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Introduction

= Material from lectures (ref. books on web page)
= Grading
QO homework for students’ benefit (will include use of
software-tools on web page)
Q 10% homework
Q 40% projects
Q 50% final exam
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Course Material

Review of Probability, R.V., Transforms
Intro. to Stoch. process (m.c.’s) Real World
Baby queuery theory m/m/1... l

Intermediate queuery theory m/g/1...

Markovian model is a special structure
Q Appr. Tech. —>  Model
Q Stoch. Couple l

000 00

Q Matrix geometric structure
Sample Path Analysis
Transient Analysis Solution
Reversibility
Queuery Networks - product form
Simulation
Measurements

00 00 00
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= Project: Listto choose from, FCFS
= MS Comp: Final
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Combinatorics

= Permutations
Q k-permutation of a set of n elements

O nn—1)--(n—k+1)= (ni!k)!

= Combinations
Q k-combination of a set of n elements
=, k-permutation / k!
k! is the number of possible ways to permute that

combination
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Combinatorics (Cont...)

= Binomial Coefficients:

2 (1) = (%)

= Binomial Expansion:

0 (z+y)" = i(g’)wky"’“

k=0

\ Copyright © John C.S. Lui J/
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Probability

= Sample Space (S), collection of objects, where each object
IS a sample point.

= A family of events, Z:{A,B,C,...} where an event is a set of
sample points.

= A probability measure P is an assignment (mapping) of
events defined on S into real numbers (which has properties
or axioms).
Q P[A] = Probability of event A

\ Copyright © John C.S. Lui J/
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Probability

= S = sample space = set whose elements are
elementary events (possible outcome of an experiment)
QO The elementary events are points in a sample space
(1 or more dimensions), and they are mutually exclusive
Q EXx: flipping a coin, a elementary events (sample points)
H, T
Q Event: subset of sample points

& EX: toss dice
event

1e /sample point

ce

\ Copyright © John C.S. Lui J/




7 CSC5420 N

Probability (Cont...)

= Aximoms of Probability:

Q A probability distribution Pr{} on a sample space Sis a
mapping from events of S to real numbers s.t. the following
proability axioms hold:

1) Pr{A} = 0 for any event A (where Pr{A} = probability of
event A)

2) Pr{S} =1

3) Pr{ALB} = Pr{A} + Pr{B} for events A and B that are
mutually exclusive

N PT{UAZ-} = ZPT{A,}
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Probability (Cont...)
= Things that follow:
a) ACB = Pr{A} < Pr{B}
b) Pr{0} =0
c) A =S—-A= Pr{A}=1-Pr{4}

d) for any A, B
U pr{A| B} Pr{A} + Pr{B} — Pr{A( B}

Pr{A} + Pr{B}

IA

\ Copyright © John C.S. Lui J/




CSC5420 =N

Discrete Probability Distribution

= Probability distribution is discrete if it is defined over a finite
or countably infinite sample space
= Pr{A} = Y Pr{z} ifx’sare mutually exclusive

z€A events in A
= |f S Is finite and event elementary event in S has probability
1
Priz} = —
5]

then we have the uniform distribution on S (or we pick an
element of S at random)

\ Copyright © John C.S. Lui
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Discrete Probability Distribution (Cont...)

= EX: flipping a fair coin, Pr{H} = Pr{T} = 0.5
flip coin n times
A = {exactly k heads and exactly n-k tails}

o aes = () mn= (1))

1 n
since each outcome (s € A) = (§>

\ Copyright © John C.S. Lui J/




Continuous Uniform Probability
Distribution

= Defined over closed interval [a,b] of reals wherea < b
& (all subsets here, not events)
—, want each point in [a,b] to be equally likely
—, but, infinite number of points, if give each one finite
probability, will not be able to satisfy axioms 2 and 3
) associate probability with some of the subsets
= for any closed interval [c,d],a<c<d <D,
continuous uniform probability distribution:

Pr{lc,d)} = Z:;

(Pr{[c,d]} = Pr{(c,d)}, since Pr{[z,z]} = Pr{z} =0)

CSC5420 =N
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Conditional Probabilities and
Independence

Pr{AN B}
Pr{B}

= Def'n: Pr{A|B} = whenever Pr{B} # 0

;\\normalizing (sum to 1)

constrained sample space,

= EX: SO we scale up
9 141
a 30 Plr<4|B]=; =588
5e 3 2
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Conditional Probabilities and
Independence (Cont...)

