# CSC5420 Computer System Performance Evaluation 

## John C.S. Lui

## http://www.cse.cuhk.edu.hk/~cslui/csc5420

## Introduction

- Material from lectures (ref. books on web page)
- Grading
o homework for students' benefit (will include use of software-tools on web page)
- 10\% homework
- 40\% projects
- 50\% final exam


## Course Material

- Review of Probability, R.V., Transforms
= Intro. to Stoch. process (m.c.'s)
- Baby queuery theory $\mathrm{m} / \mathrm{m} / 1$...
- Intermediate queuery theory $\mathrm{m} / \mathrm{g} / 1$...
- Markovian model is a special structure
- Appr. Tech.
- Stoch. Couple
- Matrix geometric structure
- Sample Path Analysis
- Transient Analysis
- Reversibility
- Queuery Networks - product form

- Simulation
- Measurements
- Project: List to choose from, FCFS
$=$ MS Comp: Final


## Combinatorics

- Permutations
- $\boldsymbol{k}$-permutation of a set of $\boldsymbol{n}$ elements

$$
\Rightarrow \quad n(n-1) \cdots(n-k+1)=\frac{n!}{(n-k)!}
$$

- Combinations

○ $k$-combination of a set of $n$ elements $\Rightarrow k$-permutation / $k$ !
$k$ ! is the number of possible ways to permute that combination

$$
\Rightarrow\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

## Combinatorics (Cont...)

- Binomial Coefficients:

$$
\Rightarrow\binom{n}{k}=\binom{n}{n-k}
$$

- Binomial Expansion:

$$
\Rightarrow \quad(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

## Probability

- Sample Space (S), collection of objects, where each object is a sample point.
 sample points.
- A probability measure $P$ is an assignment (mapping) of events defined on $S$ into real numbers (which has properties or axioms).
- $P[A]=$ Probability of event $A$


## Probability

- $S=$ sample space $=$ set whose elements are elementary events (possible outcome of an experiment)
- The elementary events are points in a sample space (1 or more dimensions), and they are mutually exclusive
- Ex: flipping a coin, a elementary events (sample points)

H, T

- Event: subset of sample points
$\diamond$ Ex: toss dice



## Probability (Cont...)

- Aximoms of Probability:
- A probability distribution Pr\{\} on a sample space $S$ is a mapping from events of $S$ to real numbers s.t. the following proability axioms hold:

1) $\operatorname{Pr}\{A\} \geq 0$ for any event $A$ (where $\operatorname{Pr}\{A\} \equiv$ probability of event $A$ )
2) $\operatorname{Pr}\{S\}=1$
3) $\operatorname{Pr}\{A \cup B\}=\operatorname{Pr}\{A\}+\operatorname{Pr}\{B\}$ for events $A$ and $B$ that are mutually exclusive

$$
\Rightarrow \quad \operatorname{Pr}\left\{\bigcup_{i} A_{i}\right\}=\sum_{i} \operatorname{Pr}\left\{A_{i}\right\}
$$

## Probability (Cont...)

- Things that follow:
a) $A \subseteq B \Rightarrow \operatorname{Pr}\{A\} \leq \operatorname{Pr}\{B\}$
b) $\operatorname{Pr}\{\emptyset\}=0$
c) $\bar{A} \equiv S-A \Rightarrow \operatorname{Pr}\{\bar{A}\}=1-\operatorname{Pr}\{A\}$
d) for any $A, B$

$$
\begin{aligned}
\Rightarrow \operatorname{Pr}\{A \bigcup B\} & =\operatorname{Pr}\{A\}+\operatorname{Pr}\{B\}-\operatorname{Pr}\{A \bigcap B\} \\
& \leq \operatorname{Pr}\{A\}+\operatorname{Pr}\{B\}
\end{aligned}
$$

## Discrete Probability Distribution

- Probability distribution is discrete if it is defined over a finite or countably infinite sample space
$=\operatorname{Pr}\{A\}=\sum_{x \in A} \operatorname{Pr}\{x\} \quad \begin{aligned} & \text { if } \boldsymbol{x} \text { 's are mutually exclusive } \\ & \text { events in } \boldsymbol{A}\end{aligned}$
- If $S$ is finite and event elementary event in $S$ has probability

$$
\operatorname{Pr}\{x\}=\frac{1}{|S|}
$$

then we have the uniform distribution on $S$ (or we pick an element of $S$ at random)

## Discrete Probability Distribution (Cont...)

ص Ex: flipping a fair coin, $\operatorname{Pr}\{H\}=\operatorname{Pr}\{T\}=0.5$ flip coin $n$ times
$\boldsymbol{A}=$ \{exactly $\boldsymbol{k}$ heads and exactly $\boldsymbol{n}-\boldsymbol{k}$ tails $\}$

$$
\begin{aligned}
\Rightarrow & A \subseteq S \Rightarrow|A|=\binom{n}{k}=\operatorname{Pr}\{A\}=\binom{n}{k} \cdot\left(\frac{1}{2}\right)^{n} \\
& \text { since each outcome }(s \in A)=\left(\frac{1}{2}\right)^{n}
\end{aligned}
$$

## Continuous Uniform Probability Distribution

$=$ Defined over closed interval [a,b] of reals where $a<b$ $\diamond$ (all subsets here, not events)
$\Rightarrow$ want each point in [a,b] to be equally likely
$\Rightarrow$ but, infinite number of points, if give each one finite probability, will not be able to satisfy axioms 2 and 3
$\Rightarrow$ associate probability with some of the subsets

- for any closed interval [c,d], a $\leq \mathbf{c} \leq \mathbf{d} \leq \mathbf{b}$, continuous uniform probability distribution:

$$
\begin{gathered}
\operatorname{Pr}\{[c, d]\}=\frac{d-c}{b-a} \\
(\operatorname{Pr}\{[c, d]\}=\operatorname{Pr}\{(c, d)\}, \text { since } \operatorname{Pr}\{[x, x]\}=\operatorname{Pr}\{x\}=0)
\end{gathered}
$$

## Conditional Probabilities and Independence

- Def'n: $\quad \operatorname{Pr}\{A \mid B\}=\frac{\operatorname{Pr}\{A \bigcap B\}}{\operatorname{Pr}\{B\}}$ whenever $\operatorname{Pr}\{B\} \neq 0$
 constrained sample space,
- Ex:
so we scale up



## Conditional Probabilities and Independence (Cont...)

= A and B are statistically independent if and only if:

$$
\operatorname{Pr}\{A \bigcap B\}=\operatorname{Pr}\{A\} \cdot \operatorname{Pr}\{B\}
$$

= If $A_{1}, A_{2}, \ldots, A_{n}$ are statistically independent

$$
\Rightarrow \quad P\left[A_{1} \bigcap A_{2} \bigcap \ldots \bigcap A_{n}\right]=\prod_{i=1}^{n} P\left[A_{i}\right]
$$

- Also, if A and B are statistically independent, then

$$
P[A \mid B]=\frac{P[A B]}{P[B]}=P[A]
$$

## Theorem of Total Probability

$$
P[B]=\sum_{i=1}^{n} P\left[B \mid A_{i}\right] P\left[A_{i}\right]
$$

more useful form
where $\left\{A_{i}\right\}$ is a set of mutually exclusive exhaustive events

$$
\begin{aligned}
& P[B]=\sum_{i=1}^{n} P\left[A_{i} B\right]\left\{\begin{array}{l}
\text { if occurs, occurs with exactly } \\
1 \text { mutually exclusive exhaustive } \\
\text { event }\left(A_{\boldsymbol{i}}\right)
\end{array}\right. \\
& \text { using conditional probability: }
\end{aligned}
$$

$$
P\left[A_{i} B\right]=P\left[A_{i} \mid B\right] P[B]=P\left[B \mid A_{i}\right] P\left[A_{i}\right]
$$

## Theorem of Total Probability (Cont...)

- Ex: reliability

$R_{\text {sys }}=R_{1} \cdot R_{2} \cdot\left(1-\left(1-R_{3}\right)^{3}\right) \cdot R_{4} \cdot\left(1-\left(1-R_{5}\right)^{2}\right)$
where $\left\{\boldsymbol{R}_{\boldsymbol{i}}\right\}$ is the reliability of component $\boldsymbol{i}$
- Importance of Theorem of Total Probability is to break a complex problem into many simpler problems


## Bayes' Theorem

- Look at problem from another perspective

ص Assume we know event B has occurred, but we want to find which mutually exclusive event has occurred

$$
P\left[A_{i} \mid B\right]=\frac{P\left[B \mid A_{i}\right] P\left[A_{i}\right]}{\sum_{j=1}^{n} P\left[B \mid A_{j}\right] P\left[A_{j}\right]}
$$

$$
P[A \cdot B]=P[B] \cdot P[A \mid B]=P[A] \cdot P[B \mid A]
$$

$$
P[A \mid B]=\frac{P[A] \cdot P[B \mid A]}{P[B]}
$$

$$
P[B]=P[B \cdot A]+P[B \cdot \bar{A}]=P[A] \cdot P[B \mid A]+P[\bar{A}] \cdot P[B \mid \bar{A}]
$$

$$
\Rightarrow P[A \mid B]=\frac{P[A] \cdot P[B \mid A]}{P[A] \cdot P[B \mid A]+P[\bar{A}] \cdot P[B \mid \bar{A}]}
$$

