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Introduction to Inequality

Convex Function
Def: A function h(x),where x ∈ Rn, is said to be convex if

h(αx1 + (1− α)x2) ≤ αh(x1) + (1− α)h(x2)

h is concave if −h is convex.
For x ∈ R and h has a second derivative, then it is convex if

h(2)(x) ≥ 0 ∀x

If h is defined on the integers, x ∈ N,

h(x + 1) + h(x − 1)− 2h(x) ≥ 0 for x ∈ N
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Introduction to inequality

Jensen’s Inequality
Suppose that h is a differentiable convex function defined
on R, then

E [h(X )] ≥ h(E [X ])

Useful way to remember Jensen’s Inequality

E [X 2] ≥ (E [X ])2

Why convex? Because variance ≥ 0, E [X 2]− (E [X ])2 ≥ φ.
Generally, X 2n is a convex function, therefore

E [X 2n] ≥ (E [X ])2n
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Introduction to inequality

Momemt Generatin Function
We learn of transform before, for example, Laplace
transform and Z−transform.
Assume X is a continuous random variable, the Laplace
transform of X is E [e−sX ] =

∫
e−sx fX (x)dx .

For moment generating function:

MX (θ) = E [eθX ]

Since exponential is a convex function, we have:

E [eθX ] ≥ eθE [X ]
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Introduction to inequality

Jensen’s Inequality for concave function

If h is convex, g(x) = −h(x) is concave, we have

E [h(X )] ≥ h(E [X ]) ⇒ E [−h(X )] ≤ −h(E [X ]).

Therefore,
E [g(X )] ≤ g(E [X ]).

Example:

E [min{X1, X2, · · ·Xn}] ≤ min{E [X1], E [X2], · · ·E [Xn]}
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Introduction to inequality

Simple Markov Inequality:
If X is a non-negative random variable, we have:

E [X ] =

∫
xfX (x)dx .

If N is a discrete non-negative random varaible, we have:

E [N] =
∑

n Prob[N = n]

Another way to express E [X ], where X is a non-negative
R.V. is:

E [X ] =

∫
(1− FX (x)) dx .
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Simple Markov Inequality: continue
Assume Y is a non-negative random variable, “Simple Markov
Inequality” states that

Prob[Y ≥ y ] ≤ E [Y ]
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Generalized Markov Inequality

Let h be a nonnegative, nondecreasing function and let X be a
random variable.

E [h(X )] =

∫ ∞

z=−∞
h(z)fX (z)dz

E [h(X )] =

∫ ∞

z=−∞
h(z)fX (z)dz ≥

∫ ∞

t
h(z)fX (z)dz

≥ h(t)
∫ ∞

t
fX (z)dz︸ ︷︷ ︸

P[X≥t]

P[X ≥ t ] ≤ E [h(X )]

h(t)
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Example : Let h(x) = (x)+

By Markov inequality ,

P[X > t ] ≤ E [X+]

t

We can use this result to estimate tail distribution! If
expected response time of a job is E [X ] = 1 sec

Prob[response time ≥10 sec ] = P[X ≥ 10] ≤ E [X ]

10
≤ 1

10
= 0.1

⇒ at most 10% of the response time is greater than 10 sec.
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Chebyshev’s inequality

(2nd order inequality assuming δ2
X is known)

Y = (X − E [X ])2 and h(x) = x

P[Y ≥ t2] ≤ E [Y ]

t2 (simple Markov’s Inequality)

P[Y ≥ t2] = P[(X − E [X ])2 ≥ t2] = P[| X − E [X ] |≥ t ]
also E [Y ] = E [(X − E [X ])2] = σ2

X

P[| X − E [X ] |≥ t ] ≤
σ2

X
t2

(It provides intuition about the meaning of the variance of a r.v.
since it shows that wide dispersions from the mean (E [X ]) are
unlikely if σ2

X is small.)
ex: t = cσX where σX is the standard deviation
P[ | X − E [X ] | ] ≥ cσX ] ≤ 1

c2
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Chernoff’s Bound

Assume we know the moment generating functions
Let h(x) = eθX for θ ≥ 0

P[X ≥ t ] ≤ E [h(X )]

h(t)
= MX (θ)e−θt

P[X ≥ t ] ≤ inf
θ≥φ

e−θtMX (θ)

intuitively, this provides tighter bound than Markov and
Chebyshev because we need higher moments.
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Application : Let Yi , i = 1, 2, · · · be independent Bernoulli
r.v. with parameter 1

2

Xn = Y1 + Y2 + · · ·+ Yn

be the total no. of heads obtained in n tosses.

