CS599

 Stochastic Processes

 Stochastic Processes}

John C.S. Lui

http://www.cse.cuhk.edu.hk/~cslui/csc5420

Copyright © John C.S. Lui

Stochastic Processes

\Rightarrow Index a "family of r.v.'s" by time \Rightarrow stochastic process e.g., $\left\{X_{t}(w) \mid t \in T, w \in S\right\}$ where \boldsymbol{t} is the time index and s is the sample space
\Rightarrow values assumed by $X_{t}(w)$ are called states of the stochastic process
\Rightarrow all possible such values form the state space of the stochastic process
\Rightarrow can equivalently denote $X_{t}(w) \equiv X(w, t)$

Example

- Throw a dice three times; the sample space is

$$
S=\{1,2,3,4,5,6\}
$$

- Let $X_{t}(w)$ be defined as follows:

$$
\forall w \in S, X_{1}(w)=w, X_{2}(w)=2 w, X_{3}(w)=3 w
$$

- Then the state space $=\{1,2,3,4,5,6,8,9,10,12,15,18\}$
- "State-Time diagram"
- We are interested in $P\left[X_{t}=6\right]$

$$
\begin{align*}
& \Rightarrow P\left[X_{1}=6, X_{2}=6, X_{3}=6\right] \\
& =P\left[1^{\text {st }} \text { throw }=6,2^{n d} \text { throw }=3,3^{r d} \text { throw }=2\right] \\
& =\frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{6}
\end{align*}
$$

- In this example time is discrete and $X_{t}(w)$ are independent; sometimes will use $X(t), X_{t}, X_{n}$ with understanding that $S=\{w\}$
\qquad

Characteristics of a Stochastic Process

A. State space (discrete or continuous)
B. The time index (discrete or continuous)
C. Relationship (statistical dependencies) between $\left\{X_{t}(w)\right\}$ (dependence or independence)
\Rightarrow Discrete state space process are called chains
\Rightarrow A discrete time process is often denoted by $X_{n}, n=0,1,2, \ldots$

Distribution of Stochastic Processes

- At an allowable time t, the PDF of a stochastic process X_{t} is given by

$$
F_{X}(x, t) \equiv P[X(t) \leq x]
$$

- For a set of allowable instances, the joint PDF is

$$
\begin{aligned}
& F_{X_{1} X_{2} \cdots X_{n}}\left(x_{1}, x_{2}, \cdots, x_{n} ; t_{1}, t_{2}, \cdots, t_{n}\right) \equiv F_{X}(\vec{x} ; \vec{t}) \\
& \equiv P\left[X_{1}\left(t_{1}\right) \leq x_{1}, X_{2}\left(t_{2}\right) \leq x_{2}, \cdots, X_{n}\left(t_{n}\right) \leq x_{n}\right]
\end{aligned}
$$

Classification of Stochastic Processes

\Rightarrow Stationary Process
o one where PDF is invariant to shifts in time
\Rightarrow for a fixed τ

$$
F_{X}(\vec{x} ; \vec{t})=F_{X}(\vec{x} ; \vec{t}+\tau) \quad \text { (i.e., add } \tau \text { to each element of } \vec{t} \text {) }
$$

\Rightarrow Independent Process
(i.e., X_{i} 's are independent r.v.)

$$
F_{X}(\vec{x} ; \vec{t})=F_{X_{1}}\left(x_{1}, t_{1}\right) \cdot F_{X_{2}}\left(x_{2}, t_{2}\right) \cdots \cdot F_{X_{n}}\left(x_{n}, t_{n}\right)
$$

and also $f_{X}(\vec{x} ; \vec{t})=\prod_{i=1}^{n} f_{X_{i}}\left(x_{i}, t_{i}\right) \quad$ (continuous state)
and

$$
P_{X}(\vec{x} ; \vec{t})=\prod_{i=1}^{n} P_{X_{i}}\left(x_{i}, t_{i}\right) \quad \text { (discrete state) }
$$

\Rightarrow the dice example is a discrete state, discrete time, independent process; it is not a stationary stochastic process

Classification of Stochastic Processes (Cont...)

\Rightarrow Markov Process

- allow a restricted form of dependence
\Rightarrow the future only depends on the current state
(doesn't depend on past states or on time spent in the current state or any other prior state)
\Rightarrow memoryless distribution of time spent in state
\Rightarrow discrete state $\quad \Rightarrow$ Markov Chain exponential, geometric
\Rightarrow for discrete state
$P\left[X\left(t_{n+1}\right)=x_{n+1} \mid X\left(t_{n}\right)=x_{n}, X\left(t_{n-1}\right)=x_{n-1}, \cdots, X\left(t_{1}\right)=x_{1}\right]$
$=P\left[X\left(t_{n+1}\right)=x_{n+1} \mid X\left(t_{n}\right)=x_{n}\right]$
where $t_{1}<t_{2}<\cdots<t_{n}<t_{n+1}$
and x_{i} is included in some discrete state space

Classification of Stochastic Processes (Cont...)

\Rightarrow Birth-Death Process

- Markovian chains where transitions occur to the nearest neighbors only, i.e., if a process is in state i, the allowable transitions are to i-1 and i+1 only
\Rightarrow Semi-Markov Process
\Rightarrow Markov chain: discrete time \Rightarrow transition is made at every limit time (Markov property)
\Rightarrow means that time spent in each state is geometrically distributed

Classification of Stochastic Processes (Cont...)

\Rightarrow Relax this restriction, allow the time spent in a state to be arbitrary distributed $\quad 4 \quad$ or time between \Rightarrow semi-Markov discrete time chain state transitions
\Rightarrow Note: at time of transition, behaves like an ordinary Markov chain
\longrightarrow in these instants we have an embedded Markov chain
\Rightarrow Similarly for continuous-time Markov chains
\Rightarrow transition at any time, but the amount of time spent in a state has an arbitrary distribution or opposed to an exponential distribution
\longrightarrow embedded Markov chain is defined at instances of transitions

Classification of Stochastic Processes (Cont...)