- more general form above


## Bayes' Theorem (Cont...)

- More general forms:
$A_{i}, \mathbf{1} \leq \boldsymbol{i} \leq n$, are mutually exclusive, exhaustive events
Theorem of $\begin{aligned} & \text { Theorem of } \\ & \text { total probability }\end{aligned} \Rightarrow P[B]=\sum_{i=1}^{n} P\left[B \mid A_{i}\right] \cdot P\left[A_{i}\right]$

Bayes' Theorem $\Rightarrow P\left[A_{i} \mid B\right]=\frac{P\left[B \mid A_{i}\right] \cdot P\left[A_{i}\right]}{\sum_{j=1}^{n} P\left[B \mid A_{j}\right] \cdot P\left[A_{j}\right]}$

## Example

$ص$ Ex: gambling, $D_{H} \Leftarrow$ honest dealer, $D_{C} \Leftarrow$ cheating dealer

$$
L \Leftarrow \text { you lose }
$$

play honest dealer $\Rightarrow$ lose with prob = 1/2 play cheating dealer $\Rightarrow$ lose with prob $=p$

$$
\text { (of } p>1 / 2 \text { against you, of } p<1 / 2 \text { for you) }
$$

$$
\begin{aligned}
P\left[D_{C} \mid L\right] & =\frac{P\left[L \mid D_{C}\right] \cdot P\left[D_{C}\right]}{P\left[L \mid D_{C}\right] \cdot P\left[D_{C}\right]+P\left[L \mid D_{H}\right] \cdot P\left[D_{H}\right]} \\
& =\frac{p \cdot \frac{1}{2}}{p \cdot \frac{1}{2}+\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)}=\frac{2 p}{2 p+1}
\end{aligned}
$$

$\Rightarrow$ if $p=1$, prob. that cheating dealer if lost 1 game $=\mathbf{2 / 3}$

## Random Variables (R.V.)

- We have the probability system ( $S, \Sigma, P$ )
$=$ R.V. is a variable whose value depends upon the outcome of the random experiment
- The outcome of a random experiment is $w \in S$
- We associate a real number $X(w)$ with $W$
$=$ Thus our r.v. $X(W)$ is nothing more than a function defined on the sample space $S$
o i.e., a function from a finite or countably infinite sample space $S$ to real numbers


## Example

- Ex: playing a game of black jack in Las Vegas

- Notation: R.V. $X$ on a sample $S$
$X: S \rightarrow R$
$\xrightarrow{\longleftrightarrow} \begin{aligned} & X(w) \text { - our winnings } \\ & \\ & \text { on a single game of }\end{aligned} \quad X(w)= \begin{cases}+5 & w \in W \\ 0 & w \in D \\ -5 & w \in L\end{cases}$ black jack


## Discrete Random Variables

- Discrete Random Variables: (X)
- a function from a finite (or countably infinite) sample sapce $S$ to real numbers
$\diamond$ interested in functions of events
$\Rightarrow$ each outcome is a combination of events, so we can assign probability to it
○ $P[X \leq x]$ : probability distribution function



## Discrete Random Variable (Cont...)

$$
\begin{aligned}
& \operatorname{Pr}\{X=x\}=\sum_{s \in S ; X(s)=x} \operatorname{Pr}\{s\} \\
& f(x)=\operatorname{Pr}\{X=x\} \Rightarrow \text { probability mass function of } X \\
& \quad \Rightarrow \operatorname{Pr}\{X=x\} \geq 0, \sum_{x} \operatorname{Pr}\{X=x\}=1 \\
& f(x, y)=\operatorname{Pr}\{X=x \text { and } Y=y\}
\end{aligned}
$$

$$
\text { is the joint probability mass function of } X \text { and } Y
$$

$$
\operatorname{Pr}\{Y=y\}=\sum_{x} \operatorname{Pr}\{X=x \text { and } Y=y\}
$$

$$
\operatorname{Pr}\{X=x\}=\sum_{y} \operatorname{Pr}\{X=x \text { and } Y=y\}
$$

$$
\operatorname{Pr}\{X=x \mid Y=y\}=\frac{\operatorname{Pr}\{X=x \text { and } Y=y\}}{\operatorname{Pr}\{Y=y\}}
$$

$X$ and $Y$ are independent if $\forall x, y$ :

$$
\operatorname{Pr}\{X=x \text { and } Y=y\}=\operatorname{Pr}\{X=x\} \cdot \operatorname{Pr}\{Y=y\}
$$

## Expectation, Variance, and Standard Deviation

$$
\begin{aligned}
& E[X]=\sum_{x} x \cdot \operatorname{Pr}\{X=x\} \\
& E[X+Y]=E[X]+E[Y] \\
& E[g(X)]=\sum_{x} g(x) \cdot \operatorname{Pr}\{X=x\}
\end{aligned}
$$


if $X$ and $Y$ are independent, then $E[X Y]=E[X] E[Y]$
if $X$ takes on rational numbers $N=\{0,1,2, \ldots\}$

$$
\begin{aligned}
& \Rightarrow E[X]=\sum_{i=0}^{\infty} i \cdot \operatorname{Pr}\{X=i\}=\sum_{i=1}^{\infty} \operatorname{Pr}\{X \geq i\} \\
& \sigma_{X}^{2}=\operatorname{Var}[X]=E\left[(X-E[X])^{2}\right]=E\left[X^{2}\right]-(E[X])^{2}
\end{aligned}
$$

standard deviation $=\sqrt{\operatorname{Var}[X]}=\sigma_{X}$
if $X$ and $Y$ are independent $\Rightarrow \operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]$

## Probability Distribution Function (PDF) or Cumulative Distribution Function

$$
[X \leq x] \equiv\{w: X(w) \leq x\}
$$

PDF is defined as $F_{X}(x)=P[X \leq x]$
Properties:

1) $F_{X}(x) \geq 0$
2) $F_{X}(\infty)=1$
3) $F_{X}(-\infty)=0$
4) $F_{X}(b)-F_{X}(a)=P[a<X \leq b]$ for $a<b$
5) $F_{X}(b) \geq F_{X}(a)$ for $a \leq b$

Ex: PDF for the Las Vegas Game


## Probability Density Function (pdf) or Probability Mass Function (pmf)

$$
f_{X}=\frac{d F_{X}(x)}{d x} \quad=\text { Ex: pdf for the blackjack game }
$$

Different ways to view pdf:

1) $F_{X}(x)=\int_{-\infty}^{x} f_{X}(y) d y$
2) $f_{X}(x) \geq 0$
3) $\int_{-\infty}^{\infty} f_{X}(x) d x=1$
4) $P[a<X \leq b]=\int_{a}^{b} f_{X}(x) d x$

## Special Discrete Distribution

- The Bernoulli pmf

$$
P_{X}(0)=P[X=0]=q
$$

$$
P_{X}(1)=P[X=1]=p=(1-q)
$$



## Geometric Distribution

- Bernoulli trial:
o experiment with only 2 possible outcomes $\diamond$ success with probability $p$
$\diamond$ failure with probability $q=1-p$
- Bernoulli trials, a sequence of independent trials each with probability $p$
$\Rightarrow$ r.v. $X=$ number of trials needed to obtain success

$$
X \in\{1,2, \ldots\}
$$

for $k \geq 1, \operatorname{Pr}\{X=k\}=q^{k-1} p=(1-p)^{k-1} \cdot p$
$\Rightarrow$ geometric distribution
assume $p \leq 1, \Rightarrow E[X]=\frac{1}{p}=\sum_{k=1}^{\infty} k \cdot(1-p)^{k-1} \cdot p$
$\Rightarrow$ on average, $1 / p$ trials before obtain success

$$
\sigma_{X}^{2}=\frac{1-p}{p^{2}}
$$

## Binomial Distribution

$\Rightarrow$ r.v. $X=$ number of successes in $n$ trials, $X \in\{0,1, \ldots\}$
for $k=0,1, \ldots, n, \operatorname{Pr}\{X=k\}=\binom{n}{k} p^{k}(1-p)^{n-k}$
$\Rightarrow$ binomial distribution
$E[X]=n p, \sigma_{X}^{2}=n p(1-p)$

## Multiple R.V.

- Can, of course, define many r.v. on same sample space
$=$ Let $X \& Y$ be 2 r.v. on some probability system ( $S, \Sigma, P$ )
- Natural extension of PDF:

$$
\begin{aligned}
& F_{X Y}(x, y) \equiv P[X \leq x, Y \leq y] \\
& \Rightarrow \text { joint PDF }
\end{aligned}
$$

- Joint probability density function:

$$
f_{X Y}(x, y) \equiv \frac{d^{2} F_{X Y}(x, y)}{d x d y}
$$

$=$ Marginal density function (for one of the variables):

$$
f_{X}(x)=\int_{y=-\infty}^{\infty} f_{X Y}(x, y) d y
$$

(given by integrating over all possible values of the 2nd variable)

## Multiple R.V. (Cont...)

- Notion of independence between r.v.'s

○ $\boldsymbol{X} \& Y$ are independent iff: (same for more than 2 variables)

$$
f_{X Y}(x, y)=f_{X}(x) \cdot f_{Y}(y)
$$

- Can also define one random variable in terms of another, i.e.,

$$
\begin{aligned}
& y=g(x) \\
& \Rightarrow F_{Y}=P[Y \leq y]=P[\{w: g(X(w)) \leq y\}] \\
& \\
& \quad \text { (could be complex computation) }
\end{aligned}
$$

- Of course, can be a function of many r.v.


