$G / M / m$ Queueing Systems

John C.S. Lui

Department of Computer Science \& Engineering
The Chinese University of Hong Kong
www.cse.cuhk.edu.hk/~cslui

Outline

(1) Transition Probabilities for the Embedded Markov Chain

(2) Conditional Distribution of Queue Size

3 Conditional Distribution of Waiting Time
(4) Analysis of $G / M / 1$
(5) Examples

6 Further analysis of $G / \mathrm{M} / \mathrm{m}$

Introduction

- Interarrival times are i.i.d according to $A(t)$ with mean time being $1 / \lambda$.
- Service times are i.i.d and is exponentially distributed with mean $1 / \mu$.
- Instead of keeping track how long since the past arrival occurs, look at the arrival instants, which form an imbedded Markov chain.
- Let q_{n}^{\prime} be the number of customers in the system immediately prior to the arrival of customer C_{n}.
- let v_{n+1}^{\prime} be the number of customers served during the arrival of C_{n} and C_{n+1}. We have

$$
\begin{equation*}
q_{n+1}^{\prime}=q_{n}^{\prime}+1-v_{n+1}^{\prime} . \tag{1}
\end{equation*}
$$

Now we need to find the transition probabilities of this imbedded Markov chain.

Derivation of transition probabilities

- Define $p_{i j}=P\left[q_{n+1}^{\prime}=j \mid q_{n}^{\prime}=i\right]$.
- $p_{i j}$ is simply the probability that $i+1-j$ customers got served during the interarrival time, and it is clear that $p_{i j}=0$ for $j>i+1$.
- Transition structure of this imbedded Markov chain:

Figure: Transition diagram of $G / M / m$

- Define system utilization as $\rho=\frac{\lambda}{m \mu}$. For system to be stable, we require $\rho<1$.

Derivation of r_{k}

- Define $r_{k}=\lim _{n \rightarrow \infty} P\left[q_{n}^{\prime}=k\right]$ as the steady state probability of finding k customers upon arrival.
- To find all r_{k}, where $k \geq 0$, we can use

$$
\boldsymbol{r}=\boldsymbol{r} \boldsymbol{P} \text { where } \boldsymbol{r}=\left[r_{0}, r_{1}, \ldots\right]
$$

The only remaining issues is, what are $p_{i j} \in \boldsymbol{P}$?

- Case 1: we know that $p_{i j}=0$ if $j>i+1$.

Case 2: Derivation of $p_{i j}$ where $j \leq i+1$

- For $j \leq i+1 \leq m$, this is the case which no customers are waiting in the queue.
- Condition that the interarrival time is t, we have

$$
P\left[i+1-j \text { departures within } t \text { after } C_{n} \text { arrives } q_{n}^{\prime}=i\right]
$$

$$
\begin{aligned}
& =\binom{i+1}{i+1-j}\left[\left(1-e^{-\mu t}\right)\right]^{i+1-j}\left[\left(e^{-\mu t}\right)\right]^{j} \\
& =\binom{i+1}{j}\left[\left(1-e^{-\mu t}\right)\right]^{i+1-j}\left[\left(e^{-\mu t}\right)\right]^{j}
\end{aligned}
$$

- Removing the condition of interarrival time t :

$$
\begin{equation*}
p_{i j}=\int_{t=0}^{\infty}\binom{i+1}{j}\left[\left(1-e^{\mu t}\right)\right]^{i+1-j}\left[\left(e^{\mu t}\right)\right]^{j} d A(t) \quad j \leq i+1 \leq m . \tag{2}
\end{equation*}
$$

Case 3: Derivation of $p_{i j}$ where $m \leq j \leq i+1, i \geq m$

- For $m \leq j \leq i+1, i \geq m$, it means that all m servers are busy throughout the interarrival interval.
- Since service time is exponential (memoryless), the number of customers served during this interval will be Poisson distributed with parameter $m \mu$. We have

$$
P[k \text { customers served } \mid t, \text { all } m \text { busy }]=\frac{(m \mu t)^{k}}{k!} e^{-m \mu t} .
$$

