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Stochastic Processes

[ Index a "family of r.v.’s" by time [ stochastic process
ed.,{ Xy(w) |teT, weS }wheretisthe time index
and s is the sample space

0 values assumed by X;(w) are called states of the
stochastic process

[1 all possible such values form the state space of the
stochastic process

0 can equivalently denote X;(w) = X(w,t)

t=1 t=2
S S
w
w \
X, (w) R V Xow)
R R
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Example

= Throw a dice three times; the sample space is
S=1{1,23,45,6}
= Let X;(w) be defined as follows:
Vwe S, X1<UJ) = w, XQ(U}) — 2"(0, X3<U]) = Jw
Then the state space ={1,2,3,4,5,6,8,9,10,12,15,18 }
"State-Time diagram™ »i=1t=2 =3

[

[

= We are interested in P |X; = 0]
— P[X1:6, X2:6, X3:6]
— P[1*'throw = 6, 2"%throw = 3, 3"“throw = 2]

= In this example time is discrete and X;(w) are
independent; sometimes will use X (), X;, X, —

with understanding that § = {w}« J

\ Copyright © John C.S. Lui J/
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Characteristics of a Stochastic Process

A. State space (discrete or continuous)

B. The time index (discrete or continuous)

C. Relationship (statistical dependencies) between {X;(w)}
(dependence or independence)

[1 Discrete state space process are called chains
[0 A discrete time process is often denoted by X,,, n=0,1,2,---

\ Copyright © John C.S. Lui J/
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Distribution of Stochastic Processes

= At an allowable time ¢, the PDF of a stochastic process X,
IS given by
Fy(z,t) = P[X(t) < x]
= For a set of allowable instances, the joint PDF is
Fx,xyx, (T1, o, -+ Tpit1, to, -+ ty) = Fx (T f}

= P[Xi(t) <11, Xo(ta) <9y -+, Xp(tn) < 4]

\ Copyright © John C.S. Lui J/



Classification of Stochastic Processes

[1 Stationary Process
Q one where PDF is invariant to shifts in time
[1 for afixedt

[1 the dice example is a discrete state, discrete time,
iIndependent process; it is not a stationary stochastic
process

\ Copyright © John C.S. Lui

Fx (Z; f) = Fx(Z; t+ T) (i.e., add T to each element of ')
[1 Independent Process (i.e., X;’s are independent r.v.)
FX(a_:';ﬂ = Fx,(x1,t1) - Fix,(xa,t3) -+ - Fx, (xn,t,)
and also  fy(z;t) = n fx, (zi, t;) (continuous state)
iil
and Px (; f) = 1] Px, (i, t:) (discrete state)
1=1
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Classification of Stochastic Processes (Cont...)

[ Markov Process
Q allow a restricted form of dependence
[1 the future only depends on the current state
(doesn’t depend on past states or on time spent in the
current state or any other prior state)
[1 memoryless distribution of time spent in state

l

exponential, geometric

f

[J discrete state [1 Markov Chain
[] for discrete state
P [X(thrl) — Tp+1 |X(tn> — Tp, X(tn_1> — Tp—1,°"", X(tl) = .CL'1]
= P[X(tni1) = Tni1 [X(t0) = 24 ]
where t; < to < -+ < t, < thiq
and z; is included in some discrete state space

\ Copyright © John C.S. Lui
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Classification of Stochastic Processes (Cont...)

[1 Birth-Death Process
Q Markovian chains where transitions occur to the nearest
neighbors only, i.e., if a process is in state i, the allowable
transitions aretoi-1andi + 1 only

[ Semi-Markov Process
[1 Markov chain: discrete time [ transition is made at
every limit time (Markov property)
[ means that time spent in each state is
geometrically distributed

\ Copyright © John C.S. Lui J/
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Classification of Stochastic Processes (Cont...)

[ Relax this restriction, allow the time spent in a state to
be arbitrary distributed L ortime between
0 semi-Markov discrete time chain state fransitions
[1 Note: at time of transition, behaves like an ordinary
Markov chain
L, in these instants we have an embedded
Markov chain
1 Similarly for continuous-time Markov chains
[1 transition at any time, but the amount of time spent
INn a state has an arbitrary distribution or opposed
to an exponential distribution
L. embedded Markov chain is defined at
Instances of transitions

oS
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Classification of Stochastic Processes (Cont...)