## Example

- Ex: Let $Y=X_{1}+X_{2}$ (i.e., sum of 2 r.v.) where $X_{1}$ and $X_{2}$ are independent

$$
\Rightarrow F_{Y}(y)=P[Y \leq y]=P\left[X_{1}+X_{2} \leq y\right]
$$

$$
F_{Y}(y)=\int_{-\infty}^{\infty} \int_{-\infty}^{y-x_{2}} f_{X_{1} X_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2}
$$



## Example (Cont...)

$\Rightarrow$ due to independence:

$$
\begin{aligned}
& F_{Y}(y)= \int_{-\infty}^{\infty}\left[\int_{-\infty}^{y-x_{2}} f_{X_{1}}\left(x_{1}\right) d x_{1}\right] f_{X_{2}}\left(x_{2}\right) d x_{2} \\
&= \int_{-\infty}^{\infty} F_{X_{1}}\left(y-x_{2}\right) f_{X_{2}}\left(x_{2}\right) d x_{2} \\
& \Rightarrow f_{Y}(y)= \underbrace{\int_{-\infty}^{\infty} f_{X_{1}}\left(y-x_{2}\right) f_{X_{2}}\left(x_{2}\right) d x_{2}}_{\text {convolution of density functions of }} \\
& \boldsymbol{X}_{1} \text { and } \boldsymbol{X}_{\mathbf{2}}
\end{aligned} \quad \begin{aligned}
\Rightarrow f_{Y}(y)= & f_{X_{1}}(y) \otimes f_{X_{2}}(y) \\
& \text { (same for any } \boldsymbol{n} \text { sum of independent r.v.) }
\end{aligned}
$$

## Expectation

- The expectation of a real r.v. $X(w)$ is denoted by $E[X]$

$$
\Rightarrow \text { also denoted by } \bar{X}
$$

$E[X] \equiv \bar{X} \equiv \int_{-\infty}^{\infty} x d F_{X}(x)$
$E[X]=\bar{X}=\int_{-\infty}^{\infty} x f_{X}(x) d x$
$E[X]=\int_{0}^{\infty}\left[1-F_{X}(x)\right] d x-\int_{-\infty}^{0} F_{X}(x) d x \longrightarrow$ Stieltjes Integral

- For $X$, a nonnegative r.v.

$$
E[X]=\int_{0}^{\infty}\left[1-F_{X}(x)\right] d x \quad x \geq 0
$$

## Fundementation Theorem of Expectation

- Let $y=g(x)$

$$
E_{Y}[Y]=\int_{-\infty}^{\infty} y f_{Y}(y) d y \quad \begin{aligned}
& \text { could be complex } \\
& \text { to compute } \boldsymbol{f}_{Y}(\boldsymbol{y})
\end{aligned}
$$

- Fundementation Theorem of Expectation:

$$
E_{Y}[Y]=E_{X}[g(X)]=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x
$$

- Expectation of sum of 2 r.v.

$$
\begin{aligned}
E[X+Y] & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(x+y) f_{X Y}(x, y) d x d y \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f_{X Y}(x, y) d x d y+\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f_{X Y}(x, y) d x d y \\
& =\int_{-\infty}^{\infty} x f_{X}(x) d x+\int_{-\infty}^{\infty} y f_{Y}(y) d y \quad \begin{array}{c}
\text { (generalize to } \\
\text { any number of } \\
\text { variables) }
\end{array}
\end{aligned}
$$

○ True whether or not $X \& Y$ are independent

## Product of R.V.

$E[X Y]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f_{X Y}(x, y) d x d y$

- If $\boldsymbol{X} \& \boldsymbol{Y}$ are independent, then

$$
\begin{aligned}
& E[X Y]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f_{X}(x) y f_{Y}(y) d x d y=E[X] \cdot E[Y] \\
& \Rightarrow \quad E[g(X) h(Y)]=E[g(X)] \cdot E[h(Y)]
\end{aligned}
$$

- Interested in power of r.v.'s

$$
\begin{aligned}
& \Rightarrow E\left[X^{n}\right] \Rightarrow \mathrm{n}^{\text {th }} \text { moment of X } \\
& \Rightarrow E\left[X^{n}\right] \equiv \bar{X}^{n} \equiv \int_{-\infty}^{\infty} x^{n} f_{X}(x) d x \quad \begin{array}{l}
\text { follows from the fundemental } \\
\text { theorem of expectation }
\end{array} \\
& \Rightarrow n^{\text {th } \text { centralmomentis }} \begin{aligned}
& \quad(X-\bar{X})^{n} \equiv \int_{-\infty}^{\infty}(x-\bar{X})^{n} f_{X}(x) d x \\
\Rightarrow & (X-\bar{X})^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k}(-\bar{X})^{n-k}
\end{aligned} \quad \begin{array}{l}
\text { binomial } \\
\text { theorem }
\end{array}
\end{aligned}
$$

## Product of R.V. (Cont...)

$$
\begin{aligned}
& \text { take expectation of both sides } \\
\Rightarrow & \overline{(X-\bar{X})^{n}}=\sum_{k=0}^{n}\binom{n}{k} \overline{x^{k}}(-\bar{X})^{n-k} \\
\Rightarrow & \begin{array}{l}
\text { sums of expectation, } \\
\text { expectation of sums, } \\
\text { expectation of constant }
\end{array} \\
\Rightarrow & 1^{\text {st }} \text { central moment }=1 ; \text { also } 0^{t h} \text { central moment }=1 \\
\Rightarrow & 2^{\text {nd }} \text { central moment } \Rightarrow \text { variance } \\
& \sigma_{X}^{2} \equiv \overline{(X-\bar{X})}=\bar{X}-\bar{X}=0 \\
& \sigma_{X} \Rightarrow \text { standard deviation }=\sqrt{\sigma_{X}^{2}} \\
\Rightarrow & C_{X} \equiv \frac{\sigma_{X}}{\bar{X}} \quad \begin{array}{l}
\text { coefficient of } \\
\text { variation }
\end{array}
\end{aligned}
$$

## Transforms

$\Rightarrow$ Transforms, characteristic function, generating function...
$\Rightarrow$ Laplace, z, Fourior, ...
$\Rightarrow$ When introduce into solution method, simplify calculations
$\Rightarrow$ Appear naturally, why?
Linear Time-invariant Systems
systems $\equiv$ transformations, mapping, input-output
relationship between 2 functions

assume $\Rightarrow f=f(t), f(t) \rightarrow g(t)$

Copyright © John C.S. Lui

## Linear and Time-invariant

$=$ Linear if when $f_{1}(t) \rightarrow g_{1}(t)$ and $f_{2}(t) \rightarrow g_{2}(t)$
then also $a f_{1}(t)+b f_{2}(t) \rightarrow a g_{1}(t)+b g_{2}(t)$

- Time-invariant if when $f(t) \rightarrow \boldsymbol{g}(t)$
then also $\boldsymbol{f}(\boldsymbol{t} \boldsymbol{\tau}) \rightarrow \boldsymbol{g}(\boldsymbol{t} \boldsymbol{\tau})$
- If both holds, we have a linear time-invariant system
we focus on these

Copyright © John C.S. Lui

## Transforms

- Decompose function of time into sums (integrals) of complex exponentials
o complex exponentials form building blocks of transforms
- Question: which functions of time can pass through linear time-invariant systems without change?
- i.e., $\boldsymbol{f}(\boldsymbol{t}) \rightarrow \boldsymbol{g}(\boldsymbol{t})=\boldsymbol{H f}(\boldsymbol{t})$, where $\boldsymbol{H}$ is some scalar multiple
- if can find these, then can find eigenfunctions or characteristic functions, or invariants of our system
$\longleftrightarrow f_{e}(t)=e^{s t} \quad$ where $\boldsymbol{s}$ is a complex variable
$\longrightarrow$ form the set of eigenfunctions for all linear time-invariant systems


## Characteristic Functions

## - Derivation:

## Characteristic Functions (Cont...)

- Overall output found by summing (integrating) these individual components of the output
o decompose input into sums of exponentials, computing response to each as above, and then reconstituting the output from sums of exponentials is referred to as transform method


