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Index a "family of r.v.’s" by time⇒ ⇒ stochastic process� ��� ��� �� 	
 �� � 
 � �

e.g., where t is the time index
and s is the sample space

values assumed by
stochastic process

⇒

��� ��� �

all possible such values form the state space of the
stochastic process

⇒

can equivalently denote⇒

��� ��� � � � ���� � �

S
t = 1

w

X1(w)

R

S
t = 2

w

X2(w)

R

are called states of the



3

Example
CSC5420

 Copyright © John C.S. Lui

Throw a dice three times; the sample space is� � �� � � � � � � � � � 	 


Let � �  ��� ��� � � � � � � ��� � � � � � � � ��� � � � � � �

��� � � !

be defined as follows:

Then the state space " #$ % & % ' % ( % ) % * % + % , %$ - %$ & %$ ) %$ + .
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8 92:2 3 2 32 62 8

"State-Time diagram"
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In this example time is discrete and
independent; sometimes will use
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A. State space (discrete or continuous)
B. The time index (discrete or continuous)
C. Relationship (statistical dependencies) between

(dependence or independence)

Discrete state space process are called chains
A discrete time process is often denoted by

� ��� ��� ��

⇒
⇒

	�
� � �� �� �� � � �
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At an allowable time t, the PDF of a stochastic process Xt

is given by

For a set of allowable instances, the joint PDF is

��� ����� � 	 
 � � � � 	 � � �

����� ���� � � ��� ����� � ��� � � � � � �  ! "� � "� � � � � � "  # $ ��� �%&� ! % " #

' ( )* + ,.- + / 021 +43 * 5 ,.- 5 / 021 53 6 6 6 3 * 7 , - 7 / 021 7 8
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⇒ Stationary Process
one where PDF is invariant to shifts in time

⇒ for a fixed τ��� ��	�
 ���  � ��� ��	�
 ��� ��� 

⇒ Independent Process

⇒ the dice example is a discrete state, discrete time,
independent process; it is not a stationary stochastic
process

��� ����� �	� � � ����� ���  "! �  �$# ����% ��� &! � & �$# # # # # � ��' ��� (! � ( �

(i.e., Xi’s are independent r.v.)

and also

and

)+* ,-�./ -10 2 3
4

576 8
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(continuous state)

(discrete state)

(i.e., add τ to each element of )
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⇒ Markov Process
allow a restricted form of dependence

⇒ for discrete state� �� ����� � 	 
 � �� � 	  � ����� 
 � �� � � ���� � 	 
 � �� � 	 � � � � � � � � 	 
 � � 	 �

exponential, geometric

⇒ the future only depends on the current state
(doesn’t depend on past states or on time spent in the
current state or any other prior state)
⇒ memoryless distribution of time spent in state

⇒ discrete state ⇒ Markov Chain

� � �� ����� � � � � �� � � � � ����� � � �� �

�  "!# ! $&% ' $&( ' ) ) ) ' $+* ' $+* , %

-. /"0 1 243 2 . 5 6"7 /98 / 2 . 3: ;8 / 243 5< 8 = 8 3 = - = 8 3> - 58
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⇒ Birth-Death Process
Markovian chains where transitions occur to the nearest
neighbors only, i.e., if a process is in state i, the allowable
transitions are to i - 1 and i + 1 only

⇒ Semi-Markov Process
⇒ Markov chain: discrete time

means that time spent in each state is
geometrically distributed

⇒ transition is made at
every limit time (Markov property)

⇒
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⇒ Relax this restriction, allow the time spent in a state to
be arbitrary distributed

semi-Markov discrete time chain
Note: at time of transition, behaves like an ordinary

or time between
state transitions

⇒ Similarly for continuous-time Markov chains
transition at any time, but the amount of time spent
in a state has an arbitrary distribution or opposed
to an exponential distribution