- If we go from state i to j, it means $i+1-j$ customers have been served:

$$
p_{i j}=\int_{t=0}^{\infty} P[k \text { customers served } \mid t \text {, all } m \text { busy }] d A(t)
$$

Case 3: Derivation of $p_{i j}$ where $m \leq j \leq i+1, i \geq m$ (continue)

- Putting everything together, we have:

$$
\begin{equation*}
p_{i j}=\int_{t=0}^{\infty} \frac{(m \mu t)^{i+1-j}}{(i+1-j)!} e^{-m \mu t} d A(t) \quad m \leq j \leq i+1 . \tag{3}
\end{equation*}
$$

- Since i and j only appear as the difference of $i+1-j$, we define a new quantity with a single index of $\beta_{i+1-j}=p_{i j}$:
$\beta_{n}=p_{i, i+1-n}=\int_{t=0}^{\infty} \frac{(m \mu t)^{n}}{n!} e^{-m \mu t} d A(t) \quad 0 \leq n \leq i+1-m, m \leq i$.

Case 4: Derivation of $p_{i j}$ where $j<m<i+1$

- It means when C_{n} arrives, there are m customers in service and $i-m$ waiting in the queue, when C_{n+1} joins, there are j customers in service.
- Queue will be empty when $i+1-m$ are served. Let \tilde{y} be the time to serve $i+1-m$ customers, so \tilde{y} is $(i+1-m)^{t h}$-Erlangian with

$$
f_{\tilde{y}}(y)=\frac{m \mu(m \mu y)^{i-m}}{(i-m)!} e^{-m \mu y}, \quad y \geq 0
$$

- Also, we have to serve $m-j$ customers so C_{n+1} will find j customers. Let t_{n+1} be the interarrival time between C_{n+1} and C_{n}, we need to serve $(m-j)$ in $\left(t_{n+1}-\tilde{y}\right)$ time.

Case 4: Derivation of $p_{i j}$ where $j<m<i+1$ (continue)

- Let $t_{n+1}=t$ and $\tilde{y}=y$, we have

$$
P\left[m-j \text { served in } t-y \mid t_{n+1}=t, \tilde{y}=y\right]=
$$

$$
\binom{m}{m-j}\left(1-e^{-\mu(t-y)}\right)^{m-j}\left(e^{-\mu(t-y)}\right)^{j}
$$

$P\left[m-j\right.$ served in $\left.t-y \mid t_{n+1}=t\right]=$

$$
\int_{y=0}^{t}\binom{m}{j}\left(1-e^{-\mu(t-y)}\right)^{m-j}\left(e^{-\mu(t-y)}\right)^{j} f_{\tilde{y}}(y) d y
$$

Since we know $f_{\tilde{y}}(y)$, putting it in above and uncondition on t_{n+1} :

$$
\begin{equation*}
p_{i j}=\int_{t=0}^{\infty}\binom{m}{j} e^{-j \mu t}\left[\int_{y=0}^{t} \frac{(m \mu y)^{i-m}}{(i-m)!}\left(e^{-\mu y}-e^{-\mu t}\right)^{m-j} m \mu d y\right] d A(t) d t \tag{5}
\end{equation*}
$$

$$
\text { for } j<m<i+1 .
$$

Putting them together

- Now we can use the standard method to solve for $\boldsymbol{r}=\boldsymbol{r} \boldsymbol{P}$.
- We know all entries of \boldsymbol{P} by the four marked equations of $p_{i j}$.
- Theoretically, we are done, but practically, we have a problem since \boldsymbol{r} is a vector with infinite dimension and \boldsymbol{P} is a two-dimensional infinite matrix.

Importance of β_{n}

Remember, β_{n} is the probability that all m servers will finish processing n customers between the interarrival instant. We will use β_{n} in later section to derive more results.

