CHAPTER 4 N

MARKOVIAN QUEUES

PROBLEM 4.1

Consider the Markovian queueing system shown below. Branch labels are birth and
death rates. Node labels give the number of customers in the system.

A A

(a) Solve for py.

(b) Find the average number in the system.

(¢) For A = u, what values do we get for parts (a) and (b)? Try to interpret these
results.

(d) ‘Write down the transition rate matrix Q for this problem and give the matrix
equation relating Q to the probabilities found in part (a).

SOLUTION

(a) Using the flow conservation law for states 0 and 2 and the conservation of
probability, we get the following three independent equations:

Apo = upy + up2
Kp2 = Apy

ptrptp=1
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Solving this gives

Po—x—_’:—ﬁ
Ap
Y
A2
RN
(b) We have
N=O-?0+1-p1 +2:-pp= )E;L:i?zz
N = AQA + )
(A + p)?

(c) If A = p, the results in parts (a) and (b) become
P0=%YP1=P2=%JV=%

To interpret these results, consider a cycle from state 0 back to state 0. The
rate out of state 0 is A (= ), which puts the system into state 1. The rate out
of state 1is A + w = 24, and so the fraction of time spent in state 1 must be
half that spent in state 0. From state 1 we arrive at state 2 with probability %
(or return directly to state 0 Wwith probability %) and depart state 2 at rate p;
therefore we spend as much time, on the average, in state 2, (i.e., % - (1/u))
as in state 1 (i.e., 1/2u).

(d) Equation (1.53) implies that —gj; is the rate at which the system departs from
state i, while ¢;; (i # j) is the rate at which it moves from state i to state j.

Thus
- A 0
Q= n —(tr) A
s 0 —u

From Eq. (1.56) we have directly that
mQ=0 (m=p=[popip) ]

PROBLEM 4.2

Consider an E;/E,/1 queueing system where no queue is permitted to form. A .

customer who arrives to find the service facility busy is “lost” (he departs with no
service). Let (i, J) be the system state in which the “arriving” customer is in the ith
arrival stage and the customer in service is in the jth service stage (note that there is
always some customer in the arrival mechanism and that if there is no customer in
the service facility, then we let j = 0). Let 1/kA be the average time spent in any
arrival stage and 1/nu be the average time spent in any service stage.
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(a) Draw the state diagram showing all the transition rates.

(b) Write down the equilibrium equation for (i, jy where 1 <i <k, 1 < j=n

SOLUTION

(a) The state-transition-rate diagram is

kA (CUSTOMER "ARRIVES”)

kA (NO QUEUE)

kX (NO QUEUE)
kA {NO QUEUE)

kA kA
ny
2,n 2,0
kA KA
ny

“sesscrssrcssernnsesassraser »

(b) Using Flow Out = Flow In, we obtain

(kA + np)pij = kApi—y ; + nup; j- forl<i<k I<j=n O

PROBLEM 4.3

Consider an M/E,/1 system in which 70 queue is allowed to form. Let j be the number

of stages of service left in the system and let P; be the equilibrium probability of
being in state (i, j).

(a) FindP;, j=0,1,...,r.
(b) Find the probability of a busy system.
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SOLUTION

The state-transition-rate diagram is

(a) The flow equations are

AP():)‘}.LP] j=0

ft

VMP]' r}.LPj+| l=j=r-—-1

APy j=r

i

ruP,

Of these r + 1 equations, one is redundant; using the first 7 we see that
A
~—P0=Pl =P2="'=Pr—l:Pr
rp

Also ) _oP; = 1 implies that

A
P0+Zr——1’0=1
=R

Thus

Py = &

At

and therefore

)\ <<

= =/
T !
(b) We have
1

Plb t: =]1—-Py=1-
[busy system] 0 N+

Plbusy system] =

At
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PROBLEM 4.4

Consider an M/H,/1 system in which no queue is allowed to form. Service is of the
hyperexponential type with p; = 2pay and g = 2u(1 — ).

(a) Solve for the equilibrium probability of an empty system.
(b) Find the probability that stage 1 is occupied.
(c) Find the probability of a busy system.

SOLUTION

Let 1; represent the state when there is one customer in the system and that customer
is in stage i. The state diagram for this system is as follows:

As usual, we have two independent flow equations and the conservation of probability:
Apg = 2ponp1, + 2p(l = a)py,
Aaypg = 2poy py,
po+pi, tp, =1

Thus

In
At p

Po =

A
Py =P, = m

(a) The probability of an empty system is

Plempty system] = po = ==

(b) The probability that stage 1 is busy is

A

P[stage 1 busy] = p1, = m
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(c) The probability of a busy system is

Plbusy system} = 1 — po = py, + py, =

At

PROBLEM 4.5

Consider an M/M/1 system with parameters A and p in which exactly two customers
arrive at each arrival instant.

(a) Draw the stale—transiti{on‘rate diagram.

(b) By inspection, write down the equilibrium equations for p; (k = 0,1,2, .. ).
(c) Let p = 2A/p. Express P(z) in terms of p and z.