\Rightarrow Random Walks
\Rightarrow A particle moving among states in some (e.g., discrete) state space
\Rightarrow Of interest: identifying location of the particle in that space
\Rightarrow next position = previous position plus r.v. whose value is drawn independent from an arbitrary distribution; this distribution does not change with state of process (except maybe at some boundary states)
\Rightarrow a sequence of r.v.'s $\left\{S_{n}\right\}$ is referred to as a random walk (starting at the origin) if
$S_{n}=X_{1}+X_{2}+\cdots+X_{n} \quad n=1,2, \cdots$
where $S_{0}=0$ and X_{1}, X_{2}, \cdots is a sequence of independent r.v.s with a common distribution

Copyright © John C.S. Lui

Classification of Stochastic Processes (Cont...)

\Rightarrow index n counts the number of state transitions the process goes through
\Rightarrow if these constants are taken from discrete set
\Rightarrow discrete time random walk
\Rightarrow if these constants are taken from continuous set
\Rightarrow continuous-time random walk
\Rightarrow the interval between these transitions is discrete in an arbitrary way
\Rightarrow random walk is a special case of a semi-Markov process
(often people only care about position after a transition, and so assume meaningless distribution between transitions; then special case of Markov process)

Classification of Stochastic Processes (Cont...)

\Rightarrow if common distribution for X_{n}, have a discrete-state random walk
\Rightarrow in this case transition probability $P_{i j}$ of going from state i to state j will depend only on the difference in indice $\boldsymbol{j} \boldsymbol{- i}$ (denoted by $\boldsymbol{q}_{\boldsymbol{j} \cdot \boldsymbol{i}}$)
\Rightarrow e.g., of continuous -time random walk
\Rightarrow Brownian motion
e.g., of discrete -time random walk
\Rightarrow total number of heads observed in a sequence of independent coin tosses

Classification of Stochastic Processes (Cont...)

\Rightarrow Renewal Processes
\Rightarrow Count transitions that take place as a function of time

Δ assume $X(0)=0$ and increases by unity at each transition, i.e., $X(t)=$ number of state transitions made by time t
\Rightarrow in this case, a special case of random walk
where $q_{1}=1$ and $q_{i}=0$, where $i \neq 1$

Classification of Stochastic Processes (Cont...)

\Rightarrow can think of: $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$ as decreasing a renewal process in which S_{n} is a r.v. denoting the time at which the $\boldsymbol{n}^{\text {th }}$ transition takes place $\left\{X_{n}\right\}$ is a set of i.i.d. r.v.s where X_{n} represents the time between the $(n-1)^{\text {th }}$ and $n^{\text {th }}$ transition
\Rightarrow Be careful to distinguish random walk and renewal process. Here above equation describes time of the $i^{\text {th }}$ renewal transition. Whereas in random walk it describes the state of the process (and the time between transition is some other r.v.)

Relationships

- Discrete-State Systems $\Rightarrow \boldsymbol{P}_{i j}$ denotes probability of making transition next to state \boldsymbol{j} given the process is in state i $\Rightarrow f_{\tau}$ denotes distribution of time between transitions (maybe a function of both current and next states of the process)

Discrete Time Markov Chains

\Rightarrow Let $\left\{X_{n}\right\}$ be a sequence of r.v.'s which assume discrete values
\Rightarrow With loss of generality, let $n=1,2, \ldots$ correspond to a set of allowable time instants that are obtained from a discrete space
\Rightarrow The Markov property can be expended as

$$
\begin{aligned}
& P\left[X_{n}=j \mid X_{n-1}=i_{n-1}, X_{n-2}=i_{n-2}, \cdots, X_{1}=i_{1}\right] \\
& =P\left[X_{n}=j \mid X_{n-1}=i_{n-1}\right] \equiv P_{\substack{i_{n-1} j}}(* * *) \\
& \longrightarrow \text { one step transition probability at step } \mathbf{n}
\end{aligned}
$$

\Rightarrow if transition probabilities are independent of n, then have a homogeneous MC (i.e., $P_{i_{n-1} j}=P_{i j}$)

$$
P_{i j} \equiv P\left[X_{n}=j \mid X_{n-1}=i\right] \quad . . \quad \text { do not change with time }
$$

(transition probabilities are stationary in time, but this does not have to be a stationary random process)
\rightarrow where $F_{X}(\vec{x} ; \vec{t})=F_{X}(\vec{x} ; \vec{t}+\tau)$
(remainder of discussion in terms of homogeneous MCs)
Copyright © John C.S. Lui

Homogeneous Markov Chains

\Rightarrow m-step transition probabilities
\Rightarrow probability of various states m steps into the future depends only on m, and not upon current time
$\Rightarrow P_{i j}^{(m)} \equiv P\left[X_{n+m}=j \mid X_{n}=i\right]$
\Rightarrow from Markov property $(* * *)$, it is easy to know that

$$
P_{i j}^{(m)}=\sum_{k} P_{i k}^{(m-1)} P_{k j} \quad m=2,3, \cdots
$$

\diamond need to go through some state k \diamond independent, so can multiply probabilities

Irreducible Markov Chain

- A MC is irreducible if every state can be reached from every other state, i.e., if there is \boldsymbol{m} s.t.
$P_{i j}^{(m)}>0$ and $i, j \in A$
where A is the set of all states of the MC (all states communicate)

E.g.:

Reducible

Closed Subset of States

- Let C be a subset of A and C^{C} be its compliment
$=C$ is a closed subset if no one-step transition is possible from any state in C to any state in C^{C}
\Rightarrow if $|C|=1$, then C is called an absorbing state Ex:

Absorting state
 condition: $\boldsymbol{P}_{i i}=1$ $C_{1}{ }^{\text {c }}$
C_{1}
Closed subset
\Rightarrow If \boldsymbol{C} is closed, and it does not include any closed proper subsets of itself, then it is an irreducible sub-MC, as defined before
\Rightarrow in above example C_{1} is not irreducible, it contains C_{2}, an absorbing state (closed subset of size 1)

Recurrence

\Rightarrow Let $f_{i}^{(n)} \equiv P$ [the first return to j is in n steps]
Ex:

$$
\begin{aligned}
f_{i}^{(1)} & =\frac{1}{2} & f_{i}^{(2)}=\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4} \\
f_{i}^{(3)} & =\frac{1}{2} \cdot \frac{1}{2} \cdot 1=\frac{1}{4} & f_{i}^{(l)}=0, \text { for } l \leq 4
\end{aligned}
$$

\Rightarrow Probability of ever returning to state \boldsymbol{j} is

$$
f_{j}=\sum_{n=1}^{\infty} f_{j}^{(n)}
$$

\Rightarrow in above example, $f_{j}=1$
Ex:

Resurrence (Cont...)