Introduction

- Define $N_{k}(t)$ be the number of arrival instants in the interval $(0, t)$ in which the arriving customer finds the system in state E_{k}, given 0 customer at time $t=0$.
- Note at the previous figure of transition structure, the system can only move up by at most one state, but may move down by many states in any transition.
- We consider this motion between states and define σ_{k} (for $m-1 \leq k$) as the expected number of times E_{k+1} is reached between two successive visits to state E_{k}.
- The probability of reaching E_{k+1} no times between returns to state E_{k} is equal to $1-\beta_{0}$ (that is, given in state E_{k}, the only way to reach E_{k+1} before our next visit to E_{k} is for no customer to be served, which is β_{0}. So the probability of not reaching E_{k+1} first is $1-\beta_{0}$).

Derivation of σ_{k} (continue)

- Let γ be the probability of leaving E_{k+1} and return to it some time later without passing through E_{j}, where $j \leq k$.
- Note that γ is independent of k for $k \geq m-1$ (i.e., all m servers are busy). We have:
$\mathrm{P}\left[n\right.$ visits to E_{k+1} between two successive visits to $\left.E_{k}\right]=$

$$
\beta_{0} \gamma^{n-1}(1-\gamma)
$$

- We now have:

$$
\sigma_{k}=\sum_{n=1}^{\infty} n \beta_{0} \gamma^{n-1}(1-\gamma)=\frac{\beta_{0}}{1-\gamma} \quad \text { for } k \geq m-1
$$

We let $\sigma_{k}=\sigma$ since it is independent of k.

- We also have

$$
\sigma=\lim _{t \rightarrow \infty} \frac{N_{k+1}(t)}{N_{k}(t)}=\frac{\beta_{0}}{1-\gamma}=\frac{r_{k+1}}{r_{k}} \quad k \geq m-1
$$

Derivation of σ_{k} (continue)

- The solution to the last set of equations is clearly

$$
\begin{equation*}
r_{k}=K \sigma^{k} \quad k \geq m-1 \tag{6}
\end{equation*}
$$

for some constant K.

- Now we have

$$
\boldsymbol{r}=\left[r_{0}, r_{1}, r_{2}, \ldots, r_{m-2}, K \sigma^{m-1}, K \sigma^{m}, K \sigma^{m+1}, \ldots\right]
$$

- Let us consider the flow balance equation for $r_{k}, k \geq m$:

$$
r_{k}=K \sigma^{k}=\sum_{i=0}^{\infty} r_{i} p_{i k}=\sum_{i=k-1}^{\infty} r_{i} p_{i k}=\sum_{i=k-1}^{\infty} K \sigma^{i} \beta_{i+1-k}
$$

Derivation of σ_{k} (continue)

- Cancelling the constant K and common factors of σ :

$$
\sigma=\sum_{i=k-1}^{\infty} \sigma^{i+1-k} \beta_{i+1-k}=\sum_{n=0}^{\infty} \sigma^{n} \beta_{n}
$$

- Since we have derived β_{n} before, we have

$$
\sigma=\sum_{n=0}^{\infty} \sigma^{n} \int_{t=0}^{\infty} \frac{(m \mu t)^{n}}{n!} e^{-m \mu t} d A(t)=\int_{t=0}^{\infty} e^{-(m \mu-m \mu \sigma) t} d A(t)
$$

- We recognize this as Laplace transform:

$$
\begin{equation*}
\sigma=A^{*}(m \mu-m \mu \sigma) \tag{7}
\end{equation*}
$$

Which is a functional equation for σ. So give $A(t)$, we can find σ.

Derivation of conditional distribution of queue size

- Let us find the probability that an arriving customer needs to wait:

$$
\mathrm{P}[\text { arrival queues }]=\sum_{k=m}^{\infty} r_{k}=\sum_{k=m}^{\infty} K \sigma^{k}=\frac{K \sigma^{m}}{1-\sigma}
$$

(note: [TAKA 62] showed that $0<\sigma<1$).

- Probability of finding a queue length of n, given that a customer must queue is:

$$
\begin{aligned}
& \mathrm{P}[\text { queue size }=\mathrm{n} \mid \text { arrival queues }]=\frac{r_{m+n}}{\mathrm{P}[\text { arrival queues }]} \\
& =\frac{K \sigma^{n+m}}{K \sigma^{m} /(1-\sigma)}=(1-\sigma) \sigma^{n} \quad n \geq 0 . \text { (8) }
\end{aligned}
$$

The conditional distribution is geometrically distributed for $G / M / m$.

