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Convex Function

@ Def: A function h(x),where x € R", is said to be convex if
h(axy + (1 —a)xz) < ah(xq) + (1 — a)h(x2)

his concave if —h is convex.
@ For x € R and h has a second derivative, then it is convex if

h®(x)>0 vx

@ If his defined on the integers, x € N,

h(x+1)+h(x—1)—-2h(x) >0 for xe N
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Jensen’s Inequality

@ Suppose that his a differentiable convex function defined
on R, then
E[h(X)] = h(E[X])

@ Useful way to remember Jensen’s Inequality
E[X?] > (E[X])?

@ Why convex? Because variance > 0, E[X?] — (E[X])? > ¢.
@ Generally, X?" is a convex function, therefore

E[X*"] > (E[X])*"
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Momemt Generatin Function

@ We learn of transform before, for example, Laplace
transform and Z—transform.

@ Assume X is a continuous random variable, the Laplace
transform of X is E[e~X] = [ e=¥fy(x)dx.

@ For moment generating function:
Mx(6) = E[e"]

Since exponential is a convex function, we have:

E[eBX] > eGE[X]
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Jensen’s Inequality for concave function

@ If his convex, g(x) = —h(x) is concave, we have
E[h(X)] = h(E[X]) = E[-h(X)] < —h(E[X]).

@ Therefore,
E[g(X)] < g(E[X]).
@ Example:

E[min{ X, Xo, - Xp}] < min{E[X:], E[Xa], - - - E[X0]}
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Simple Markov Inequality:

@ If X is a non-negative random variable, we have:

E[X] = /xfx(x)dx.
@ If N is a discrete non-negative random varaible, we have:
E[N] = nProb[N = n]

@ Another way to express E[X], where X is a non-negative
R.V.is:

E[X] = / (1 — Fx(x)) .
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Simple Markov Inequality: continue

Assume Y is a non-negative random variable, “Simple Markov
Inequality” states that
E
ProblY > y] < [Y]

Area = E[Y] = / P{Y > o}de
0

P{Y >y}

complimentary distributio

function

y

RS
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Generalized Markov Inequality

Let h be a nonnegative, nondecreasing function and let X be a
random variable.

E[h(X)] = / T h2)h(2)dz

E[h(X)] = /oo h(z)f(z dz>/ h(z)fx(2)dz
> / fx(z)dz

P[X>t

E[h(X)]
h(t)
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@ Example : Let h(x) = (x)*
@ By Markov inequality ,

PIX >t <

E[X+]
t

@ We can use this result to estimate tail distribution! If
expected response time of a job is E[X] =1 sec

EX] _
) =0.1

Prob[response time >10sec | = P[X > 10] < < 10

= at most 10% of the response time is greater than 10 sec.
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Chebyshev’s inequality

(2" order inequality assuming &% is known)
Y = (X-E[X])? and h(x) = x

PlY > ] < EZ[zY] (simple Markov’s Inequality)
PIY > ] = P[(X—E[X])?>]=P[ X-E[X]|> 1]
also E[Y] = E[(X - E[X])?]=0%

P X-EX]|=1] < (22(

(It provides intuition about the meaning of the variance of a r.v.
since it shows that wide dispersions from the mean (E[X]) are
unlikely if 0% is small.)

ex: t = cox where o is the standard deviation

P[| X —E[X]|]>cox] < %
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Chernoff’s Bound

@ Assume we know the moment generating functions
@ Let h(x) = €’ ford >0
E[h(X)]
h(t)
>t < infe ¥
P[X > ] elg];e Mx (6)

PIX>1] < = Mx(0)e™"

@ intuitively, this provides tighter bound than Markov and
Chebyshev because we need higher moments.
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Application

@ Application : Let Y;,i=1,2,--- be independent Bernoulli
r.v. with parameter 3

Xn:Y1+Y2+"‘+Yn

be the total no. of heads obtained in n tosses.

EV] = o(z)+1(z) =5

Var(Y;) = E[Y?]-E?[Y]=

1
4

N —
IR
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Application: continue

@ Moment generating function of Y

Ele) = o)+l = 1
E[X,] = E[Y1+...Y,,]:E[Y1]+...E[Y,,]:g
Var(X,] = Var[Yi+...Ys] = Var[Yi]+... + Var[Y]

= g (due to independence of Y;)

® Moment generating function:E[e?X"] = (E[e?Y/])" = (14¢%)"
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Application: continue

® o > %, consider P[X, > an]
@ by Markov’s Inequality , E[X > {] < @

n

1
> an] < 2
PXn 2 an] om " 20
@ Chebyshev's inequality: Let an = g + (o — )n. Observe
n 1
P~ 0> (0= )l < Pl Xo— 2 > (0= < —
"= e A (o~ D)
n 1 1
> (- — < -
B e T e
@ Note: this is also equal to P[X, > an] < 1/ (4n(a.— $)?)
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Application: continue:

@ for Chernoff’s bound

. 1+ 69
P fan n
[Xn > an] < ;gge [ > " (%)

@ To find the optimal 6*, we perform

d_a,,1+e B
Gle ) = e

0" = In|

«
1-— a]
@ Substitute #* into the expression (x)

lerap]”
)™
@ Note: P[X, > an] is exponentially decreasing in nand it's a

P[X, > an] <
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Application: continue

e n=100
a 0.55 0.60 0.80
Markov’s Inequality 0.90 0.83 0.62
Chebyshev’s Inequality | 0.1 0.025 0.002
Chernoff’s Bound 0.006 | 1.8 x107°% | 1.9 x 10784
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Weak Law of Large Numbers