[1 Random Walks

[ A particle moving among states in some (e.g., discrete)
state space

[1 Of interest: identifying location of the particle in that
space

[1 next position = previous position plus r.v. whose value
IS drawn independent from an arbitrary distribution;
this distribution does not change with state of process
(except maybe at some boundary states)

[J a sequence of r.v.’s {S,} is referred to as a random walk

(starting at the origin) if

Sn=X1+Xo+---+X, n=12,---
where S; = 0 and Xy, X, --- is a sequence of independent r.v.s

with a common distribution mj

\ Copyright © John C.S. Lui J/
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Classification of Stochastic Processes (Cont...)

[ index n counts the number of state transitions the
process goes through
[ if these constants are taken from discrete set
[ discrete time random walk
[1 if these constants are taken from continuous set
[1 continuous-time random walk
[1 the interval between these transitions is discrete in an
arbitrary way
[ random walk is a special case of a semi-Markov
process
(often people only care about position after a
transition, and so assume meaningless distribution
between transitions; then special case of Markov

process)
w1

J

f

\ Copyright © John C.S. Lui
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Classification of Stochastic Processes (Cont...)

1 if common distribution for X, have a discrete-state
random walk
[l in this case transition probability P;; of going from
state i to state j will depend only on the difference
in indice j - ¢ (denoted by gq;;)

[1 e.g., of continuous -time random walk
[ Brownian motion
e.g., of discrete -time random walk
[1 total number of heads observed in a sequence of
Independent coin tosses

\ Copyright © John C.S. Lui J/
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Classification of Stochastic Processes (Cont...)

[1 Renewal Processes
[1 Count transitions that take place as a function of time
/transition Instant

® ® ® > . .
ﬁ real time axis
distribution between transitions is arbitrary but common

& assume X(0) = 0 and increases by unity at each
transition, i.e., X(t) = number of state transitions
made by time ¢

[] in this case, a special case of random walk
where ¢ = 1 and ¢; = 0, where 7 #£ 1

\ Copyright © John C.S. Lui J/
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Classification of Stochastic Processes (Cont...)

0 canthinkof: S, =X; +Xo+---+ X,
as decreasing a renewal process in which S, is ar.v.

denoting the time at which the n™ transition takes place

{X }is asetofiid.r.v.s where

X, represents the time between the (n - 1)™ and n™
transition

[1 Be careful to distinguish random walk and renewal
process. Here above equation describes time of the
oth . . .
i renewal transition. Whereas in random walk it

describes the state of the process (and the time
between transition is some other r.v.)




= Discrete-State Systems
[l P,;denotes

probability of making
transition next to
state j given the

process is in state i
[ f.denotes

distribution of time
between transitions
(maybe a function of
both current and next
states of the process)

\ Copyright © John C.S. Lui
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Semi-Markov
process
p;; arbitrary
f. arbitrary

Markov
process

p,;; arbitrary
f. memoryless

-
Birth-Death
process
p;jforlj-il>1
f. memoryless

N
Random

walk
P;;j=4q;.;
f. arbitrary

\.

Poisson
process

Ai=A

Pure birth
process

Hi=0

N
Renewal

process
q,=1
f. arbitrary
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Discrete Time Markov Chains

L]

Let /X } be a sequence of r.v.’s which assume discrete values
With loss of generality, let n=1, 2, ... correspond to a set of
allowable time instants that are obtained from a discrete
space

[ The Markov property can be expended as

P [Xn — ] ‘Xn—l — in—17XTL—2 — in—27 T '7X1 — Zl]
=P|X,=7|Xn1=tn1| =P, ; (x%xx%)

L, one step transition probability at step n

L]

(1 if transition probabilities are independent of n, then have
a homogeneous MC (i.e., P, _,; = F;)
P’ijEP[ _J|Xn1_]
(transition probabilities are stationary in time, but this
does not have to be a stationary random process)
\—»where Fx(Z;1) = Fx(Z;t 4 7)

(remainder of discussion in terms of homogeneous MCs) mj
J

do not change with time

\ Copyright © John C.S. Lui
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Homogeneous Markov Chains