## Transforms

- Focus on discrete time first

$$
\begin{aligned}
& f(t)=f(t=n T) \quad \text { where } n=\ldots,-2,-1,0,1,2, \ldots \\
& \quad \longrightarrow f_{n} \\
& \Rightarrow f_{n} \rightarrow g_{n} \\
& \quad a f_{n}^{(1)}+b f_{n}^{(2)} \rightarrow a g_{n}^{(1)}+b g_{n}^{(2)} \\
& \quad f_{n+m} \rightarrow g_{n+m} \quad m \text { is an integer constant }
\end{aligned}
$$

$\Rightarrow$ eigenfunctions:

$$
f_{n}^{(e)}=e^{s t}=e^{s n T}
$$

Let $z \equiv e^{-s T} \Rightarrow f_{n}^{(e)}=z^{-n}$
$\rightarrow$ also a complex variable

## Transforms (Cont...)

$\Rightarrow z^{-n} \rightarrow H(z) z^{-n} \quad H(z)$ is independent of $n$
$\Rightarrow\left\{z^{-n}\right\}$ form a set of eigenfunctions
$\Rightarrow$ H expresses how much we get out of unit input $\Rightarrow$ system (or transfer) function

- Kronecker delta function or unit function:

$$
u_{n}= \begin{cases}1 & n=0 \\ 0 & n \neq 0\end{cases}
$$

- Unit response (when apply $\boldsymbol{u}_{\boldsymbol{n}}$ to system), $\boldsymbol{h}_{\boldsymbol{n}}$

$$
\begin{aligned}
& u_{n} \rightarrow h_{n} \\
& \Rightarrow u_{n+m} \rightarrow h_{n+m}
\end{aligned}
$$

## Transforms (Cont...)

linearity $\Rightarrow z^{m} u_{n+m} \rightarrow z^{m} h_{n+m}$
multiple
by unity on
both sides $\quad \Rightarrow\left(z^{-n} z^{n}\right) z^{m} u_{n+m} \rightarrow\left(z^{-n} z^{n}\right) z^{m} h_{n+m}$

- Consider set of inputs $\left\{f_{n}^{(i)}\right\}$

$$
\begin{aligned}
& \Rightarrow f_{n}^{(i)} \rightarrow g_{n}^{(i)} \\
& \text { linearity } \Rightarrow \sum_{i} f_{n}^{(i)} \rightarrow \sum_{i} g_{n}^{(i)} \Rightarrow z^{-n} \underbrace{\sum_{m} z^{n+m} u_{n+m}} \rightarrow z^{-n}=\sum_{m} z^{n+m} h_{n+m} \\
& \Rightarrow \text { apply to Eq. }(\mathrm{t} 2) \\
& \text { sum over all integer value of } \boldsymbol{m} \text { non-zero term, when } \mathbf{m}=-\mathrm{n} \text {, and it equals } 1
\end{aligned}
$$

## Transforms (Cont...)

$$
\begin{aligned}
\begin{array}{c}
\text { plus change } \\
\text { of variables }
\end{array} & \Rightarrow z^{-n} \rightarrow z^{n} \sum_{k} z^{k} h_{k} \quad \text { (go back to Eq. }(\mathrm{t} 1) \text { ) } \\
& \Rightarrow H(z)=\sum_{k} h_{k} z^{k}
\end{aligned}
$$

$\diamond$ related system function $\boldsymbol{H}(\boldsymbol{z})$ to unit response
$\diamond$ both $\boldsymbol{H}(\boldsymbol{z})$ and unit response describe how the system operates, so they are related
$\diamond$ itself a transform, a $\boldsymbol{z}$-Transform

- so transforms arise naturally


## z-Transform

- Let $f_{n}$ be a function which takes on nonzero values

○ only for non-negative integers, $\mathrm{n}=0,1,2, \ldots\left(f_{n}=0\right.$ for $\mathrm{n}<0$ )

- Compress sequence into a single function such that can expand later
- Place a tag on each term
$\bigcirc$ i.e., tag each $f_{n}$ with $z^{n}$ ( $n$ unique $\Rightarrow$ each tage is unique)
$\Rightarrow$ Define z-transform (or generating function, or geometric transform)

$$
F(z) \equiv \sum_{n=0}^{\infty} f_{n} z^{n}
$$

$\Rightarrow$ The z-transform will exist as long as terms don't grow any faster than geometrically, i.e., as long as $a$ exists, s.t.

$$
\lim _{n \rightarrow \infty} \frac{\left|f_{n}\right|}{a^{n}}=0
$$

## z-Transform (Cont...)

$\Rightarrow$ Given a sequence $\boldsymbol{f}_{\boldsymbol{n}}$, its z-transform is unique

If sum over all $f_{\boldsymbol{n}}$ is finite, then $\boldsymbol{F}(\boldsymbol{z})$ is analytic on $|z| \leq 1$. Then:

$$
\Rightarrow F(1)=\sum_{n=0}^{\infty} f_{n}
$$

Notation:

$$
f_{n} \Leftrightarrow F(z)
$$

- has a unique derivative at that point $\Rightarrow$ function is analytic at that point


## Examples of z-Transforms

- Ex 1: Recall the unit function

$$
\begin{aligned}
& u_{n}= \begin{cases}1 & n=0 \\
0 & n \neq 0\end{cases} \\
& \Rightarrow \text { Exactly } 1 \text { term in the infinite summation is non-zero } \\
& \Rightarrow u_{n} \Leftrightarrow 1
\end{aligned}
$$

- Ex 2: Shift the unit function to the right

$$
\begin{aligned}
& u_{n-k}= \begin{cases}1 & n=k \\
0 & n \neq k\end{cases} \\
& \Rightarrow u_{n-k} \Leftrightarrow z^{k}
\end{aligned}
$$

## Examples of z-Transforms (Cont...)

- Ex 3: unit step function

$$
\begin{aligned}
& \delta_{n}=1 \quad \text { for } n=0,1,2, \ldots \\
& \delta_{n} \Leftrightarrow \sum_{n=0}^{\infty} 1 \cdot z^{n}=\frac{1}{1-z} \Rightarrow|z|<1 \text { for transform to exist }
\end{aligned}
$$

- Ex 4: geometric series

$$
\begin{aligned}
& f_{n}=A \alpha^{n} \quad n=0,1,2, \ldots \\
& \Rightarrow F(z)=\sum_{n=0}^{\infty} A \alpha^{n} \cdot z^{n}=A \sum_{n=0}^{\infty}(\alpha z)^{n}=\frac{A}{1-\alpha z} \\
& A \alpha^{n} \Leftrightarrow \frac{A}{1-\alpha z} \quad\left(\text { where }|z|<\frac{1}{\alpha}\right) \\
& \\
& \qquad \begin{array}{l}
\text { region of } \\
\text { analycity }
\end{array}
\end{aligned}
$$

## Properties of z-Transforms

- Convolution property
$\bigcirc$ We have 2 function, $\boldsymbol{f}_{\boldsymbol{n}}$ and $\boldsymbol{g}_{\boldsymbol{n}}$ with $\boldsymbol{f}_{\boldsymbol{n}} \Leftrightarrow \boldsymbol{F}(\boldsymbol{z})$ and $\boldsymbol{g}_{\boldsymbol{n}} \Leftrightarrow \boldsymbol{G}(\boldsymbol{z})$

$$
f_{n} \otimes g_{n} \equiv \sum_{k=0}^{n} f_{n-k} g_{k}
$$

$$
\Rightarrow f_{n} \otimes g_{n} \Leftrightarrow \sum_{n=0}^{\infty}\left(f_{n} \otimes g_{n}\right) z^{n}=\sum_{n=0}^{\infty} \sum_{k=0}^{n} f_{n-k} g_{k} z^{n-k} z^{k}
$$

$$
\text { since } \sum_{n=0}^{\infty} \sum_{k=0}^{n}=\sum_{k=0}^{\infty} \sum_{n=k}^{\infty}
$$

$$
\Rightarrow f_{n} \otimes g_{n} \Leftrightarrow \sum_{k=0}^{\infty} g_{k} z^{k} \cdot \sum_{n-k}^{\infty} f_{n-k} z^{n-k}=\left(\sum_{k=0}^{\infty} g_{k} z^{k}\right)\left(\sum_{m=0}^{\infty} f_{m} z^{m}\right)
$$

$$
=G(z) \cdot F(z)
$$

$$
f_{n} \otimes g_{n} \Leftrightarrow G(z) \cdot F(z)
$$

## Other Properties of z-Transforms

$$
\left.\begin{array}{l}
\Rightarrow a f_{n}+b g_{n} \Leftrightarrow a F(z)+b G(z) \longrightarrow \text { linearity } \\
{\left[\begin{array}{l}
\Rightarrow a^{n} f_{n} \Leftrightarrow F(a z) \\
\Rightarrow
\end{array} f_{n} / k(n=0, k, 2 k, \ldots) \Leftrightarrow F\left(z^{k}\right) \quad\right\} \text { scale change in the }} \\
\text { transform and time domains }
\end{array}\right] \begin{aligned}
& \Rightarrow f_{n+1} \Leftrightarrow \frac{1}{z}\left[F(z)-f_{0}\right] \longrightarrow \begin{array}{c}
\text { advance or delay } \\
\text { by unit of time } \\
\text { results in divide }
\end{array} \\
& \Rightarrow f_{n+k}(k>0) \Leftrightarrow \frac{F(z)}{z^{k}}-\sum_{i=1}^{k} z^{i-k-1} f_{i-1} \\
& \begin{array}{c}
\text { or multiply in } \\
\text { transform domain }
\end{array}
\end{aligned}
$$