= A and B are statistically independent if and only if:
Pr{A(\B} = Pr{A} - Pr{B}

= |f A, A, ..., A, are statistically independent
0 PlANAN)...NA] =[P4
1=1

= Also, if A and B are statistically independent, then
P |AB]
P B

P[A|B] = — P[A]

\ Copyright © John C.S. Lui J/
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Theorem of Total Probability

PB] =Y. P[B|A] P[A]

1=1
* more useful form

where {A,} is a set of mutually exclusive exhaustive events

1 mutually exclusive exhaustive

If occurs, occurs with exactly
event (A;)

P[B] =3 P[AB]

1=1

using conditional probability:

P|A;B] = P|A;|B| P |B] = P[B|A;] P A;]

\ Copyright © John C.S. Lui J/




Theorem of Total Probability (Cont...)
= EX: reliability

R
] R1 Rz R3 R4 -

= B Ry (1 (1 R R (1 (1 o))
where {R;} is the reliability of component i

= Importance of Theorem of Total Probability is to break a
complex problem into many simpler problems

CSC5420 =N
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— P[A|B] =

\ Copyrig
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Bayes’ Theorem

Look at problem from another perspective
Assume we know event B has occurred, but we want to find
which mutually exclusive event has occurred

Z;P[B!Aj]P[Aj]
A-B|=P|[B]-P[A|B] = P[A]- P[B|A]
P[A]- P[B|A]
PB]
B]=P[B-Al+P|B-A]=P[A]-P[B|A]+ P |A] - P |B|A]
P[A]- P[B|A]
P[A]-P[B|A]+P|A] - P[B|A]

A|B] =

more general form above mj

ht © John C.S. Lui J
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Bayes’ Theorem (Cont...)

= More general forms:
A,;, 1 <i<n,are mutually exclusive, exhaustive events

Theorem of n
total probability | [F1= 2 PBIA]- PA]

P[B|Ai] - P [Aj]
Y1 P IBlAj] - PA;]

Bayes’ Theorem [ P[A;|B] =

\ Copyright © John C.S. Lui
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Example

= EX: gambling, D4 0 honest dealer, D, [1 cheating dealer

L 1 you lose
play honest dealer [ lose with prob =1/2

play cheating dealer [0 lose with prob =p
(of p > 1/2 against you, of p < 1/2 for you)

P[L|D¢] - P[Dc¢]
P|L|Dc]- P|Dc|+ P[L|Dy]- P[Dy]
P _ 2
p i () W
[ if p=1, prob. that cheating dealer if lost 1 game = 2/3

P[Dc|L] =

\ Copyright © John C.S. Lui
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Random Variables (R.V.)

We have the probability system (S, Z, P)
R.V. is a variable whose value depends upon the outcome of
the random experiment
= The outcome of a random experimentisw S
QO We associate a real number X(w) with W
= Thus our r.v. X(W) is nothing more than a function defined
on the sample space S
Q i.e., a function from a finite or countably infinite sample
space S to real numbers

[

[

\ Copyright © John C.S. Lui J/
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Example
= EX: playing a game of black jack in Las Vegas
Associate Sample Space:
a probability —————— all possible pairs of
with it W D L scores obtained by
L player & dealer
3/8.\ 1/4 / 3/8 (single game)

\’ real line

-5 0 5
(lose $5) ($0) (win $5)

= Notation: R.V. X onasample S

X:S-R 5 wOW
L X(w) - our winnings  X(w) = { 0 wOD
on a single game of =~ wil

black jack sz

\ Copyright © John C.S. Lui J/
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Discrete Random Variables

= Discrete Random Variables: (X)
Q a function from a finite (or countably infinite) sample
sapce S to real numbers
<& interested in functions of events
[1 each outcome is a combination of events, so we can
assign probability to it
Q P[X=x]: probability distribution function

\ Copyright © John C.S. Lui J/
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Discrete Random Variable (Cont...)
PriX=z}= )  Pr{s}
s€S; X (s)=x
f(x) = Pr{X =z} = probability mass function of X
= Pr{X=2}>0, Y Pr{X=2}=1
f(r,y)=Pr{X =z and Y = y}
is the joint probability mass function of X and Y

Pr{Y =y}=>) Pr{X=zandY =y}
Pr{X=z}=) Pr{X =zand Y =y}

Pr{X =z and Y =y}
Pr{Y =y}
X and Y are independent if Vz, y :
PriX=zandY =y} =Pr{X =z} -Pr{Y =y} J

\ Copyright © John C.S. Lui
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Expectation, Variance, and
Standard Deviation

E[X]=) z-Pr{X =uz} Fx®)
E[X+Y]=E[X]+E[Y] 1

Elg(X)]=>_g(z) - Pr{X =z}

if X and Y are independent, then £ | X Y] E[X]EY]
if X takes on rational numbers N = {O, .