[ m-step transition probabilities
[1 probability of various states m steps into the future
depends only on m, and not upon current time
0 P = P[Xpsm = |1 X0 = 1]
0 from Markov property (x*x), itis easy to know that
PO = PR, m=23,-
k

W. & need to go through some state k&
§ 7 & independent, so can multiply

; m-1step L
probabilities

\ Copyright © John C.S. Lui J/
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Irreducible Markov Chain

= A MC is irreducible if every state can be reached from
every other state, i.e., if there ism s.t.
Pi" > 0andi,j € A
where A is the set of all states of the MC
(all states communicate) l

otherwise, reducible
E.qQ.:
<\O//O

Irreducible Reducible

) 4

\ Copyright © John C.S. Lui J/
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Closed Subset of States

= Let C be a subset of A and C° be its compliment
= Cis a closed subset if no one-step transition is possible

from any state in C to any state in Cc’
O if IC1 =1, then C is called an absorbing state

EX: o \ l
: \ \ necessary and sufficient

condition: P;; = 1

Absorting state Closed subset
[0 If Cis closed, and it does not include any closed proper

subsets of itself, then it is an irreducible sub-MC, as

defined before
[J in above example C, is not irreducible, it contains

C,, an absorbing state (closed subset of size 1) JJ

\ Copyright © John C.S. Lui
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Recurrence
1 Let fi(n) = P/ the first return to j is in n steps |
Ex: 1 1 1y 1 o 1 1 1
= / / == @) _ - .2 _ =
[ - J 2 Ji 2 2 4
. 1
JX@ iy f@:l.l.l:l fz-(l)ZO, for | <4
O 2 ‘ 2 2 4
[1 Probability of ever returning to state j is
fi = Z fj(n) L] in above example, f; = 1
n=1
1 1 1 1
2ty =5 =397
AN s 1 1 1 1 (0
1 / f(): _____ _ - f7=0,forl <4
/2 /2 : 2 2 2 8
1
/2
> 1 1 1 7
0 — 0 T T ) B
B 20

\ Copyright © John C.S. Lui
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Resurrence (Cont...)

[0 Can now classify states of MC according to values of f;
U Recurrence state = f, = 1
[1 Transient state = f; < 1

[1 Mean Recurrence Time
(i.e., for

0. 9)
M; = ) f for state 5 when Z f recurrent state)
n=1

U if M; < oo then j is recurrent non-null

U if M; = oc then j is recurrent null
[1 Periodicity (for recurrent states)

[I if can only return to state j at steps y, 2y, 3y, ... where
y> I and is the largest such integer, then state j is
periodic with period y, otherwise, it is aperiodic

/8

\ Copyright © John C.S. Lui J/




7 CSC5420 N

State Classification

= Summary

States <«— of MC

7N

Recurrent Transient
Recurrent Null Recurrent Non-null

7N\ /N

Periodic  Aperiodic Periodic  Aperiodic

\ Copyright © John C.S. Lui J/
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Theorem

O let 7"V = P[X,=j] < probability of finding the
system in state j at n™ step

= Theorem (without proof)
The states of an irreducible MC are either all transient

or all recurrent non-null or all recurrent null. If periodic,
then all states have the same period .
[1 Does there exist a stationary probability distribution
{1} describing the probability of bring in state j at
some arbitrary time far into the future?
[A probability distribution P, is said to be a stationary

distribution of when we choose it for our initial state

distribution, i.e., Tg.(w = P;, then for all n we have Tg.("’) =P)]
[ Solving for {1} is a most important part of the analysis of

Markov chains Bj

\ Copyright © John C.S. Lui J/
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Theorem (Cont...)

[1 Next than addresses this

= Theorem:

can’t be
finite !

\ Copyright © John C.S. Lui

In an irreducible and aperiodic homogeneous
MC the limiting probabilities
m = Jim n”

always exist and are independent of the initial
state probability distribution

Moreover, either
(a)all states are transient or all states are

recurrent null, in which case 1, = 0 [Jj and
there exist no stationary distribution, or
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Theorem (Cont...)

