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The Heavy-Traffic Approximation

Heavy-Traffic Approximation
Goal: derive the waiting time distribution for G/G/1 when ρ ≈ 1
(but remains less than 1 for stability).
Recall from G/G/1, we have the following result

A∗(−s)B∗(s)− 1 =
Ψ+(s)

Ψ−(s)
(1)

where
where for Re(s) > 0, Ψ+(s) must be an analytic function of s that
contains no zeros in this half plane,
for Re(s) < D, Ψ−(s) must be analytic function of s and be
zero-free (where D > 0),
require for |s| approaching infinity that Ψ+(s) ≈ s for Re(s) > 0 and
Ψ−(s) ≈ −s for Re(s) < D.
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The Heavy-Traffic Approximation

Heavy-Traffic Approximation (continue)
The spectrum factorization for Ψ+(s) is

Φ+(s) =
K

Ψ+(s)
where K = lims→0

Ψ+(s)
s , (2)

Φ+(s) is the Laplace transform of the PDF for W (y) (waiting time).
Consider the Taylor series expansion of B∗(s),A∗(−s):

B∗(s) =
∞∑

k=0

sk

k !
B∗(k)(0),

and we know that B∗(k)(0) = (−1)kxk .
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The Heavy-Traffic Approximation

Heavy-Traffic Approximation (continue)
Using this and considering that B∗(s)|s→0, we havea:

B∗(s) = 1− xs +
x2s2

2!
+ o(s2).

Similarly

A∗(−s) = 1 + ts +
t2s2

2!
+ o(s2).

We are interested in large waiting times. Large values of y for
W (y) is governed by pole of Φ+(s) which has the smallest Re(s)
in absolute value. Therefore, we need to find zero near s = 0.

awhere o(x) is any function which goes to zero faster than x , or limx→0[o(x)/x ] = 0
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The Heavy-Traffic Approximation

Heavy-Traffic Approximation (continue)
Putting the two Taylor’s expansions in Eq. (1), we have:

A∗(−s)B∗(s)−1 =

(
1−xs+

xs2

2

)(
1+ts+

ts2

2

)
−1+o(s2)

= 1+s(t−x)+s2

(
x2

2
+

t2

2
−xt

)
−1+o(s2)

= s

[
t−x +s

(
x2

2
+

t2

2
−xt

)]
+o(s2) (3)

We see that we have a root at s = 0. To find the 2nd root near
s = 0, we note that:

x2

2
+

t2

2
−xt =

σ2
b + σ2

a

2
+

(x−t)2

2
(4)
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The Heavy-Traffic Approximation

Heavy-Traffic Approximation (continue)
Since ρ ≈ 1, we drop the last term of Eq. (4), or the squared
difference of the first moment is negligible compared to the sum of
variances.
To find the 2nd root which we denote as s0, we have:

t − x + s0
σ2

b + σ2
a

2
≈ 0

which yields

s0 ≈ −
2t(1− ρ)

σ2
a + σ2

b
(5)

Thus, the approximation near the origin is

A∗(−s)B∗(s)−1 = s(s − s0)
(σ2

a + σ2
b)

2
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The Heavy-Traffic Approximation

Heavy-Traffic Approximation (continue)
Doing spectrum factorization, we have Ψ+(s) ≈ s(s − s0)C where
C = Ψ−(0)[σ2

a + σ2
b]/2.

To proceed to our solution of Ψ+(s), we need to find K where
K = lims→0(s − s0)C = −s0C, and this yields Ψ+(s) ≈ −s0

s(s−s0)

Doing partial fraction expansion, we have

Ψ+(s) ≈ 1
s
− 1

s − s0
.

Since Ψ+(s) is the Laplace transform of W (y) (for ρ ≈ 1):

W (y) ≈ 1− exp

(
−2t(1− ρ)

σ2
a + σ2

b
y

)
(6)

W =
(σ2

a + σ2
b)

2(1− ρ)t
(7)
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Upper bound for the Average Waiting Time

Derivation of Upper Bound on W

Goal: derive not an approximation, but a firm upper bound on W .
Recall ũ = x̃ − t̃ , and we have the following relationship:

w̃ = (w̃ + ũ)+

Assuming the following moments exist, we must have

E [(w̃)k ] = E{[(w̃ + ũ)+]k} (8)

For a random variable X , we introduce the following definition

(X )− = −min[0,X ] (9)

Recalling that (X )+ = max[0,X ], we have the simple relationships

X = (X )+ − (X )− (10)
(X )+(X )− = 0 (11)
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Upper bound for the Average Waiting Time