## Inverse Transforms

$ص$ Given $F(z)$, find sequence $f_{n}$

- Power series method, e.g.,

$$
f_{n}=\left.\frac{1}{n!} \frac{d^{n} F(z)}{d z^{n}}\right|_{z=0}
$$

$\diamond$ not as useful if want many terms
$\Rightarrow$ ratio of numerators and denominators

- Inspection method
$\diamond$ express $\boldsymbol{F}(\boldsymbol{z})$ in terms which have recognizable transform pairs
$\diamond$ partial-fraction expansion


## Inverse Transforms (Cont...)

$\diamond$ e.g., each term is either

1) a simple pole $\longrightarrow A \alpha^{n} \Leftrightarrow \frac{A}{1-\alpha z}$
2) a multiple pole
$\measuredangle \frac{1}{m!}(n+m)(n+m-1) \cdots(n+1) \alpha^{n} \Leftrightarrow \frac{1}{(1-\alpha z)^{m+1}}$
in addition, sum of transforms is transform of sums

$$
\Rightarrow F(z)=\frac{N(z)}{D(z)} \quad \begin{aligned}
& \text { where } N(z)+D(z) \text { are polynomials in } z \\
& \text { and degree of } N(z)<\text { degree of } D(z)
\end{aligned}
$$

also $\Rightarrow D(z)$ is in factored form

$$
D(z)=\prod_{i=1}^{k}\left(1-\alpha_{i} z\right)^{m_{i}}
$$

$\rightarrow$ factoring could be the hard part

## Inverse Transforms (Cont...)

$$
\begin{aligned}
\Rightarrow F(z) & =\frac{A_{11}}{\left(1-\alpha_{1} z\right)^{m_{1}}}+\frac{A_{12}}{\left(1-\alpha_{1} z\right)^{m_{1}-1}}+\cdots+\frac{A_{1 m_{1}}}{\left(1-\alpha_{1} z\right)} \\
& +\frac{A_{21}}{\left(1-\alpha_{2} z\right)^{m_{2}}}+\frac{A_{22}}{\left(1-\alpha_{2} z\right)^{m_{2}-1}}+\cdots+\frac{A_{2 m_{2}}}{\left(1-\alpha_{2} z\right)} \\
& +\cdots \\
& +\frac{A_{k 1}}{\left(1-\alpha_{k} z\right)^{m_{k}}}+\frac{A_{k 2}}{\left(1-\alpha_{k} z\right)^{m_{k}-1}}+\cdots+\frac{A_{k m_{k}}}{\left(1-\alpha_{k} z\right)}
\end{aligned}
$$

use known transform

$$
\begin{gathered}
\longleftrightarrow \sum_{k=0}^{n} f_{k} \Leftrightarrow \frac{F(z)}{1-z} x^{2} \quad(n=0,1,2, \ldots) \\
\Rightarrow A_{i j}=\left.\frac{1}{(j-1)!}\left(\frac{-1}{\alpha_{i}}\right)^{j-1} \frac{d^{j-1}}{d z^{j-1}}\left[\left(1-\alpha_{i} z\right)^{m_{i}} \frac{N(z)}{D(z)}\right]\right|_{z=\frac{1}{\alpha_{i}}}
\end{gathered}
$$

## Example

$$
F(z)=\frac{4 z^{2}(1-8 z)}{(1-4 z)(1-2 z)^{2}}
$$

$\Rightarrow$ need numerator power < denominator power

$$
\begin{aligned}
& \text { Let } G(z)=\frac{4(1-8 z)}{(1-4 z)(1-2 z)^{2}} \\
& \Rightarrow \mathbf{2} \text { poles: } \quad \text { 1) } z=\frac{1}{4} \\
& \text { 2) } z=\frac{1}{2} \quad \Leftarrow \text { two poles here } \\
& \Rightarrow k=2, \quad \alpha_{1}=4, m_{1}=1, \quad \alpha_{2}=2, m_{2}=2
\end{aligned}
$$

## Example (Cont...)

$$
\begin{aligned}
\Rightarrow G(z) & \equiv \frac{4(1-8 z)}{(1-4 z)(1-2 z)^{2}} \\
\begin{aligned}
\text { ingroup } \\
\text { previous } \\
\text { equation }
\end{aligned} & =\frac{A_{11}}{(1-4 z)}+\frac{A_{21}}{(1-2 z)^{2}}+\frac{A_{22}}{(1-2 z)} \\
\rightarrow A_{11} & =\left.(1-4 z) G(z)\right|_{z=\frac{1}{4}}=\frac{4\left(1-\frac{8}{4}\right)}{\left(1-\frac{2}{4}\right)^{2}}=-16 \\
\rightarrow A_{21} & =\left.(1-2 z)^{2} G(z)\right|_{z=\frac{1}{2}}=\frac{4\left(1-\frac{8}{2}\right)}{\left(1-\frac{4}{2}\right)}=12 \\
\rightarrow A_{22} & =-\left.\frac{1}{2} \frac{d}{d z}\left[(1-2 z)^{2} G(z)\right]\right|_{z=\frac{1}{2}}=-\left.\frac{1}{2} \frac{d}{d z} \frac{4(1-8 z)}{(1-4 z)}\right|_{z=\frac{1}{2}} \\
& =-\left.\frac{4}{2} \frac{(1-4 z)(-8)-(1-8 z)(-4)}{(1-4 z)^{2}}\right|_{z=\frac{1}{2}}=8 \\
\Rightarrow G(z) & =\frac{-16}{(1-4 z)}+\frac{12}{(1-2 z)^{2}}+\frac{8}{(1-2 z)} \\
\text { Copyright © John c.s. Lui } &
\end{aligned}
$$

## Example (Cont...)

$$
\begin{aligned}
& \text { by inspection } \\
& \Rightarrow G(z) \Leftrightarrow g_{n}= \begin{cases}0 & n<0 \\
-16(4)^{n}+12(n+1)(2)^{n}+8(2)^{n} & n=0,1,2, \cdots\end{cases} \\
& \Rightarrow \text { need to account for } z^{2} \\
& \Rightarrow k>0, f_{n-k} \Leftrightarrow z^{k} F(z) \\
& \Rightarrow f_{n}=-16(4)^{n-2}+12(n-1)(2)^{n-2}+8(2)^{n-2} \\
& \Rightarrow f_{n}= \begin{cases}0 & n<2 \\
(3 n-1) 2^{n}-4^{n} & n=2,3,4, \cdots\end{cases}
\end{aligned}
$$

## Laplace Transform

$=$ Consider function of continuous time $f(t), f(t)=0$, for $t<0$
ص As before, want to transform from a function of $t$ to a function of a complex variable $s$, and also want to be able to "untransform", so want "tag" each value $f(t)$

- use $e^{-s t}$ as our tag
- $s=\sigma+j \omega \quad$ where $j=\sqrt{-1}$
$\begin{aligned} & \underset{\substack{\text { since } \\ \text { assume } \\ \text { f(t) }=\boldsymbol{0} \\ \text { for } t<0}}{\Rightarrow}\end{aligned} F^{*}(s)=F^{*}(s) \equiv \int_{-\infty}^{\infty} f(t) e^{-s t} d t$
$\Rightarrow$ Exists as long as $\boldsymbol{f}(\boldsymbol{t})$ grown no faster than exponential, i.e., there is some real number $\sigma_{a}$ s.t.

$$
\lim _{\tau \rightarrow \infty}=\int_{0}^{\tau}|f(t)| e^{-\sigma_{a} t} d t<\infty
$$

Copyright © John C.S. Lui

## Laplace Transform (Cont...)

$\Rightarrow$ Laplace transform for a given $f(t)$ is unique
$\Rightarrow$ If integral of $f(t)$ is finite, then $\operatorname{Re}(s)>0$ represents region of analyticity for $\boldsymbol{F}^{*}()$

$$
\Rightarrow F^{*}(0)=\int_{0}^{\infty} f(t) d t \quad(\boldsymbol{z}=1 \text { corresponds to } \boldsymbol{s}=\boldsymbol{0})
$$