(b)all states are recurrent non-null and then
;. > 0 [j, in which case the set {1} is a
stationary distribution and

In this case, the quantities 11, are uniquely
determined through the following equations

1 = Z Uy
i
;= Z i Dij

t

\ Copyright © John C.S. Lui J/
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Ergodicity

[1 Ergodicity: a state j is ergodic if it is:
aperiodic, recurrent, and non-null; i.e.,
if f,=1,M; <oo,y=1

[1 if all states of a M.C. are ergodic, the MC is ergodic

[0 a MC is ergodic if the probability distribution {11} as a
function of n always converges to a limiting stationary
distribution {1}, which is independent of the initial
state distribution

[1 All state of a finite aperiodic irreducible MC are ergodic
[1 The limiting probabilities of an ergodic MC are often
referred to as the equlibrium probabilities
(i.e., effect of initial distribution disappeared)

\ Copyright © John C.S. Lui
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Example
= Hippie traveling, waiting to be picked up by car

—>—permissible direction of road travel

AbraQ Pi; S _
0) L~ probability hippie will be picked up
by car travel on that road, given he
IS in current city
1 Sucsamad [] hippie tries to hitch a ride every day
Iz (2) Q remains in same city for another day

State-transition diagram

[ will refer to #'s on states, 0, 1, 2, instead now
[1 Transition probability matrix, P, consisting of elements

[p,-j]

1 Probability vector 7 : 7 = [ mo, 1, gy ]
then we can rewrite the set of equations (7; = ) mp;; )
as 7 = 7P g

\ Copyright © John C.S. Lui
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Example (Cont...)

= |n ex:
P =

== O
= O Rw
DN | = | Qo | =

0 Solve: mo=0-my+ 3m +m2 1
mo=3m+0-m+ iy, II 31 =—(I1+1III)

Ty = iﬂ'o + %7‘(‘1 -+ %7?2 IIT | [ linear dependence

[J Always the case that one equation is linear dependent on

others
[1 Need to introduce addition, conservation relationship

(asis 1=)_ m) in order to solve the system

= |n ex:
1 = Mo + T + T
] ! ! 13 (tak 2 ti d==1)
Togo— —, T — —., Mo =—m= — ake an eguations an =
0 57 1 257 2 25 y q

[1 equlibrium (stationary) state probability

/8

J

\ Copyright © John C.S. Lui
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Transient Behavior

[1 Often interested in transient behavior of system
1 solving for Tgf") [J probability of finding hippie in city j at

time n
0 Define: 7" = [wé”),ﬂ”),wgn),---]
o 70 = zO0Op
2 — 20 p — [ﬁ(o) p] p — =0 p2

T
0 7 =z0Dp p=123..

Recall: #7 = lim 7™ assuming the limit exists
. >(n) _ s ~(n—1) previous theorem:

2 T}HEO T o T}E’Q@ m P if irreducible aperiodic
0 2 _ 2P homogeneous MC

[ Note: solution for 7 is independent of 7
1 HW: try the hippie example with 3 different initial

states: [ 1,0,0],[0,1,0],[0,0,1] 2 1

J

\ Copyright © John C.S. Lui
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Use of Transform in Transient Analysis

[1 Define a vector transform:
n=0
[] app|y to ﬁ-’(n) — 77-’(7’6—1) P n=1223-..-

0 #(z) — 7% = 2 (Z g1 zn_1> P = 27(z) P

I—2z P ]_ &= P" ~— P"is what we are looking for
to get the transient solution

o S/
\ Copyright © John C.S. Lui
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Example
= Apply to our ex:
3 1 3 1
P= 1102 [—zP = | =3z 1 =3z
1 1 1 1 1 1
I 1 2 —3% —3% 1—32
[1 to invert matrix, must find determinant
1 7 1 1
det(I —zP) = 1—=2— —2*——2% = (1— 1+ =2)?
et (I — zP) 57 " 167 T 16 (1—2) ( +4z)
Uo[r-zp)t = : X
[1==P] (1—2) (11 L2)?
1— 22— 52 22— 52t 1z 32
1 1 .2 1 1.2 3 1 .2
P, LYy,
2t 167 1% 1+ 167 1 — 152

[0 now need inverse transform [ use partial fraction exp. term by term

to make it easier, rewrite as sum of 3 matrices, constant,
. . 2
times 2z, and times z J

\ Copyright © John C.S. Lui J/




7 CSC5420 N

Example (Cont...)

