1-e^{-\frac{\alpha}{\mu}}\right)
\end{gathered}
$$

Little's Law

$\alpha(t)=$ The no. of customers arrived in $(0, t)$
$\delta(t)=$ The no. of customers departure in $(0, t)$
$N(t)=\alpha(t)-\delta(t)=$ The no. of customers in the system at time t .
$\gamma(t)=\int_{0}^{t} N(t) d t=$ Total time of all entered customers have spent in the system.
$\lambda_{t}=$ Average arrival rate $(0, t)=\frac{\alpha(t)}{t}$
$T_{t}=$ System time per customer during $(0, t)=\frac{\gamma(t)}{\alpha(t)}$
$\bar{N}_{t}=$ Average number of customer during $(0, t)=\frac{\gamma(t)}{t}$
$\bar{N}_{t}=\frac{\gamma(t)}{t}=\frac{T_{t} \alpha(t)}{\frac{\alpha(t)}{\lambda_{t}}}=\lambda_{t} T_{t}$
Taking limit at $t \rightarrow \infty$, we have:

$$
\bar{N}=\lambda \bar{T}
$$

General for all algorithms e.g FIFO.....

$M / M / \infty$ system

$$
\begin{gathered}
\lambda \\
P_{k}=P_{0}\left(\frac{\lambda}{\mu}\right)^{k}\left(\frac{1}{k!}\right) \quad k=0,1,2, \cdots \\
P_{0}\left[\sum_{i=0}^{\infty}\left(\frac{\lambda}{\mu}\right)^{k}\left(\frac{1}{k!}\right)\right]=1 \Rightarrow P_{0}=e^{-\lambda / \mu} \\
P_{k}=\frac{e^{-\lambda / \mu}\left(\frac{\lambda}{\mu}\right)^{k}}{k!} \quad k=0,1,2, \cdots
\end{gathered}
$$

Continue

$$
\begin{aligned}
\bar{N} & =\sum_{k=0}^{\infty} k P_{k}=\sum_{k=1}^{\infty} \frac{k e^{-\lambda / \mu}\left(\frac{\lambda}{\mu}\right)^{k}}{k!}=e^{-\lambda / \mu} \sum_{k=1}^{\infty} \frac{\left(\frac{\lambda}{\mu}\right)^{k}}{(k-1)!} \\
& =e^{-\lambda / \mu}\left(\frac{\lambda}{\mu}\right) \sum_{k=1}^{\infty} \frac{\left(\frac{\lambda}{\mu}\right)^{k-1}}{(k-1)!}=\frac{\lambda}{\mu} \\
\bar{T} & =\bar{N} / \lambda=\frac{1}{\mu}
\end{aligned}
$$

$M / M / m$ system

$\lambda_{k}=\lambda$ for $k=0,1, \cdots$.
$\mu_{k}=k \mu$ for $0 \leq k \leq m$ and $m \mu$ for $k \geq m$.

$$
\begin{aligned}
& p_{0} \lambda= p_{1} \mu \Rightarrow p_{1}=p_{0}\left(\frac{\lambda}{\mu}\right) \\
& p_{1} \lambda= p_{2} 2 \mu \Rightarrow p_{2}=p_{0}\left(\frac{\lambda}{\mu}\right)^{2}\left(\frac{1}{2}\right) \\
& \vdots \\
& p_{k}= p_{0}\left(\frac{\lambda}{\mu}\right)^{k}\left(\frac{1}{k!}\right) \quad k=0,1, \ldots, m
\end{aligned}
$$

continue

for $k \geq m$

$$
\begin{aligned}
p_{m} \lambda= & p_{m+1} m \mu \Rightarrow p_{m+1}=p_{0}\left(\frac{\lambda}{\mu}\right)^{m+1}\left(\frac{1}{m!}\right)\left(\frac{1}{m}\right) \\
p_{m+1} \lambda= & p_{m+2} m \mu \Rightarrow p_{m+2}=p_{0}\left(\frac{\lambda}{\mu}\right)^{m+2}\left(\frac{1}{m!}\right)\left(\frac{1}{m}\right)^{2} \\
& \vdots \\
p_{k}= & p_{0}\left(\frac{\lambda}{\mu}\right)^{k}\left(\frac{1}{m!}\right)\left(\frac{1}{m}\right)^{(k-m)} \quad k \geq m
\end{aligned}
$$