Derivation of Upper Bound on W (continue)
Squaring Eq. (10) and using Eq. (11), we have

X 2 = [(X )+]2 + [(X )−]2 (12)

We may form expectations in Eq. (10) to yield:

X = (X )+ − (X )− (13)

Likewise, from Eq. (12), we have

X 2 = [(X )+]2 + [(X )−]2

Since σ2
X = X 2 − (X )2, we use the above relationships to yield:

σ2
X = σ2

(X)+ + σ2
(X)− + 2(X )+(X )− (14)

and the above equality is true for any random variable X .
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Upper bound for the Average Waiting Time

Derivation of Upper Bound on W (continue)

Now taking X = w̃ + ũ, we see from Eq. (13) that X = w + u is
given by

w + u = (w̃ + ũ)+ − (w̃ + ũ)− (15)

However, from Eq (8) (with k = 1), we have w = (w̃ + ũ)+, and so
Eq. (15) can be rewritten as

u = −(w̃ + ũ)−

Furthermore, from Eq. (8), we have that

σ2
w̃ = σ2

(w̃+ũ)+ (16)
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Upper bound for the Average Waiting Time

Derivation of Upper Bound on W (continue)

Once again, taking X = w̃ + ũ, we see the term σ2
(X)+ from Eq.

(14) is equal to σ2
w̃ due to relationship in Eq. (16). Since w̃ and ũ

are independent, we have σ2
(w̃+ũ) = σ2

w̃ + σ2
ũ, and so Eq. (14)

finally takes the form

σ2
w̃ + σ2

ũ = σ2
w̃ + σ2

(X)− + 2(w̃ + ũ)+(w̃ + ũ)− (17)

For the last term above, we already established that
(w̃ + ũ)+ = w and (w̃ + ũ)− = −u; using this and canceling the
variance of w̃ from both sides of the last equation, we have

σ2
ũ = σ2

(X)− − 2w u (18)
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Upper bound for the Average Waiting Time

Derivation of Upper Bound on W (continue)

By definition, ũ = x̃ − t̃ and u = t(ρ− 1). Since x̃ and t̃ are
independent, it must be that σ2

ũ = σ2
t̃

+ σ2
x̃ = σ2

ã + σ2
b̃
. Now we can

solve for w (which is denoted as W ) in Eq. (18) as:

W =
σ2

a + σ2
b

2t(1− ρ)
−

σ2
(X)−

2t(1− ρ)

Since variance is always non-negative, we drop the last term of
the above equation to create an upper bound:

W ≤
σ2

a + σ2
b

2t(1− ρ)
for 0 ≤ ρ < 1. (19)

It means the heavy-traffic approximation forms a strict upper
bound on W for G/G/1.
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Bounds on the tail of the waiting time distribution

Deriving the tail of the waiting time
Waiting time of an arriving customer is equal to the service time of
all customers he finds in the queue upon his arrival, plus the
residual service time of customer in the service center.
Our working equation wn+1 = max[0,wn + un]. For y ≥ 0, we may
write

P[wn+1 ≥ y ] = P[wn + un ≥ y ]

Conditioning on the value of vn and P[wn ≥ 0] = 1, we have

P[wn+1 ≥ y ] =

∫ ∞
−∞

P[wn ≥ y − u]dC(u)

=

∫ y

−∞
P[wn ≥ y − u]dC(u) + 1− C(y). (20)

John C.S. Lui (CUHK) Computer Systems Performance Evaluation 17 / 28



Bounds on the tail of the waiting time distribution

Derivation (continue)
Consider C∗(−s) = E [esun ] where s is taken to be a real (rather
than a complex) variable.
We know that s must lie in a restricted range if this transform is to
remain bounded. In particular, if there exists a real s′ such that
B∗(−s) = E [es′x̃ ] <∞, then a permissible range for s is
0 ≤ s ≤ s′.
Furthermore, there will be a range in which C∗(−s) ≤ 1. For
example, in this stable case, C∗(0) = 1 and for s = 0,
dC∗(−s)/ds = u < 0. Thus identifying a neighborhood in this
range.
We let s0 denote the largest value for s such that this remains true.
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Bounds on the tail of the waiting time distribution

Derivation (continue)
We can now express

e−s0y ≥ e−s0yC∗(−s0)=e−s0y
∫ ∞
−∞

es0udC(u)=

∫ ∞
−∞

e−s0(y−u)dC(u)