= F|X Zz Pr{X =i} = ZPT{XZ i}

o% =Var[X] = E|(X - E[X]))’] = E [X?] - (E[X])*

standard deviation = /Var|[X]|= o0y

\ Copyright © John C.S. Lui

if X and Y are independent = Var |[X + Y] = Var[X]|+ Var|Y]
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Probability Distribution Function (PDF)
or Cumulative Distribution Function
X <z]={w: X(w) <z}
PDF is defined as Fx(z) = P[X < 1]
Properties:
1) Fx(ﬂi)zo 4) Fx<b)—FX(CL):P[CL<X§b] fora < b
2) Fx(oo) =1 5) Fx(b) > Fx(a) fora <b
3) Fx<—OO) =0
Ex: PDF for the Las Vegas Game
-==-———=————— - B w—
+ 3/8
58|~~~ — -~~~ - 1
1/4
3/8| - - - l T
\ Copyright © John C.S. Lui > 2 > JJ




Probability Density Function (pdf)
or Probability Mass Function (pmf)

fx = dF;fafx) = Ex: pdf for the blackjack game
3/8 l 3/8
I 14 I
5 0 5

Different ways to view pdf:

D Fx(@)= [ Ix(y)dy
2) fx(z) >0
3) /_O:O fx(z)de =1

b
4) Pla< X < :/a fx(2)dz

CSC5420 =N
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Special Discrete Distribution

= The Bernoulli pmf
Px(0)=P[X =0]=¢
q)

Py(l) = P[X =1] =p = (1
pmf POF |
q q
p
0 1 0 1

\ Copyright © John C.S. Lui J/
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Geometric Distribution

= Bernoulli trial:
Q experiment with only 2 possible outcomes
& success with probability p
& failure with probability g = 1-p
Q Bernoulli trials, a sequence of independent trials each
with probability p
I r.v. X =number of trials needed to obtain success
Xo{12..}
for k>1,Pr{X=k}=q¢"p=(1-pF1.p
[1 geometric distribution

assume p < 1,= E[X ———Zk ‘D

[1 on average, 1/p trlals before obtain success
l1—p

P’ Y/

\ Copyright © John C.S. Lui J/
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Binomial Distribution

[ r.v. X =number of successesinn trials, X1{0,1, ...}
for k=0,1,...,n, Pr{X =k} = ( Z )pk(l —p)k
[1 binomial distribution

E[X]=np, ox =np(l —p)

\ Copyright © John C.S. Lui J/
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[

[

fx(z)

\ Copyright © John C.S. Lui

fxv(z,y)

Multiple R.V.

Can, of course, define many r.v. on same sample space
Let X & Y be 2 r.v. on some probability system (S, Z, P)
Natural extension of PDF:

Fxy(z,y) = P[X <z,Y <y
[ joint PDF
= Joint probability density function:

dQFXY(xa y)
dxdy

= Marginal density function (for one of the variables):

::/gf)aijY<xay)dy

(given by integrating over all possible values of

the 2nd variable)

CSC5420 =N
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Multiple R.V. (Cont...)

= Notion of independence betweenr.v.’s
Q X &Y are independent iff: (same for more than 2 variables)

fxv(,y) = fx(z) - fr(y)
= Can also define one random variable in terms of another, i.e.,
y = g()
U Fy =P[Y <y]=P[{w: g(X(w)) < y}]ﬁ
(could be complex computation)

= Of course, can be a function of many r.v.

\ Copyright © John C.S. Lui
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Example

= EX: LetY = X, +X, (i.e.,, sumof 2r.v.)
where X, and X, are independent

U Fy(y) =P[Y <y]=P[X; + Xy <y

00 [ Y—T2
Fy(y) = /_OO /_OO fxix, (21, 22)dz1ds

X1

// %X;

\ Copyright © John C.S. Lui J/
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Example (Cont...)

[J due to independence:

Fy(y) = /oo [/y_m fx, (21)dy

|/ fxo(22)dzs

= /O:O Fx, (y — x2) fx,(z2)dz2

0 frw) = [y =22 fxala)de,

Y
convolution of density functions of
X, and X,

0 fy(y) = fx. () ® fx,()

(same for any n sum of independent r.v.)

\ Copyright © John C.S. Lui J/
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Expectation

= The expectation of a real r.v. X(w) is denoted by E[X]

LI also denoted by X
E[X] = X = /_ rdFx (z)

_ o0

FlX] = X = / zfx(x)dz

— o0

e's) 0
E [X] = /0 [1 — FX<3;)] dr — / FX<3;)dx —> Stieltjes Integral

—00

= For X, a nonnegative r.v.
EX] = / 1 — Fx(z)]dx z >0
0

\ Copyright © John C.S. Lui
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Fundementation Theorem of Expectation
= Lety=g(x)

could be complex

Ey|Y]= /_OO yfy (y)dy to compute fy(y)
= Fundementation Theorem of Expectation:

By Y] = Ex[g(X)] = [ gla)fx(z)da

= EXxpectation of sum of 2 r.v.
EX+Y] = / / z+y) fxy(z,y)dzdy

— /_oo /_oo zfxy(z,y d:z:der/_oo /_O:O yfxy(z,y)drdy
= [ wix@ids+ [ ytvdy

(generalize to

= E[X]|+E[Y] T oy umberof
variables)
Q True whether or not X & Y are independent %j

\ Copyright © John C.S. Lui J/
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Product of R.V.