Derivation

- Let us define the following conditional Laplace transform:

$$
W^{*}(s \mid n)=E\left[e^{-s \tilde{w}} \mid \text { arrival queues and queue size }=n\right]
$$

- We have

$$
W^{*}(s \mid n)=\left(\frac{m \mu}{s+m \mu}\right)^{n+1}
$$

- The conditional distribution of waiting time is

$$
\begin{align*}
W^{*}(s \mid \text { arrival queues }) & =\sum_{n=0}^{\infty}\left(\frac{m \mu}{s+m \mu}\right)^{n+1}(1-\sigma) \sigma^{n} \\
& =(1-\sigma) \frac{m \mu}{s+m \mu-m \mu \sigma} \tag{9}
\end{align*}
$$

Derivation (continue)

- Let w ($y \mid$ arrival queues) be the probability density function for the waiting time, condition that an arriving customer has to wait in the queue. We have

$$
w(y \mid \text { arrival queues })=(1-\sigma) m \mu e^{-m \mu(1-\sigma) y} \quad y \geq 0(10)
$$

- The conditional pdf for queueing time is exponentially distributed for $G / M / m$.

$G / M / 1$

- Let us apply our previous results to $G / M / 1$. Since $m=1$,

$$
r_{k}=K \sigma^{k} \quad k=0,1,2, \ldots
$$

- Since summing all r_{k} must be 1 , we can find $K=(1-\sigma)$ and:

$$
\begin{equation*}
r_{k}=(1-\sigma) \sigma^{k} \quad k=0,1,2, \ldots \tag{11}
\end{equation*}
$$

and $1-r_{0}=\sigma=\mathrm{P}$ [arriving customer has to queue]

- σ is the solution to the following functional equation:

$$
\begin{equation*}
\sigma=A^{*}(\mu-\mu \sigma) \tag{12}
\end{equation*}
$$

- Let A be the event "arrival queues":
$W(y)=1-\mathrm{P}[$ queueing time $>y \mid A] \mathrm{P}[A]=1-\sigma e^{-\mu(1-\sigma) y} \quad y \geq 0$

Example 1: analyzing $M / M / 1$

- For $M / M / 1, A(t)=1-e^{-\lambda t}$ for $t \geq 0$. We have $A^{*}(s)=\frac{\lambda}{s+\lambda}$.
- To find σ, we have $\sigma=\frac{\lambda}{\mu-\mu \sigma+\lambda}$, or $\mu \sigma^{2}-(\mu+\lambda) \sigma+\lambda=0$.
- This yields $(\sigma-1)(\mu \sigma-\lambda)=0 . \sigma=1$ is not acceptable due to stability, we then have $\sigma=\frac{\lambda}{\mu}=\rho$.
- Once we have σ, we have:

$$
r_{k}=(1-\rho) \rho^{k} \quad k \geq 0
$$

which is our usual solution for $M / M / 1$.

Example 2: specific $E_{2} / M / 1$

- Consider an interarrival time distribution such that

$$
A^{*}(s)=\frac{2 \mu^{2}}{(s+\mu)(s+2 \mu)}
$$

- To find σ, we have

$$
\sigma=\frac{2 \mu^{2}}{(\mu-\mu \sigma+\mu)(\mu-\mu \sigma+2 \mu)}
$$

This leads to the cubic equation $\sigma^{3}-5 \sigma^{2}+6 \sigma-2=0$.

