

Stochastic Processes

CSC5420'

⇒ Index a "family of r.v.'s" by time \Rightarrow stochastic process e.g., { $X_t(w) \mid t \in T, w \in S$ } where *t* is the time index and *s* is the sample space

- \Rightarrow values assumed by $X_t(w)$ are called states of the stochastic process
- ⇒ all possible such values form the state space of the stochastic process

 \Rightarrow can equivalently denote $X_t(w) \equiv X(w,t)$

CSC5420

Characteristics of a Stochastic Process

- A. State space (discrete or continuous)
- B. The time index (discrete or continuous)
- C. Relationship (statistical dependencies) between $\{X_t(w)\}$ (dependence or independence)
- \Rightarrow Discrete state space process are called chains
- \Rightarrow A discrete time process is often denoted by $X_n, n = 0, 1, 2, \cdots$

Classification of Stochastic Processes (Cont...)

⇒ Birth-Death Process

Markovian chains where transitions occur to the nearest neighbors only, i.e., if a process is in state *i*, the allowable transitions are to *i* - 1 and *i* + 1 only

⇒ Semi-Markov Process

- \Rightarrow Markov chain: discrete time \Rightarrow transition is made at every limit time (Markov property)
 - ⇒ means that time spent in each state is geometrically distributed

Classification of Stochastic Processes (Cont...)

\Rightarrow Random Walks

- ⇒ A particle moving among states in some (e.g., discrete) state space
- \Rightarrow Of interest: identifying location of the particle in that space
- ⇒ next position = previous position plus r.v. whose value is drawn independent from an arbitrary distribution; this distribution does not change with state of process (except maybe at some boundary states)
- \Rightarrow a sequence of r.v.'s $\{S_n\}$ is referred to as a random walk (starting at the origin) if

 $S_n = X_1 + X_2 + \dots + X_n$ $n = 1, 2, \dots$ where $S_0 = 0$ and X_1, X_2, \dots is a sequence of independent r.v.s with a common distribution

Classification of Stochastic Processes (Cont...)

- \Rightarrow index *n* counts the number of state transitions the process goes through
- \Rightarrow if these constants are taken from discrete set
 - \Rightarrow discrete time random walk
- \Rightarrow if these constants are taken from continuous set
 - \Rightarrow continuous-time random walk
- ⇒ the interval between these transitions is discrete in an arbitrary way
 - ⇒ random walk is a special case of a semi-Markov process

(often people only care about position after a transition, and so assume meaningless distribution between transitions; then special case of Markov process)

Classification of Stochastic Processes (Cont...) \Rightarrow if common distribution for X_n , have a discrete-state random walk

⇒ in this case transition probability P_{ij} of going from state *i* to state *j* will depend only on the difference in indice *j* - *i* (denoted by $q_{j\cdot i}$)

CSC5420

- \Rightarrow e.g., of continuous -time random walk
 - \Rightarrow Brownian motion
 - e.g., of discrete -time random walk
 - ⇒ total number of heads observed in a sequence of independent coin tosses

Classification of Stochastic Processes (Cont...)

 \Rightarrow can think of: $S_n = X_1 + X_2 + \cdots + X_n$

as decreasing a renewal process in which S_n is a r.v. denoting the time at which the n^{th} transition takes place

 $\{X_n\}$ is a set of i.i.d. r.v.s where

 X_n represents the time between the $(n - 1)^{th}$ and n^{th} transition

⇒ Be careful to distinguish random walk and renewal process. Here above equation describes time of the i^{th} renewal transition. Whereas in random walk it describes the state of the process (and the time between transition is some other r.v.)

Relationships

- Discrete-State Systems
 - $\Rightarrow P_{ij} \text{ denotes}$ probability of making transition next to state j given the process is in state i
 - \Rightarrow f_{τ} denotes

distribution of time between transitions (maybe a function of both current and next states of the process)

CSC5420

Discrete Time Markov Chains

- \Rightarrow Let { X_n } be a sequence of r.v.'s which assume discrete values
- \Rightarrow With loss of generality, let n=1, 2, ... correspond to a set of allowable time instants that are obtained from a discrete space
- $\Rightarrow \text{The Markov property can be expended as}$ $P[X_n = j | X_{n-1} = i_{n-1}, X_{n-2} = i_{n-2}, \cdots, X_1 = i_1]$ $= P[X_n = j | X_{n-1} = i_{n-1}] \equiv P_{i_{n-1}j} \quad (* * *)$

→ one step transition probability at step n

CSC5420

⇒ if transition probabilities are independent of *n*, then have a homogeneous MC (i.e., $P_{i_{n-1}j} = P_{ij}$) $P_{ij} \equiv P [X_n = j | X_{n-1} = i]$ (transition probabilities are stationary in time, but this does not have to be a stationary random process) where $F_X(\vec{x}; \vec{t}) = F_X(\vec{x}; \vec{t} + \tau)$ (remainder of discussion in terms of homogeneous MCs) Label{eq:mainder} 16

Resurrence (Cont...)