(d) Find P(z) by using the bulk arrival result given in Eq. (1.82).

(e) Find the mean and variance of the number of customers in the system from

P(2).
(f) Repeat parts (a)—(e) with exactly r customers arriving at each arrival instant
(and p = rA/p).
SOLUTION

(a) The state-transition-rate diagram is as follows:

A A
ollolmo
u u

(b) The equilibrium equations are

Apo=pupy k=0
(A + wpr = up2 k=1
A+ wWpy = Apr—2 + uprs k=2

(c) Multiply the kth equation by z* and sum for k = 0. This gives

AP(2) + [P (z) — pol = A*P(2) + %[P (2) = pol
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1
P@) = i <1 _ ;> = KPo
- - +1
)\(l _ 22) + ® (1 _ ;) 2 )tZ(Z )

(Note that the average arrival rate A = 2\, and so p = AX = 2A/p.) Thus

2po

P& = s+ D

Since P(1) = 1 = 2pg/(2 — 2p) we have pg = 1 — p. Hence

_ _2-p)
P@) = 2—pz(z+ 1)
(d) By Eq. (1.82),
Py = =PI =2)

w(l —2) — Az[1 — G(2)]

In the system under consideration, bulks have constant size 2. Thus G(z) = 2*
(and p = AGO(1)/ = 21/ ). Therefore

_ wl-p-2
iy g gy vy g1

This simplifies as before to

20-p)

P@ = 2—pz(z+ 1)

(e) The mean and variance of the number of customers may be found from the
first and second derivatives of P(z). We find that
dpP(z) _ 2(1 — p)p(2z + 1)
dz [2 — pz(z + 1)]?

v P@|  _ 20 - ppB3)
B dz 72=1 (2'_2[))2

N2 P

N= 21-p

After simplification, the second derivative is

d’P(@) _ (2 — pz(z + D] + p(2z + 1)2}
a2 Ad-er [ 2 = pz(z + DP
— AP _ . 'F—u+%]
NN = | T TR Ty
=—P @+

21 - p?
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By definition, we may find the variance of N as as before
=N -@? =N -N)+N- @) Py = U0
, F—pY =17
3 p 9 p —
= 2(2 Tp) + — e To find N we note that
2(1 — p) p 41 —-p) dP(2) S kA1
z -
ol = p(10 — p) et r(l— P)Pk——l,ﬁ
N 4(1 —_ p)2 (r - kar_‘] z )
(f) The state-transition-rate diagram is so that
— dP(@ r(ir +1)/2
N = == 1 —_ e L
& ., r(l = p)p =)
Thus
= r+1 p
N = —_
2 1-p

To find o we first obtain

= r(1pyp | L2 Tk K= 4 2 (5, )’
z=1 (r — rp)

The equilibrium equations for py are

d*P(z)
)

Apo=uppr k=0 N2-N =
=<

(A + wWpe = PP+ 1 Now recall that

A+ WP = Apeer + ppiny k= r +1 r + +
=D g S D@ ED
k=1 2

Multiply the kth equation by z* and sum: P 6
hd ® it ® Therefore
MY pd + ) p =AY g Y pendt , O+ 1
k=0 k=t k=r k=0 Zk(k - = (’_)%(L__l
\P@) + uIPG) — pol = M P(2) + E[P(2) = po
z and
mpo(z — 1) _ 2
P(z) = r—ODrr+1 r(r +1)
@ wz— 1D —Az(z' — 1) . r(l - p)————3————— +2p —
N2—N=r(l-p)p
P(2) = ____“@___ P rd—p)p
— Az g7
Asp = rA/uw (A = rA and so p = AX = rA/p), we may write 6(2’1 1);)2(2r — 24 pr+5p)
r
P(z) = —jpo—r;
r=pYi=1? . and so
Also P(1) = 1 = rpo/(r — rp) implies that py = 1 — p. Thus ot =N?-N)+N - (JV)2
y r(1—p) ' N _ (r+Dp (r+bp (r+ 1)?p?
P@2) = ——=—— = Qr—2+pr+5p)+
S S 61— )2( P2t sy W=p  Hi-pP
To see this in another way, for the bulk arrival system with constant bulk size ol = (r + 1)P2 @r +2—pr + p) -
r, we have G(z) = z'. Substituting this into Eq. (1.82) and simplifying gives 12(1 — p)
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(b) We first simplify the expression obtained in part (a), and then find the limit as

t — o,
PIN(t) = k] = Z —)u()\t)" [ - Bl d k1 'B p n—k
i T / x)} dx ?/0 (x)dx
'3 k ¢ n—k
- e_)ui: [Afo[l _B(X)]dx] ' [)\ Jo B(x)dx]
pert k! (n—k)!
_ A INe —B(x)]dx' ® A fOB(x)dx
=g ML o d Z [ ]
! n=0
A 0 - Botdx]”
- X X
PIN®) = k] = e ML ° L A fiBeyax

K
¢ k
Aol ~ B0l da]
Kl

Thus, for every t, N(t) is Poisson with parameter A fo[l — B(x)]dx. Letting
t — = and noting that

= A Kl1-B(1dx [

lim/ [1 —-Bx)]dx = /w[l —BxX)]dx =X
== Jo 0

we see immediately that

A L. AT (Af)k

Pr = }Lrng(t) = U
Thus as ¢ — oo, the limiting distribution of number in system is Poisson with
parameter A¥, which is independent (except for the mean) of B(x). O

PROBLEM 5.9

Consider M/E,/1.

