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Transition Probabilities for the Embedded Markov Chain

Introduction
Interarrival times are i.i.d according to A(t) with mean time being
1/λ.
Service times are i.i.d and is exponentially distributed with mean
1/µ.
Instead of keeping track how long since the past arrival occurs,
look at the arrival instants, which form an imbedded Markov chain.
Let q

′
n be the number of customers in the system immediately

prior to the arrival of customer Cn.
let v

′

n+1 be the number of customers served during the arrival of
Cn and Cn+1. We have

q
′

n+1 = q
′
n + 1− v

′

n+1. (1)

Now we need to find the transition probabilities of this imbedded
Markov chain.
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Transition Probabilities for the Embedded Markov Chain

Derivation of transition probabilities

Define pij = P[q
′

n+1 = j |q′n = i].
pij is simply the probability that i + 1− j customers got served
during the interarrival time, and it is clear that pij = 0 for j > i + 1.
Transition structure of this imbedded Markov chain:

0 1 i-2 i-1 i i+1 i+2

pii

pi0

pi1
pi,i-2

pi,i-1

pi,i+1

... ...

Figure: Transition diagram of G/M/m

Define system utilization as ρ = λ
mµ . For system to be stable, we

require ρ < 1.

John C.S. Lui (CUHK) Computer Systems Performance Evaluation 5 / 33



Transition Probabilities for the Embedded Markov Chain

Derivation of rk

Define rk = limn→∞ P[q
′
n = k ] as the steady state probability of

finding k customers upon arrival.
To find all rk , where k ≥ 0, we can use

r = rP where r = [r0, r1, . . .]

The only remaining issues is, what are pij ∈ P?
Case 1: we know that pij = 0 if j > i + 1.
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Transition Probabilities for the Embedded Markov Chain

Case 2: Derivation of pij where j ≤ i + 1
For j ≤ i + 1 ≤ m, this is the case which no customers are waiting
in the queue.
Condition that the interarrival time is t , we have

P[i + 1− j departures within t after Cn arrives| q
′
n = i]

=

(
i + 1

i + 1− j

)[
(1− e−µt)

]i+1−j [
(e−µt)

]j
=

(
i + 1

j

)[
(1− e−µt)

]i+1−j [
(e−µt)

]j
Removing the condition of interarrival time t :

pij =

∫ ∞
t=0

(
i + 1

j

)[
(1− eµt)

]i+1−j [
(eµt)

]j
dA(t) j ≤ i+1 ≤ m.

(2)
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Transition Probabilities for the Embedded Markov Chain

Case 3: Derivation of pij where m ≤ j ≤ i + 1, i ≥ m
For m ≤ j ≤ i + 1, i ≥ m, it means that all m servers are busy
throughout the interarrival interval.
Since service time is exponential (memoryless), the number of
customers served during this interval will be Poisson distributed
with parameter mµ. We have

P[k customers served| t , all m busy] =
(mµt)k

k !
e−mµt .

If we go from state i to j , it means i + 1− j customers have been
served:

pij =

∫ ∞
t=0

P[k customers served| t , all m busy]dA(t)
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Transition Probabilities for the Embedded Markov Chain

Case 3: Derivation of pij where m ≤ j ≤ i + 1, i ≥ m (continue)
Putting everything together, we have:

pij =

∫ ∞
t=0

(mµt)i+1−j

(i + 1− j)!
e−mµtdA(t) m ≤ j ≤ i + 1. (3)

Since i and j only appear as the difference of i + 1− j , we define a
new quantity with a single index of βi+1−j = pij :

βn = pi,i+1−n =

∫ ∞
t=0

(mµt)n

n!
e−mµtdA(t) 0 ≤ n ≤ i+1−m,m ≤ i .

(4)
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Transition Probabilities for the Embedded Markov Chain

Case 4: Derivation of pij where j < m < i + 1
It means when Cn arrives, there are m customers in service and
i −m waiting in the queue, when Cn+1 joins, there are j customers
in service.
Queue will be empty when i + 1−m are served. Let ỹ be the time
to serve i + 1−m customers, so ỹ is (i + 1−m)th−Erlangian with

fỹ (y) =
mµ(mµy)i−m

(i −m)!
e−mµy , y ≥ 0.