$$
\operatorname{Prob}[q u e u e i n g]=\sum_{k=m}^{\infty} p_{k}
$$

$M / M / 1 / K$ finite storage system

$$
\begin{aligned}
& p_{k}=p_{0}\left(\frac{\lambda}{\mu}\right)^{k} \quad k=0,1, \ldots, K \\
& p_{0}=\left[\sum_{k=0}^{K}\left(\frac{\lambda}{\mu}\right)^{k}\right]^{-1}=\left[\frac{1-\rho^{K+1}}{1-\rho}\right]^{-1}=\frac{1-\rho}{1-\rho^{K+1}} \quad \text { where } \rho=\frac{\lambda}{\mu}
\end{aligned}
$$

Prob[blocking] =?
Using the similar approach, we can find \bar{N} and \bar{T}.
Average arrival rate is $\lambda\left(1-P_{K}\right)$.

$M / M / m / m$ (m-server loss system)

$\lambda_{k}=\lambda$ for $k<m$ and zero otherwise. $\mu_{k}=k \mu$ for $k=1,2, \ldots, m$.

$$
\begin{aligned}
& p_{k}=p_{0}\left(\frac{\lambda}{\mu}\right)^{k} \frac{1}{k!} \quad k \leq m \\
& p_{0}=\left[\sum_{k=0}^{m} \frac{(\lambda / \mu)^{k}}{k!}\right]^{-1}
\end{aligned}
$$

Prob[all servers are busy] is equal to P_{m}.

$M / M / 1 / / m$ (Finite customer population)

$$
\begin{aligned}
p_{k} & =p_{0} \Pi_{i=0}^{k-1} \frac{\lambda(M-i)}{\mu} \quad 0 \leq k \leq M \\
& =p_{0}\left(\frac{\lambda}{\mu}\right)^{k} \frac{M!}{(M-k)!} \quad 0 \leq k \leq M \\
p_{0} & =\left[\sum_{i=0}^{M}\left(\frac{\lambda}{\mu}\right)^{k} \frac{M!}{(M-k)!}\right]^{-1}
\end{aligned}
$$

p_{k} to r_{k}

- What is p_{k} ? It is $\lim _{t \rightarrow \infty} \frac{\text { sum of time slots with } k \text { customers }}{t}$
- $r_{k}=\operatorname{Prob}\left[\right.$ arriving customer finds the system in state E_{k}]
- Is $p_{k}=r_{k}$?
- Let us look at $D / D / 1$, interarrival time is 4 secs, service time is 3 sec. Then $p_{0}=1 / 4$ and $r_{0}=1$.

More

- For Poisson arrival, $P_{k}(t)=R_{k}(t)$ or $p_{k}=r_{k}$.

$$
\begin{aligned}
R_{k}(t) & =\lim _{\delta t \rightarrow 0} P[N(t)=k \mid A(t+\delta t)]=\frac{P[N(t)=k, A(t+\delta t)]}{P[A(t+\delta t)]} \\
& =\frac{P[A(t+\delta t) \mid N(t)=k] P[N(t)=k]}{P[A(t+\delta t)]}
\end{aligned}
$$

- Due to memoryless property:

$$
P[A(t+\delta t) \mid N(t)=k]=P[A(t+\delta t)]
$$

- Due to independence,

$$
R_{k}(t)=P[N(t)=k]=p_{k}(t)
$$

Method of stages: Erlangian distribution E_{r}

Let service time density function

$$
\begin{gathered}
b(x)=\mu e^{-\mu x} \quad x \geq 0 \\
B^{*}(s)=\frac{\mu}{s+\mu} ; E[\tilde{x}]=\frac{1}{\mu} ; \sigma_{b}^{2}=\frac{1}{\mu^{2}}
\end{gathered}
$$

$$
\begin{gathered}
h(y)=2 \mu e^{-2 \mu y} \quad y \geq 0 \\
x=y+y \\
B^{*}(s)=\left(\frac{2 \mu}{s+2 \mu}\right)^{2}
\end{gathered}
$$

continue

From (2.146)

$$
X^{*}(s)=\left(\frac{\lambda}{s+\lambda}\right)^{k} \Rightarrow f_{X}(x)=\frac{\lambda(\lambda x)^{k-1}}{(k-1)!} e^{-\lambda x} \quad x \geq 0 ; k \geq 1
$$