BIXY]= [~ [~ ayfuviay)dudy

Q If X &Y areindependent, then
BIXYI= [~ [ afx(@ufr(v)dedy = B[X]- B[V
= Elg(X)n(Y)] = Elg(X)]- E[M(Y)]

Q Interested in power of r.v.’s
= FE[X"] = n' moment of X

- e follows from the fundemental
n| — J— n
= E[X"|=X"= /oox fx(z)dx theorem of expectation

= ncentralmomentis :
(x - X)"= /_ (& — X)"fx(z)dz

- (g (G )Ae
- 37

\ Copyright © John C.S. Lui J/
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Product of R.V. (Cont...)

take expectation of both sides

n sums of expectation,
— (X _ X)" _ Z n ﬁ(_)‘()n—k expectation of sums,
=\ k expectation of constant
= 0" moment = 1; also 0" central moment =1
= 1° central moment = (X —X) =X -X=0
= 2" central moment = variance
RN _\ 2
ox=(X-X) =X2- (X)
ox = standard deviation = /0%
o -
= Oy = ox coefficient of

X variation

\ Copyright © John C.S. Lui J/
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Transforms

=, Transforms, characteristic function, generating function...
—,) Laplace, z, Fourior, ...
=, When introduce into solution method, simplify calculations
—,) Appear naturally, why?
Linear Time-invariant Systems
systems = transformations, mapping, input-output
relationship between 2 functions

g
f—— System ——

black box
assume 0 f=f(t), f(t) - g(t)

\ Copyright © John C.S. Lui J/
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Linear and Time-invariant

= Linear if when f{(t) - g4(t) and f5(t) - g»(t)
then also af,(t)+bf,(t) — ag4(t)+bg,(t)

= Time-invariant if when f(t) - g(t)
then also f(t+1) —» g(t+1)

= |f both holds, we have a linear time-invariant system

L we focus on these

ST

\ Copyright © John C.S. Lui J/
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Transforms

= Decompose function of time into sums (integrals) of complex

exponentials
Q complex exponentials form building blocks of transforms

= Question: which functions of time can pass through
linear time-invariant systems without change?
Q e, f(t) - g(t) = Hf(t), where H is some scalar multiple
Q if can find these, then can find eigenfunctions or
characteristic functions, or invariants of our system

L» fo(t) = et where s is a complex variable

L» form the set of eigenfunctions for all
linear time-invariant systems

ST

\ Copyright © John C.S. Lui
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Characteristic Functions
= Derivation:
—f.(t) = e = g.(t)
1637fe(t) _ 68(t+7‘) N eSTge<t)
~ time- where T and hence €' are constant
Invariant
> ft+71) = St ge(t +7)
= € g.(t) = ge(t +7)

unique
solu?ion L> ge(t) = He"

linearity

e’ — H(s)e"
|, independent of # but
can be function of s

v/

\ Copyright © John C.S. Lui J/
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Characteristic Functions (Cont...)

= QOverall output found by summing (integrating) these
individual components of the output
Q decompose input into sums of exponentials, computing
response to each as above, and then reconstituting the
output from sums of exponentials is referred to as
transform method

ST

\ Copyright © John C.S. Lui J/
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Transforms
= Focus on discrete time first
fit) = f(t=nT) where n=...,-2,-1,0,1,2,...
- f,
= fn = 9n

afV+0fP = agl) +bg?
fotm = Onim m is an integer constant

[1 eigenfunctions:

sT

Let z=e *1 = flo) =z

L» also a complex variable

ST

\ Copyright © John C.S. Lui J/
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Transforms (Cont...)
= 2z " = H(z)z ™" H(z) is independent of n (t1)
= {z‘”} form a set of eigenfunctions

[0 H expresses how much we get out of
unit input O system (or transfer) function

= Kronecker delta function or unit function:

— 1 n=0
"T10 n#0

= Unit response (when apply u,, to system), h,,

Up — hp,

s 1

\ Copyright © John C.S. Lui J/
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Transforms (Cont...)

linearity — Zmun+m — thn+m

b mq{tiple n.n\ .m n.n\ .m
y unity on < - ) ( - )
yunty on = (27"") M upym — (272" 2 Pyt (t2)

= Consider set of inputs {fff)}
= ) = g

linearity = Zféz) —> Zgg) = apply to Eq. (t2)

= z " Z M U — 2= Z 2" hm
m

m
L J

’ sum over all integer value of m
only 1 non-zero term, when m=-n, and it equals 1

w f1
J

\ Copyright © John C.S. Lui
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Transforms (Cont...)

plus change = " — "N kp, (go back to Eq. (t1))

of variables

k
= H(z) = ) h2
k

& related system function H(z)
to unit response

& both H(z) and unit response
describe how the system
operates, so they are related

& itself a transform, a z-Transform
o so transforms arise naturally

a i

\ Copyright © John C.S. Lui
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Z-Transform

= Let f,, be a function which takes on nonzero values
Q only for non-negative integers, n=0, 1, 2, ... (f,,=0 for n <0)
= Compress sequence into a single function such that can
expand later
= Place a tag on each term
Q i.e., tag each f,, with 2" (= unique O each tage is unique)
[1 Define z-transform (or generating function, or geometric
transform)

F(z) = ) fa?"
n=0

[1 The z-transform will exist as long as terms don’t grow any
faster than geometrically, i.e., as long as a exists, s.t.

|/l

lim — = 0

n—oo qn
%j

\ Copyright © John C.S. Lui J/
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z-Transform (Cont...)