CSC5420

 \Rightarrow Can now classify states of MC according to values of f_i \Rightarrow **Recurrence state** \Rightarrow $f_i = 1$ \Rightarrow Transient state $\Rightarrow f_i < 1$ ⇒ Mean Recurrence Time (i.e., for $M_j \equiv \sum_{n=1}^{\infty} n f_j^{(n)}$ for state j when $\sum_{n=1}^{\infty} f_j^{(n)} = 1$ recurrent state) \Rightarrow if $M_j < \infty$ then j is recurrent non-null \Rightarrow if $M_j = \infty$ then j is recurrent null \Rightarrow **Periodicity** (for recurrent states) \Rightarrow if can only return to state *j* at steps γ , 2γ , 3γ , ... where $\gamma > 1$ and is the largest such integer, then state j is periodic with period γ , otherwise, it is aperiodic \rightarrow if $\gamma = 1$

Theorem

CSC5420

 $\Rightarrow \text{let } \pi_j^{(n)} \equiv P[X_n = j] \quad \Leftarrow \text{ probability of finding the} \\ \text{ system in state } j \text{ at } n^{th} \text{ step}$

Theorem (without proof)

The states of an irreducible MC are either all transient or all recurrent non-null or all recurrent null. If periodic, then all states have the same period γ .

⇒ Does there exist a stationary probability distribution $\{\pi_j\}$ describing the probability of bring in state *j* at some arbitrary time far into the future? [A probability distribution P_j is said to be a stationary distribution of when we choose it for our initial state distribution, i.e., $\pi_j^{(0)} = P_j$, then for all n we have $\pi_j^{(n)} = P_j$] ⇒ Solving for $\{\pi_j\}$ is a most important part of the analysis of Markov chains

CSC5420 -

Ergodicity

 \Rightarrow Ergodicity: a state *j* is ergodic if it is:

aperiodic, recurrent, and non-null; i.e.,

if $f_j = 1, M_j < \infty, \gamma = 1$

 \Rightarrow if all states of a M.C. are ergodic, the MC is ergodic

- ⇒ a MC is ergodic if the probability distribution $\{\pi_j\}$ as a function of *n* always converges to a limiting stationary distribution $\{\pi_j\}$, which is independent of the initial state distribution
- \Rightarrow All state of a finite aperiodic irreducible MC are ergodic
- ⇒ The limiting probabilities of an ergodic MC are often referred to as the equilibrium probabilities (i.e., effect of initial distribution disappeared)

Transient Behavior

CSC5420¹

$$= \sum_{i=1}^{n} \left[I - zP \right]^{-1} = \frac{1}{25} \left[\begin{array}{c} 5 & 7 & 13 \\ 5 & 7 & 13 \\ 5 & 7 & 13 \\ 5 & 7 & 13 \end{array} \right] + \frac{1}{(1 + \frac{2}{4})^2} \left[\begin{array}{c} 0 & -8 & 8 \\ 0 & 2 & -2 \\ 0 & 2 & -2 \end{array} \right]$$

$$+ \frac{1}{25} \left[\begin{array}{c} 20 & 33 & -53 \\ -5 & 8 & -3 \\ -5 & -17 & 22 \end{array} \right]$$

$$\Rightarrow \text{ inverting this:}$$

$$P^n = \frac{1}{25} \left[\begin{array}{c} 5 & 7 & 13 \\ 5 & 7 & 13 \\ 5 & 7 & 13 \end{array} \right] + \frac{1}{5} (n+1) \left(-\frac{1}{4} \right)^n \left[\begin{array}{c} 0 & -8 & 8 \\ 0 & 2 & -2 \\ 0 & 2 & -2 \end{array} \right]$$

$$(n = 0, I) \left[\begin{array}{c} 1 + \frac{1}{25} \left(-\frac{1}{4} \right)^n \left[\begin{array}{c} 20 & 33 & -53 \\ -5 & -17 & 22 \end{array} \right] \right]$$