@ Let Xj,i=1,2,--- bei.id. r.v. with finite mean E[X] and
variance o%.
Sn=X1+Xo+...+Xp
@ The statistical average of the first n experiments is %
@ Intuition tells us that as n — oo, E[%2] — E[X]

X; X X,,  E[X E[X
go - g X, Xy EXI L EX]
n n n n n n
_ E[X]
Var[&] = Var[ﬁ+é+...+ﬁ]
n n n n
2

1 1 o%
= ?Var[Xﬂ +...+ ?Var[Xn] =
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Using Cherbyshev’s inequality

 Var[®] 0%

S,
PHn‘E[X]‘Zg]— 2 e

@ This says than as n — oo(or no. of experiment increases),
it becomes less likely the "statistical average" differs from
the mean E[X]

n—oo

lim P Hsn” - E[X]' > e] =0
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We studied Chernoff’s bound from Markov inequality.
For a random variable X, Chernoff’s bound implies

PIX > 1] < inf e % My () (1)

where Mx(0) is the moment generating function of X.
Taking the log on both sides, we have

INPIX >4 < Inf(=6+InMx(9))

= —sup (0t —InMx(6)). (2)
0>0

Define I(t) as large deviation rate function:

I(t) = sup (6t — In Mx(0)) . (3)
6>0
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Theory

Consider an example statistical average

Assume X; are i.i.d, we have:
XX+ Xy
= - .
The strong law of large number says that:

Sn

Sp— E[X], asn— oo,

but provides no information about the rate of convergence.
We are interested in the probability that S, is larger than some
value t, where t > E[X]. For large n, large deviation theory
shows that:

P[S, > 1] = e~ "()+o(n), t > E[X], (5)

or deviations away from the mean decrease exponentially fast
with n at the rate of —/(1).
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Theory

Proof: the upper bound

We first observe that Mg, (0) = My(6/n), using the result of
Chernoff’s bound, we have

InP[S, >1t] < —sup(0t— ninMx(6/n))
>0

= —nsup((f/n)t —InMx(6/n)). (6)
6>0

In (6), we replace the “dummy” variable 6 with nf. Doing this,
dividing by n, we can rewrite (6) as:

%In P[Sn > t] < —I(1).
Since it holds for all n, it also holds for the limit supremum:
1
nlim sup InP[Sp > t] < —I(1). (7)
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Theory

Proof: the lower bound

Suppose #* is the value obtained in the supremum of the rate
function:
I(t) = 6"t — In Mx(6%). (8)

Define a new random variable (or the twisted distribution) Y
with density function given by:

e’ ?fx(z2)

Y& = W)

One key feature of fy(z) is that:

E[Y] = t.

Prof. John C.S. Lui Computer System Performance Evaluation



Theory

Proof: the lower bound (cont)

To see this,

< 726" Zfy(2)dz
AU S

_ 1 d > 0z
= Wy(67) Z:_Ooe fx(z)dz
) _

M(6*) d
W(67) ~ In Mx(6)

0=0~*

0=06*

From Equation (8), implies that

9 0 My (6)

a0 =1l

0=06*

So E[Y] =t as claimed.



Theory

Proof: the lower bound (cont)

To obtain a lower bound on (1/n)In P[S, > t], we can write

P[Sy > ] = / fe(21) - - fx(20)0Zs - - - dzn,

nt<zy+---+2zp
Rewriting in terms of the density of Y (Eq. (9)) yields
P[S, > f] = MY(6%) / e 0" Gt (2. . fy(2p)dzy - - - dzp.
nt<zy+-+2zn

Let € be a positive constant that is used to restrct the range of
the integral above, we have:

P(Sn>1] > Mx(6") / e (Bt (2y) - fy(2p)dzy - - dzp
nt<zy+--+zp<n(t+e)

v

ME(6%)e= """ [ fy(z)--- fy(zn)dzy - dzp.  (10)

nt<zy+--+zp<n(t+e)
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Theory

Proof: the lower bound (cont)

Since E[Y] = t, the strong law of large number implies that the
Equation (10) converges to 1 as n — oo. This is easy to show

lim / fy(Z1)'--fy(Zn)dZ1 ceedzp=1.
n—oo t< Z1+~,-7'+Zn <tte

Taking the log of both side on (10) and dividing n implies
.o 1
nILmoome InP[S, > t] > —I(1).

Combining with (7), we see that as n — oo, the upper and lower
bounds converge, yields

lim inf ,17 InP[S, > 1] = —I(t) = —0%t + Mx(6").
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Application

Large Deviation Bound for Exp. Random Variables

Let X;,i =1,2,..., be independent, identically distributed
exponential random variables with E[Xj] = 1.
The moment generating function of X is

o 1
Mx(6) :/ Oeezezdz: T (11)
Z=

To find 6* the rate function (3), we use calculus and yield:

/

i(et —InMx(6)) =t — %ﬁz;

90 =0.

Since Mx(0) = 15, substitute it to the above equation yields

_t-1
=
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Application

Large Deviation Bound for Exp. V.R (cont)

The large deviation rate function is I(t) = 0t — In Mx(6),
substituting 6*, we have:

I(t) = (t—1) - Int.

We can now find the tail distribution of S, (with respect to the
rate of convergence), or P[S, > ] fort > E[X] =1 :

P[S,>1 = e "
efn(tf1 )+nint

= e -1 for t > E[X] = 1.
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