[J Given a sequence f,,, its z-transform is unique

If sum over all f,, is finite, then F(z) is analytic on |z| < 1.

Then: - /
= F(1)=) fa
n=0

= has a unique
derivative at

Notation: that point O
fn & F(2) function is
analytic at
that point

ST

\ Copyright © John C.S. Lui
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Examples of z-Transforms

= EXx 1: Recall the unit function

1 n=0
Y0 n#£0

= Exactly 1 term in the infinite summation is non-zero
= u, & 1

= Ex 2: Shift the unit function to the right
1 n=k
Yk =900 n#k

= Up_f <= 2k

\ Copyright © John C.S. Lui J/
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Examples of z-Transforms (Cont...)

= EX 3: unit step function
0p =1 forn=20,1,2,...

1
o & > 1:2" = T, |z| < 1 for transform to exist

= EX 4: geometric series
fn=Aa" n=20,1,2,...

= n n __ = n __ A
:nz::OAoz 2 —Anz::()(ozz) _1—az

A
(where |z| <-

1 —az
region of

analycity

Ad" &

\ Copyright © John C.S. Lui J/
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Properties of z-Transforms

= Convolution property
Q We have 2 function, f,, and g,, with f,, = F(z) and g,, = G(z)

nOkO
oon

since ZZ:ZZ

n=0k=0  k=0n=k

U fn Qgn = i gk:zk ) i fn—kzzn_k — io: gkzk) (i fmzm>
k=0 n—k k=0 m=0
= G(2)- F(z)

fn®g, & G(2) F(z)

\ Copyright © John C.S. Lui J/
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Other Properties of z-Transforms
= af, +bg, & aF(z) + bG(Z) — linearity

= a'f, & Flaz) scale change in the
= f /k (n —0.k. 2k ) & F(Zk) transform and time domains
n _ ? Y )yt
1
= & — (F(z) —
fn“ z [ ( ) fo] \_» advance or delay
(Z) ko by unit of time
frak (k > 0) <~ e Z zz_k_lfi_l results in divide
< i—1 or multiply in

transform domain

= fn—l ~ ZF(Z)

\ Copyright © John C.S. Lui J/
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Inverse Transforms

= Given F(z), find sequence f,,
QO Power series method, e.qg.,
 1d"F(2)

fn = n!  dzn

2=0

& not as useful if want many terms
[1 ratio of numerators and denominators

Q Inspection method
& express F(z) in terms which have recognizable
transform pairs
& partial-fraction expansion

\ Copyright © John C.S. Lui J/
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Inverse Transforms (Cont...)

& e.g., each term is either A
1) a simple pole = Ad" &
2) a multiple pole

1 n L
%(n+m)(n+m—1)-~(n+1)0¢ < (1 — az)mt!

in addition, sum of transforms is transform of sums

1 —az

N(z) where N(z) + D(z) are polynomials in 2
D(z2) and degree of N(z) < degree of D(z)

also = D(z) is in factored form
k

D(z) = J]Q - ax)™

i=1 1
L i root at 2 = — and it’s of multiplicity m;

= F(z2) =

Q;
factoring could be the hard part

/8

J
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Inverse Transforms (Cont...)

An Arg A,
F = 1
= F) (1 —aiz)™ i (1 —aiz)™m—1 M (1—a12)
A21 AQQ A2m2
T (1 — agz)™2 T (1 — agz)m2—1 o (1 — asz)
_I_
Ag Az Agm,,
i (1 — agz)™* * (1 — agz)m™—1 oo (1 — ag2)
use known
transform
" F
L»ka & (Z)x2 (n=0,1,2,...)
=0 11—z
1 —1\/t @it N (z)
Ai‘ — . 1 — i M
= BTG (oz) dzi—1 [( @) D(z)] L

\ Copyright © John C.S. Lui J/
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Example

42%(1 — 8z)
(1 —42)(1 —22)?
[ need numerator power < denominator power
4(1 — 8z2)
(1 —42)(1 — 22)?