E [Yi ] = φ(
1
2
) + 1(

1
2
) =

1
2

Var(Yi) = E [Y 2]− E2[Y ] =
1
2
− 1

4
=

1
4
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Application: continue

Moment generating function of Y

E [eθY ] = eθφ(
1
2
) + eθ(1)(

1
2
) =

1 + eθ

2

E [Xn] = E [Y1 + . . . Yn] = E [Y1] + . . . E [Yn] =
n
2

Var [Xn] = Var [Y1 + . . . Yn] = Var [Y1] + . . . + Var [Yn]

=
n
4

(due to independence of Yi )

Moment generating function:E [eθXn ] = (E [eθYi ])n = (1+eθ

2 )n
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Application: continue

α > 1
2 , consider P[Xn ≥ αn]

by Markov’s Inequality , E [X ≥ t ] ≤ E [X ]
t

P[Xn ≥ αn] ≤
n
2

αn
=

1
2α

Chebyshev’s inequality: Let αn = n
2 + (α− 1

2)n. Observe

P[Xn ≥ αn] = P[Xn −
n
2
≥ (α− 1

2
)n]

P[Xn −
n
2
≥ (α− 1

2
)n] ≤ P[| Xn −

n
2
|≥ (α− 1

2
)n] ≤

n
4

[(α− 1
2)n]2

P[Xn −
n
2
≥ (α− 1

2
)n] ≤ 1

4n(α− 1
2)2

Note: this is also equal to P[Xn ≥ αn] ≤ 1/
(
4n(α− 1

2)2)
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Application: continue:

for Chernoff’s bound

P[Xn ≥ αn] ≤ inf
θ≥0

e−θαn[
1 + eθ

2
]n (∗)

To find the optimal θ∗, we perform

d
dθ

[e−θαn(
1 + eθ

2
)n] = φ

θ∗ = ln[
α

1− α
]

Substitute θ∗ into the expression (∗)

P[Xn ≥ αn] ≤
[ 1
(2(1−α)) ]

n

[ α
(1−α) ]

αn

Note: P[Xn ≥ αn] is exponentially decreasing in n and it’s a
tighter bound.
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Application: continue

n = 100

α 0.55 0.60 0.80
Markov’s Inequality 0.90 0.83 0.62

Chebyshev’s Inequality 0.1 0.025 0.002
Chernoff’s Bound 0.006 1.8× 10−9 1.9× 10−84
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Weak Law of Large Numbers

Let Xi , i = 1, 2, · · · be i.i.d. r.v. with finite mean E [X ] and
variance σ2

X .
Sn = X1 + X2 + . . . + Xn

The statistical average of the first n experiments is Sn
n

Intuition tells us that as n →∞, E [Sn
n ] → E [X ]

E [
Sn

n
] = E [

X1

n
+

X2

n
+ . . . +

Xn

n
] =

E [X ]

n
+ . . . +

E [X ]

n
= E [X ]

Var [
Sn

n
] = Var [

X1

n
+

X2

n
+ . . . +

Xn

n
]

=
1
n2 Var [X1] + . . . +

1
n2 Var [Xn] =

σ2
X
n
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Using Cherbyshev’s inequality

P
[∣∣∣∣Sn

n
− E [X ]

∣∣∣∣ ≥ ε

]
=

Var [Sn
n ]

ε2 =
σ2

X
nε2

This says than as n →∞(or no. of experiment increases),
it becomes less likely the "statistical average" differs from
the mean E [X ]

lim
n→∞

P
[∣∣∣∣Sn

n
− E [X ]

∣∣∣∣ ≥ ε

]
= 0
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Theory

We studied Chernoff’s bound from Markov inequality.
For a random variable X , Chernoff’s bound implies

P[X ≥ t ] ≤ inf
θ≥0

e−θtMX (θ) (1)

where MX (θ) is the moment generating function of X .
Taking the log on both sides, we have

ln P[X ≥ t ] ≤ inf
θ≥0

(−θt + ln MX (θ))

= − sup
θ≥0

(θt − ln MX (θ)) . (2)

Define I(t) as large deviation rate function:

I(t) = sup
θ≥0

(θt − ln MX (θ)) . (3)
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Consider an example statistical average

Assume Xi are i.i.d, we have:

Sn =
X1 + X2 + · · ·+ Xn

n
. (4)

The strong law of large number says that:

Sn → E [X ], as n →∞,

but provides no information about the rate of convergence.
We are interested in the probability that Sn is larger than some
value t , where t ≥ E [X ]. For large n, large deviation theory
shows that:

P[Sn ≥ t ] = e−nI(t)+o(n), t ≥ E [X ], (5)

or deviations away from the mean decrease exponentially fast
with n at the rate of −I(t).
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Proof: the upper bound

We first observe that MSn(θ) = Mn
X (θ/n), using the result of

Chernoff’s bound, we have

ln P[Sn ≥ t ] ≤ − sup
θ≥0

(θt − n ln MX (θ/n))

= −n sup
θ≥0

((θ/n)t − ln MX (θ/n)). (6)

In (6), we replace the “dummy” variable θ with nθ. Doing this,
dividing by n, we can rewrite (6) as:

1
n

ln P[Sn ≥ t ] ≤ −I(t).