$\Rightarrow$ Use notation:

$$
f(t) \Leftrightarrow F^{*}(s)
$$

$\Rightarrow$ Inverse by inspection

## Examples of Laplace Transforms

- Ex 1:

$$
\begin{aligned}
& f(t)= \begin{cases}A e^{-a t} & t \geq 0 \\
0 & t<0\end{cases} \\
& \begin{aligned}
f(t) \Leftrightarrow F^{*}(s) & =\int_{0}^{\infty} A e^{-a t} e^{-s t} d t=A \int_{0}^{\infty} e^{-(s+a) t} d t \\
& =\frac{A}{s+a} \\
\Rightarrow A e^{-a t} \delta(t) & \Leftrightarrow \frac{A}{s+a}
\end{aligned}
\end{aligned}
$$

$$
\text { where } \delta(t)=\left\{\begin{array}{lll}
1 & t \geq 0 \\
0 & t<0 & \text { unit step function in continuous time } \\
\text { (to get } \boldsymbol{f}(\boldsymbol{t}) \text { defined above) }
\end{array}\right.
$$

- Ex 2:

$$
\begin{aligned}
& \text { if } A=1, a=0 \Rightarrow \text { have unit step function } \\
& \Rightarrow \delta(t) \Leftrightarrow \frac{1}{s}
\end{aligned}
$$

## Inspection Method

- Assume $F^{*}(s)$ is a rational function of $s$, i.e.,

$$
F^{*}(s)=\frac{N(s)}{D(s)}
$$

where $N(s)$ and $D(s)$ are polynomials in $s$ degree of $N(s)$ < degree of $D(s)$
$\Rightarrow$ factor $D(s)$

$$
D(s)=\prod_{i=1}^{k}\left(s+a_{i}\right)^{m_{i}}
$$

## Inspection Method (Cont...)

$$
\begin{aligned}
\Rightarrow F^{*}(s) & =\frac{B_{11}}{\left(s+a_{1}\right)^{m_{1}}}+\frac{B_{12}}{\left(s+a_{1}\right)^{m_{1}-1}}+\cdots+\frac{B_{1 m_{1}}}{\left(s+a_{1}\right)} \\
& +\frac{B_{21}}{\left(s+a_{2}\right)^{m_{2}}}+\frac{B_{22}}{\left(s+a_{2}\right)^{m_{2}-1}}+\cdots+\frac{B_{2 m_{2}}}{\left(s+a_{2}\right)} \\
& \left.+\cdots+\frac{B_{k 1}}{\left(s+a_{k}\right)^{m_{k}}}+\frac{B_{k 2}}{\left(s+a_{k}\right)^{m_{k}-1}}+\cdots+a_{k}\right)
\end{aligned} \text { from table }
$$

## Example

$$
\begin{aligned}
F^{*}(s) & =\frac{8\left(s^{2}+3 s+1\right)}{(s+3)(s+1)^{3}} \\
\Rightarrow k & =2, \quad a_{1}=3, m_{1}=1, \quad a_{2}=1, m_{2}=3 \\
\Rightarrow F^{*}(s) & =\frac{B_{11}}{(s+3)}+\frac{B_{21}}{(s+1)^{3}}+\frac{B_{22}}{(s+1)^{2}}+\frac{B_{23}}{(s+1)} \\
B_{11} & =\left.(s+3) F^{*}(s)\right|_{s=-3}=\frac{8(9-9+1)}{(-2)^{3}}=-1 \\
B_{21} & =\left.(s+1)^{3} F^{*}(s)\right|_{s=-1}=\frac{8(1-3+1)}{(2)}=-4 \\
B_{22} & =\left.\frac{d}{d s}\left[\frac{8\left(s^{2}+3 s+1\right)}{(s+3)}\right]\right|_{s=-1} \\
& =\left.8 \frac{(s+3)(2 s+3)-\left(s^{2}+3 s+1\right)(1)}{(s+3)^{2}}\right|_{s=-1}
\end{aligned}
$$

## Example (Cont...)

$$
\begin{aligned}
& =\left.8\left[\frac{s^{2}+6 s+8}{(s+3)^{2}}\right]\right|_{s=-1}=8\left[\frac{1-6+8}{(2)^{2}}\right]=6 \\
B_{23} & =\left.\frac{1}{2!} \frac{d^{2}}{d s^{2}}\left[\frac{8\left(s^{2}+3 s+1\right)}{(s+3)}\right]\right|_{s=-1}=\left.\frac{8}{2} \frac{d}{d s}\left[\frac{\left(s^{2}+6 s+8\right)}{(s+3)^{2}}\right]\right|_{s=-1} \\
& =\left.4 \frac{(s+3)^{2}(2 s+6)-\left(s^{2}+6 s+8\right)(2)(s+3)}{(s+3)^{4}}\right|_{s=-1} \\
& =4 \frac{(2)^{2}(4)-(1-6+8)(2)(2)}{(2)^{4}}=1 \\
\Rightarrow F^{*}(s) & =\frac{-1}{(s+3)}+\frac{-4}{(s+1)^{3}}+\frac{6}{(s+1)^{2}}+\frac{1}{(s+1)}
\end{aligned}
$$

using table

$$
\begin{aligned}
\Rightarrow f(t)= & -e^{-3 t}-2 t^{2} e^{-t}+6 t e^{-t}+e^{-t} \\
& \text { and } f(t)=0 \text { for } t<0
\end{aligned}
$$

## Difference Equations

$\Rightarrow \boldsymbol{N t h}$ order difference equation:
$a_{N} g_{n-N}+a_{N-1} g_{n-N+1}+\cdots+a_{0} g_{n}=e_{n}$
where $a_{i}$ are the known constants and
$g_{i}$ are the unknown functions to be found, and
$e_{n}$ is a given function of $n$
plus we are given $\boldsymbol{N}$ bounding equations
$\Rightarrow$ as usual, solution has homogeneous and particular part:

$$
g_{n}=g_{n}^{(h)}+g_{n}^{(p)}
$$

$\Rightarrow$ homogeneous solution must satisfy homogeneous equation:

$$
a_{N} g_{n-N}+a_{N-1} g_{n-N+1}+\cdots+a_{0} g_{n}=0
$$

$\Rightarrow$ general form of solution is:
$g_{n}^{(h)}=A \alpha^{n}$
where $A$ and $\alpha$ are to be determined
$\Rightarrow a_{N} A \alpha^{n-N}+a_{N-1} A \alpha^{n-N+1}+\cdots+a_{0} A \alpha^{n}=0$
Copyright © John C.S. Lui

## Difference Equations (Cont...)

$\Rightarrow \boldsymbol{N t h}$ order polynomial has $\boldsymbol{N}$ solutions:

$$
\Rightarrow \alpha_{1}, \alpha_{2}, \cdots, \alpha_{N}
$$

(assume for now that $\alpha_{i}$ are distinct)
$\square \Rightarrow A_{i}$ 's are determined from initial conditions
$\Rightarrow$ by cancelling common terms, get characteristic equation:

$$
a_{N}+a_{N-1} A \alpha+a_{N-2} A \alpha^{2}+\cdots+a_{0} A \alpha^{N}=0
$$

$\Rightarrow$ find roots of $\pi$, if all $\alpha_{i}$ are distinct, then
$\longrightarrow g_{n}^{(h)}=A_{1} \alpha_{1}^{n}+A_{2} \alpha_{2}^{n}+\cdots+A_{N} \alpha_{N}^{n}$
$\Rightarrow$ with $\alpha_{1}$ as a multiple root of order $\boldsymbol{k}$,

$$
\left(A_{11} n^{k-1}+A_{12} n^{k-2}+\cdots+A_{1 k-1} n+A_{1 k}\right) \alpha_{1}^{n}
$$

$\Rightarrow \boldsymbol{g}_{n}^{(p)}$ is determined by approp.-given from the form $\boldsymbol{e}_{\boldsymbol{n}}$

## Example

$$
\begin{aligned}
& 6 g_{n}-5 g_{n-1}+g_{n-2}=6\left(\frac{1}{5}\right)^{n} \quad n=2,3,4, \cdots \\
& \quad \text { with } g_{0}=0, g_{1}=\frac{6}{5}
\end{aligned}
$$

homogen.
sol.

$$
\Rightarrow 6 \alpha^{2}-5 \alpha+1=0 \quad \text { (char. eq.) }
$$

$$
\Rightarrow \alpha_{1}=\frac{1}{2} \quad \alpha_{2}=\frac{1}{3}
$$

$$
\Rightarrow g_{n}^{(h)}=A_{1}\left(\frac{1}{2}\right)^{n}+A_{2}\left(\frac{1}{3}\right)^{n}
$$

$$
\text { guess } \quad \Rightarrow g_{n}^{(p)}=B\left(\frac{1}{5}\right)^{n} \Rightarrow \text { plug into }(*) \quad \Rightarrow \text { get } B=1
$$

$$
\Rightarrow g_{n}=g_{n}^{(h)}+g_{n}^{(p)}=A_{1}\left(\frac{1}{2}\right)^{n}+A_{2}\left(\frac{1}{3}\right)^{n}+\left(\frac{1}{5}\right)^{n}
$$

using
$\begin{aligned} & \text { using } \\ & \text { init. cond. }\end{aligned} \Rightarrow A_{1}=8, A_{2}=-9$

$$
\Rightarrow g_{n}=\left(\frac{1}{2}\right)^{n-3}-\left(\frac{1}{3}\right)^{n-2}+\left(\frac{1}{5}\right)^{n} \quad n=0,1,2, \cdots
$$