Therefore:

$$
b(x)=2 \mu(2 \mu x) e^{-2 \mu x} \quad x \geq 0
$$

$$
E[x]=E[y]+E[y]=\frac{1}{2 \mu}+\frac{1}{2 \mu}=\frac{1}{\mu} ; \quad \sigma_{b}^{2}=\sigma_{n}^{2}+\sigma_{n}^{2}=\frac{2}{(2 \mu)^{2}}=\frac{1}{2 \mu^{2}}
$$

$E_{r}: r$-stage Erlangian distribution

$$
\begin{aligned}
h(y) & =r \mu e^{-r \mu y} \quad y \geq 0 \\
E[y] & =\frac{1}{r \mu} ; \quad \sigma_{h}^{2}=\frac{1}{(r \mu)^{2}} ; \quad E[x]=r \frac{1}{r \mu}=\frac{1}{\mu} \\
\sigma_{x}^{2} & =r\left(\frac{1}{r \mu}\right)^{2}=\frac{1}{r \mu^{2}} \\
B^{*}(s) & =\left[\frac{r \mu}{s+r \mu}\right]^{r} \Rightarrow b(x)=\frac{r \mu(r \mu x)^{r-1}}{(r-1)!} e^{-r \mu x} \quad x \geq 0
\end{aligned}
$$

$M / E_{r} / 1$ system

$$
\begin{aligned}
a(t) & =\lambda e^{-\lambda t} \\
b(t) & =\frac{r \mu(r \mu x)^{r-1}}{(r-1)!} e^{(r \mu x)} \quad x \geq 0
\end{aligned}
$$

State description: $\left[k, s_{]}\right]$transform to $[s]$ where s is the total number of stages yet to be completed by all customers.
If the system has k customers and when the $i^{t h}$ stage of service contains the customers.
$j=$ number of stages left in the total system

$$
=(k-1) r+(r-i+1)=r k-i+1
$$

$M / E_{r} / 1$ system: continue

Let P_{j} be the probability of j stages of work in the system. Since $j=r k-i+1$, we have:

$$
p_{k}=\operatorname{Prob}[k \text { customers }]=\sum_{j=(k-1) r+1}^{j=r k} P_{j}
$$

Let $P_{j}=0$ for $j<0$.

$$
\begin{aligned}
\lambda P_{0} & =r \mu P_{1} \\
(\lambda+r \mu) P_{j} & =\lambda P_{j-r}+r \mu P_{j+1}
\end{aligned}
$$

Define $P(Z)=\sum_{j=0}^{\infty} P_{j} Z^{j}$

$$
\begin{gathered}
\sum_{j=1}^{\infty}(\lambda+r \mu) P_{j} Z^{j}=\sum_{j=1}^{\infty} \lambda P_{j-r} Z^{j}+\sum_{j=1}^{\infty} r \mu P_{j+1} Z^{j} \\
(\lambda+r \mu)\left[P(Z)-P_{0}\right]=\lambda Z^{r}[P(Z)]+\frac{r \mu}{Z}\left[P(Z)-P_{0}-P_{1} Z\right] \\
P(Z)=\frac{P_{0}[\lambda+r \mu-(r \mu / Z)]+r \mu P_{1}}{\lambda+r \mu-\lambda Z^{r}-(r \mu / Z)} \\
=\frac{P_{0} r \mu(1-1 / Z)}{\lambda+r \mu-\lambda Z^{r}-(r \mu / Z)}
\end{gathered}
$$