\Rightarrow Can now classify states of MC according to values of $\boldsymbol{f}_{\boldsymbol{j}}$
\Rightarrow Recurrence state $\Rightarrow f_{j}=1$
\Rightarrow Transient state $\quad \Rightarrow f_{j}<1$
\Rightarrow Mean Recurrence Time

$$
\begin{aligned}
& \qquad M_{j} \equiv \sum_{n=1}^{\infty} n f_{j}^{(n)} \text { for state } j \text { when } \sum_{n=1}^{\infty} f_{j}^{(n)}=1 \quad \begin{array}{l}
\text { (i.e., for } \\
\text { recurrent state) }
\end{array} \\
& \Rightarrow \text { if } M_{j}<\infty \text { then } j \text { is recurrent non-null } \\
& \Rightarrow \text { if } M_{j}=\infty \text { then } j \text { is recurrent null } \\
& \Rightarrow \text { Periodicity (for recurrent states) }
\end{aligned}
$$

\Rightarrow if can only return to state j at steps $\gamma, 2 \gamma, 3 \gamma, \ldots$ where $\gamma>1$ and is the largest such integer, then state \boldsymbol{j} is periodic with period γ, otherwise, it is aperiodic

```
                                    \zetaif }\gamma=
```


State Classification

- Summary

Theorem

\Rightarrow let $\pi_{j}^{(n)} \equiv P\left[X_{n}=j\right] \Leftarrow$ probability of finding the system in state \boldsymbol{j} at $\boldsymbol{n}^{\text {th }}$ step

- Theorem (without proof)

The states of an irreducible MC are either all transient or all recurrent non-null or all recurrent null. If periodic, then all states have the same period γ.
\Rightarrow Does there exist a stationary probability distribution $\left\{\pi_{j}\right\}$ describing the probability of bring in state \boldsymbol{j} at some arbitrary time far into the future?
[A probability distribution \boldsymbol{P}_{j} is said to be a stationary distribution of when we choose it for our initial state distribution, i.e., $\pi_{j}^{(0)}=\boldsymbol{P}_{j}$, then for all n we have $\left.\pi_{j}^{(n)}=P_{j}\right]$
\Rightarrow Solving for $\left\{\pi_{j}\right\}$ is a most important part of the analysis of Markov chains

Copyright © John C.S. Lui

Theorem (Cont...)

\Rightarrow Next than addresses this

- Theorem: In an irreducible and aperiodic homogeneous MC the limiting probabilities

$$
\pi_{j} \equiv \lim _{n \rightarrow \infty} \pi_{j}^{(n)}
$$

always exist and are independent of the initial state probability distribution

Moreover, either
can't be
finite ! $\left\{\begin{array}{c}\text { (a) all states are transient or all states are } \\ \text { recurrent null, in which case } \pi_{j}=\boldsymbol{0} \forall \boldsymbol{j} \text { and } \\ \text { there exist no stationary distribution, or }\end{array}\right.$ there exist no stationary distribution, or

Theorem (Cont...)

(b)all states are recurrent non-null and then $\pi_{j}>\boldsymbol{0} \forall \boldsymbol{j}$, in which case the set $\left\{\pi_{j}\right\}$ is a stationary distribution and

$$
\pi_{j}=\frac{1}{M_{j}}
$$

In this case, the quantities π_{j} are uniquely determined through the following equations

$$
\begin{aligned}
& 1=\sum_{i} \pi_{i} \\
& \pi_{j}=\sum_{i} \pi_{i} p_{i j}
\end{aligned}
$$

Ergodicity

\Rightarrow Ergodicity: a state \boldsymbol{j} is ergodic if it is: aperiodic, recurrent, and non-null; i.e.,

$$
\text { if } f_{j}=1, M_{j}<\infty, \gamma=1
$$

\Rightarrow if all states of a M.C. are ergodic, the MC is ergodic
$\Rightarrow \mathbf{a}$ MC is ergodic if the probability distribution $\left\{\pi_{j}\right\}$ as a function of \boldsymbol{n} always converges to a limiting stationary distribution $\left\{\pi_{j}\right\}$, which is independent of the initial state distribution
\Rightarrow All state of a finite aperiodic irreducible MC are ergodic
\Rightarrow The limiting probabilities of an ergodic MC are often referred to as the equlibrium probabilities (i.e., effect of initial distribution disappeared)

Example

- Hippie traveling, waiting to be picked up by car

State-transition diagram
$\vec{p}_{i j}$ permissible direction of road travel
\longleftrightarrow probability hippie will be picked up by car travel on that road, given he is in current city
\Rightarrow hippie tries to hitch a ride every day
२remains in same city for another day
\Rightarrow will refer to \#'s on states, $\mathbf{0}, \mathbf{1 , 2}$, instead now
\Rightarrow Transition probability matrix, \boldsymbol{P}, consisting of elements [$p_{i j}$]
\Rightarrow Probability vector $\vec{\pi}: \vec{\pi}=\left[\pi_{0}, \pi_{1}, \pi_{2}, \cdots\right]$ then we can rewrite the set of equations $\left(\pi_{j}=\sum_{i} \pi_{i} p_{i j}\right)$
as $\vec{\pi}=\vec{\pi} P$ as $\vec{\pi}=\vec{\pi} P$

Example (Cont...)