F(z) =

Let G(z) =

[1 2 poles: 1) z:%
2) z:% [ two poles here
0 k=2, ai=4,m =1, ars=2,myg =2

\ Copyright © John C.S. Lui J/
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Example (Cont...)
B 4 (1—8z2)
= G = A
ungroup _ A 4 Ag + Az
revous = g T — 2 T 29
4 (1-7%)
> A, = —42)G(2)|,_1 = ACH
(1 ) ( )|z_4 (1 _ Z)2 16
4 _ 8
4, = (1 _ QZ)QG(Z> — (( - éi) — 12
S b= (DOl | B e el
_ 4 (1—42)(=8) — (1 —82)(—4) g
9 (1—4z2)? 2=1
S Gl — —16 N 12 n 8
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Example (Cont...)

by inspection

= G(z) & g, = n <0

{ (116(4)” F12n+1)(2)" +8(2)" n=0,1,2, -
= need to account for 22

= k>0, fur & 2"F(2)

= fo=—16(4)""+12(n—1)(2)" >+ 8(2)"

= f = 0 n <2
"l Bn—1)2"—4" n=2,34,---

\ Copyright © John C.S. Lui J/
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Laplace Transform

Consider function of continuous time f(t), f(t) = 0, for t < 0
As before, want to transform from a function of £ to a function
of a complex variable s, and also want to be able to
"untransform", so want "tag" each value f(¢)

use e * as our tag

— S=0+jw wherej = /-1

= F*(s / f(t) et dt
since
it SO A O
for t<0

[

[

[

L»O_ — any accumulation at origin (e.g., impluse function)
will be included

[ Exists as long as f(t) grown no faster than exponential,
I.e., there is some real number 0o, s.t.

lim = /T Hle %t dt < oo
lm = [T e

\ Copyright © John C.S. Lui J/
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Laplace Transform (Cont...)

L]

Laplace transform for a given f(¢) is unique
If integral of f(t) is finite, then Re(s)>0 represents region
of analyticity for F*()

L]

= F*(0) = /0 f(t) dt (z = 1 corresponds to s = 0)

[1 Use notation:
f(t) & F(s)
[ Inverse by inspection

\ Copyright © John C.S. Lui J/
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Examples of Laplace Transforms

= Ex1: Ae @ t>0
ﬂ”_{o t<0

f(t) & F*(s) = /OOA e et dt = A/oo e~ 5Tl gt
0 0
A

s+ a
A

= Ae™(t) &
S+ a

h 5 . 1 ¢>0 unit step function in continuous time
where (t) 10 t<0 (to get f(#) defined above)

= EX2: if A=1, a =0 = have unit step function

= i(t) & B

\ Copyright © John C.S. Lui J/
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Inspection Method
= Assume F*(s) is a rational function of s, i.e.,

N(s)

6= 5

where N(s) and D(s) are polynomials in s
degree of N(s) < degree of D(s)

[1 factor D(s)

\ Copyright © John C.S. Lui J/



Inspection Method (Cont...)

:> F*(S) — Bll B12 B1m1
(s +ay)™ = (s+ap)™-1 (s + ap)
By Bos Bom,
+ o
(s +az)m™ = (s+ ag)m2—1 (s + az)
_|_
By By - Bim,
(s +ag)™  (s+ ap)™ 1 (s + ag)
1 /! m: IN(5)
where B;; = G101 de [(5 + a;) D(s)] -

CSC5420 =N

~ from table
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p
Example
o 8(s+3s+1)
F(s) = (s+3)(s+1)3
= k=2, a1 =3m =1, as=1,my =3
) _ DBn By By Bos
RO S Porrs Sl vy s Rl oy s R o
Bi = (s+3)F"(s)|_ o= > (9(:29)3+ D_
By = (s+10F () =21 ZQ? D _
d [8(s*+3s+1)
PTG [ (s +3) ] =t
_ g (s+3)(25+3) — (s* +3s+1)(1)
B (s + 3)2 1

CSC5420 =N




= F*(s)

using table

= f(t)

\ Copyright © John C.S. Lui

Example (Cont...)

2+ 65+ 8]
8
(s + 3)2

dls=—1
| S

CSC5420 =N

l
1 d* [8(s*+3s+1) 8 d [(s*+65+8)
idsQI (s +3) ]81_§dsl (s +3)2 ]
A (s +3)%(25 4+ 6) — (s* + 65 + 8)(2)(s + 3)
(s +3)4 1
, 2P -(1-6+8)2)2) _,
(2)*
—1 —4 6 1
+ + +

(s +3) (s+1)3 (s +1)2 (s +1)

—e 3t — 2%t 4 6tet +et
and f(t) =0fort <0
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Difference Equations

[1 Nth order difference equation: (standard method)
AN gn—N + ON-1 Gn-N+1 T *** + Q9 G = €y
where a; are the known constants and

g; are the unknown functions to be found, and

e, IS a given function of n
plus we are given N bounding equations

[1 as usual, solution has homogeneous and particular part:
g = g + g
[ homogeneous solution must satisfy homogeneous equation:
aN n-N + ON-1 Gn-N4+1 T -+ + Gp g = 0
[1 general form of solution is:
gy = Aa"
where A and a are to be determined
OavAa™ N + ay_ 1 AV 4+ oo 4+ g0 Aa™ = 0 J

\ Copyright © John C.S. Lui J/
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Difference Equations (Cont...)

