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Fluid Approximation

Introduction
Treating customer arrival and departure processes as fluid flows,
and represents teh backlog as a continuous-valued function of
time.
One can obtain transient as well as equilibrium solutions.
Since arrival and departure occur with discrete jumps, fluid
analysis replaces with continuous change. It is a good
approximation in heavy-traffic condition:

when the queue sizes are large compared to unity, and
when the waiting times are large compared to average service
times.

Or the magnitude of the original discontinuities is small relative to
the average value of these functions.
Fluid approximation is a first-order approximation since we deal
with average values of arrivals, departures and queueing process.
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Fluid Approximation

Notations
A(t) is the accumulated number of arrivals up to time t with
average denoted as A(t). The ratio of deviation A(t)− A(t) to the
average A(t) is negligibly small:

lim
t→∞

A(t)− A(t)
A(t)

a.s.−→ 0. (1)

Fluid approximation replaces the random process A(t) by the
continuous deterministic process A(t).
Similary, we replace the departure counting process D(t) by its
average D(t).
The amount of backlog (e.g., number of customers in teh system)
is N(t). With N(0) = 0, can be approximated:

N(t) = A(t)− D(t). (2)
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Fluid Approximation

Notations (continue)
We define the flow rates of the arrival process as

λ(t) =
dA(t)

dt
(3)

µ(t) =
dD(t)

dt
(4)

Thus, we have

A(t) = A(0) +

∫ ∞
0

λ(u)du (5)

D(t) = D(0) +

∫ ∞
0

µ(u)du. (6)
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Fluid Approximation

Application: Statistical Multiplexer
There are K statistically independent and identical sources and
each source alternates between "on" (or burst) state and the "off"
(or silence) state.
Duration of on (off) state is exponentially distributed with mean
β−1 (α−1). If the source is "on", it generates cells at teh rate of
one cell per unit time.
Let C be teh multiplexer’s service rate, normalized by the data rate
per source.
Let J(t) bethe number of sources that are "on" at time t . If
J(t) < C, all arriving packets are transmitted immediately to the
output link and no queueing. If J(t) > C, a queue will develop at
the rate of J(t)− C.
For non-trivial analysis, we assume C < K .
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Fluid Approximation

Let Q(t) be the number of packets in the buffer.
The random process Q(t) and J(t) are related via:

dQ(t)
dt

=

{
J(t)− C if Q(t) > 0 or J(t) > C,
0 otherwise

(7)

While Q(t) > 0, it is the integration of the process J(t):

Q(t) =

∫ t

t0
J(u)du − C(t − t0), (8)

where t0 is the msot recent instant such that Q(t0) = 0.
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Fluid Approximation

To derive Q(t), we need to first consider the pair process
(J(t),Q(t)). We define the joint probability function

Fj(t , x) = P[J(t) = j ,Q(t) ≤ x ], 0 ≤ j ≤ K , t > 0, x ≥ 0. (9)

Note that J(t) is a birth-death process. Consider a short interval
(t − h, t), each "on" source generates r pkts/sec, the server sends
rC pkts/sec. We have the following (which is independent of r ):

Fj(t , x) = λ(j − 1)hFj−1(t − h, x − (j − C)h)

+µ(j + 1)hFj+1(t − h, x − (j − C)h)

+[1− λ(j)h − µ(j)h]Fj(t − h, x − (j − C)h) + o(h) (10)

where λ(j) = (K − j)α, and µ(j) = jβ, for 0 ≤ j ≤ K .
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Fluid Approximation

(continue)
First, we have the following Taylor expansion:

Fj(t−h, x−(j−C)h) = Fj(t−h, x)− ∂

∂x
Fj(t−h, x)(j−C)h+o(h)

(11)
Use the above Taylor expansion on the 3rd term of Eq.(10)

Fj(t , x)− Fj(t − h, x) + (j − C)
∂

∂x
Fj(t − h, x)h

= −[λ(j) + µ(j)]Fj(t − h, x − (j − C)h)h
+λ(j − 1)Fj−1(t − h, x − (j − C)h)h
+µ(j + 1)Fj+1(t − h, x − (j − C)h)h + o(h)
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Fluid Approximation

(continue)
Dividing the above equation by h and let limh→0:

∂Fj(t , x)

∂t
+ (j−C)

∂Fj(t , x)

∂x
= − [λ(j)+µ(j)] Fj(t , x)+λ(j−1)Fj−1(t , x)

+µ(j + 1)Fj+1(t , x) (12)

for 0 ≤ j ≤ K and x ≥ 0. With boundary conditions

F−1(t , x) = FK+1(t , x) = 0 for all t and x ≥ 0. (13)

We are interested in the equilibrium solution
Fj(x) = limt→∞ Fj(t , x) for 0 ≤ j ≤ K , x ≥ 0. Taking t →∞, Eq
(12) becomes:

(j−C)
dFj(x)

dx
= − [λ(j)+µ(j)] Fj(x)+λ(j−1)Fj−1(x) + µ(j + 1)Fj+1(x)

(14)
with F−1(x) = FK+1(x) = 0 for x ≥ 0.
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Fluid Approximation

(continue)
The above equilibrium solutions can be solved:

Numerically.
Laplace Transform method.
Spectral Matrix Expansion

For the last two approaches, please refer to the textbook by
Hisashi Kobayashi, "System Modeling and Analysis".
In the textbook (Chapter 13), it also covers:

Rare event for buffer overflow, or P[Q(t) > B]
Infinite Source Model
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