$$
\left.\begin{array}{ll}
\text { ص In ex: } & P=\left[\begin{array}{ccc}
0 & \frac{3}{4} & \frac{1}{4} \\
\frac{1}{4} & 0 & \frac{3}{4} \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{2}
\end{array}\right] \\
\Rightarrow \text { Solve: } & \pi_{0}=0 \cdot \pi_{0}+\frac{1}{4} \pi_{1}+\frac{1}{4} \pi_{2} \\
& \pi_{1}=\frac{3}{4} \pi_{0}+0 \cdot \pi_{1}+\frac{1}{4} \pi_{2} \\
& \pi_{2}=\frac{1}{4} \pi_{0}+\frac{3}{4} \pi_{1}+\frac{1}{2} \pi_{2} \\
& I I I
\end{array}\right\} I=-(I I+I I I)
$$

\Rightarrow Always the case that one equation is linear dependent on others
\Rightarrow Need to introduce addition, conservation relationship (as is $1=\sum_{i} \pi_{i}$) in order to solve the system

- In ex:

$$
1=\pi_{0}+\pi_{1}+\pi_{2}
$$

$$
\Rightarrow \quad \pi_{0}=\frac{1}{5} ; \pi_{1}=\frac{7}{25} ; \pi_{2}=\frac{13}{25} \quad \text { (take any } 2 \text { equations and } \Sigma=1 \text {) }
$$

\Rightarrow equlibrium (stationary) state probability

Transient Behavior

\Rightarrow Often interested in transient behavior of system
\Rightarrow solving for $\pi_{j}^{(n)} \Rightarrow$ probability of finding hippie in city j at time n
\Rightarrow Define: $\vec{\pi}^{(n)} \equiv\left[\pi_{0}^{(n)}, \pi_{1}^{(n)}, \pi_{2}^{(n)}, \cdots\right]$
$\Rightarrow \quad \vec{\pi}^{(1)}=\vec{\pi}^{(0)} P$
$\vec{\pi}^{(2)}=\vec{\pi}^{(1)} P=\left[\vec{\pi}^{(0)} P\right] P=\vec{\pi}^{(0)} P^{2}$
$\Rightarrow \quad \vec{\pi}^{(n)}=\vec{\pi}^{(n-1)} P \quad n=1,2,3, \cdots$
$\Rightarrow \quad \vec{\pi}^{(n)}=\vec{\pi}^{(0)} P^{n} \quad n=1,2,3, \cdots$
$\begin{aligned} & \text { Recall: } \vec{\pi}=\lim _{n \rightarrow \infty} \vec{\pi}^{(n)} \\ & \quad \Rightarrow \lim _{n \rightarrow \infty} \vec{\pi}^{(n)}=\lim _{n \rightarrow \infty} \vec{\pi}^{(n-1)} P\end{aligned}$
$\Rightarrow \quad \vec{\pi}=\vec{\pi} P$
assuming the limit exists
\longrightarrow previous theorem: if irreducible aperiodic homogeneous MC
\Rightarrow Note: solution for $\vec{\pi}$ is independent of $\vec{\pi}^{(0)}$
\Rightarrow HW: try the hippie example with 3 different initial states: [1, 0, 0], [0, 1, 0], [0, 0, 1]

Use of Transform in Transient Analysis

\Rightarrow Define a vector transform:

$$
\begin{aligned}
& \vec{\pi}(z) \equiv \sum_{n=0}^{\infty} \vec{\pi}^{(n)} z^{n} \\
\Rightarrow \quad & \text { apply to } \vec{\pi}^{(n)}=\vec{\pi}^{(n-1)} P \quad n=1,2,3, \cdots \\
\Rightarrow & \sum_{n=1}^{\infty} \vec{\pi}^{(n)} z^{n}=\sum_{n=1}^{\infty} \vec{\pi}^{(n-1)} P z^{n} \\
\Rightarrow & \vec{\pi}(z)-\vec{\pi}^{(0)}=z\left(\sum_{n=1}^{\infty} \vec{\pi}^{(n-1)} z^{n-1}\right) P=z \vec{\pi}(z) P \\
\Rightarrow & \vec{\pi}(z)=\vec{\pi}^{(0)}[I-z P]^{-1} \\
& \Rightarrow \quad \vec{\pi}(z) \Longleftrightarrow \vec{\pi}^{(n)}=\vec{\pi}^{(0)} P^{n} \\
& \Rightarrow \quad[I-z P]^{-1} \Longleftrightarrow P^{n} \mathbf{P}^{n} \text { is what we are looking for } \\
& \Rightarrow \quad \text { to get the transient solution }
\end{aligned}
$$

Example

- Apply to our ex:

$$
P=\left[\begin{array}{ccc}
0 & \frac{3}{4} & \frac{1}{4} \\
\frac{1}{4} & 0 & \frac{3}{4} \\
\frac{3}{4} & \frac{1}{4} & \frac{1}{2}
\end{array}\right] \quad I-z P=\left[\begin{array}{ccc}
1 & -\frac{3}{4} z & -\frac{1}{4} z \\
-\frac{1}{4} z & 1 & -\frac{3}{4} z \\
-\frac{1}{4} z & -\frac{1}{4} z & 1-\frac{1}{2} z
\end{array}\right]
$$

\Rightarrow to invert matrix, must find determinant

$$
\begin{aligned}
\operatorname{det}(I-z P)= & 1-\frac{1}{2} z-\frac{7}{16} z^{2}-\frac{1}{16} z^{3}=(1-z)\left(1+\frac{1}{4} z\right)^{2} \\
\Rightarrow \quad[I-z P]^{-1}= & \frac{1}{(1-z)\left(1+\frac{1}{4} z\right)^{2}} \times \\
& {\left[\begin{array}{rrr}
1-\frac{1}{2} z-\frac{3}{16} z^{2} & \frac{3}{4} z-\frac{5}{16} z^{2} & \frac{1}{4} z+\frac{9}{16} z^{2} \\
\frac{1}{4} z+\frac{1}{16} z^{2} & 1-\frac{1}{2} z-\frac{1}{16} z^{2} & \frac{3}{4} z+\frac{1}{16} z^{2} \\
\frac{1}{4} z+\frac{1}{16} z^{2} & \frac{1}{4} z+\frac{3}{16} z^{2} & 1-\frac{3}{16} z^{2}
\end{array}\right] }
\end{aligned}
$$