(1 Nth order polynomial has N solutions:

= 1, Qy, *** ,QpN (assume for now that q; are distinct)
= A;’s are determined from initial conditions
[1 by cancelling common terms, get characteristic equation:
ay + ay_ 1 Aa + ay o Aa® + - + agAal =0
O find roots of & | if all a; are distinct, then
oMW =407 + Ayl + - + Ay a%

[0 with a,; as a multiple root of order k,

(Annk_l + A4+ A+ Ag)ay
[] g,(f’) Is determined by approp.-given from the forme,

\ Copyright © John C.S. Lui
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r
Example
1 n
69n—59n—1+9n—2=6<5> n=2234,--- (*)
, 6
with go = 0,0, = =
homogen.
sol. N 6a” —ba+1=0 (char. eq.)
1 1
= ] = 5 Qg = g
1\" 1\"
= () )
1 n
guess  — gfj’) :B(g) = plug into (x) = get B=1
1\" 1\" 1\"
_ (h) (p) — - - —
> m=dl g = (3) +a(5) + (5)
| Gn = 9n’ + 9n 1\y) T2 3) T3
using

init. cond. = A =84 =-9

n—3 n—2 n
> a=(;) -(3) +(5) n=orz W7

\ Copyright © John C.S. Lui
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Use z-Tranform

ay 9n-N + aON_1 Gn-Ni1 + - + @y g = €, n=kk+1,---

def':> G(z) = Z gn 2"
n=0

oo N 00
= Z Z G Qp—iZ" = Z en2"
n=k

n=k 1=0

= carry out summations recognize G(2),
solve for G(z) algebraically,
then invert to get g,

\ Copyright © John C.S. Lui J/




Example - Use z-Tranform

(same)

69n—5gn1+gn2:6<%) n=2234,---
= Z 69nzn — Z 5gn_12n -+ Z gn_QZn — Z 0 (
n=2 n=2 n=2 n—

o0 o0 o0
= 6 Z gz — bz Z G121 4 22 Z On—22""
n=2 n=2 n=2

= 6[G(2) — g0 — q12] — 52[G(2) — go] + 2°G(2) =

(25)Z2
HOE

69y + 6912 — gz +

= G(z) =

CSC5420 =N

) =
ot
o

1 —

n
"

)

n

;
(

U=

z

o=

6 — 5z + 22 6
= using init. cond.: (go =0,91 = 5)
1 2(6 — 2)
G(z) =+ 1 1 1
=) =T -0 16001

/8
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Example - Use z-Tranform (Cont...)

part. frac. — G(Z) —

OO OF

\ Copyright © John C.S. Lui J/
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Constant-Coeff. Linear Differential Equations

(1 Nth order eq.:

N N—-1
T L i
[0 a;'s are const., e(t) is a given func.
[1 also given N init. cond. (usually first N derivatives, usually
at £=0).
I find f(t)
have ) and f” (&)
subst. f(h)(t) = Ae™
o) anAaN e +ay_1AaNTe + .+ ay Ace™ + agAe® =0
[1 has N solutions which must solve char. eq:
ana™ +ay_ 1™ T g+ ag =0
(1 if all a; are distinct, then
FO(t) = Are™t + Age™' + -+ + Aye™N!
where A;’s are determined using init. cond. nj

\ Copyright © John C.S. Lui J/

+ Cbof(t) — e(t)
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Constant-Coeff. Linear Differential Equations
(Cont...)

[0 when have multiple root a, of order k, then have
(A t* ™+ ApgtF 2 o+ At + Ay ) e
contribute in above form to homogeneous sol.
[1 make a guess to find the particular sol. f(p)(t)

complete

ol f) = @) + @)

\ Copyright © John C.S. Lui J/
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,
Example
9
T _6U) opay ot (s)
dt? dt dF (07)
f(07)=0 = 0  (init. cond.)
28? 09N forming characteristic equation:
o —6a+9=0

= find multiple root oy = oy = 3
= homogeneous sol. must be of the form
FM(t) = (At + App)e™
=> guess
FP(t) = By + Byt
= substituting this back into (%) we get

4 2
By

“ar P73

\ Copyright © John C.S. Lui
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Example (Cont...)
complete 4 9
sol. = f(t) = (Aut + A12)63t + 97 + §t
using 2 4
init. cond.= Ay = 9’ Ap = ~ 9
final 2 9 9 9
sol. =>f(t)=§<t—§)e3t+§(t+§) t>0

\ Copyright © John C.S. Lui
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Example - Using Laplace Transform Method

using — @2f (1) df(t)
prev. — 66—~ +9f(t) =2t
example)  dt? dt +9£(t)
* — — * — * 2
s2EF*(s) — sf(07) — fFM(07) — 6sE*(s) +6£(07) + 9F*(s) = 2
(using init. cond.’s, equal to 0, eliminate some terms above)
2
F*(s) = =
= (5) s2—6s+9
' f 2 4 2 _4
part. frac. F* _ 9 , 21 9 27
exp. = F(s) 32+s+(3—3)2+3—3
. : 2 4 2 4
inverting ) = St 4+ — 4 Zgedt 3t
= ) =gt 5 T gle — 5z

(In queueing theory, sometimes need both,
I.e., have differential-difference equations
[0 then use both z and Laplace tranforms).