(21)
Since s0 > 0, for the range u ≥ y , it must be e−s0(y−u)] ≥ 1, we
can express Eq. (21) as

e−s0y ≥
∫ ∞
−∞

e−s0(y−u)dC(u)+

∫ ∞
y

dC(u)

=

∫ y

−∞
e−s0(y−u)dC(u) + 1− C(y) for y > 0 (22)
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Bounds on the tail of the waiting time distribution

Derivation (continue)
Let us assume w0 (an initial customer’s waiting time) is chosen so
that P[w0 ≥ y ] ≤ e−s0y . We wish to prove that this hypothesis
carries over for all wn. We prove this by induction.
Assume that it is true for n, or P[wn ≥ y ] ≤ e−s0y , then

P[wn+1 ≤ y ] ≤
∫ ∞
−∞

e−s0(y−u)dC(u) + 1− C(y)

But this right-hand side is exactly the expression we bounded in
Eq. (22). So we have P[wn+1 ≥ y ] ≤ e−s0y .
We have established the following exponential bound on the tail of
the waiting time distribution (by letter n→∞):

P[w̃ ≥ y ] ≤ e−s0y (23)

where s0 can be found from s0 = sup{s > 0 : C∗(−s) ≤ 1}
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Bounds on the tail of the waiting time distribution

Derivation (continue)
It is possible to prove that this tail has a lower bound, with
combined result of

γe−s0y ≤ 1−W (y) ≤ e−s0y (24)

where W (y) = P[w̃ ≤ y ] and γ must satisfy:

γ ≤ 1− C(y)∫∞
y e−s0(y−u)

dC(u) for y > 0 (25)

Therefore, γ is the smallest value that the ratio of the above
equation takes on.
From these bounds on the distribution function, it is trivial to show
the bounds on the mean waiting time as

γ

s0
≤W ≤ 1

s0
(26)

These bounds are sometimes sharper than those we considered
earlier.
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A Discrete Approximation

Discrete G/G/1
Instead of finding an approximation to our problem, we attempt an
exact solution for an approximation of the problem.
For G/G/1, we have the following recurrence relationship:

wn+1 = max[0,wn + un] (27)

When the interarrival time and service time are both discrete
random variables, whose only nonzero values occur at the
instants kτ (k = 0,1, . . .) and τ is a basic time unit, the iterative
application of the above equation is quite simple.
Let us assume that we can approximate the given continuous
interarrival time and service time to discrete random variables (this
requires some thinking). We illustrate this method via an example.
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A Discrete Approximation

Discrete G/G/1: example
Consider the following discrete random variables (CDF):

A(t) =

{
0 t < 2τ
1 t ≥ 2τ

; B(x) =


0 x < 0

1/2 0 ≤ x < 3τ
1 3τ ≤ x

Illustrate pdfs of a(t) (for A(t)), and b(x) (for B(x)).

a(k)

0 1 2 3

b(k)

0 1 2 3 4

1

1/2 1/2

k k

The average interarrival time is 2τ , average service time is
1/2× 0 + 1/2× 3τ = 1.5τ . So ρ = 1.5τ

2τ = 0.75 < 1, so the system
is stable.
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A Discrete Approximation

Example (continue)
Define the pdf of un: c(k) = P[un = kτ ], since un = xn − tn+1:

c(k) = a(−k)⊗ b(k) =
∞∑

i=−∞
a(−k + i)b(i).

Carrying out this convolution, we have

c(k) =


1/2 k = −2
1/2 k = 1
0 otherwise

(28)

c(k)

0 1 2
k

1/2 1/2

-1-2
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A Discrete Approximation

Example (continue)
Assume the initial waiting time in the system is w0 = 0, now we
can apply the recursion.
Define pn(k) = P[wn = kτ ] and apply Eq. (27).
Procedure is:

1 Assume we have pn(k).
2 We need to find the pdf of wn + un, which means we need to

convolve pn(k) and c(k).

pn(k)⊗ c(k).

3 Then we apply:
π(pn(k)⊗ c(k),

where π means sweeping the probability in the negative half-line up
to the origin, this gives pn+1(k).

4 Repeat until converges, or p(k) = limn→∞ pn(k). (or
pn+1(k) = pn(k)).
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A Discrete Approximation

Example (illustration)
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A Discrete Approximation

Comment
The above is really a numerical method.
The important thing is how to approximate the continuous random
variables of A(t) and B(x) to discrete random variables.
One may consider ways to match the first k moments as
"approximation".
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