ALL PROGRAMMABLE

DAC 2018 FPGA design contest

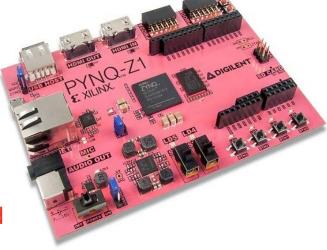
Naveen Purushotham, Xilinx Jingtong Hu, University of Pittsburgh Bei Yu, Chinese University of Hong Kong Xinyi Zhang, University of Pittsburgh

Agenda

- Welcome
- DAC Contest Committee
 - Contest Introduction
 - Webinars
 - Piazza
- PYNQ_{TM} & Reference design discussion
 - Things to know
 - Design rules
 - Reference design
- Questions & Answers

DAC Contest Committee

> Python productivity for Zynq


An open-source framework for combining SW and HW libraries on Zynq

- Use SW libraries of Python language
- Exploit programmable logic and microprocessors using HW libraries

> Out of Box

Prebuilt SD card – Python, Jupyter, Ubuntu & Bitstreams Python & Debian & Bitstream extensible

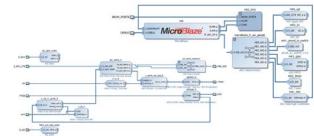
PYNQ marries data science software and capabilities of zynq and programmable hardware

PYNQ-Z1 – First PYNQ supported board

Jupyter Notebooks: browser-based development ... with rich, multi-media support

Py IPython Dashboard >	IPy spectrogram 🛛 🗴		
	888/a5222740-848b-4ac1-b212-d732c9	f8f78b	A 4
P[y]: Noteb	ook spectrogram	Last saved: Mar 07 11:14 PM	
ile Edit View Ir	sert Cell Kernel Help		
8 X 6 0 T	4 ∓ ± ⊨ = Markdown	•	
Simple spect	ral analysis		
illustration of the Discret			
$X_k = \sum_{n=0}^{N-1} x_n e^{-\frac{2\pi i}{N}kn}$	k = 0 $N - 1$		
sing windowing, to reveal t	he frequency content of a sound signal	L	
le begin by loading a data	ile using SciPy's audio file support:		
<pre>In [1]: from scipy.i rate, x = wa</pre>	<pre>o import wavfile vfile.read('test_mono.wav')</pre>		
ad us and another in the	e estral ete et un union en ete lettible huili		
nd we can easily view its s	pectral structure using matplotlib's built	un specgram rouune.	
	<pre>x2) = plt.subplots(1, 2, figsi ax1.set title('Raw audio sign</pre>		
	<pre>(x); ax2.set_title('Spectrogra</pre>		
	Raw audio signal	Spectrogram	
6000 -		10	
4000	ALCON ALCON A	08	
2000 -	ALC: NO	0.6 Million and a star	
0	Contraction of the local division of the loc		
-2000 -		0.4	
-6000		0.2	
-8000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
-10000	20000 20000 30000 40000	50000 0.0 5000 10000 15000 20000 25000	

github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks


- Designed for
 - Interactive, exploratory computing
 - Reproducible results
- Ideal for
 - Teaching and learning
 - Projects and research
- Provides
 - Interactive design with Zynq
 - application-oriented perspective

XILINX > ALL PROGRAMMABLE.

Where to find more notebooks <u>https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks</u>

© Copyright 2017 Xilinx

Overlays aka hardware libraries – special bitstreams

Step 1:

Create an FPGA design for a <u>class</u> of related applications

	<pre>void setNormalDisplay(){ sendCommand(OLED_Normal_Display_Cmd); }</pre>
	<pre>void setInverseDisplay(){</pre>
	<pre>sendCommand(OLED_Inverse_Display_Cmd);</pre>
)
	int main(void)
	{
	int cmd;
	int Row, Column;
	arduino_init(0,0,0,0);
	config_arduino_switch(A_GPIO, A_GPIO, A_GPIO,
	A_GPIO, A_SDA, A_SCL,
	D_GPIO, D_GPIO, D_GPIO, D_GPIO, D_GPIO,
	D_GPIO, D_GPIO, D_GPIO, D_GPIO,
	D_GPIO, D_GPIO, D_GPIO, D_GPIO);
Step 3:	// Initialization
	<pre>oled_init();</pre>

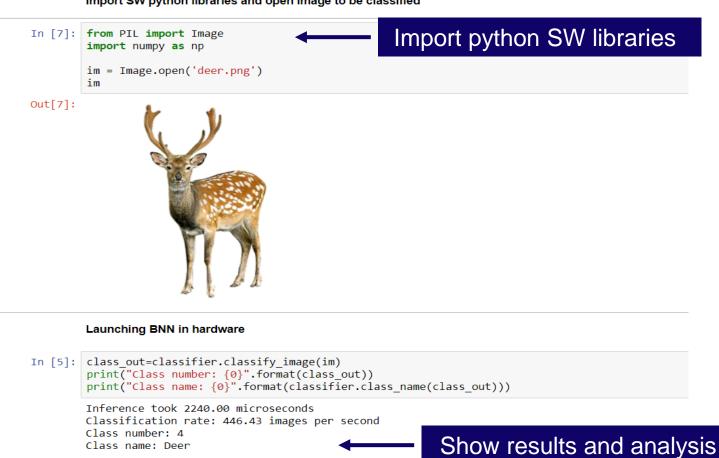
Wrap the C API to create a Python library