- Since $\sigma=1$ is always a solution, we have $(\sigma-1)(\sigma-2-\sqrt{2})(\sigma-2+\sqrt{2})=0$. Solution is $\sigma=2-\sqrt{2}$.
- We finally have

$$
\begin{aligned}
r_{k} & =(\sqrt{2}-1)(2-\sqrt{2})^{k}, & & k=0,1, \ldots, \\
W(y) & =1-(2-\sqrt{2}) e^{-\mu(\sqrt{2}-1) y} & & y \geq 0
\end{aligned}
$$

Further analysis of $G / M / m$

- Let's get back to $G / M / m$. We have shown $\boldsymbol{r}=\boldsymbol{r} \boldsymbol{P}$, where $\boldsymbol{r}=\left[r_{0}, r_{1}, \ldots\right]$. The only remaining unknowns are (a) the constant K, and (b) boundary probabilities $r_{0}, r_{1}, \ldots, r_{m-2}$.
- Since we know $r_{k}=K \sigma^{k}$ for $k \geq m-1$, we express

$$
\begin{equation*}
\boldsymbol{r}=K \sigma^{m-1}\left[R_{0}, R_{1}, \ldots, R_{m-2}, 1, \sigma, \sigma^{2}, \ldots\right] \tag{14}
\end{equation*}
$$

where $R_{k}=\frac{r_{k} \sigma^{1-m}}{K}$ and $k=0,1, \ldots, m-2$.

- For convenience, we define

$$
J=K \sigma^{m-1}
$$

- We can apply the flow balance equations on R_{i} :

$$
R_{k}=\sum_{i=k-1}^{\infty} R_{i} p_{i k} \quad k=0,1, \ldots, m-2
$$

Continue

- We can express the "tail" of R_{k} using σ

$$
R_{k}=\sum_{i=k-1}^{m-2} R_{k} p_{i k}+\sum_{i=m-1}^{\infty} \sigma^{i+1-m} p_{i k}
$$

Solving for R_{k-1}, we have:

$$
\begin{equation*}
R_{k-1}=\frac{R_{k}-\sum_{i=k}^{m-2} R_{i} p_{i k}-\sum_{i=m-1}^{\infty} \sigma^{i+1-m} p_{i k}}{p_{k-1, k}} \quad k=1, \ldots, m-1 \tag{15}
\end{equation*}
$$

Note that this is a triangular set, in particular, $R_{m-1}=1$, so we can solve for $R_{m-2}, \ldots, 1,0$.

- The only remaining issue is how to find K (or J).

Continue

- We can use the conservation of probability to evaluate J :

$$
\begin{gather*}
J \sum_{k=0}^{m-2} R_{k}+J \sum_{k=m-1}^{\infty} \sigma^{k-m+1}=1 \\
J=\frac{1}{\frac{1}{1-\sigma}+\sum_{k=0}^{m-2} R_{k}} \tag{16}
\end{gather*}
$$

Derivation of waiting time distribution

- The probability that an arrival customer doesn't need to wait

$$
\begin{equation*}
W(0)=\sum_{k=0}^{m-1} r_{k}=J \sum_{k=0}^{m-1} R_{k} . \tag{17}
\end{equation*}
$$

- The conditional distribution of waiting is (when $k \geq m$):

$$
\mathrm{P}[\tilde{w}<y \mid \text { finds } k \text { in the system }]=\int_{x=0}^{y} \frac{m \mu(m \mu x)^{k-m}}{(k-m)!} e^{-m \mu x} d x .
$$

Derivation of waiting time distribution (continue)

- Removing the condition, the waiting time CDF is:

$$
\begin{align*}
W(y) & =W(0)+J \sum_{k=m}^{\infty} \int_{x=0}^{y} \frac{(m \mu)(m \mu x)^{k-m} \sigma^{k-m+1}}{(k-m)!} e^{-m \mu x} d x \\
& =W(0)+J \sigma \int_{x=0}^{y} m \mu e^{-m \mu x(1-\sigma)} d x \\
& =1-\frac{\sigma}{1+(1-\sigma) \sum_{k=0}^{m-2} R_{k}} e^{-m \mu(1-\sigma) y} \quad y \geq 0 \tag{18}
\end{align*}
$$

- Let $W=E[\tilde{W}]$, we have:

$$
\begin{equation*}
W=\frac{K \sigma^{m}}{m \mu(1-\sigma)^{2}}=\frac{J \sigma}{m \mu(1-\sigma)^{2}} \tag{19}
\end{equation*}
$$

Please refer to Kleinrock's book, Section 6.6, on the example of analyzing $G / M / 2$. For example, $\boldsymbol{r}, W(y), \ldots$