## Use z-Tranform

$$
\begin{aligned}
& a_{N} \\
& g_{n-N}+a_{N-1} g_{n-N+1}+\cdots+a_{0} g_{n}=e_{n} \quad n=k, k+1, \cdots \\
& \text { def. } G(z)=\sum_{n=0}^{\infty} g_{n} z^{n} \\
& \Rightarrow \sum_{n=k}^{\infty} \sum_{i=0}^{N} \alpha_{i} g_{n-i} z^{n}=\sum_{n=k}^{\infty} e_{n} z^{n} \\
& \Rightarrow \text { carry out summations recognize } G(z), \\
& \text { solve for } G(z) \text { algebraically, } \\
& \text { then invert to get } g_{n}
\end{aligned}
$$

## Example - Use z-Tranform

$$
\begin{aligned}
& \text { (same) } 6 g_{n}-5 g_{n-1}+g_{n-2}=6\left(\frac{1}{5}\right)^{n} \quad n=2,3,4, \cdots \\
& \Rightarrow \sum_{n=2}^{\infty} 6 g_{n} z^{n}-\sum_{n=2}^{\infty} 5 g_{n-1} z^{n}+\sum_{n=2}^{\infty} g_{n-2} z^{n}=\sum_{n=2}^{\infty} 6\left(\frac{1}{5}\right)^{n} z^{n} \\
& \Rightarrow 6 \sum_{n=2}^{\infty} g_{n} z^{n}-5 z \sum_{n=2}^{\infty} g_{n-1} z^{n-1}+z^{2} \sum_{n=2}^{\infty} g_{n-2} z^{n-2}=\sum_{n=2}^{\infty} 6\left(\frac{1}{5}\right)^{n} z^{n} \\
& \Rightarrow 6\left[G(z)-g_{0}-g_{1} z\right]-5 z\left[G(z)-g_{0}\right]+z^{2} G(z)=\frac{6\left(\frac{1}{5}\right)^{n} z^{n}}{1-\left(\frac{1}{5}\right)^{z}} \\
& \Rightarrow G(z)=\frac{6 g_{0}+6 g_{1} z-5 g_{0} z+\frac{\left(\frac{6}{25}\right) z^{2}}{1-\left(\frac{1}{5}\right) z}}{6-5 z+z^{2}} \\
& \Rightarrow \text { using init. cond.: } \quad\left(g_{0}=0, g_{1}=\frac{6}{5}\right)
\end{aligned}
$$

$$
G(z)=\left(\frac{1}{5}\right) \frac{z(6-z)}{\left[1-\left(\frac{1}{3}\right) z\right]\left[1-\left(\frac{1}{2}\right) z\right]\left[1-\left(\frac{1}{5}\right) z\right]}
$$

## Example - Use z-Tranform (Cont...)

$$
\begin{aligned}
& \text { part. frac. } \\
& \text { exp. } \\
& \\
& \\
& \Rightarrow G(z)=\frac{-9}{1-\left(\frac{1}{3}\right) z}+\frac{8}{1-\left(\frac{1}{2}\right) z}+\frac{1}{1-\left(\frac{1}{5}\right) z} \\
&
\end{aligned}
$$

## Constant-Coeff. Linear Differential Equations

$\Rightarrow \boldsymbol{N t h}$ order eq.:

$$
a_{N} \frac{d^{N} f(t)}{d t^{N}}+a_{N-1} \frac{d^{N-1} f(t)}{d t^{N-1}}+\cdots+a_{1} \frac{d f(t)}{d t}+a_{0} f(t)=e(t)
$$

$\Rightarrow \boldsymbol{a}_{\boldsymbol{i}}$ 's are const., $\boldsymbol{e}(\boldsymbol{t})$ is a given func.
$\Rightarrow$ also given $N$ init. cond. (usually first $\boldsymbol{N}$ derivatives, usually at $t=0$ ).
$\Rightarrow$ find $f(t)$
$\underset{\text { form }}{\Rightarrow}$ have $\boldsymbol{f}^{(h)}(\boldsymbol{t})$ and $\boldsymbol{f}^{(p)}(\boldsymbol{t})$
$\stackrel{\text { form }}{\Rightarrow} f^{(h)}(t)=A e^{\alpha t}$
$\stackrel{\text { subst. }}{\Rightarrow} a_{N} A \alpha^{N} e^{\alpha t}+a_{N-1} A \alpha^{N+1} e^{\alpha t}+\cdots+a_{1} A \alpha e^{\alpha t}+a_{0} A e^{\alpha t}=0$
$\Rightarrow$ has $\boldsymbol{N}$ solutions which must solve char. eq:

$$
a_{N} \alpha^{N}+a_{N-1} \alpha^{N+1}+\cdots+a_{1} \alpha+a_{0}=0
$$

$\Rightarrow$ if all $\alpha_{i}$ are distinct, then

$$
f^{(h)}(t)=A_{1} e^{\alpha_{1} t}+A_{2} e^{\alpha_{2} t}+\cdots+A_{N} e^{\alpha_{N} t}
$$

where $A_{i}$ 's are determined using init. cond.

## Constant-Coeff. Linear Differential Equations (Cont...)

$\Rightarrow$ when have multiple root $\alpha_{1}$ of order $\boldsymbol{k}$, then have

$$
\left(A_{11} t^{k-1}+A_{12} t^{k-2}+\cdots+A_{1 k-1} t+A_{1 k}\right) e^{\alpha_{1} t}
$$

contribute in above form to homogeneous sol.
$\Rightarrow$ make a guess to find the particular sol. $f^{(p)}(t)$
complete
sol. $\Rightarrow f(t)=f^{(h)}(t)+f^{(p)}(t)$

## Example

$$
\begin{aligned}
& \frac{d^{2} f(t)}{d t^{2}}-6 \frac{d f(t)}{d t}+9 f(t)=2 t \\
& \quad f\left(0^{-}\right)=0 \quad \frac{d f\left(0^{-}\right)}{d t}=0 \quad \text { (init. cond.) }
\end{aligned}
$$

homogen.
sol.
$\Rightarrow$ forming characteristic equation:

$$
\alpha^{2}-6 \alpha+9=0
$$

$\Rightarrow$ find multiple root $\alpha_{1}=\alpha_{2}=3$
$\Rightarrow$ homogeneous sol. must be of the form

$$
f^{(h)}(t)=\left(A_{11} t+A_{12}\right) e^{3 t}
$$

$$
\Rightarrow \text { guess }
$$

$$
f^{(p)}(t)=B_{1}+B_{2} t
$$

$\Rightarrow$ substituting this back into (*) we get

$$
B_{1}=\frac{4}{27}, \quad B_{2}=\frac{2}{9}
$$

## Example (Cont...)

$\begin{aligned} & \text { complete } \\ & \text { sol. }\end{aligned} \Rightarrow f(t)=\left(A_{11} t+A_{12}\right) e^{3 t}+\frac{4}{27}+\frac{2}{9} t$.
using
$\begin{aligned} & \text { using } \\ & \text { init. cond. } \Rightarrow\end{aligned} A_{11}=\frac{2}{9}, \quad A_{12}=-\frac{4}{27}$
$\begin{aligned} & \text { final } \\ & \text { sol. }\end{aligned} \quad \Rightarrow f(t)=\frac{2}{9}\left(t-\frac{2}{3}\right) e^{3 t}+\frac{2}{9}\left(t+\frac{2}{3}\right) \quad t \geq 0$

## Example - Using Laplace Transform Method

(using prev.
example) $\frac{f(t)}{d t^{2}}-6 \frac{d f(t)}{d t}+9 f(t)=2 t$

$$
s^{2} F^{*}(s)-s f\left(0^{-}\right)-f^{(1)}\left(0^{-}\right)-6 s F^{*}(s)+6 f\left(0^{-}\right)+9 F^{*}(s)=\frac{2}{s^{2}}
$$

(using init. cond.'s, equal to 0 , eliminate some terms above)

$$
\Rightarrow F^{*}(s)=\frac{\frac{2}{s^{2}}}{s^{2}-6 s+9}
$$

$\begin{aligned} & \text { part. frac. } \\ & \text { exp. }\end{aligned} \Rightarrow F^{*}(s)=\frac{\frac{2}{9}}{s^{2}}+\frac{\frac{4}{27}}{s}+\frac{\frac{2}{9}}{(s-3)^{2}}+\frac{-\frac{4}{27}}{s-3}$
inverting $\Rightarrow f(t)=\frac{2}{9} t+\frac{4}{27}+\frac{2}{9} t e^{3 t}-\frac{4}{27} e^{3 t}$
(In queueing theory, sometimes need both, i.e., have differential-difference equations
$\Rightarrow$ then use both $z$ and Laplace tranforms).