	<pre>pmod_init(0,1);</pre>	6678	3963	7367	3232	3500	6300	0b32			
	while(1){			2f33							
	while((MAILBOX_CMD_ADDR & 8×01)										
	<pre>cmd=MAILBOX_CMD_ADDR;</pre>			6500							
		ffff	ffff	ffff	ffff	ffaa	9955	6630			
	count = (cmd & 0x0000ff00) >> 8	0720	0031	a103	8031	413d	0831	6109			
	if((count==0) (count>253)) {	c204	0010	9330	e100	cf30	c100	8120			
	<pre>// clear bit[0] to indicate</pre>			0020							
	<pre>// set rest to 1s to indica</pre>			0020							
	MAILBOX_CHD_ACDR = 0xffffff										
	return -1;			8108							
	1	e1ff	ff33	2100	0533	4100	0433	0101			
	<pre>for(i=0; i<count; i++)="" pre="" {<=""></count;></pre>	6100	0032	8100	0032	a100	0032	c100			
	if (cmd & 0x08) // Python i	ssues rea	5								
	<pre>i switch ((cmd & 0x06) >> 1) { // use bit[2:1]</pre>										
	<pre>case 0 : MATLBOX_DATA(1) = *(u8 *) MATLBOX_ADDR; break; case 1 : MATLBOX_DATA(1) = *(u16 *) MATLBOX_ADDR; break;</pre>										
		<pre>case 2 : break; case 3 : MAILBOX DATA(1) = *(u32 *) MAILBOX ADOR; break;</pre>									
Step 2:	case 3 : MAILBOX_DA	(1) = +	(032 *) M	ALLBUX_AD	oreak; preak;						
	}										

Export the bitstream and a C API for programming the design

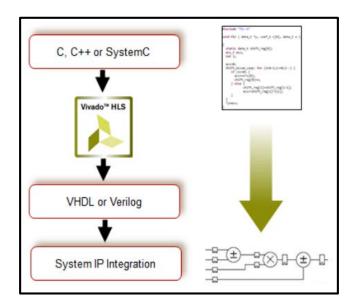
6c78 3963 7367 3232 3500 6300 0 3325 3030 2533 3000 6400 0031 3	
from time import sleep f f from pyng import Overlay 5 6 from pyng import PMCD ADC, PMOD DAC 5 6	fff 630
<pre>o1 = OVerlay('Dase.blt') o1.download() # Writing values from 0.0V to 2.0V with step 0.1V. dac_id = int(input("Type in the PMOD ID of the DAC (1 ~ 2): ")) 2 6</pre>	120 020 020 100
<pre>dac = PMOD_DAC(dac_id) adc = PMOD_ADC(adc_id)</pre>	101 100
<pre>for j in range(20): value = 0.1 * j dac.write(value) sleep(0.5) # readings=adc.read(1,0,0) # xl=readings[0]</pre>	
tep 4: print("Voltage read by DAC is: {:.4f} Volts".format(adc.read(1,0,0)[0]))	

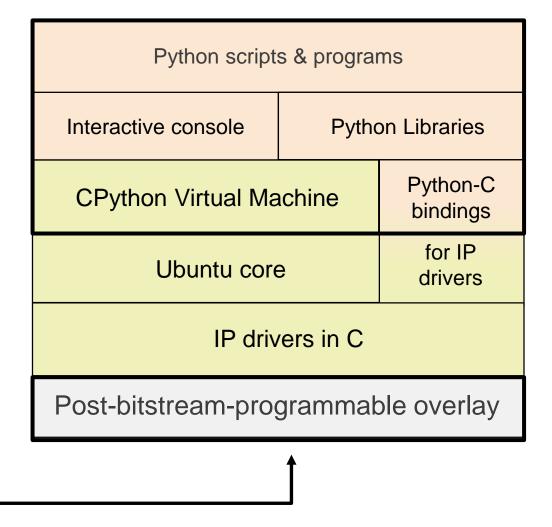
Import the bitstream and the library in your Python scripts and program


	IN on PYN	IQ	×						
192.168	3.2.99:909	90/noteb	ooks/BNN	%20on%	20PYNQ.ip	ynb 🔶		Runs in E	Browser
💭 ju	pyter	BNN	l on PYI	NQ (aut	osaved)				logout
File	Edit	View	Insert	Cell	Kernel	Widgets	Help	Not Trusted	Python 3 O

Binary Neural Network on Pynq

Note: All code is entered in browser window and run





Import SW python libraries and open image to be classified

© Copyright 2017 Xilinx

Productivity level tools for Zynq

Example PYNQ Project FINN: Binary Neural Network Overlay on PYNQ

FINN: A Framework for Fast, Scalable Binarized Neural Network Inference

Yaman Umuroglu^{*+}, Nicholas J. Fraser^{*+}, Giulio Gambardella^{*}, Michaela Blott^{*}, Philip Leong[‡], Magnus Jahre⁺, Kees Vissers^{*} *Xilinx Research Labs; [†]Norwegian University of Science and Technology; [‡]University of Sydney

