G/G/1 Queueing Systems

John C.S. Lui

Department of Computer Science & Engineering The Chinese University of Hong Kong www.cse.cuhk.edu.hk/~cslui

イロト イヨト イヨト イヨト

Outline

John C.S. Lui (CUHK)

Spectral Solution to Lindley's Integral Equation

イロト イヨト イヨト イヨト

John C.S. Lui (CUHK)

Spectral Solution to Lindley's Integral Equation

Notations

- A(t) PDF for interarrival times between customers.
- *B*(*x*) PDF of service time for customers (independent).
- Service discipline: FCFS
- C_n , the n^{th} arriving customer
- $t_n = \tau_n \tau_{n-1}$, interarrival time between C_n and C_{n-1}
- x_n, service time of C_n
- w_n , waiting time (in queue) for C_n

Description

Random variables $\{t_n\}$ and $\{x_n\}$ are independent and described by A(t) and B(x) independent of index *n*.

Working equation

• The waiting times for C_{n+1} is

$$w_{n+1} = \begin{cases} w_n + x_n - t_{n+1} & \text{if } w_n + x_n - t_{n+1} \ge 0, \\ 0 & \text{if } w_n + x_n - t_{n+1} < 0. \end{cases}$$
(1)

• Define the random variable:

$$u_n=x_n-t_{n+1}.$$

For stable system, we require $\lim_{n\to\infty} E[u_n] < 0$, or

$$\lim_{n\to\infty} E[u_n] = \lim_{n\to\infty} \{ E[x_n] - E[t_{n+1}] \} = \bar{x} - \bar{t} = \bar{t}(\rho - 1)$$

Combining the above equations, we have

$$w_{n+1} = \begin{cases} w_n + u_n & \text{if } w_n + u_n \ge 0, \\ 0 & \text{if } w_n + u_n < 0. \end{cases}$$

(2)

Continue

• We can write down *w_n* as:

$$w_{n+1} = \max[0, w_n + u_n] = (w_n + u_n)^+$$
 (3)

- We aim to derive $\lim_{n\to\infty} P[w_n \le y] = W(y)$, which exists when $\rho < 1$.
- To derive W(y), we first define $C_n(u)$ as the PDF for u_n ,

$$C_n(u) = P[u_n = x_n - t_{n+1} \le u]$$

• Derivation of $C_n(u)$:

$$C_n(u) = P[x_n - t_{n+1} \le u] = \int_{t=0}^{\infty} P[x_n \le u + t | t_{n+1} = t] dA(t)$$

= $\int_{t=0}^{\infty} B(u+t) dA(t) = C(u)$

ヘロン 人間と 人間と 人間と

Continue

• For W(y), when $y \ge 0$, we have

$$W_{n+1}(y) = P[w_n + u_n \le y] = \int_{w=0^-}^{\infty} P[u_n \le y - w | w_n = w] dW_n(w)$$

• Since *u_n* is independent of *w_n*, we have

$$W_{n+1}(y) = \int_{w=0^-}^{\infty} C_n(y-w) dW_n(w) \quad \text{for } y \ge 0$$

• Taking $\lim_{n\to\infty}$, we have the Lindley's Integral Equation:

$$W(y) = \int_{w=0^-}^{\infty} C(y-w) dW(w) \quad \text{for } y \ge 0$$
 (4)

Further, it is clear that

$$W(y) = 0$$
 for $y < 0$

(5)

Second form of Lindley's Equation

For the previous Lindley's equation, we do integration by part:

$$W(y) = C(y-w)W(w)\Big|_{w=0^{-}}^{\infty} - \int_{0^{-}}^{\infty} W(w)dC(y-w)$$

=
$$\lim_{w\to\infty} C(y-w)W(w) - C(y)W(0^{-}) - \int_{0^{-}}^{\infty} W(w)dC(y-w)$$

Since C(y - w) = 0 as w → ∞ since it corresponds to the probability that an interarrival time approaches infinity, so the probability goes to zero if A(t) has to have a finite moment. Similarly w(0⁻) = 0 so we have

$$W(y) = \begin{cases} -\int_{w=0^{-}}^{\infty} W(w) dC(y-w) & y \ge 0 \\ 0 & y < 0. \end{cases}$$
(6)

• • • • • • • • • • •

Third form of Lindley's Equation

• For the third form, consider the simple variable change u = y - w for the argument of our distributions, we have

$$W(y) = \begin{cases} \int_{u=-\infty}^{y} W(y-u) dC(u) & y \ge 0, \\ 0 & y < 0. \end{cases}$$
(7)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

 The remaining issue is, how to solve the Lindley's equation for G/G/1 queue ?

Outline

John C.S. Lui (CUHK)

Spectral Solution to Lindley's Integral Equation

• • • • • • • • • • • •

Spectral Solution

- If we examine Lindley's Equation in (7), it is "almost" like a convolution except on the half plane.
- Define a "complementary" waiting time

$$W_-(y)=\left\{egin{array}{cc} 0 & y\geq 0,\ \int_{u=-\infty}^y W(y-u)dC(u) & y< 0. \end{array}
ight.$$

• Adding Equation (7) and (8):

$$W(y)+W_{-}(y)=\int_{-\infty}^{y}W(y-u)c(u)du$$
 for all real y (9)

where we denote the pdf for \tilde{u} by c(u) = dC(u)/du.