g 1[5 7 13 1 0 -8 8
[I-2P ' = 125 57 13+ " |0 2 =2
25 713 UHD o 2 9
1 [ 20 33 —53
+ 1252 -5 8 -3
| o il 5 17 22
[ inverting this: )
L[5 7 13 | (\n [0 -8 8
5 7 13 0 2 —2
(n=0,1) 1, oy | Y3
r5l) |28 3
(n=1P) —5 —17 22

corresponds to equilibrium solution, the other 2 matices

decay as n — oo, corresponds to transient behavior

all rows equal indicates that equilibrium solution j
32

Is the same regardless of initial state
\ Copyright © John C.S. Lui J/
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Remove Homogeneous Assumption

[ DTMC, remove the homogeneous assumption
let pjj(m,n) = P|X,=j|Xn=1] n>m

probability system is in state j in step n,
givenitwas ini at stepm

frue for [0 must pass through some state g in the middle
all stoch. [] p”mn ZP n=17X —k|X —z] form <qg<n

proc.s
from def.

giggnd. [l pij(m,n) = ZP =k Xn=1P[X,=7|Xn=1X,=k]

invoke

pr?)rpgxy PXy =j|Xm =1, X, = k] PXn=j]X, = k]

0 pij(m,n) = Z pik(m, q) pri(g,n) form <qg<n
Chapman-Kolmogorov eq. for DTMC
Note: If this was a homogeneous MC, then p;;(m,n) = pgj )

and when n =g + 1, this equation would
reduce to our earlier derivation pw Z pZ Dk J

\ Copyright © John C.S. Lui J/
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Rewrite in Matrix Form

[0 Define P(n) = | pz‘j(n, n+1)] now depends on time
P(n) = P If chain is homogeneous
[0 Define H(m,n) = [pz-j(m, n) | multistep trans. prob. matrix

U H(n,n+1) = P(n)

[1 in the homogeneous case H(m,m+n) = P"

H(m,n) = H(m,q) H(q,n) for m < ¢ < n<Chap.-Kol.

require that H(n, n) — [ (note: all matrices are square [ # states)

since free to choose any ¢ in the interval between m and
n:startwithg =n - 1

U pii(myn) = Y pi(m,n—1) pi(n —1,n)
P

L] H(m, n) = H(m,n - 1) P(n - 1) «— forward Chap.-Kol. eq.
[1 also could chooseqg=m + 1

] pij(m,n) = Z pi(m,m+1) pgi(m+1,n)
k
[l H(m,n) = P(m) H(m + 1,n) <—backward Chap.-Kol. eg. J

\ Copyright © John C.S. Lui J/
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Rewrite in Matrix Form

both eq’s give same solution

[] H(m7 TL) — P(m) P(m—l— 1) P(n— 1) can check by

plugging in above

U In homogeneous case: H(m,n) = P""

O #(n+1) = 7(n) P(n)

O #(n+1) = 7(0) P(0) P(1) --- P(n)

\ Copyright © John C.S. Lui J/
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Continuous-Time Markov Chains

Pl X(thi1) =7 | X(t1) = 01, X(t2) = dg, -, X(tn) = in ]
=P X(tny1) =7 | X(ta) = in

] X(t) O state of
U opi(s,t) = P X(t)=7 | X(s)=di] 2>
s <

S MC at time ¢
[1 Consider 3 successive time instants u<t
- pij(svt) — ; pik<37u) pkij<u7t)
[1 Put into matrix form; H(s,t) = | pz-j(gjt) ]
Chap.-Kal. eq.
L] H<S7t> = H(37u) H(u7t) s<u<t (as before H(t,t) = 1)

[1 Try to derive continuous time analogs of forward and
backward equations

[0 Start in forward direction, start with
H(m,n) = H(m,n—1) P(n —1)
H(m,n)—Hm,n—1) = Hm,n—1) P(n—1)— H(m,n—1)
H(im,n—1) [P(n—=1)=1] () oS4

\ Copyright © John C.S. Lui J/
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Continuous-Time Markov Chains (Cont...)