\Rightarrow now need inverse transform \Rightarrow use partial fraction exp. term by term to make it easier, rewrite as sum of 3 matrices, constant, times z, and times z^{2}

Example (Cont...)

$$
\begin{aligned}
& \Rightarrow \quad[I-z P]^{-1}=\frac{\frac{1}{25}}{1-z}\left[\begin{array}{lll}
5 & 7 & 13 \\
5 & 7 & 13 \\
5 & 7 & 13
\end{array}\right]+\frac{\frac{1}{5}}{\left(1+\frac{z}{4}\right)^{2}}\left[\begin{array}{rrr}
0 & -8 & 8 \\
0 & 2 & -2 \\
0 & 2 & -2
\end{array}\right] \\
& \qquad \text { invertina this: }
\end{aligned}
$$

\Rightarrow inverting this:

$$
\left.\begin{array}{l}
P^{n}=\frac{1}{25}\left[\begin{array}{lll}
5 & 7 & 13 \\
5 & 7 & 13 \\
5 & 7 & 13
\end{array}\right]
\end{array}+\frac{1}{5}(n+1)\left(-\frac{1}{4}\right)^{n}\left[\begin{array}{rrr}
0 & -8 & 8 \\
0 & 2 & -2 \\
0 & 2 & -2
\end{array}\right]\right)
$$

corresponds to equilibrium solution, the other 2 matices decay as $n \rightarrow \infty$, corresponds to transient behavior all rows equal indicates that equilibrium solution is the same regardless of initial state

Remove Homogeneous Assumption

\Rightarrow DTMC, remove the homogeneous assumption

$$
\text { let } p_{i j}(m, n) \equiv P\left[\begin{array}{c}
\left.X_{n}=j \mid X_{m}=i\right] \quad n \geq m \\
\text { probability system is in state } \boldsymbol{j} \text { in step } \boldsymbol{n}, \\
\text { given it was in } \boldsymbol{i} \text { at step } \boldsymbol{m}
\end{array}\right.
$$

\Rightarrow must pass through some state \boldsymbol{q} in the middle

$$
\begin{aligned}
& \begin{array}{l}
\text { true for } \\
\text { all stoch. } \\
\text { proc.s. } \\
\text { from def. } \\
\text { of cond. } \\
\text { prob. }
\end{array} \Rightarrow p_{i j}(m, n) \equiv \sum_{k i j} P[m, n) \equiv \sum_{k} P\left[X_{q}=k \mid X_{m}=i\right] P\left[X_{n}=j \mid X_{m}=i, X_{q}=k\right] \\
& \begin{array}{l}
\text { invoke } \\
\text { Markov } \\
\text { property }
\end{array} \\
& \Rightarrow P\left[X_{n}=j \mid X_{m}=i, X_{q}=k\right]=P\left[X_{n}=j \mid X_{q}=k\right] \\
& \\
& \\
& \Rightarrow p_{i j}(m, n) \equiv \sum_{k} p_{i k}(m, q) p_{k j}(q, n) \quad \text { for } m \leq q \leq n \\
& \text { Chapman-Kolmogorov eq. for DTMC }
\end{aligned}
$$

Note: If this was a homogeneous MC, then $p_{i j}(m, n)=p_{i j}^{(n-m)}$ and when $\mathbf{n}=\mathbf{q + 1}$, this equation would reduce to our earlier derivation $p_{i j}^{m}=\sum_{k} p_{i k}^{(m-1)} p_{k j}$
Copyright © John C.S. Lui

Rewrite in Matrix Form

\Rightarrow Define $P(n) \equiv\left[p_{i j}(n, n+1)\right] \quad$ now depends on time $P(n)=P$ if chain is homogeneous
\Rightarrow Define $H(m, n) \equiv\left[p_{i j}(m, n)\right] \quad$ multistep trans. prob. matrix $\Rightarrow H(n, n+1)=P(n)$
\Rightarrow in the homogeneous case $H(m, m+n)=P^{n}$
$\Rightarrow H(m, n)=H(m, q) H(q, n)$ for $m \leq q \leq n \longleftarrow$ Chap.-Kol.
\Rightarrow require that $H(n, n)=I \quad$ (note: all matrices are square \Rightarrow \# states)
\Rightarrow since free to choose any \boldsymbol{q} in the interval between \boldsymbol{m} and \boldsymbol{n} : start with $\boldsymbol{q}=\boldsymbol{n} \mathbf{- 1}$

$$
\begin{aligned}
& \Rightarrow p_{i j}(m, n)=\sum_{k} p_{i k}(m, n-1) p_{k j}(n-1, n) \\
& \Rightarrow H(m, n)=H(m, n-1) P(n-1) \leftarrow \text { forward Chap.-Kol. eq. }
\end{aligned}
$$

\Rightarrow also could choose $\boldsymbol{q}=\boldsymbol{m}+1$

$$
\begin{aligned}
& \Rightarrow p_{i j}(m, n)=\sum_{k} p_{i k}(m, m+1) p_{k j}(m+1, n) \\
& \Rightarrow H(m, n)=P(m) H(m+1, n) \leftarrow \text { backward Chap.-Kol. eq. }
\end{aligned}
$$