\ Copyright © John C.S. Lui J/
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Deriving Moments Via Transforms

= Discrete time

z-Transform of a pmf p; is given by G x( Z P 2"
0 Gx(2) k—1
= k
9 - ; Pk 2
— k = X (Expectation)
a < z=1 zk:: P
0? Gx(z
OXQ() = Y k(k—1)p 27
< k
2 L __ (not quite variance,
0 GXQ( ) = Z k(k—1)pr = X2 — X butcan getitfrom
0 2 =1 & this and the exp.)

/8

\ Copyright © John C.S. Lui J/




CSC5420 =N

Deriving Moments Via Transforms (Cont...)

= Continuous time
Laplace transform of a density func. f(z) is F*(s) = / e ** f(x) dx
0

d F* 00
R ds<8) = [T af) o
d F*(s) _x
d s —0 B
2 *
N d* F*(s) _ 53
d s2 0
=

HW: Compute first 2 moments of geometric and exponential
distributions using transforms mj

\ Copyright © John C.S. Lui
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Relationship of Transforms to Expectations

= J() & F'(s) = [ @)t = B[e]

t

= pxlk) & G = X px(h) = E |7*]

\ Copyright © John C.S. Lui J/
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Inequalities and Limit Theorems

= May not be possible to determine distributions,
but might be able to derive and use:
(a) moments
(b) inequalities and limits

\ Copyright © John C.S. Lui J/



Markov Inequality

= Simple Markov Inequality:
[1 If only know the expectation, provides a bound on
probability distribution

[1 For ar.v. X with mean y, the Markov Inequality is:

‘ PX24 <%

» assume X is a non-negtive r.v.

Proof: Fox) = 1- Fox)
Q area under the curve

- [" Fx@) = BIX] = u

CSC5420 =N

Q area of rectangle < area under the curve
= Fx(t)-t < F[X]
U

PW2ﬂ¢§N:>HX2ﬂ§%

\ Copyright © John C.S. Lui
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Example

[

Consider a system with MTTF of 100 hours
Let X be ar.v. denoting the lifetime of a system

By Markov Inequality:
1
PX21 <5 = ?

= Define reliability of a system as
R(t) = P[X > 1]

[

[

= Then

100
R(t) < —=
[1 To ensure system reliability more than 0.9,
the system missiontime t< 111.
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Example (Cont...)

HW: How tight is the Markov bound for the exponential
distribution with parameter

1
A= —
100

Review Distribution
Exponential distribution:

PX<z] =1 - ™ r > 0
)

z > 0
Fx () otherwise
fx(x) x > 0

gV

CSC5420 =N
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Chebycher’s Inequality

[J Assume we know p and o of r.v. X, then for all £ > 0,
2

o
Pl X—pl>t] < 72
Proof:
Q letY=(X- p)2 = Y IS a non-negative r.v.

Q applying Markov Inequality:

Pl(X—p’>£] < Bl (X —n)" ] _ o

but

Pl (X—p)’>t] = P |X—pul>t]

\ Copyright © John C.S. Lui J/
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Weak Law of Large Numbers

= Let X;, X,, ---, X,, Dbeindependant identically distributed
rv.’swith F[X,] = yand Var [X;] = Var [X] = o5 Vi
= Define arithmetic meantobe X;+ Xo+.--4+ X,

n
= We would expect that for sufficient large =
i1 Xi »
n
= Let g — YX; consider r.v2n
i=1 n
S
n n
S, 1 1 o2
= Var 7] = EV&T[Sn] = ﬁnagf = 7)(
Sn
so,asn — o0  Var ] > 0
" w S

\ Copyright © John C.S. Lui



7 CSC5420 N

Weak Law of Large Numbers (Cont...)

= Applying Chebychev’s Inequality to S”, we get
n

S o?
P| |—= — >5} S p—
[ n = — nd?
iP[&—M‘Zé —>0asn — o
n |

Sn
[1 the distribution of arithmetic mean Wbecomes
Increasingly concentrated around the mean p as n grows!
[1 & can be thought of as the error in approximating u by

the arithmetic mean

S -
lim P| [ — pu|>d | — 0 <—weak law of large numbers
n—oo i n _ |
or : | S ]
lim P| | — pul<d| —1
n—oo n

[1 for any small 3, as n grows, the error will be less than o
with probability 1 mj
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Strong Law of Large Numbers

S ogim 2 — By = /L—»P[ lim ‘&—E[X]‘zé] ~ 0
n—oe n n—oo [ n,
Sn a.s,
or 22 2% FX] as n — oo
n

\ Copyright © John C.S. Lui J/
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Central Limit Theorem

7 i-1Xi — nX  where X, are i.i.d.
ox Vn with mean X and variance oy’
PDF of Z, tends to the standard normal, i.e., x is real

Pn_mo[ Zp < $] — ¢($) where o(x) = /w ! 6_% dy

—00 2T

(Gaussian or normal distribution)
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