(a) Find the polynomial for G*(s).
{(b) Solve for S(y) = P[time in system < yl.

——— SOLUTION ...

(a) For the M/E,/1 system, the Laplace transform of the service time density is

) 2
B = (S +I;u)
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Thus Eq. (1.111) gives

2
G = [s +A- )xz(‘;*(s) + 2;4,?]
Expanding, we get
MG P =206 + A +2wWI[G* P + (s + A + 202G (s) —4p? = 0
(b) Equation (1.106) gives

s(1 - p)

SO =0 S

Thus

§(s)

( 2u )2 s(1 = p)
s+ 2u 21 2
s—A+A <s+2u)
_ 4p*(1 - p)
s+ (A~ As+4u(un — A)

The denominator 52+ (4 —~A)s+4u(—A) has roots sy, 5 (where p= A/

~“p(d—p)+u/p?+8p
2

51 =

_ (@ —p)—py/pr+8p
Sy = ) N

We note that, for p < 1, we have 16p < 16 and thus (4 — p)®> > p? + 8p.
Hence s, < sy < 0 for 0 < p < 1. Factoring,

4p*(1 - p)
(s —51)(s — 52)

_4;1,2(1—p)( 1 )
pVpr+8p \Ss— 51 s

Invert to find the pdf s(y) as

S*(s) =

S( ) = ’1’( P) (e_yly — exzy)

A/p2+ 8p
Thus the PDF §(y) is
- 4u(l — p) Y — 1) — — (2 — 1 ] O
S(») —*—\/m— ( ) (e )
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PROBLEM 5.10 and
Consider an M/D/1 system for which X = 2 sec. _y.i 0=sy=2
16
h . L Y T . 2
(a) Show that the residual service time pdf b(x) is a ref:tangular distribution. bay(y) = -y + Ey _ E 2=y=4
‘(b) For p-= 0.25, show that the result of Eq. (1:108) with four terms may be used 8 4 4
as a good approximation to the distribution of queueing time. y2 3 9

SOLUTION

(a) The service time distribution is given by v Biy) bty Braytv!
B(x)”'—-{O' x<2 : o o
1 x=2 172 12 12
3
The residual service time pdf is L Ly Y Y
01 2 3 4 0 1 2 3 4 56

We compare w(y) and Wapprox(¥) in three different ways.
Thus B(x) is rectangular. ) First, the area A under the curve w(y) minus the area Agpprox under the
CUIVE Wapprox(Y) 18

A A - Aapprox =(- P)Zpk] B(k)()’)dy =(1- P)Zpk
bix) =2 Y0 k=4

Y . _ _ 4 __1_ _ 4
. I‘x ’ (1 -pp (1—p) p

>

172}
©

It
o=

(b) The first four terms of the series in Eq. (1.108) give .
A-— Aapprox = 75§

A o ~ ~
W) = Wapprex(3) & (1 = ) [u0) + b + PPbr) + Py ()] , -
Thus, in terms of area, we have a “good” approximation.

As _ Second, we note that wypprox(y) = 0 for y = 6. Thus the tail of the density
w(y) is not approximated very well.
3 o) = { % y <2 Third, we compare the mean wait W wit'h an approximation Wpprox calcu-
0 y=2 lated from Wagprox (). [Note that wapprox(y) is not a pdf.]
"'W'é"’s“éﬁewfﬁa‘f e e 4 e e e et e e o e s e 8 21 e e e e e et enee b e et e o e | oo oo e e o S S .oq.,.;.v,:,. e e i s 1o
W= f ywndy =(1-p)> p* f b)) dy
. R % O=y=2 0 —1 0
bay(y) =

1- % 2=y=4 We now observe that f: ybay(y) dy has value k, since it represents the mean
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of a sum of k random variables each having mean 1. Thus

' = ) 1
W=(1-p)> kot = = Ppy (-——)

k=1 I=p
or
p
w=_r_
1—=p
Forp = {,
— 1
; =5
Now
= 3 0
Weepos = / Wapox(N)dy = (1= p) ) _p* /0 Ybuy(y) dy
0 k=1
3
=1 =p) kot = (1 = p)p + 2p* + 3p%)
k=1
Forp = &,
Wapprox=%(%+é+%)=%-g=%%
or
Wapprox = 0.31640625
Thus
w-ow -3
P = 4 = 0.0508
w 3

and s0 Wpprox is within 5% of the mean W.