Also, we have to serve m − j customers so Cn+1 will find j
customers. Let tn+1 be the interarrival time between Cn+1 and Cn,
we need to serve (m − j) in (tn+1 − ỹ) time.
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Transition Probabilities for the Embedded Markov Chain

Case 4: Derivation of pij where j < m < i + 1 (continue)
Let tn+1 = t and ỹ = y , we have

P[m − j served in t − y |tn+1 = t ,ỹ = y ] =(
m

m − j

)(
1− e−µ(t−y)

)m−j (
e−µ(t−y)

)j

P[m − j served in t − y |tn+1 = t ] =∫ t

y=0

(
m
j

)(
1− e−µ(t−y)

)m−j (
e−µ(t−y)

)j
fỹ (y)dy

Since we know fỹ (y), putting it in above and uncondition on tn+1:

pij =

∫ ∞
t=0

(
m
j

)
e−jµt

[∫ t

y=0

(mµy)i−m

(i −m)!
(e−µy−e−µt)m−jmµdy

]
dA(t)dt

(5)
for j < m < i + 1.
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Transition Probabilities for the Embedded Markov Chain

Putting them together
Now we can use the standard method to solve for r = rP.
We know all entries of P by the four marked equations of pij .
Theoretically, we are done, but practically, we have a problem
since r is a vector with infinite dimension and P is a
two-dimensional infinite matrix.

Importance of βn

Remember, βn is the probability that all m servers will finish processing
n customers between the interarrival instant. We will use βn in later
section to derive more results.
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Conditional Distribution of Queue Size

Introduction
Define Nk (t) be the number of arrival instants in the interval (0, t)
in which the arriving customer finds the system in state Ek , given
0 customer at time t = 0.
Note at the previous figure of transition structure, the system can
only move up by at most one state, but may move down by many
states in any transition.
We consider this motion between states and define σk (for
m − 1 ≤ k ) as the expected number of times Ek+1 is reached
between two successive visits to state Ek .
The probability of reaching Ek+1 no times between returns to state
Ek is equal to 1− β0 (that is, given in state Ek , the only way to
reach Ek+1 before our next visit to Ek is for no customer to be
served, which is β0. So the probability of not reaching Ek+1 first is
1− β0).
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Conditional Distribution of Queue Size

Derivation of σk (continue)
Let γ be the probability of leaving Ek+1 and return to it some time
later without passing through Ej , where j ≤ k .
Note that γ is independent of k for k ≥ m − 1 (i.e., all m servers
are busy). We have:
P[n visits to Ek+1 between two successive visits to Ek ]=

β0γ
n−1(1− γ).

We now have:

σk =
∞∑

n=1

nβ0γ
n−1(1− γ) =

β0

1− γ
for k ≥ m − 1.

We let σk = σ since it is independent of k .
We also have

σ = lim
t→∞

Nk+1(t)
Nk (t)

=
β0

1− γ
=

rk+1

rk
k ≥ m − 1.

John C.S. Lui (CUHK) Computer Systems Performance Evaluation 15 / 33



Conditional Distribution of Queue Size

Derivation of σk (continue)
The solution to the last set of equations is clearly

rk = Kσk k ≥ m − 1. (6)

for some constant K .
Now we have

r = [r0, r1, r2, . . . , rm−2,Kσm−1,Kσm,Kσm+1, . . .]

Let us consider the flow balance equation for rk , k ≥ m:

rk = Kσk =
∞∑

i=0

ripik =
∞∑

i=k−1

ripik =
∞∑

i=k−1

Kσiβi+1−k
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Conditional Distribution of Queue Size

Derivation of σk (continue)
Cancelling the constant K and common factors of σ:

σ =
∞∑

i=k−1

σi+1−kβi+1−k =
∞∑

n=0

σnβn

Since we have derived βn before, we have

σ =
∞∑

n=0

σn
∫ ∞

t=0

(mµt)n

n!
e−mµtdA(t) =

∫ ∞
t=0

e−(mµ−mµσ)tdA(t)

We recognize this as Laplace transform:

σ = A∗(mµ−mµσ). (7)

Which is a functional equation for σ. So give A(t), we can find σ.
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Conditional Distribution of Queue Size

Derivation of conditional distribution of queue size
Let us find the probability that an arriving customer needs to wait:

P[arrival queues] =
∞∑

k=m

rk =
∞∑

k=m

Kσk =
Kσm

1− σ

(note: [TAKA 62] showed that 0 < σ < 1).
Probability of finding a queue length of n, given that a customer
must queue is:

P[queue size=n|arrival queues] =
rm+n

P[arrival queues]

=
Kσn+m

Kσm/(1− σ)
= (1− σ)σn n ≥ 0.(8)

The conditional distribution is geometrically distributed for
G/M/m.
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Conditional Distribution of Waiting Time

Derivation
Let us define the following conditional Laplace transform:

W ∗(s|n) = E [e−sw̃ |arrival queues and queue size = n]

We have

W ∗(s|n) =

(
mµ

s + mµ

)n+1

The conditional distribution of waiting time is

W ∗(s|arrival queues) =
∞∑

n=0

(
mµ

s + mµ

)n+1

(1− σ)σn

= (1− σ)
mµ

s + mµ−mµσ
(9)
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Conditional Distribution of Waiting Time

Derivation (continue)
Let w(y |arrival queues) be the probability density function for the
waiting time, condition that an arriving customer has to wait in the
queue. We have

w(y |arrival queues) = (1− σ)mµe−mµ(1−σ)y y ≥ 0 (10)

The conditional pdf for queueing time is exponentially
distributed for G/M/m.
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Analysis of G/M/1

G/M/1
Let us apply our previous results to G/M/1. Since m = 1,

rk = Kσk k = 0,1,2, . . .