(8)

We now need to define transform for our various functions.
 Laplace transform of W₋(y) is

$$\Phi_{-}(s) = \int_{-\infty}^{\infty} W_{-}(y) e^{-sy} dy = \int_{-\infty}^{0} W_{-}(y) e^{-sy} dy.$$
(10)

• Laplace transform for our waiting time PDF W(y),

$$\Phi_{+}(s) = \int_{-\infty}^{\infty} W(y) e^{-sy} dy = \int_{0^{-}}^{\infty} W(y) e^{-sy} dy.$$
(11)

 Note that Φ₊(s) is the Laplace transform of the PDF for waiting time, our usual definition of transform is in terms of pdf. Let W^{*}(s) be the transform for the waiting time. Therefore, we have:

$$s\Phi_+(s) = W^*(s).$$
 (12)

 Since we define the pdf of ũ as c(u) = dC(u)/du = a(−u) ⊗ b(u), we have

$$C^*(s) = A^*(-s)B^*(s)$$

Taking the Laplace transform of Eq. (9), we have

$$\Phi_+(s) + \Phi_-(s) = \Phi_+(s)C^*(s) = \Phi_+(s)A^*(-s)B^*(s)$$

This gives us

$$\Phi_{-}(s) = \Phi_{+}(s) \left[A^{*}(-s) B^{*}(s) - 1 \right]$$
(13)

 We consider queueing systems for which A*(s) and B*(s) are rational functions of s, where

$$A^*(-s)B^*(s) - 1 = rac{\Psi_+(s)}{\Psi_-(s)}$$
 (14)

< mP

Putting Eq (14) into (13), we have

$$\Phi_-(s)=\Phi_+(s)rac{\Psi_+(s)}{\Psi_-(s)}$$

 Applying the Liouville's theorem (e.g., if f(z) is analytic and bounded for all finite values of z, then f(z) is a constant), we have

$$\Phi_-(s)\Psi_-(s)=\Phi_+(s)\Psi_+(s)=K.$$

or

$$\Phi_+(s) = \frac{\kappa}{\Psi_+(s)} \tag{15}$$

• We need to determine *K*. Note that

$$s\Phi_+(s)=W^*(s)=\int_{y=0^-}^\infty e^{-sy}dW(y)$$

• Taking the limit of $s \rightarrow 0$, we have:

$$\lim_{s\to 0} s\Phi_+(s) = \lim_{s\to 0} \int_{0^-}^\infty e^{-sy} dW(y) = 1 = \lim_{s\to 0} \frac{sK}{\Psi_+(s)}$$

or

$$K = \lim_{s \to 0} \frac{\Psi_+(s)}{s} \tag{16}$$

• • • • • • • • • • •

John C.S. Lui (CUHK)

Computer Systems Performance Evaluation

Summary

To analyze G/G/1, do the following.

• Use
$$A^*(-s)B^*(s) - 1 = \frac{\Psi_+(s)}{\Psi_-(s)}$$
 to determine $\Psi_+(s)$ and $\Psi_-(s)$.

2 Use
$$K = \lim_{s \to 0} \frac{\Psi_+(s)}{s}$$
 to determine K .

$${f 3}$$
 Use $\Phi_+(s)=rac{\kappa}{\Psi_+(s)}$ to determine the functional form of $\Phi_+(s).$

ъ

Outline

John C.S. Lui (CUHK)

Spectral Solution to Lindley's Integral Equation

Example

M/M/1

• We have $A^*(s) = \lambda/(s+\lambda)$ and $B^*(s) = \mu/(s+\mu)$. Then

$$A^*(-s)B^*(s) - 1 = \left(\frac{\lambda}{\lambda - s}\right)\left(\frac{\mu}{s + \mu}\right) - 1 = \frac{s^2 + s(\mu - \lambda)}{(\lambda - s)(s + \mu)}$$

- We have $\frac{\Psi_+(s)}{\Psi_-(s)} = \frac{s^2 + s(\mu \lambda)}{(\lambda s)(s + \mu)} = \frac{s(s + \mu \lambda)}{(s + \mu)(\lambda s)}$
- Examining the poles and zeros, we have:

Example

M/M/1 continue

Note that Ψ₊(s) must be analytic and zero-free for Re(s) > 0.
 Collecting the two zeros and one pole for Ψ₊(s), We have:

$$\Psi_{+}(s) = rac{s(s+\mu-\lambda)}{s+u}$$
 (17)
 $\Psi_{-}(s) = \lambda - s$ (18)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Determine *K*:

$$K = \lim_{s \to 0} \frac{\Psi_+(s)}{s} = \lim_{s \to 0} \frac{s + \mu - \lambda}{s + \mu} = 1 - \rho.$$

We have Φ₊(s) = (1-ρ)(s+μ)/(s(s+μ-λ)).
 Since W^{*}(s) = sΦ₊(s), we can invert W^{*}(s), which is

$$W(y) = 1 - \rho e^{\mu(1-\rho)y} \quad y \ge 0.$$

Summary

- In general, analyzing G/G/1 involves complex analysis, as well as transform inversion.
- These two procedures are complicated and involved in general.
- In many cases, we need numerical methods to perform the transform inversion.
- We can consider other means to provide approximation to G/G/1 analysis.