O Define P(t) = [py(t, t+ At) ]
[1 Let At be the time step in discrete case
[ Devide (x) by At and take lim as At — 0

0 h(;(:’t) — H(s,t) Q(t) s<t
where . P@)—1
QT(t) - Altﬁo At

infinitesimal generator of H(s,t) or transition rate matrix

Q) = [g(t) ]

defi : pii(t,t+ At) — 1
EF ¢ii(t) = Altﬁo At
N pi;(t,t + At)
dij (t) T Altﬁo At l 75 J

\ Copyright © John C.S. Lui J/
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Continuous-Time Markov Chains (Cont...)

[1 Given that we are in state i at time ¢, probability transition
occurs to any other state during interval (t,t+At) is given by
s At
qi(t) At + o(At) ( lim o( At)
A—0 At
(1 -q;;(t) is the rate at which the process leave state i, when in
that state
[1 Similarly the conditional transition probability of going to
statej is
dij (t) At + O(At>
J J

:())

[1 Similarly can derive backward Chap.-Kal. eq.
0 H(s,t)

57 —Q(s) H(s,t) s<t

\ Copyright © John C.S. Lui J/
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Continuous-Time Markov Chains (Cont...)

[0 From forward equation: (using individual terms)
plus some 0 pii(s,t

assumption ‘7( ) = qjj(t) pij(s,t) + Z qkj(t) pik(s,t)

about limits 0t Py

(I Init state i effects the solution through init conditions only:

1 ifj =i
p”(s’s):{ 0 ifj#i

[ From backward equation:

0 pii(s,t
g(s ) = —q;i(t) pij(s,t) — D ain(s) prj(s,t)
k#1
where "init" conditions are 1 ife=
)y =1 - nr=d
if 1 # 7

[1 Using these equations (unique determine solution):
t
H(s,t) = exp [ / Q(u) du } Satisfies Chap.-Kal. eq.

2 #3 Analog to discrete case
(where e/t =T + Pt + P?~ + P’ +--) ng

! !
. Copyright © John C.S. Lui 2! 3 y




Compute State Probabilities
O Define r;(t) = P[X(t)=]
T(t) = [mo(t), mi(t),
[J Given 7(0), can solve for 7(t)

(t) = 7(0) H(0,1)
where the general solution is

/Ot Q(u) du]

7(t) = 7(0) exp

\ Copyright © John C.S. Lui
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Homogeneous Case

U pii(t) = pij(s,s+1)
Gi;i = ¢i(t) i,7=1,2,--
H({t) = H(s,s+1) = [pw(t)]

0 Chap.-Kal. EQ: p, (s + ) Z Pir(s) Dyt

[ H(S + t) — H(S) H(t) (in matrlx form)
d H(t)

= HI(t forward
— (1) Q
d cIi_lzft) = @ H(t) backward

with common initial condition H(0) = I
solution
i H(t) = e

ST

\ Copyright © John C.S. Lui
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State Probabilties

Bok at state probabil_ity now _
State probabilities in matrix form

d 7(t)

= 7(t) ¢
U For an irreducible homogeneous MC, limit exists and

iIndependent of initial state of the chain:
lim pij (t) = 7Tj

t—>00

{T;} forms the limiting state probability distribution

Y For an ergodic MC, limit, independent of initial distribution,
Jim 7(t) = 7y

U This limiting distribution is given uniquely as solution to the
following system of linear equations
i T+ Y G e = 0

Bat@x form k73
m =0 Wherew:[ﬂo,m,m,---]

2 Compute with Z m; = 1, gives us a uniq. sol. to state probs.

7 w i

J

\ Copyright © John C.S. Lui




7 CSC5420 N

Birth-Death Process

(homogeneous)
[] State of system is k (e.g., current population)
(I Birth rate A, when population is k
[1 Death rate y, when population is k
U X = Qerr1 e = Qep1
(C_Ik:j = ( for ‘k—]| > 1)
(sincez q; = 0, gkk = —(px + i)
J
| — Ao Ho 0 0 |
H1 —()\1 + ,UJ1) )\1 0 © 0
Q = 0 2 — (A2 + p2) A2 0o .- 0
0 0 (43 —(As+wu3) Az O 0

ST
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Birth-Death Process (Cont...)

a homogeneous MC on states 0, 1, 2, ..., that births and
deaths are independent (from Markov property),) and
B, : P[ exactly 1 birth in (&, t+At) | k in population ]