Copyright © John C.S. Lui

Rewrite in Matrix Form

$$
\begin{aligned}
& \text { both eq's give same solution } \\
& \begin{array}{l}
\Rightarrow \stackrel{H}{H}(m, n)=P(m) P(m+1) \cdots P(n-1) \longleftarrow \text { can check by } \\
\quad \Rightarrow \text { in homogeneous case: } H(m, n)=P^{n-m} \\
\quad \Rightarrow \vec{\pi}(n+1)=\vec{\pi}(n) P(n)
\end{array}
\end{aligned}
$$

solution

$$
\Rightarrow \vec{\pi}(n+1)=\vec{\pi}(0) P(0) P(1) \cdots P(n)
$$

Continuous-Time Markov Chains

$$
\left.\begin{array}{l}
P\left[X\left(t_{n+1}\right)=j \mid X\left(t_{1}\right)=i_{1}, X\left(t_{2}\right)=i_{2}, \cdots, X\left(t_{n}\right)=i_{n}\right] \\
=P\left[X\left(t_{n+1}\right)=j \mid X\left(t_{n}\right)=i_{n}\right]
\end{array} \begin{array}{ll}
\quad=P(\boldsymbol{t}) \Rightarrow \text { state of } \\
\Rightarrow p_{i j}(s, t) \equiv P[X(t)=j \mid X(s)=i] \quad t \geq s & \text { MC at time } \boldsymbol{t}
\end{array}\right] \begin{array}{cc}
\Rightarrow \text { Consider } \mathbf{3} \text { successive time instants } s \leq u \leq t & \\
\Rightarrow p_{i j}(s, t)=\sum_{k} p_{i k}(s, u) p_{k j}(u, t) \\
\Rightarrow \text { Put into matrix form; } H(s, t) \equiv\left[p_{i j}(s, t)\right]
\end{array}
$$

Chap.-Kal. eq.
$\Rightarrow H(s, t)=H(s, u) H(u, t) \quad s \leq u \leq t \quad$ (as before $\boldsymbol{H}(t, t)=\boldsymbol{I})$
\Rightarrow Try to derive continuous time analogs of forward and backward equations
\Rightarrow Start in forward direction, start with

$$
\begin{aligned}
& H(m, n)=H(m, n-1) P(n-1) \\
& H(m, n)-H(m, n-1)=H(m, n-1) P(n-1)-H(m, n-1) \\
& H(m, n-1)[P(n-1)-I] \quad(*)
\end{aligned}
$$

Continuous-Time Markov Chains (Cont...)

$$
\Rightarrow \text { Define } P(t) \equiv\left[p_{i j}(t, t+\Delta t)\right]
$$

\Rightarrow Let Δt be the time step in discrete case
$\Rightarrow \operatorname{Devide}_{(*)}$ by Δt and take lim as $\Delta t \longrightarrow 0$
$\Rightarrow \frac{\partial H(s, t)}{\partial t}=H(s, t) Q(t) \quad s \leq t$
where

$$
Q_{\downarrow}(t)=\lim _{\Delta t \rightarrow 0} \frac{P(t)-I}{\Delta t}
$$

$$
Q(t)=\left[q_{i j}(t)\right]
$$

$$
\stackrel{\text { define }}{\Rightarrow} q_{i i}(t)=\lim _{\Delta t \rightarrow 0} \frac{p_{i i}(t, t+\Delta t)-1}{\Delta t}
$$

$$
q_{i j}(t)=\lim _{\Delta t \rightarrow 0} \frac{p_{i j}(t, t+\Delta t)}{\Delta t} \quad i \neq j
$$

Continuous-Time Markov Chains (Cont...)

\Rightarrow Given that we are in state \boldsymbol{i} at time \boldsymbol{t}, probability transition occurs to any other state during interval $(\boldsymbol{t}, \boldsymbol{t}+\Delta \boldsymbol{t})$ is given by

$$
-q_{i i}(t) \Delta t+o(\Delta t)
$$

$$
\left(\lim _{\Delta \longrightarrow 0} \frac{o(\Delta t)}{\Delta t}=0\right)
$$

$\Rightarrow-q_{i i}(t)$ is the rate at which the process leave state i, when in that state
\Rightarrow Similarly the conditional transition probability of going to state \boldsymbol{j} is
\Rightarrow Since $\quad \begin{aligned} & q_{i j}(t) \Delta t+o(\Delta t) \\ & \sum_{j} p_{i j}(s, t)=1 \Rightarrow \sum_{j} q_{i j}(t)=0 \quad \forall i\end{aligned}$
\Rightarrow Similarly can derive backward Chap.-Kal. eq.

$$
\frac{\partial H(s, t)}{\partial t}=-Q(s) H(s, t) \quad s \leq t
$$

Continuous-Time Markov Chains (Cont...)

\Rightarrow From forward equation: (using individual terms)
plus some
assumption about limits

$$
\frac{\partial p_{i j}(s, t)}{\partial t}=q_{j j}(t) p_{i j}(s, t)+\sum_{k \neq j} q_{k j}(t) p_{i k}(s, t)
$$

\Rightarrow Init state i effects the solution through init conditions only:

$$
p_{i j}(s, s)= \begin{cases}1 & \text { if } j=i \\ 0 & \text { if } j \neq i\end{cases}
$$

\Rightarrow From backward equation:

$$
\frac{\partial p_{i j}(s, t)}{\partial s}=-q_{i i}(t) p_{i j}(s, t)-\sum_{k \neq i} q_{i k}(s) p_{k j}(s, t)
$$

where "init" conditions are $p_{i j}(t, t)= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}$
\Rightarrow Using these equations (unique determine solution):

$$
\begin{aligned}
& H(s, t)=\exp \left[\int_{s}^{t} Q(u) d u\right] \quad \text { Satisfies Chap.-Kal. eq. } \\
& \left(\text { where } e^{P t}=I+P t+P^{2} \frac{t^{2}}{2!}+P^{3} \frac{t^{3}}{3!}+\cdots\right. \text { Analog to discrete case }
\end{aligned}
$$

Compute State Probabilities

$$
\begin{aligned}
\Rightarrow \text { Define } & \pi_{j}(t) \equiv P[X(t)=j] \\
& \vec{\pi}(t) \equiv\left[\pi_{0}(t), \pi_{1}(t), \cdots\right]
\end{aligned}
$$