Since summing all rk must be 1, we can find K = (1− σ) and:

rk = (1− σ)σk k = 0,1,2, . . . (11)

and 1− r0 = σ = P[arriving customer has to queue]
σ is the solution to the following functional equation:

σ = A∗(µ− µσ) (12)

Let A be the event "arrival queues":

W (y) = 1− P[queueing time > y |A]P[A] = 1− σe−µ(1−σ)y y ≥ 0
(13)
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Examples

Example 1: analyzing M/M/1

For M/M/1, A(t) = 1− e−λt for t ≥ 0. We have A∗(s) = λ
s+λ .

To find σ, we have σ = λ
µ−µσ+λ , or µσ2 − (µ+ λ)σ + λ = 0.

This yields (σ − 1)(µσ − λ) = 0. σ = 1 is not acceptable due to
stability, we then have σ = λ

µ = ρ.
Once we have σ, we have:

rk = (1− ρ)ρk k ≥ 0

which is our usual solution for M/M/1.
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Examples

Example 2: specific E2/M/1
Consider an interarrival time distribution such that

A∗(s) =
2µ2

(s + µ)(s + 2µ)

To find σ, we have

σ =
2µ2

(µ− µσ + µ)(µ− µσ + 2µ)

This leads to the cubic equation σ3 − 5σ2 + 6σ − 2 = 0.
Since σ = 1 is always a solution, we have
(σ − 1)(σ − 2−

√
2)(σ − 2 +

√
2) = 0. Solution is σ = 2−

√
2.

We finally have

rk = (
√

2− 1)(2−
√

2)k , k = 0,1, . . . ,

W (y) = 1− (2−
√

2)e−µ(
√

2−1)y y ≥ 0
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Further analysis of G/M/m

Further analysis of G/M/m
Let’s get back to G/M/m. We have shown r = rP, where
r = [r0, r1, . . .]. The only remaining unknowns are (a) the constant
K , and (b) boundary probabilities r0,r1,. . . ,rm−2.
Since we know rk = Kσk for k ≥ m − 1, we express

r = Kσm−1
[
R0,R1, . . . ,Rm−2,1, σ, σ2, . . .

]
(14)

where Rk = rkσ
1−m

K and k = 0,1, . . . ,m − 2.
For convenience, we define

J = Kσm−1.

We can apply the flow balance equations on Ri :

Rk =
∞∑

i=k−1

Ripik k = 0,1, . . . ,m − 2.
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Further analysis of G/M/m

Continue
We can express the "tail" of Rk using σ

Rk =
m−2∑

i=k−1

Rkpik +
∞∑

i=m−1

σi+1−mpik .

Solving for Rk−1, we have:

Rk−1 =
Rk −

∑m−2
i=k Ripik −

∑∞
i=m−1 σ

i+1−mpik

pk−1,k
k = 1, . . . ,m − 1.

(15)
Note that this is a triangular set, in particular, Rm−1 = 1, so we
can solve for Rm−2, . . .,1,0.
The only remaining issue is how to find K (or J).
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Further analysis of G/M/m

Continue
We can use the conservation of probability to evaluate J:

J
m−2∑
k=0

Rk + J
∞∑

k=m−1

σk−m+1 = 1

J =
1

1
1−σ +

∑m−2
k=0 Rk

(16)
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Further analysis of G/M/m

Derivation of waiting time distribution
The probability that an arrival customer doesn’t need to wait

W (0) =
m−1∑
k=0

rk = J
m−1∑
k=0

Rk . (17)

The conditional distribution of waiting is (when k ≥ m):

P[w̃ < y | finds k in the system] =

∫ y

x=0

mµ(mµx)k−m

(k −m)!
e−mµxdx .
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Further analysis of G/M/m

Derivation of waiting time distribution (continue)
Removing the condition, the waiting time CDF is:

W (y) = W (0) + J
∞∑

k=m

∫ y

x=0

(mµ)(mµx)k−mσk−m+1

(k −m)!
e−mµxdx

= W (0) + Jσ
∫ y

x=0
mµe−mµx(1−σ)dx

= 1− σ

1 + (1− σ)
∑m−2

k=0 Rk
e−mµ(1−σ)y y ≥ 0 (18)

Let W = E [w̃ ], we have:

W =
Kσm

mµ(1− σ)2 =
Jσ

mµ(1− σ)2 (19)
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Further analysis of G/M/m

Please refer to Kleinrock’s book, Section 6.6, on the example of
analyzing G/M/2. For example, r , W (y), . . . .
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