⇒

Markov chain
in these instants we have an embedded
Markov chain

embedded Markov chain is defined at
instances of transitions

⇒
⇒
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⇒ Random Walks
⇒ A particle moving among states in some (e.g., discrete)

state space
⇒ Of interest: identifying location of the particle in that

space
⇒ next position = previous position plus r.v. whose value

is drawn independent from an arbitrary distribution;
this distribution does not change with state of process
(except maybe at some boundary states)

⇒ a sequence of r.v.’s {Sn} is referred to as a random walk
(starting at the origin) if

��� � ��� � ��� �
	 	 	 � �� � � �� � 	 	 	

� ���� � ��� � ��� � � ���! ��" # # # $&% � % �' (� � )� * + $ � ���, � � ��� � -� . / . %

0 12 3�4 56 7 76 8 9 1&: 2<; 1 =?> 2 16 8
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⇒ index n counts the number of state transitions the
process goes through

⇒ if these constants are taken from discrete set
⇒ discrete time random walk

⇒ if these constants are taken from continuous set
⇒ continuous-time random walk

⇒ the interval between these transitions is discrete in an
arbitrary way
the interval between these transitions is discrete in an
arbitrary way

⇒ random walk is a special case of a semi-Markov
process
(often people only care about position after a
transition, and so assume meaningless distribution
between transitions; then special case of Markov
process)
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⇒ in this case transition probability Pij of going from
state i to state j will depend only on the difference

in indice j - i (denoted by qj-i)

⇒ if common distribution for Xn, have a discrete-state
random walk

⇒ e.g., of continuous -time random walk
⇒ Brownian motion
e.g., of discrete -time random walk
⇒ total number of heads observed in a sequence of

independent coin tosses
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Renewal Processes
Count transitions that take place as a function of time

assume X(0) = 0 and increases by unity at each
transition, i.e., X(t) = number of state transitions
made by time t

⇒ in this case, a special case of random walk

� ��� �� ��� � 	 
� � �� � ��
� � ��� �� � � � 	

⇒
⇒

transition instant

distribution between transitions is arbitrary but common

real time axis
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{Xn} is a set of i.i.d. r.v.s where

Xn represents the time between the (n - 1)th and nth

transition

⇒ Be careful to distinguish random walk and renewal
process. Here above equation describes time of the

ith renewal transition. Whereas in random walk it
describes the state of the process (and the time
between transition is some other r.v.)

��
� � ��� � ��� �
	 	 	 � �
�can think of:⇒
as decreasing a renewal process in which Sn is a r.v.

denoting the time at which the nth transition takes place
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Discrete-State Systems
P i j denotes
probability of making
transition next to
state  j given the
process is in state  i

⇒

f τ denotes

distribution of time
between transitions
(maybe a function of
both current and next
states of the process)

⇒

Poisson
process

λ i = λ

Pure birth
process

µ i = 0

Renewal
process
q 1 = 1

f τ arbitrary

Random
walk

p i  j = q j - i

f τ arbitrary

Birth-Death
process

p i  j  for | j - i | > 1
f τ memoryless

Markov
process

p i  j  arbitrary
f τ memoryless

Semi-Markov
process

p i  j  arbitrary
f τ arbitrary
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Let {Xn} be a sequence of r.v.’s which assume discrete values⇒
With loss of generality, let n=1, 2, ... correspond to a set of
allowable time instants that are obtained from a discrete
space

⇒

The Markov property can be expended as⇒ � �� � � � � � �� � � 	 �� ��
 � � � � � 	 �� �
    
 � � � 	 � �

� � �� � � � � � � � � � 	 �� � � � ������ � � ��� � � �

if transition probabilities are independent of n, then have⇒
one step transition probability at step n

a homogeneous MC

���� �� !#"%$& ' ( ) !#" ( *

+#,- . + /0 1 2 3 4 0 165 7 2 8 9

(transition probabilities are stationary in time, but this
does not have to be a stationary random process)

do not change with time

where

(remainder of discussion in terms of homogeneous MCs)

:<; =>�?@ >�A BDC : ; =>�?@ > AE F B
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m-step transition probabilities⇒
probability of various states m steps into the future
depends only on m, and not upon current time

⇒

⇒

� ��� �
�� � � �	 
 �� �  � 	 
 � � �

from Markov property⇒

��� � � ��� it is easy to know that� ��� ��� �
�

� ��� �  �� � � � � ! � "$# %# & & &
need to go through some state k
independent, so can multiply
probabilities

jk

i

1 step

m-1 step
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A MC is irreducible if every state can be reached from
every other state, i.e., if there is m s.t.