$$= \frac{1}{25} \left[\begin{array}{c} 5 & 7 & 13 \\ 5 & 7 & 13 \\ 5 & 7 & 13 \end{array} \right] + \frac{1}{5} (n+1) \left(-\frac{1}{4} \right)^n \left[\begin{array}{c} 0 & -8 & 8 \\ 0 & 2 & -2 \\ 0 & 2 & -2 \end{array} \right]$$

$$= \frac{1}{25} \left[\begin{array}{c} 1 + \frac{1}{25} \left(-\frac{1}{4} \right)^n \left[\begin{array}{c} 20 & 33 & -53 \\ -5 & 8 & -3 \\ -5 & -17 & 22 \end{array} \right] \right]$$

$$= \frac{1}{25} \left[\begin{array}{c} 1 + \frac{1}{25} \left(-\frac{1}{4} \right)^n \left[\begin{array}{c} 20 & 33 & -53 \\ -5 & 8 & -3 \\ -5 & -17 & 22 \end{array} \right] \right]$$

$$= \frac{1}{25} \left[\begin{array}{c} 1 + \frac{1}{25} \left(-\frac{1}{4} \right)^n \left[\begin{array}{c} 20 & 33 & -53 \\ -5 & 8 & -3 \\ -5 & -17 & 22 \end{array} \right] \right]$$

$$= \frac{1}{25} \left[\begin{array}{c} 1 + \frac{1}{25} \left(-\frac{1}{4} \right)^n \left[\begin{array}{c} 20 & 33 & -53 \\ -5 & -17 & 22 \end{array} \right] \right]$$

$$= \frac{1}{25} \left[\begin{array}{c} 1 + \frac{1}{25} \left(-\frac{1}{4} \right)^n \left[\begin{array}{c} 20 & 33 & -53 \\ -5 & -17 & 22 \end{array} \right] \right]$$

$$= \frac{1}{25} \left[\begin{array}{c} 1 + \frac{1}{25} \left(-\frac{1}{4} \right)^n \left[\begin{array}{c} 20 & 33 & -53 \\ -5 & -17 & 22 \end{array} \right]$$

$$= \frac{1}{25} \left[\begin{array}{c} 1 + \frac{1}{25} \left(-\frac{1}{4} \right)^n \left[\begin{array}{c} 20 & 33 & -53 \\ -5 & -17 & 22 \end{array} \right]$$

$$= \frac{1}{25} \left[\begin{array}{c} 1 + \frac{1}{25} \left(-\frac{1}{4} \right)^n \left[\begin{array}{c} 20 & 33 & -53 \\ -5 & -17 & 22 \end{array} \right]$$

$$= \frac{1}{25} \left[\begin{array}{c} 1 + \frac{1}{25} \left(-\frac{1}{4} \right)^n \left[\begin{array}{c} 20 & 33 & -53 \\ -5 & -17 & 22 \end{array} \right]$$

$$= \frac{1}{25} \left[\begin{array}{c} 1 + \frac{1}{25} \left(-\frac{1}{5} \right)^n \left[\begin{array}{c} 1 + \frac{1}{5} \left(-\frac{1}{5} \right)^n \left[\begin{array}{c} 1 + \frac{1}{5}$$

Rewrite in Matrix Form

 \Rightarrow Define $P(n) \equiv [p_{ij}(n, n+1)]$ now depends on time P(n) = P if chain is homogeneous \Rightarrow Define $H(m,n) \equiv [p_{ij}(m,n)]$ multistep trans. prob. matrix $\Rightarrow H(n, n+1) = P(n)$ \Rightarrow in the homogeneous case $H(m, m+n) = P^n$ $\Rightarrow H(m,n) = H(m,q) H(q,n)$ for $m \leq q \leq n$ -Chap.-Kol. \Rightarrow require that H(n,n) = I (note: all matrices are square \Rightarrow # states) \Rightarrow since free to choose any q in the interval between m and *n*: start with q = n - 1 $\Rightarrow p_{ij}(m,n) = \sum_{k} p_{ik}(m,n-1) p_{kj}(n-1,n)$ $\Rightarrow H(m,n) = H(m,n-1) P(n-1) - \text{forward Chap.-Kol. eq.}$ \Rightarrow also could choose q = m + 1 $\Rightarrow p_{ij}(m,n) = \sum_{i} p_{ik}(m,m+1) p_{kj}(m+1,n)$ $\Rightarrow H(m,n) = P(m) H(m+1,n) \leftarrow \text{backward Chap.-Kol. eq.}$ Copyright © John C.S. Lui