ABSTRACT

Research has shown that convolutional neural networks contain significant redundancy, and high classification accuracy can be obtained even when weights and activations are reduced from floating point to binary values. In this paper, we present FINN, a framework for building fast and flexible FPGA accelerators using a flexible heterogeneous streaming architecture. By utilizing a novel set of optimizations that enable efficient mapping of binarized neural networks to hardware, we implement fully connected, convolutional and pooling layers, with per-layer compute resources being tailored to user-provided throughput requirements. On a While the vast majority of CNNs implementations use floating point parameters, a growing body of research demonstrates this approach incorporates significant redundancy. Recently, it has been shown [7, 27, 22, 14, 32] that neural networks can classify accurately using one- or two-bit quantization for weights and activations. Such a combination of low-precision arithmetic and small memory footprint presents a unique opportunity for fast and energy-efficient image classification using Field Programmable Grid Arrays (FPGAs). FPGAs have *much* higher theoretical peak performance for binary operations compared to floating point, while the small memory footprint *removes* the off-chip mem-

Int. Symposium on FPGAs, Feb. 2017

- Unprecedented image classification rates
- 1,000x speed-up over Raspberry Pi3

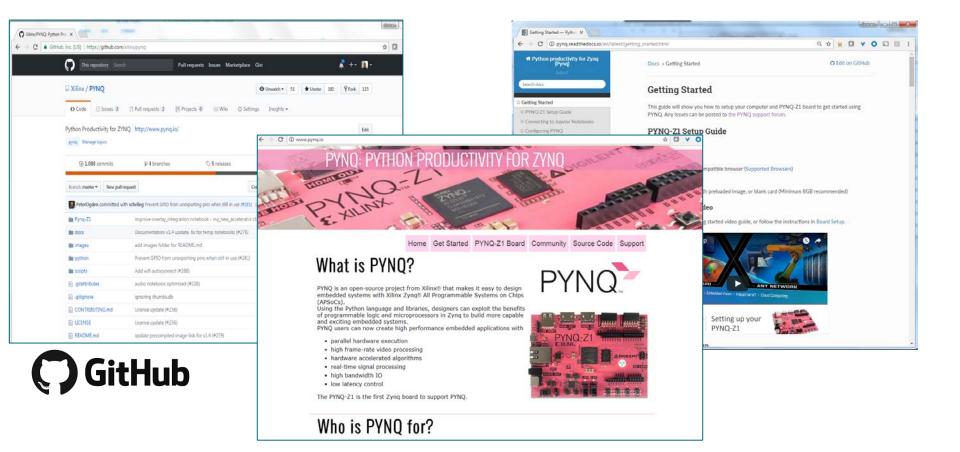
https://github.com/Xilinx/BNN-PYNQ

Image pre-processing in Python

Binary Neural Network in FPGA & ARM CPU

"cat"

"A high productivity tool for experienced FPGA designers"



http://fpga.org/2017/09/05/pynq-as-a-high-productivity-platform-for-fpga-design-and-exploration

"Fellow FPGA designers, try Pynq. You'll like it. Pynq makes exploring new FPGA ideas lightweight, fresh, fast, easy, *fun again.*."

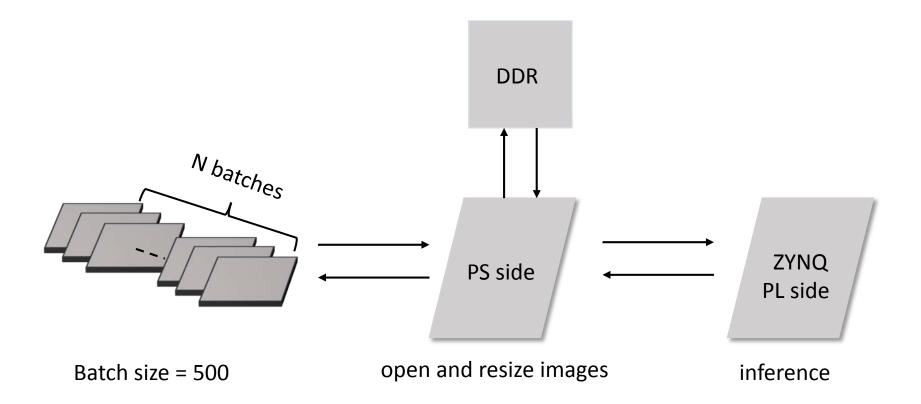
Jan Gray ... feedback on implementing 80 x 32-bit RISC cores on PYNQ-Z1

PYNQ is completely open-source

Where to find more information http://www.pynq.io

PYNQ Team standing by...

Build something cool


Contribute Reproducible Results

If not already a member, join the PYNQ support forum http://www.pynq.io/support.html/

Page 14

© Copyright 2017 Xilinx

DAC Contest reference design

- Timer should start before opening the images and end after PS side receives all detected coordinates.
- Write to XML can be excluded from timer.

Q & A