� ��� �
�� � �
	 � � � � � �

where A is the set of all states of the MC
(all states communicate)

otherwise, reducible
E.g.:

Irreducible Reducible
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Let C be a subset of A and CC be its compliment

if |C| = 1, then C is called an absorbing state

C is a closed subset if no one-step transition is possible

from any state in C to any state in CC

⇒

necessary and sufficient
condition: Pii = 1

Ex:

Absorting state Closed subset

C2

C2
C

If C is closed, and it does not include any closed proper
subsets of itself, then it is an irreducible sub-MC, as
defined before

⇒

C1

C1
C

in above example C1 is not irreducible, it contains

C2, an absorbing state (closed subset of size 1)

⇒
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Let⇒

� ��� �� � � �
	 �� ��� �	 � � 	 �� � 	 � � � � � � � �	 � � � �

Ex: � �� �� �
 

! " #$ %& '
(

) *
(

) '
(

+

, -. /0 1
2

3 4
2

3 4 2 1
2

5
6 78 9: ; <>= ?A@B C D E

1/2
1/2

1/21
j

1/2

Probability of ever returning to state j is⇒

FHG I
J

KL M
F N KOG

Ex: P QR ST U
V

W X YZ [\ ]
^

_ `
^

_ ]
^

a

b cd ef g
h

i j
h

i j
h

i g
h

k
l mn op q r>s tAuv w x y

1/2
1/2

1/2

j

1/2

1/2
1/2zH{ |

}
~� �

z � ~�{ |
�

� � �
� � �
� � � |

�
�

⇒ in above example, fj = 1

⇒
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Can now classify states of MC according to values of fj

Recurrence state
Transient state

⇒
⇒
⇒

� ��� � �

� ��� 	 


Mean Recurrence Time

recurrent non-null
recurrent null

⇒

⇒
⇒

� � �� � � � ���� � ���

��� � �
� !

" # $ �%� &�'( ) *,+ *,- .�/ 0-1 �
� !

# $ �%� 2 3 (i.e., for
recurrent state)

4 5 6�7 8 9 : ;�<= > 4�?

Periodicity (for recurrent states)
if can only return to state j at steps γ, 2γ, 3γ, ... where
γ > 1 and is the largest such integer, then state j is
periodic with period γ, otherwise, it is aperiodic

⇒
⇒

if γ = 1
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Summary

States

Recurrent Transient

Recurrent Null

Periodic Aperiodic

Recurrent Non-null

Periodic Aperiodic

of MC
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Theorem (without proof)
The states of an irreducible MC are either all transient
or all recurrent non-null or all recurrent null.  If periodic,
then all states have the same period γ.

{πj} describing the probability of bring in state j at
some arbitrary time far into the future?

⇒ let

Does there exist a stationary probability distribution⇒

[A probability distribution Pj is said to be a stationary
distribution of when we choose it for our initial state

distribution, i.e., πj
(0) = Pj, then for all n we have πj

(n) = Pj]

�
��� �

� � � � 	
� 
 � �  probability of finding the

system in state j at nth step

Solving for {πj} is a most important part of the analysis of
Markov chains

⇒
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Theorem:   In an irreducible and aperiodic homogeneous

(a)

Next than addresses this⇒

MC the limiting probabilities

��� � �� �� �	 � 
 � �
�

always exist and are independent of the initial
state probability distribution

Moreover, either
all states are transient or all states are

recurrent null, in which case πj = 0 ∀j and
there exist no stationary distribution, or

can’t be
finite !
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In this case, the quantities πj are uniquely
determined through the following equations