Since $P(1)=1$, therefore, using L' Hospital rule, we have $1=\frac{r \mu P_{0}}{r \mu-\lambda r}$, therefore, $P_{0}=\frac{r \mu-\lambda r}{r \mu}=1-\frac{\lambda}{\mu}$.
Define $\rho=\frac{\lambda}{\mu}$, we have

$$
P(Z)=\frac{r \mu(1-\rho)(1-Z)}{r \mu+\lambda Z^{r+1}-(\lambda+r \mu) Z}
$$

For general r, look at denominator, there are $(r+1)$ zeros. Unity is one of them; we have $(1-Z)\left[r \mu-\lambda\left(Z+Z^{2}+\cdots+Z^{r}\right)\right]$. Therefore, we have r zeros which are $Z_{1}, Z_{2}, \cdots, Z_{r}$. We can arrange them to be $r \mu\left(1-Z / Z_{1}\right)\left(1-Z / Z_{2}\right) \cdots\left(1-Z / Z_{r}\right)$. We have:

$$
P(Z)=(1-\rho) \sum_{i=1}^{r} \frac{A_{i}}{1-Z / Z_{i}}
$$

Need to resolve this by partial fraction expansion.
For $E_{r} / M / 1$ system, derive it at home.

Bulk Arrival System

Let g_{i} be the probability that the bulk size is i, for $i>0$.

$$
\lambda P_{0}=\mu P_{1}
$$

$$
(\lambda+\mu) P_{k}=\mu P_{k+1}+\sum_{i=0}^{k-1} \lambda g_{k-i} P_{i}
$$

$$
(\lambda+\mu) \sum_{k=1}^{\infty} P_{k} Z^{k}=\mu \sum_{k=1}^{\infty} P_{k+1} Z^{k}+\lambda \sum_{k=1}^{\infty} \sum_{i=0}^{k-1} g_{k-i} P_{i} Z^{K}
$$

$$
(\lambda+\mu)\left[P(Z)-P_{0}\right]=\frac{\mu}{Z}\left[P(Z)-P_{0}-P_{1} Z\right]+\lambda P(Z) G(Z)
$$

Analysis: continue

$$
P(Z)=\frac{\mu P_{0}(1-Z)}{\mu(1-Z)-\lambda Z[1-G(Z)]}
$$

Using $P(1)=1$ and L' Hospital rule

$$
P(Z)=\frac{\mu(1-\rho)(1-Z)}{\mu(1-Z)-\lambda Z[1-G(Z)]}
$$

where $\rho=\frac{\lambda G^{\prime}(1)}{\mu}$
For bulk service system, try it at home.

Parallel System

$$
\begin{gathered}
b(x)=\alpha_{1} \mu_{1} e^{-\mu_{1} x}+\alpha_{2} \mu_{2} e^{-\mu_{2} x} \quad x \geq 0 \\
B^{*}(s)=\alpha_{1}\left(\frac{\mu_{1}}{s+\mu_{1}}\right)+\alpha_{2}\left(\frac{\mu_{2}}{s+\mu_{2}}\right)
\end{gathered}
$$

Continue:

In general, if we have R parallel stages (hyper-exponential):

$$
\begin{gathered}
B^{*}(s)=\sum_{i=1}^{R} \alpha_{i}\left(\frac{\mu_{i}}{s+\mu_{i}}\right) \\
b(x)=\sum_{i=1}^{R} \alpha_{i} \mu_{i} e^{-\mu_{i} x} \quad x \geq 0 \\
\bar{x}=\sum_{i=1}^{R} \alpha_{i}\left(\frac{1}{\mu_{i}}\right) \quad \overline{x^{2}}=\sum_{i=1}^{R} \alpha_{i}\left(\frac{2}{\mu_{i}^{2}}\right) \\
C_{b}^{2}=\frac{\sigma_{b}^{2}}{(\bar{x})^{2}}=\frac{\overline{x^{2}}-(\bar{x})^{2}}{(\bar{x})^{2}} \Rightarrow C_{b}^{2} \geq 1
\end{gathered}
$$

Series and Parallel System

$$
\begin{aligned}
b(x) & =\sum_{i=1}^{R} \alpha_{i} \frac{r_{i} \mu_{i}\left(r_{i} \mu_{i} x\right)^{r_{i}-1}}{\left(r_{i}-1\right)!} e^{-r_{i} \mu_{i} x} \quad x \geq 0 \\
B^{*}(s) & =\sum_{i=1}^{R} \alpha_{i}\left(\frac{r_{i} \mu_{i}}{s+r_{i} \mu_{i}}\right)^{r_{i}}
\end{aligned}
$$