=M\, At + o(Al)

D, : P[ exactly 1 death in (&, t+At) | k in population ]

= U, At + o(At)

B, : P[ exactly 0 birth in (&, t+At) | k in population ]
=1- A\, At + o(Al)

D, : P[ exactly 0 birth in (&, t+At) | k in population |
=1 -, At + o(Ab)

\ Copyright © John C.S. Lui

[1 Assumptions needed for B-D process, (in addition to being
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Solve

O What p(t) = P[X({t)=k] P(t) = m(t)
[1 Can derive the following from a parallel deviration

as when did general case
If go through that will get this

d Py(t

dk:t( ) — —()\k + Mk)Pk(t) + )‘k:—lpkz—1<t) —+ ,Uk+1pk+1<t) E>1
d Py(t

dot( ) ==X Fo(t) + m Pi(t) k=0

set of differential-difference eq'’s.

(to solve need init. conds. and Y Py(t) = 1)
k=0

[1 Try to do the same by "inspection”
state transition diagram

Mo M g
0BOBOBEOBORT I
k

Ho Mz M.z H
s 1
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Solve (Cont...)

[1 Rate of change of "flow" into state &
= rate of entering k - rate of leaving k

difference
Can derive the following from a parallel deviration
Flow rate into ¥ = Xe—1 Peoi(t) + g1 Pt ()
Flow rate out of £ = (Ax + ) Pi(t)

Difference is the effective prob. flow rate into state K, i.e.,
flow into a set of states

d P.(t
dkt( ) = Moo 1Pp1(t) + pip1 Prya (t) — (A + ) Pe()

same as above (haven’t talked about boundary cond.)

[]
[]
[]
[]

/e
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Pure Birth Process

0 Assume Hr =10 Vk
0 To simplify, assume Ax=A V&

d Py(t)
iy —A Py(t) k=0

[J To simplify, assume 1 k=0

[0 Solving for P,(t), we have
Py(t) =e ™ = using in (*) for k = 1

d P (t
] 10, = - AP (t)+Xre M

sol. O Pi(t)=At e

a i
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Pure Birth Process (Cont...)

[1 Continuing by induction
A t)F
P(t) = <k ') e k>0,t>0
[1 Possion distribution
pure birth process with constant rate A
[] given rise to a sequence of birth epochs known
as the Poisson Process

ST
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Poisson Process

[1 Let k be number of arrivals (from Poisson process) in an
interval of length ¢

D
Z k Pk; =€
Y i
. k=0
[ Since 72
e’ =1+x+ 5 + -
O F [ K ] — M\ [0 intuitively, should also see that avg. # of arrivals

in (0,t) is At, given that A is the mean arrival rate

[0 Compute variance:

E| K(K S k( Py ( e At 3 k W)k
| Z —1) Bilt Z ( k|
—)\t )\t 2 Z —)\t )\t 2 Z 2
k=2 k=0 k! ‘J
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Poisson Process (Cont...)
Uol=FE[KK-1)]+E[K]—(E[K))?*=\)*+ X — ()’
U of = Xt

[0 Hw: Compute the mean and variance using z-transform
to get gk:P[K:k]
started G(Z) _ B [ Sk ] _ Z o O
k

\ Copyright © John C.S. Lui J/




Poisson and Exponential Distribution

[J Letr.v. { Dbe time between arrivals it

with A(#) and a(#), PDF and pdf A “lw et
X = at) At+o(At) = ]

CSC5420 =N

prob. next arrival occur between b et
t and t+At time sec. units from last arrival

At =1-P[i>t]

prob. that no arrivals occur in (0,t) O Py(t)

U A(t) =1- Bt
[0 In the Poisson case, we have Ay=1—e? >0
[l

Differentiate 0 4() = \e™ ¢ >0

] expo. distri. ] ]
[1 For a Poisson Process, the time between arrivals is

expoenetial distributed

\ Copyright © John C.S. Lui
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Poisson and Exponential Distribution (Cont...)

Hw: @ Show that P[f§t+t0‘£>t0 ]:1_6—>\t

i.e., cond. distri. is
the same as uncond.

@ Compute E [ f] and o to show that

- 1 di :
— 2 _ irectly and using
B [ t ] D and o = 22 Laplace transform
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