� �

�

� �

��� �

�

� � 	 � �

(b)all states are recurrent non-null and then

πj > 0 ∀j, in which case the set {πj} is a
stationary distribution and


�� �


� �
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Ergodicity: a state j is ergodic if it is:

if all states of a M.C. are ergodic, the MC is ergodic⇒

⇒
aperiodic, recurrent, and non-null; i.e.,

� � ��� � ���

	� 
 �� � � �

a MC is ergodic if the probability distribution {πj} as a
function of n always converges to a limiting stationary

distribution {πj}, which is independent of the initial
state distribution

⇒

All state of a finite aperiodic irreducible MC are ergodic⇒
The limiting probabilities  of an ergodic MC are often
referred to as the equlibrium probabilities
(i.e., effect of initial distribution disappeared)

⇒
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Hippie traveling, waiting to be picked up by car

will refer to #’s on states, 0, 1, 2, instead now

State-transition diagram

3/4
1/4

1/4

Abra
(0)

1/2

3/4

1/4
1/4

Sucsamad
(2)

Zeus
(1)

permissible direction of road travel

probability hippie will be picked up
by car travel on that road, given he
is in current city

pij

⇒ hippie tries to hitch a ride every day

remains in same city for another day

⇒
Transition probability matrix, P, consisting of elements
[ pij ]

⇒

Probability vector⇒
then we can rewrite the set of equations

��� � � � �
� ���	� ��
 � ���	� � � �


��� � ��� �

� ��� �

�

� � � � �

�

as
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In ex: � �
�

���
� �
�

	
�	

� � �
�	

�
	

�
	



�

��

Solve:⇒ ��� � ��� ��� � �
� � � � �
� ��� �

� � � �
� ��� � ��� � � � �
� ��� � �

��� � �
� ��� � �
� � � � �
� ��� � � �

��
���

�! 
� � " # � � � � � � $

linear dependence⇒

Always the case that one equation is linear dependent on
others

⇒

Need to introduce addition, conservation relationship⇒ %'& ( ) ( * +
,

- , . in order to solve the system
In ex: / 0 132 4 135 4 136
⇒ 7�8 9

:
; < 7�= 9

>
? ; < 7�@ 9

:A
? ;

equlibrium (stationary) state probability⇒

(take any 2 equations and Σ = 1)
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Often interested in transient behavior of system
solving for π(n)

j  ⇒ probability of finding hippie in city j at
time n

⇒
⇒

⇒

Define:⇒

Recall:

��� ��� � � � � ��� �	�
 � �� �� 
 � ��� �
 � � � �

⇒

⇒

��� �� � � � � �� � �

��� �� � � � � �� �  � ! ��� �" �  #  � ��� �" �  �

$�% &(' ) * $ % &(' + , ) - . * /10 20 30 4 4 4
⇒

5�6 7(8 9 : 56 7; 9 <8 = : >1? @? A? B B B

C�D E FG HI JK C D L I M

NO PQ RS T�U V Q W X NO PQ RS T U V QY Z W [

⇒

\�] ^ \ ] _

assuming the limit exists

previous theorem:
if irreducible aperiodic
homogeneous MC

Note: solution for⇒
`�a is independent of

b�c de f

⇒ HW: try the hippie example with 3 different initial
states: [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ]
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Define a vector transform:

apply to

⇒ ��� ��� � � �
	
 �

� � � 	 � 	

⇒

��� ��� � � � � ��� � � � � � � ��� �� �� � � �
⇒

�
 ! "

#�$ %  & '  )( �
 ! "

#$ %  * " & + '  
⇒ ,.- /10 2 3 , - 45 6 7 0 8

9: ;
, - 4 9< ; 6 0 9< ; = 7 0 ,.- /10 2 =

⇒

>@? ACB D E > ? FG HJI K L B M NO P
⇒

QSR TVU W XY Q R Z\[ ] ^ Q R Z_ ]a` [

⇒

bc d e f gh i jk f l

Pn is what we are looking for
to get the transient solution
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Apply to our ex:

� �
�

���
� �� 	 �	 � � ��	 � 	 � 	

�

�� � � � � �
�

���
� � � � � � � � �

� � � � � � �� �

� � � � � � � � � � �� �
�

���

⇒ to invert matrix, must find determinant

� � ! "# $ % & ' ( ) $
)

* % $
+

), % - $
)

), % . ( " ) $ % ' " ) /
)

0 % ' -

⇒ 12 3 4 5 687 9 :

;

< ; 3 4 = < ; > 9 ? 4 =@ A

B
CED

; 3 9@ 4 3 F9G 4@ F? 4 3 H9G 4@ 9? 4 > I9G 4@

9? 4 > 99G 4@ ; 3 9@ 4 3 99G 4@ F? 4 > 99G 4@

9? 4 > 99G 4@ 9? 4 > F9G 4@ ; 3 F9G 4@
J

KEL

⇒ now need inverse transform

to make it easier, rewrite as sum of 3 matrices, constant,

times z, and times z2

⇒ use partial fraction exp. term by term
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� � � � � ��� � 	
�
�� � �


���

� � ��

� � ��

� � ��
�

��� � ��� � � �� � 



���
� � � �

� � � �� � � �
�

���

� �
�� � ��


���
� � � � � � �

� � � � �

� � � �� � �
�

���

⇒

⇒ inverting this:

 ! " #
$%

&
'�(

% ) #*

% ) #*

% ) #*
+

,�- . #
% /10 . # 2 34 #
5

6 ! &
'�(

7 4 8 8

7 $ 4 $

7 $ 4 $
+

,�-

. #
$%

34 #
5

6 ! &
'�(

$ 7 * * 4 % *

4 % 8 4 *

4 % 4 # ) $ $
+

,�-( n = 0, I )
( n = 1, P )

all rows equal indicates that equilibrium solution
is the same regardless of initial state

corresponds to equilibrium solution, the other 2 matices
decay as n , corresponds to transient behavior9 :
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DTMC, remove the homogeneous assumption⇒ � � � ���� � �
	 � �  � � ��� � � � ��� � � � � � �
probability system is in state j in step n,
given it was in i at step m

must pass through some state q in the middle⇒
⇒

⇒

⇒

⇒

���� � � ! " # $
%

& ' (*) + , ! (*- + . / (*0 + 1 2 3546 � 798 7 "

:�;< = > ? @ A B
C

D EF G H I J F K H L M D E F N H O J F K H L ? F G H I M

true for
all stoch.
proc.s
from def.
of cond.
prob.
invoke
Markov
property

P QR S T U V R W T XZY R [ T \ ] T P QR S T U V R [ T \ ]

^�_` a b c d e f
g ^�_ g a b c h e ^ g` a h c d e i5jk b l h l d

Chapman-Kolmogorov eq. for DTMC

Note: If this was a homogeneous MC, then
and when n = q + 1, this equation would
reduce to our earlier derivation

m�no prq s t u v m wyx{z | }no

~ ���� � � ~ � ��� � ��� ~ � �
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Define

Define

⇒

⇒
⇒

� ��� � � ��� �	 � ��
 � �  �� now depends on time� ��� � � � if chain is homogeneous���� � � � � ��� �� � � � � �� multistep trans. prob. matrix !�"$# " % & ' ( ) !�" '

⇒ * +�, - , .0/ 1 2 3 4

in the homogeneous case
⇒ 5 6�7 8 9 : ; 5 6�7 8 < : 5 6 < 8 9 : =?>@ 7 A < A 9
⇒ B C�D$E D F G Hrequire that
⇒ since free to choose any q in the interval between m and

n: start with q = n - 1
⇒ IKJL MON P Q R S T IKJ T MON P QVU W R I TL M Q U W P Q R

⇒ X Y�Z [ \ ] ^ X Y�Z [ \`_ a ] b Y \`_ a ]

⇒ also could choose q = m + 1
⇒ cKde fOg h i j k l cKd l fOg h g m n j c le fOg m n h i j

⇒ o p�q r s t u v p�q t o p�q w x r s t

Chap.-Kol.