\Rightarrow Given $\vec{\pi}(0)$, can solve for $\vec{\pi}(t)$

$$
\vec{\pi}(t)=\vec{\pi}(0) H(0, t)
$$

where the general solution is

$$
\vec{\pi}(t)=\vec{\pi}(0) \exp \left[\int_{0}^{t} Q(u) d u\right]
$$

Homogeneous Case

$$
\begin{aligned}
& \Rightarrow p_{i j}(t) \equiv p_{i j}(s, s+t) \\
& q_{i j} \equiv q_{i j}(t) \quad i, j=1,2, \cdots \\
& H(t) \equiv H(s, s+t)=\left[p_{i j}(t)\right]
\end{aligned}
$$

$$
\Rightarrow \text { Chap.-Kal. Eq: } p_{i j}(s+t)=\sum_{k} p_{i k}(s) p_{k j}(t)
$$

$$
\Rightarrow H(s+t)=H(s) H(t) \quad \text { (in matrix form) }
$$

$$
\frac{d H(t)}{d t}=H(t) Q \quad \text { forward }
$$

$$
\frac{d H(t)}{d t}=Q H(t) \quad \text { backward }
$$

with common initial condition $H(0)=I$
solution

$$
\Rightarrow H(t)=e^{Q t}
$$

State Probabilties

look at state probability now
\Rightarrow State probabilities in matrix form

$$
\frac{d \vec{\pi}(t)}{d t}=\vec{\pi}(t) Q
$$

\Rightarrow For an irreducible homogeneous MC, limit exists and independent of initial state of the chain:

$$
\lim _{t \rightarrow \infty} p_{i j}(t)=\pi_{j}
$$

$\left\{\pi_{j}\right\}$ forms the limiting state probability distribution
\Rightarrow For an ergodic MC, limit, independent of initial distribution,

$$
\lim _{t \rightarrow \infty} \pi_{j}(t)=\pi_{j}
$$

\Rightarrow This limiting distribution is given uniquely as solution to the following system of linear equations
matrix form $\quad \sum_{k \neq j} q_{k j} \pi_{k}$
$\stackrel{\text { matrix }}{\Rightarrow} Q \stackrel{\text { where }}{=} \vec{\pi}=\left[\pi_{0}, \pi_{1}, \pi_{2}, \cdots\right]$
\Rightarrow Compute with $\sum_{j} \pi_{j}=1$, gives us a uniq. sol. to state probs.
Copyright © John C.S. Lui

Birth-Death Process

\Rightarrow State of system is \boldsymbol{k} (e.g., current population)
\Rightarrow Birth rate λ_{k} when population is \boldsymbol{k}
\Rightarrow Death rate $\mu_{\boldsymbol{k}}$ when population is \boldsymbol{k}

$$
\begin{aligned}
\Rightarrow & \lambda_{k}=q_{k, k+1} \quad \mu_{k}=q_{k, k-1} \\
& \left(q_{k j}=0 \text { for }|k-j|>1\right) \\
& \left(\text { since } \sum_{j} q_{k j}=0, q k k=-\left(\mu_{k}+\lambda_{k}\right)\right.
\end{aligned}
$$

$$
Q=\left[\begin{array}{ccccccccc}
-\lambda_{0} & \mu_{0} & 0 & \cdots & \cdots & \cdots & \cdots & 0 & \cdots \\
\mu_{1} & -\left(\lambda_{1}+\mu_{1}\right) & \lambda_{1} & 0 & \cdots & \cdots & \cdots & 0 & \cdots \\
0 & \mu_{2} & -\left(\lambda_{2}+\mu_{2}\right) & \lambda_{2} & 0 & \cdots & \cdots & 0 & \cdots \\
0 & 0 & \mu_{3} & -\left(\lambda_{3}+\mu_{3}\right) & \lambda_{3} & 0 & \cdots & 0 & \cdots \\
\vdots & \vdots
\end{array}\right]
$$

Birth-Death Process (Cont...)

\Rightarrow Assumptions needed for B-D process, (in addition to being a homogeneous MC on states 0, 1, 2, ..., that births and deaths are independent (from Markov property), and
$B_{1}: P[$ exactly 1 birth in $(t, t+\Delta t) \mid k$ in population]

$$
=\lambda_{k} \Delta t+o(\Delta t)
$$

$D_{1}: P$ exactly 1 death in $(t, t+\Delta t) \mid k$ in population]

$$
=\mu_{k} \Delta \boldsymbol{t}+\boldsymbol{o}(\Delta t)
$$

$B_{2}: P[$ exactly 0 birth in $(t, t+\Delta t) \mid k$ in population]

$$
=1-\lambda_{k} \Delta t+o(\Delta t)
$$

$D_{2}: P$ exactly 0 birth in $(t, t+\Delta t) \mid k$ in population]

$$
=1-\mu_{k} \Delta t+o(\Delta t)
$$

Solve

\Rightarrow What $P_{k}(t) \equiv P[X(t)=k] \quad P_{k}(t)=\pi_{k}(t)$
\Rightarrow Can derive the following from a parallel deviration
as when did general case
if go through that will get this

$$
\begin{aligned}
& \frac{d P_{k}(t)}{d t}=-\left(\lambda_{k}+\mu_{k}\right) P_{k}(t)+\lambda_{k-1} P_{k-1}(t)+\mu_{k+1} P_{k+1}(t) \quad k \geq 1 \\
& \frac{d P_{0}(t)}{d t}=-\lambda_{0} P_{0}(t)+\mu_{1} P_{1}(t) \quad k=0 \\
& \quad \text { set of differential-difference eq's. }
\end{aligned}
$$

(to solve need init. conds. and $\sum_{k=0}^{\infty} P_{k}(t)=1$)
\Rightarrow Try to do the same by "inspection"
state transition diagram

Solve (Cont...)