## Deriving Moments Via Transforms

- Discrete time
z-Transform of a pmf $p_{k}$ is given by $G_{X}(z)=\sum_{k} p_{k} z^{k}$
$\Rightarrow \frac{\partial G_{X}(z)}{\partial z}=\sum_{k} k p_{k} z^{k-1}$
$\left.\frac{\partial G_{X}(z)}{\partial z}\right|_{z=1}=\sum_{k} k p_{k}=\bar{X}$
$\Rightarrow \frac{\partial^{2} G_{X}(z)}{\partial z^{2}}=\sum_{k} k(k-1) p_{k} z^{k-2}$
$\left.\frac{\partial^{2} G_{X}(z)}{\partial z^{2}}\right|_{z=1}=\sum_{k} k(k-1) p_{k}=\overline{X^{2}}-\bar{X} \quad \begin{aligned} & \text { (not quite variance, } \\ & \begin{array}{l}\text { but can get it from } \\ \text { this and the exp.) }\end{array}\end{aligned}$

$$
\Rightarrow \quad \vdots
$$

## Deriving Moments Via Transforms (Cont...)

- Continuous time

Laplace transform of a density func. $f(x)$ is $F^{*}(s)=\int_{0}^{\infty} e^{-s x} f(x) d x$
$\Rightarrow \frac{d F^{*}(s)}{d s}=-\int_{0}^{\infty} e^{-s x} x f(x) d x$
$\left.\frac{d F^{*}(s)}{d s}\right|_{s=0}=-\bar{X}$
$\left.\Rightarrow \frac{d^{2} F^{*}(s)}{d s^{2}}\right|_{s=0}=\overline{X^{2}}$
$\Rightarrow \quad \vdots$

HW: Compute first 2 moments of geometric and exponential distributions using transforms

## Relationship of Transforms to Expectations

$$
\begin{aligned}
& \Rightarrow f(t) \Leftrightarrow F^{*}(s)=\int_{t} e^{-s t} f(t) d t=E\left[e^{-s t}\right] \\
& \Rightarrow p_{X}(k) \Leftrightarrow G(z)=\sum_{k} p_{X}(k) z^{k}=E\left[z^{k}\right]
\end{aligned}
$$

## Inequalities and Limit Theorems

- May not be possible to determine distributions, but might be able to derive and use:
(a) moments
(b) inequalities and limits


## Markov Inequality

- Simple Markov Inequality:
$\Rightarrow$ If only know the expectation, provides a bound on probability distribution
$\Rightarrow$ For a r.v. $\boldsymbol{X}$ with mean $\mu$, the Markov Inequality is:

$$
P[X \geq t] \leq \frac{\mu}{t}
$$

- assume $X$ is a non-negtive r.v.

Proof:

- area under the curve

$$
=\int_{0}^{\infty} \overline{F_{X}}(x)=E[X]=\mu
$$



- area of rectangle $\leq$ area under the curve

$$
\begin{aligned}
\Rightarrow & \overline{F_{X}}(t) \cdot t \leq E[X] \\
& \Downarrow \\
& P[X \geq t] \cdot t \leq \mu \Rightarrow P[X \geq t] \leq \frac{\mu}{t}
\end{aligned}
$$

## Example

- Consider a system with MTTF of 100 hours
$=$ Let $X$ be a r.v. denoting the lifetime of a system
- By Markov Inequality:

$$
P[X \geq t] \leq \frac{\mu}{t}=\frac{100}{t}
$$

- Define reliability of a system as

$$
R(t) \equiv P[X \geq t]
$$

- Then

$$
R(t) \leq \frac{100}{t}
$$

$\Rightarrow$ To ensure system reliability more than 0.9 , the system mission time $t<111$.

## Example (Cont...)

HW: How tight is the Markov bound for the exponential distribution with parameter

$$
\lambda=\frac{1}{100}
$$

Review Distribution
Exponential distribution:

$$
\begin{aligned}
& P[X \leq x]=1-e^{-\lambda x} \quad x \geq 0 \\
& \Downarrow \\
& F_{X}(x)= \begin{cases}1-e^{-\lambda x} & x \geq 0 \\
0 & \text { otherwise }\end{cases} \\
& f_{X}(x)=\frac{d F_{X}(x)}{d x}=\lambda e^{-\lambda x} \quad x \geq 0
\end{aligned}
$$

## Chebycher's Inequality

$\Rightarrow$ Assume we know $\mu$ and $\sigma^{2}$ of r.v. $X$, then for all $\boldsymbol{t}>\boldsymbol{0}$,

$$
P[|X-\mu| \geq t] \leq \frac{\sigma^{2}}{t^{2}}
$$

Proof:

- let $\boldsymbol{Y}=(\boldsymbol{X}-\mu)^{2} \Rightarrow \boldsymbol{Y}$ is a non-negative r.v.
- applying Markov Inequality:

$$
P\left[(X-\mu)^{2} \geq t^{2}\right] \leq \frac{E\left[(X-\mu)^{2}\right]}{t^{2}}=\frac{\sigma^{2}}{t^{2}}
$$

but

$$
P\left[(X-\mu)^{2} \geq t^{2}\right]=P[|X-\mu| \geq t]
$$

## Weak Law of Large Numbers

- Let $X_{1}, X_{2}, \cdots, X_{n}$ be independant identically distributed r.v.'s with $E\left[X_{i}\right]=\mu$ and $\operatorname{Var}\left[X_{i}\right]=\operatorname{Var}[X]=\sigma_{X}^{2} \quad \forall i$
- Define arithmetic mean to be $\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}$
- We would expect that for sufficient large $n$

$$
\begin{aligned}
& \frac{\sum_{i=1}^{n} X_{i}}{n} \longrightarrow \mu \\
\text { Let } S_{n} & =\sum_{i=1}^{n} X_{i} ; \text { consider r.v. } \frac{S_{n}}{n} \\
& \Rightarrow E\left[\frac{S_{n}}{n}\right]=\frac{n \mu}{n}=\mu \\
& \Rightarrow \operatorname{Var}\left[\frac{S_{n}}{n}\right]=\frac{1}{n^{2}} \operatorname{Var}\left[S_{n}\right]=\frac{1}{n^{2}} n \sigma_{X}^{2}=\frac{\sigma_{X}^{2}}{n} \\
& \text { so, as } n \longrightarrow \infty \quad \operatorname{Var}\left[\frac{S_{n}}{n}\right] \longrightarrow 0
\end{aligned}
$$

## Weak Law of Large Numbers (Cont...)

- Applying Chebychev's Inequality to $\frac{S_{n}}{n}$, we get

$$
\begin{array}{r}
P\left[\left|\frac{S_{n}}{n}-\mu\right| \geq \delta\right] \leq \frac{\sigma^{2}}{n \delta^{2}} \\
\Rightarrow P\left[\left|\frac{S_{n}}{n}-\mu\right| \geq \delta\right] \longrightarrow 0 \text { as } n \longrightarrow \infty
\end{array}
$$

$\Rightarrow$ the distribution of arithmetic mean $\frac{S_{n}}{n}$ becomes increasingly concentrated around the mean $\mu$ as $n$ grows!
$\Rightarrow \delta$ can be thought of as the error in approximating $\mu$ by the arithmetic mean

$$
\begin{array}{ll} 
& \lim _{n \rightarrow \infty} P\left[\left|\frac{S_{n}}{n}-\mu\right| \geq \delta\right] \longrightarrow 0 \longleftarrow \text { weak law of large numbers } \\
\text { or } & \lim _{n \rightarrow \infty} P\left[\left|\frac{S_{n}}{n}-\mu\right|<\delta\right] \longrightarrow 1
\end{array}
$$

$\Rightarrow$ for any small $\delta$, as $\boldsymbol{n}$ grows, the error will be less than $\delta$ with probability 1

## Strong Law of Large Numbers

$$
\begin{aligned}
\Rightarrow \lim _{n \rightarrow \infty} \frac{S_{n}}{n}=E[X]=\mu \longrightarrow & P\left[\lim _{n \rightarrow \infty}\left|\frac{S_{n}}{n}-E[X]\right| \geq \delta\right]=0 \\
& \text { or } \frac{S_{n}}{n} \xrightarrow{\text { a.s. }} E[X] \text { as } n \longrightarrow \infty
\end{aligned}
$$

## Central Limit Theorem

$Z_{n}=\frac{\sum_{i=1}^{n} X_{i}-n \bar{X}}{\sigma_{X} \sqrt{n}} \quad \begin{aligned} & \text { where } \boldsymbol{X}_{\boldsymbol{i}} \text { are i.i.d. } \\ & \text { with mean } \overline{\boldsymbol{X}} \text { and variance } \sigma_{\boldsymbol{X}}{ }^{2}\end{aligned}$
PDF of $\boldsymbol{Z}_{\boldsymbol{n}}$ tends to the standard normal, i.e., $\quad x$ is real
$P_{n \rightarrow \infty}\left[Z_{n} \leq x\right]=\phi(x)$ where $\phi(x) \equiv \int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} e^{-\frac{y^{2}}{2}} d y$
(Gaussian or normal distribution)