(note: all matrices are square ⇒ # states)

forward Chap.-Kol. eq.

backward Chap.-Kol. eq.
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in homogeneous case:

⇒

⇒

⇒

� ��� � � � � � ��� � � ��� 	 
 ��� � � � � �� 
 �

� ��� � � � � � ��� �

��� ���  ! " # ��� ��� " $ ��� "

⇒ %�& '�( ) * + , %& '- + . '- + . ' * +�/ / / . '�( +

both eq’s give same solution

can check by
plugging in above

solution
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Consider 3 successive time instants

� � � ����� � 	 
 � �  � ��� 	 
 � � 	�� � ����� 
 � �� � � � � � � ����� 
 � �� �

� � � � ����� � � � � �  � � �� � � !� "

⇒ #%$& ')(+* , - . / 0 1 ' , - 2 3 4 1 ')( - 2 5 6 , 7 ( X(t) ⇒ state of
MC at time t

⇒ 8 9;: 9<
⇒ =?>@ ACBED F G H

I
=?> I ACB D J G = I@ A JD F G

Put into matrix form;⇒ K L)M+N O P Q R)S TU L)M+N O PV

⇒ W X)Y[Z \ ] ^ W X)Y[Z _ ] W X _Z \ ] Y ` _ ` \
(as before H(t,t) = I)

Try to derive continuous time analogs of forward and
backward equations

⇒

Start in forward direction, start with⇒ a b)c d e f g a b)c d eih j f k b eih j f

l m)n o p qsr l m)n o pr t q u l m)n o pr t q v m pr t qsr l m)n o pr t q

w x)y z {i| } ~� � x {i| } ~ | � � x�� ~

Chap.-Kal. eq.
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Define⇒ � ��� � � ��� 	
 ����� �  �� ��

Let⇒ �� be the time step in discrete case
Devide⇒

��� �

and take

��by

�� � �� � � �as ! "$#&% ' (
 ' ) ! "$#&% ' ( * " ' ( # + '⇒

where , -/. 0 1 2354768:9 ; <
= - . 0?> @

A.

infinitesimal generator of H(s,t) or transition rate matrix

B C�D E F G�HJI K CD EL

⇒
define M�N N O/P Q R ST5U7VW:X Y Z

[ N N O/P]\ P ^ _P Q?` a

_P

b�cd e/f g h ij5k7lm:n o p
q cd e f]r f s tf g

tf u v h w
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Given that we are in state i at time t, probability transition
occurs to any other state during interval (t,t+∆t) is given by

⇒

� ��� � ��� � �� 	 
 � �� � �� ������ � �
� �� � �

� � � � �

⇒ -qii(t) is the rate at which the process leave state i, when in
that state

⇒ Similarly the conditional transition probability of going to
state j is

���� �� ! " # $ � " !
⇒ Since %

&(' % )+*-, . / 0 1 2
%

3' % ) . / 0 4 56

7 8 9;:=< > ?
7 > @ A B 9;: ? 8 9 :< > ? : C >

⇒ Similarly can derive backward Chap.-Kal. eq.
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From forward equation:⇒

���� ��� � � � 	

 � � � 	 �

� � � � 	 �

� ���� ����� � �
� � � �� � � � � ���� ��� � � � �

 !#"�
�  � � � � ���  ����� � �

(using individual terms)

Init state i effects the solution through init conditions only:⇒

plus some
assumption
about limits

From backward equation:⇒ $ %�&' (�)�* + ,
$ ) - . /& & ( + , % &' (�)�* + , . 0 1#2 &

/& 0 (�) , % 0' (�) * + ,

3�45 687:9 7 ; <
= > ? @A < B

C ? @A D < Bwhere "init" conditions are

EGF HJI KI L MN O P Q RS Q R T S T
U V Q R W S W
X V QZY Y Y [

\ ]�^`_ a b c de f g h
i

j ]�k bl k mUsing these equations (unique determine solution):⇒

Satisfies Chap.-Kal. eq.