Rewrite in Matrix Form

CSC5420

both eq's give same solution \Rightarrow in homogeneous case: $H(m,n) = P^{n-m}$ $\Rightarrow \vec{\pi}(n+1) = \vec{\pi}(n) P(n)$ solution $\Rightarrow \vec{\pi}(n+1) = \vec{\pi}(0) P(0) P(1) \cdots P(n)$

Continuous-Time Markov Chains

CSC5420 -

$$\begin{split} P\left[\begin{array}{c} X(t_{n+1}) = j \mid X(t_1) = i_1, X(t_2) = i_2, \cdots, X(t_n) = i_n \end{array} \right] \\ &= P\left[\begin{array}{c} X(t_{n+1}) = j \mid X(t_n) = i_n \end{array} \right] \\ \Rightarrow p_{ij}(s,t) \equiv P\left[\begin{array}{c} X(t) = j \mid X(s) = i \end{array} \right] \\ \Rightarrow \text{Consider 3 successive time instants } s \leq u \leq t \\ \Rightarrow \text{Consider 3 successive time instants } s \leq u \leq t \\ \Rightarrow p_{ij}(s,t) = \sum_k p_{ik}(s,u) p_{kj}(u,t) \\ \Rightarrow \text{Put into matrix form; } H(s,t) \equiv \left[p_{ij}(s,t) \right] \\ \text{Chap.-Kal. eq.} \\ \Rightarrow H(s,t) = H(s,u) H(u,t) \quad s \leq u \leq t \quad \text{(as before } H(t,t) = I \text{)} \\ \Rightarrow \text{Try to derive continuous time analogs of forward and backward equations} \\ \Rightarrow \text{Start in forward direction, start with} \\ H(m,n) = H(m,n-1) P(n-1) \\ H(m,n) - H(m,n-1) = H(m,n-1) P(n-1) - H(m,n-1) \\ H(m,n-1) \left[P(n-1) - I \right] \quad (*) \end{array}$$

Continuous-Time Markov Chains (Cont...)

 \Rightarrow Define $P(t) \equiv [p_{ij}(t, t + \Delta t)]$ \Rightarrow Let Δt be the time step in discrete case \Rightarrow Devide (*) by Δt and take $\lim \Delta t \longrightarrow 0$ $\Rightarrow \frac{\partial H(s,t)}{\partial t} = H(s,t) Q(t) \qquad s \le t$ where $Q(t) = \lim_{\Delta t \to 0} \frac{P(t) - I}{\Delta t}$ infinitesimal generator of H(s,t) or transition rate matrix $Q(t) = [q_{ij}(t)]$ $\stackrel{\text{define}}{\Rightarrow} q_{ii}(t) = \lim_{\Delta t \longrightarrow 0} \frac{p_{ii}(t, t + \Delta t) - 1}{\Delta t}$ $q_{ij}(t) = \lim_{\Delta t \longrightarrow 0} \frac{p_{ij}(t, t + \Delta t)}{\Delta t} \quad i \neq j$

Continuous-Time Markov Chains (Cont...)

 \Rightarrow Given that we are in state *i* at time *t*, probability transition occurs to any other state during interval (*t*,*t*+ Δt) is given by

$$-q_{ii}(t) \Delta t + o(\Delta t) \qquad (\lim_{\Delta \to 0} \frac{o(\Delta t)}{\Delta t} = 0)$$

- \Rightarrow - $q_{ii}(t)$ is the rate at which the process leave state *i*, when in that state
- \Rightarrow Similarly the conditional transition probability of going to state j is

$$\Rightarrow \text{Since} \quad \sum_{j}^{q_{ij}(t)} \frac{\Delta t + o(\Delta t)}{p_{ij}(s,t)} = 1 \Rightarrow \sum_{j}^{q_{ij}(t)} q_{ij}(t) = 0 \quad \forall i$$

 \Rightarrow Similarly can derive backward Chap.-Kal. eq.

$$\frac{\partial H(s,t)}{\partial t} = -Q(s) H(s,t) \qquad s \le t$$

CSC5420 -

Compute State Probabilities

Homogeneous Case

$$\Rightarrow p_{ij}(t) \equiv p_{ij}(s, s+t)$$

$$q_{ij} \equiv q_{ij}(t) \quad i, j = 1, 2, \cdots$$

$$H(t) \equiv H(s, s+t) = \left[p_{ij}(t) \right]$$

$$\Rightarrow \textbf{Chap.-Kal. Eq:} \quad p_{ij}(s+t) = \sum_{k} p_{ik}(s) \quad p_{kj}(t)$$

$$\Rightarrow H(s+t) = H(s) \quad H(t) \quad \text{(in matrix form)}$$

$$\frac{d \quad H(t)}{d \quad t} = H(t) \quad Q \quad \text{forward}$$

$$\frac{d \quad H(t)}{d \quad t} = Q \quad H(t) \quad \text{backward}$$
with common initial condition $H(0) = I$
solution

$$\Rightarrow H(t) = e^{Qt}$$

Birth-Death Process (Cont...)