\Rightarrow Rate of change of "flow" into state k $=$ rate of entering $\boldsymbol{k} \boldsymbol{-}$ rate of leaving \boldsymbol{k}
${ }_{4}$ difference
\Rightarrow Can derive the following from a parallel deviration
\Rightarrow Flow rate into $k=\lambda_{k-1} P_{k-1}(t)+\mu_{k+1} P_{k+1}(t)$
\Rightarrow Flow rate out of $k=\left(\lambda_{k}+\mu_{k}\right) P_{k}(t)$
\Rightarrow Difference is the effective prob. flow rate into state k, i.e., flow into a set of states

$$
\frac{d P_{k}(t)}{d t}=\lambda_{k-1} P_{k-1}(t)+\mu_{k+1} P_{k+1}(t)-\left(\lambda_{k}+\mu_{k}\right) P_{k}(t)
$$

same as above (haven't talked about boundary cond.)

Pure Birth Process

\Rightarrow Assume $\quad \mu_{k}=0 \quad \forall k$
\Rightarrow To simplify, assume $\lambda_{k}=\lambda \quad \forall k$

$$
\begin{align*}
& \frac{d P_{k}(t)}{d t}=-\lambda P_{k}(t)+\lambda P_{k-1}(t) \quad k \geq 1 \tag{*}\\
& \frac{d P_{0}(t)}{d t}=-\lambda P_{0}(t) \quad k=0
\end{align*}
$$

\Rightarrow To simplify, assume

$$
P_{k}(0)=\left\{\begin{array}{cc}
1 & k=0 \\
0 & k \neq 0
\end{array}\right.
$$

\Rightarrow Solving for $\boldsymbol{P}_{\boldsymbol{0}}(\boldsymbol{t})$, we have

$$
\begin{aligned}
& P_{0}(t)=e^{-\lambda t} \Rightarrow \operatorname{using} \text { in }\left(^{*}\right) \text { for } k=1 \\
\Rightarrow & \frac{d P_{1}(t)}{d t}=-\lambda P_{1}(t)+\lambda e^{-\lambda t} \\
\text { sol. } \Rightarrow & P_{1}(t)=\lambda t e^{-\lambda t}
\end{aligned}
$$

Pure Birth Process (Cont...)

\Rightarrow Continuing by induction

$$
P_{k}(t)=\frac{(\lambda t)^{k}}{k!} e^{-\lambda t} \quad k \geq 0, t \geq 0
$$

\Rightarrow Possion distribution pure birth process with constant rate λ
\Rightarrow given rise to a sequence of birth epochs known as the Poisson Process

Poisson Process

\Rightarrow Let k be number of arrivals (from Poisson process) in an interval of length \boldsymbol{t}

$$
\begin{aligned}
\Rightarrow E[K] & =\sum_{k=1}^{\infty} k P_{k}(t)=e^{-\lambda t} \sum_{k=1}^{\infty} k \frac{(\lambda t)^{k}}{k!} \\
& =e^{-\lambda t} \sum_{k=1}^{\infty} \frac{(\lambda t)^{k}}{(k-1)!}=e^{-\lambda t} \lambda t \sum_{k=0}^{\infty} \frac{(\lambda t)^{k}}{k!}
\end{aligned}
$$

\Rightarrow Since

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\cdots
$$

$$
\Rightarrow E[K]=\lambda t
$$

\Rightarrow intuitively, should also see that avg. \# of arrivals in $(0, t)$ is λt, given that λ is the mean arrival rate
\Rightarrow Compute variance:

$$
\begin{aligned}
& E[K(K-1)]=\sum_{k=0}^{\infty} k(k-1) P_{k}(t)=e^{-\lambda t} \sum_{k=0}^{\infty} k(k-1) \frac{(\lambda t)^{k}}{k!} \\
& \quad=e^{-\lambda t}(\lambda t)^{2} \sum_{k=2}^{\infty} \frac{(\lambda t)^{k-2}}{(k-2)!}=e^{-\lambda t}(\lambda t)^{2} \sum_{k=0}^{\infty} \frac{(\lambda t)^{k}}{k!}=(\lambda t)^{2}
\end{aligned}
$$

Copyright © John C.S. Lui

Poisson Process (Cont...)

$$
\Rightarrow \sigma_{k}^{2}=E[K(K-1)]+E[K]-(E[K])^{2}=(\lambda t)^{2}+\lambda t-(\lambda t)^{2}
$$

$\Rightarrow \sigma_{k}^{2}=\lambda t$
\Rightarrow Hw: Compute the mean and variance using z-transform
to get $g_{k}=P[K=k]$ started $G(z)=E\left[z^{k}\right]=\sum_{k} z^{k} g_{k}$

Poisson and Exponential Distribution

\Rightarrow Let r.v. \tilde{t} be time between arrivals
with $\boldsymbol{A}(\boldsymbol{t})$ and $\boldsymbol{a}(\boldsymbol{t})$, PDF and pdf
$X \Rightarrow a(t) \Delta t+o(\Delta t) \equiv$
prob. next arrival occur between

\boldsymbol{t} and $\boldsymbol{t}+\Delta \boldsymbol{t}$ time sec. units from last arrival
$\Rightarrow A(t)=1-\underbrace{P[\tilde{t}>t]}_{\text {prob. th }}$
$\Rightarrow A(t)=1-P_{0}(t)$
\Rightarrow In the Poisson case, we have $A(t)=1-e^{-\lambda t} \quad t \geq 0$
\Rightarrow Differentiate $\Rightarrow a(t)=\underbrace{\lambda e^{-\lambda t}}_{\text {expo. distri. }} t \geq 0$
\Rightarrow For a Poisson Process, the time between arrivals is expoenetial distributed

Poisson and Exponential Distribution (Cont...)

Hw: (1) Show that $P\left[\tilde{t} \leq t+t_{0} \mid \tilde{t}>t_{0}\right]=\underbrace{1-e^{-\lambda t}}_{\begin{array}{c}\text { i.e., cond. distri. is } \\ \text { the same as uncond. }\end{array}}$
(2) Compute $E[\tilde{t}]$ and $\sigma_{\tilde{t}}^{2}$ to show that

$$
E[\tilde{t}]=\frac{1}{\lambda} \text { and } \sigma_{\tilde{t}}^{2}=\frac{1}{\lambda^{2}} \quad \begin{aligned}
& \text { directly and using } \\
& \text { Laplace transform }
\end{aligned}
$$