Analog to discrete case
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Define⇒ ��� ��� � � � � 	 ��� � 
 � �

�� ��� � � � ��� ��� ��� ��� ��� ��� � � � �

Given⇒ ��� ��  �!
"�#$�% & ' "#$( & ) $(+* % &

can solve for

,�- .�/ 0

where the general solution is

132 465 7 8 132 49 7�: ;< = >
?

@ 4�A 7B A C
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Chap.-Kal. Eq:

⇒ ���� ��� � � ���� �
	�� 	  � �

���� � � �� ��� � ��� � � � � � � � � �

� ���  ! � �
"�# " $ �  % &
' () ���  *

⇒ +-,. /10 2 3 4 5
6

+ , 6 /10 4 + 6. / 3 4
⇒ 7 8
9 : ; < = 7 8
9 < 7 8 ; <

(in matrix form)

> ? @BA C
> A D ? @BA C E

forward

F G HBI J
F I K L G HBI J

backward

with common initial condition M NO P Q R

⇒ S T�U V W X YZsolution
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⇒

� ��� ��� �
� � � ��� ��� � 	

State probabilities in matrix form
look at state probability now

⇒


� ��� ��
���� ��� � � ��

For an irreducible homogeneous MC, limit exists and
independent of initial state of the chain:

{πj} forms the limiting state probability distribution
⇒

�� ��� !"

#�$ %�& ' ( #�$

For an ergodic MC, limit, independent of initial distribution,

⇒

)�* * + * ,
- .0/ *

) - * + - 1 2
This limiting distribution is given uniquely as solution to the
following system of linear equations

⇒ 354 6 7 8 9 :<;= ; 354 7 > 4@?0A 4@BA 4@CA D D D Ematrix form

⇒ Compute with gives us a uniq. sol. to state probs.F
G F H IKJ
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State of system is k (e.g., current population)⇒

(homogeneous)

Birth rate λk when population is k⇒
⇒ Death rate µk when population is k

⇒ ��� � ���� � � � �� � ���� � 	 �
�� � � � ���� � � � � � � � �

��� �! "#
$

%'& $ ( )+* % , , ( - �/. & 0 1 & 2

3 4
5

6767676867676:9
; <>= ?= @ A A A A A A A A A A A A @ A A A

?CB ; D < B E ?CB F < B @ A A A A A A A A A @ A A A

@ ?CG ; D < G E ?CG F < G @ A A A A A A @ A A A

@ @ ?CH ; D < H E ?H F < H @ A A A @ A A A

IJIJI IJIJI IJIJI IJIJI IJIJI IJIJI IJIJI IJIJI IJIJI
K

L7L7L7L8L7L7L:M
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⇒ Assumptions needed for B-D process, (in addition to being
a homogeneous MC on states 0, 1, 2, ..., that births and
deaths are independent (from Markov property),) and

B1 : P[ exactly 1 birth in (t, t+∆t) | k in population ]
= λk ∆t + o(∆t)

D1 : P[ exactly 1 death in (t, t+∆t) | k in population ]
= µk ∆t + o(∆t)

B2 : P[ exactly 0 birth in (t, t+∆t) | k in population ]
= 1 - λk ∆t + o(∆t)

D2 : P[ exactly 0 birth in (t, t+∆t) | k in population ]
= 1 - µk ∆t + o(∆t)
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What⇒ ��� ��� � � � � 	 ��� � 
 � � ��� � � � 
  � � � �

Can derive the following from a parallel deviration⇒
as when did general case
if go through that will get this� ��� ��� �

� � � � �� � ��� � � � � ��� � � � ��� � ����� � ��� � ��� �� � ���� � ��� � �  !

" #%$ &�' (
" ' ) * + $ #%$ &�' ( , -/. #. & ' ( 0 ) 1

set of differential-difference eq’s.