 $\Rightarrow \text{Assumptions needed for B-D process, (in addition to being a homogeneous MC on states 0, 1, 2, ..., that births and deaths are independent (from Markov property),) and <math>B_1 : P[\text{ exactly } 1 \text{ birth in } (t, t + \Delta t) \mid k \text{ in population }]$ $= \lambda_k \Delta t + o(\Delta t)$ $D_1 : P[\text{ exactly } 1 \text{ death in } (t, t + \Delta t) \mid k \text{ in population }]$ $= \mu_k \Delta t + o(\Delta t)$ $B_2 : P[\text{ exactly } 0 \text{ birth in } (t, t + \Delta t) \mid k \text{ in population }]$ $= 1 - \lambda_k \Delta t + o(\Delta t)$ $D_2 : P[\text{ exactly } 0 \text{ birth in } (t, t + \Delta t) \mid k \text{ in population }]$

 $= \mathbf{1} \cdot \mu_k \Delta t + o(\Delta t)$

Solve

CSC5420

Solve (Cont...)

 $\Rightarrow \text{Rate of change of "flow" into state } k$ = rate of entering k - rate of leaving k $\int_{-}^{-} \text{difference}$

- \Rightarrow Can derive the following from a parallel deviration
- \Rightarrow Flow rate into $k = \lambda_{k-1} P_{k-1}(t) + \mu_{k+1} P_{k+1}(t)$
- \Rightarrow Flow rate out of $k = (\lambda_k + \mu_k) P_k(t)$

 \Rightarrow Difference is the effective prob. flow rate into state k, i.e., flow into a set of states

$$\frac{d P_k(t)}{d t} = \lambda_{k-1} P_{k-1}(t) + \mu_{k+1} P_{k+1}(t) - (\lambda_k + \mu_k) P_k(t)$$

same as above (haven't talked about boundary cond.)

Pure Birth Process

CSC5420

 $\mu_k = 0 \quad \forall k$ \Rightarrow Assume \Rightarrow To simplify, assume $\lambda_k = \lambda \quad \forall k$ $\frac{d P_k(t)}{d t} = -\lambda P_k(t) + \lambda P_{k-1}(t) \quad k \ge 1 \quad (*)$ $\frac{d P_0(t)}{d t} = -\lambda P_0(t) \quad k = 0$ \Rightarrow To simplify, assume $P_k(0) = \begin{cases} 1 & k = 0\\ 0 & k \neq 0 \end{cases}$ \Rightarrow Solving for $P_0(t)$, we have $P_0(t) = e^{-\lambda t} \Rightarrow \text{ using in (*) for } k = 1$ $\Rightarrow \frac{d P_1(t)}{d t} = -\lambda P_1(t) + \lambda e^{-\lambda t}$ sol. $\Rightarrow P_1(t) = \lambda \ t \ e^{-\lambda t}$

Pure Birth Process (Cont...)

 \Rightarrow Continuing by induction

$$P_k(t) = \frac{(\lambda \ t)^k}{k \ !} \ e^{-\lambda t} \qquad k \ge 0, t \ge 0$$

 \Rightarrow **Possion** distribution

pure birth process with constant rate λ

⇒ given rise to a sequence of birth epochs known as the Poisson Process

Poisson Process (Cont...)

- $\Rightarrow \sigma_k^2 = E [K(K-1)] + E [K] (E [K])^2 = (\lambda t)^2 + \lambda t (\lambda t)^2$
- $\Rightarrow \sigma_k^2 = \lambda t$

 \Rightarrow Hw: Compute the mean and variance using z-transform

$$\begin{array}{ll} \underline{\text{to get}} & g_k = P \left[\begin{array}{c} K = k \end{array} \right] \\ \underline{\text{started}} & G(z) = E \left[\begin{array}{c} z^k \end{array} \right] = \sum_k \ z^k \ g_k \end{array}$$

CSC5420