Since it holds for all n, it also holds for the limit supremum:

lim
n→∞

sup
1
n

ln P[Sn ≥ t ] ≤ −I(t). (7)
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Proof: the lower bound

Suppose θ∗ is the value obtained in the supremum of the rate
function:

I(t) = θ∗t − ln MX (θ∗). (8)

Define a new random variable (or the twisted distribution) Y
with density function given by:

fY (z) =
eθ∗z fX (z)

MX (θ∗)
. (9)

One key feature of fY (z) is that:

E [Y ] = t .
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Proof: the lower bound (cont)

To see this,

E [Y ] =

∫ ∞

z=−∞

zeθ∗z fX (z)dz
MX (θ∗)

=
1

MX (θ∗)

d
dθ

∫ ∞

z=−∞
eθz fX (z)dz

∣∣∣∣
θ=θ∗

=
M

′

X (θ∗)

MX (θ∗)
=

d
dθ

ln MX (θ)

∣∣∣∣
θ=θ∗

From Equation (8), implies that

d
dθ

ln MX (θ)

∣∣∣∣
θ=θ∗

= t .

So E [Y ] = t as claimed.
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Proof: the lower bound (cont)

To obtain a lower bound on (1/n) ln P[Sn ≥ t ], we can write

P[Sn ≥ t ] =

∫
nt≤z1+···+zn

fX (z1) · · · fX (zn)dz1 · · ·dzn.

Rewriting in terms of the density of Y (Eq. (9)) yields

P[Sn ≥ t ] = Mn
X (θ∗)

∫
nt≤z1+···+zn

e−θ∗(z1+···+zn)fY (z1) · · · fY (zn)dz1 · · ·dzn.

Let ε be a positive constant that is used to restrct the range of
the integral above, we have:

P[Sn ≥ t ] ≥ Mn
X (θ∗)

∫
nt≤z1+···+zn≤n(t+ε)

e−θ∗(z1+···+zn)fY (z1) · · · fY (zn)dz1 · · ·dzn

≥ Mn
X (θ∗)e−θ∗nt

∫
nt≤z1+···+zn≤n(t+ε)

fY (z1) · · · fY (zn)dz1 · · ·dzn. (10)
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Proof: the lower bound (cont)

Since E [Y ] = t , the strong law of large number implies that the
Equation (10) converges to 1 as n →∞. This is easy to show

lim
n→∞

∫
t≤ z1+···+zn

n ≤t+ε
fY (z1) · · · fY (zn)dz1 · · ·dzn = 1.

Taking the log of both side on (10) and dividing n implies

lim
n→∞

inf
1
n

ln P[Sn ≥ t ] ≥ −I(t).

Combining with (7), we see that as n →∞, the upper and lower
bounds converge, yields

lim
n→∞

inf
1
n

ln P[Sn ≥ t ] = −I(t) = −θ∗t + MX (θ∗).
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Large Deviation Bound for Exp. Random Variables

Let Xi , i = 1, 2, . . ., be independent, identically distributed
exponential random variables with E [Xi ] = 1.
The moment generating function of X is

MX (θ) =

∫ ∞

z=0
eθzezdz =

1
1− θ

. (11)

To find θ∗ the rate function (3), we use calculus and yield:

d
dθ

(θt − ln MX (θ)) = t −
M

′

X (θ)

MX (θ)
= 0.

Since MX (θ) = 1
1−θ , substitute it to the above equation yields

θ∗ =
t − 1

t
.
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Large Deviation Bound for Exp. V.R (cont)

The large deviation rate function is I(t) = θt − ln MX (θ),
substituting θ∗, we have:

I(t) = (t − 1)− ln t .

We can now find the tail distribution of Sn (with respect to the
rate of convergence), or P[Sn ≥ t ] for t ≥ E [X ] = 1 :

P[Sn ≥ t ] = e−nI(t)

= e−n(t−1)+n ln t

= tne−n(t−1) for t ≥ E [X ] = 1.
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