24365 75 8:9 ;< ; ; => < > 3@? A5 < = 7? B< = C
DFE G

H D2JI K L M K

Try to do the same by "inspection"⇒
state transition diagram

0 1
λ0

µ0

2
λ1

µ1

... k-1

λk-1

µk-1

k k+1

λk

µk

...
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Rate of change of "flow" into state k
= rate of entering k - rate of leaving k

⇒

Can derive the following from a parallel deviration⇒
Flow rate into⇒

difference

� � ��� � �
�� � �
�
	 � �
 � � � �� � � �
	 �

Flow rate out of⇒

� � �� � �
� � � � � �
� �
Difference is the effective prob. flow rate into state k, i.e.,⇒

� ��� ���  
� � ! " �$# % ���$# % ���  &�' �( % ���( % ���  ) � " � &�' �  ��� ��  

flow into a set of states

same as above (haven’t talked about boundary cond.)
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Assume⇒
To simplify, assume⇒

��� � � ��
�	� 
 � ��

 ��� ��� �
 � � � � ��� ��� � � � ����� � ��� � � � � ��� �

 !#" $�% &
 % ' ( ) !#" $% & * ' +

To simplify, assume⇒ ,�- ./ 0 1
2 3 4 1 /

/ 4 5 1 /

Solving for P0(t), we have⇒ 687 9;: < = > ? @A B C D EGF H EGF 9I <J KL M = N

⇒

OP Q R�S T
O S UV W P Q R�S TYX WGZ [ \]

^8_ `;a bdc e a f g hi

⇒sol.
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Continuing by induction⇒

��� ��� � �
�� � � �

	 
 � � � 	 � ��
�

� � �

Possion distribution⇒
pure birth process with constant rate λ
given rise to a sequence of birth epochs known
as the Poisson Process

⇒
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� � � � � �
��� 	


 � ��� � � � � �� �
�� 	


 ��  � �

 �

Let k be number of arrivals (from Poisson process) in an
interval of length t

⇒

⇒

⇒

� � � �� �
��� �

� ! " �

�# $ % "& � � � ��  ! �
��� '

� ! " �
# &

Since ( ) * + ,.- , - /
01 ,32 2 2

⇒ 4 5 6 7 8 9: ⇒

in (0,t) is λt, given that λ is the mean arrival rate

intuitively, should also see that avg. # of arrivals

⇒ Compute variance:

; < = > =@? A BC D E
F�G H

I > I ? A B J F>�K B D L M NO E
F G H

I > I ? A B >P K B F
I Q

R S T UVW XY Z [ \
]�^ [

W XY Z ]T [

W _a` b Zc R S T U VW XY Z [ \
]^ d

W XY Z ]
_c RW XY Z [
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⇒ � ��� � � � � � �
	 � � � � � � 	 � � � � � � � ��� � � � �� 	 �� � � �

⇒ � ��� � ��

⇒ Hw: Compute the mean and variance using z-transform

to get
started

��� � � � � � � �

 !#" $ % & ' " ( ) %
(

" (+* (
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⇒ Let r.v. be time between arrivals

���

� � � ��� 	 
� ��� � 
� 	 

with A(t) and a(t), PDF and pdf

prob. next arrival occur between
t and t+∆t time sec. units from last arrival

⇒ � ��� ��� ��� � ��� � � � �

prob. that no arrivals occur in (0,t) ⇒ P0(t)

λ
a(t) a(t) ∆t

t t+∆t

⇒ � ���  "! #%$ &(' ��  

⇒ In the Poisson case, we have ) *�+ ,"- .(/ 0 1 23 + 4 5

⇒ Differentiate 6 7�8 9": ;=< > ?@ 8 A B⇒

expo. distri.
⇒ For a Poisson Process, the time between arrivals is

expoenetial distributed
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Hw: Show that

Compute

1

2

� ����� � � �� �
	
	�	
� � � � �

� � � � � ��

i.e., cond. distri. is
the same as uncond.

� ����� � � ���! and to show that

" #%$'& (
)

*
+ and , -/.�0 1

2
3 - directly and using

Laplace transform


