
21

Finding Maximal Cliques in Massive Networks

JAMES CHENG, Nanyang Technological University
YIPING KE, ADA WAI-CHEE FU, and JEFFREY XU YU, The Chinese University of Hong Kong
LINHONG ZHU, Institute for Infocomm Research

Maximal clique enumeration is a fundamental problem in graph theory and has important applications in
many areas such as social network analysis and bioinformatics. The problem is extensively studied; however,
the best existing algorithms require memory space linear in the size of the input graph. This has become
a serious concern in view of the massive volume of today’s fast-growing networks. We propose a general
framework for designing external-memory algorithms for maximal clique enumeration in large graphs. The
general framework enables maximal clique enumeration to be processed recursively in small subgraphs
of the input graph, thus allowing in-memory computation of maximal cliques without the costly random
disk access. We prove that the set of cliques obtained by the recursive local computation is both correct
(i.e., globally maximal) and complete. The subgraph to be processed each time is defined based on a set of
base vertices that can be flexibly chosen to achieve different purposes. We discuss the selection of the base
vertices to fully utilize the available memory in order to minimize I/O cost in static graphs, and for update
maintenance in dynamic graphs. We also apply our framework to design an external-memory algorithm for
maximum clique computation in a large graph.

Categories and Subject Descriptors: G.2.2 [Discrete Mathematics]: Graph Theory—Graph algorithms

General Terms: Algorithms, Experimentation, Performance

Additional Key Words and Phrases: Maximal clique enumeration, massive networks, scale-free networks,
dynamic graphs, H*-graph, h-index

ACM Reference Format:
Cheng, J., Ke, Y., Fu, A. W.-C., Yu, J. X., and Zhu, L. 2011. Finding maximal cliques in massive networks.
ACM Trans. Datab. Syst. 36, 4, Article 21 (December 2011), 34 pages.
DOI = 10.1145/2043652.2043654 http://doi.acm.org/10.1145/2043652.2043654

1. INTRODUCTION

Maximal clique enumeration [Akkoyunlu 1973; Bron and Kerbosch 1973] is a long-
standing problem in graph theory. It is closely related to a number of fundamental graph
problems, such as maximal independent sets (or minimal vertex covers) [Tsukiyama
et al. 1977], graph coloring [Byskov 2003], maximal common induced subgraphs
[Koch 2001], maximal common edge subgraphs [Koch 2001], etc. Its significance is
not just limited to graph theory but also in numerous applications in various real-
world networks, such as social network analysis [Faust and Wasserman 1995], hier-
archy detection through email networks [Creamer et al. 2007], study of structures in

This work is supported in part by the AcRF Tier-1 Grant (M52020092) from Ministry of Education of
Singapore, RGC Direct Grant for Research 2050483, and RGC CUHK No. 419008.
Authors’ addresses: J. Cheng, School of Computer Engineering, Nanyang Technological University,
Singapore; Y. Ke (corresponding author), A. W.-C. Fu and J. X. Yu, The Chinese University of Hong Kong,
New Territories, Hong Kong; email: ypke@se.cuhk.edu.hk; L. Zhu, Data Mining Department, Institute for
Infocomm Research, Singapore.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2011 ACM 0362-5915/2011/12-ART21 $10.00

DOI 10.1145/2043652.2043654 http://doi.acm.org/10.1145/2043652.2043654

ACM Transactions on Database Systems, Vol. 36, No. 4, Article 21, Publication date: December 2011.

21:2 J. Cheng et al.

behavioral and cognitive networks [Bernard et al. 1979], statistical analysis of financial
networks [Boginski et al. 2005], clustering in dynamic networks [Stix 2004], the detec-
tion of emergent patterns in terrorist networks [Berry et al. 2004], as well as various
applications in computational biology [Abu-Khzam et al. 2005], including the detec-
tion of protein-protein interaction complex [Zhang et al. 2008] and clustering protein
sequences [Mohseni-Zadeh et al. 2004].

Algorithms for maximal clique enumeration have been extensively studied over the
decades. The optimal worst-case time complexity of in-memory algorithms for general
graphs is shown to be O(3n/3) recently by Tomita et al. [2006], where n is the number
of vertices in the input graph. The worst-case time complexity is derived based on
the number of maximal cliques in a general graph in the worst case. In practice,
however, the number of maximal cliques in real graphs is significantly smaller than
the theoretical worst-case bound, which is especially true for those massive real-world
networks that are sparse. Therefore, despite that the problem is NP-hard theoretically,
many algorithms [Akkoyunlu 1973; Bron and Kerbosch 1973; Tsukiyama et al. 1977;
Kose et al. 2001; Gouda and Zaki 2001; Koch 2001; Makino and Uno 2004; Stix 2004;
Abu-Khzam et al. 2005; Tomita et al. 2006; Wan et al. 2006; Cazals and Karande 2008;
Modani and Dey 2008; Du et al. 2009; Schmidt et al. 2009] have been proposed in
the past to solve this problem and these algorithms are shown to be fast running in
real-world graphs. Many of these proposed algorithms have also been applied to solve
other practical problems in different application domains, such as the ones we listed
earlier [Bernard et al. 1979; Faust and Wasserman 1995; Koch 2001; Berry et al. 2004;
Mohseni-Zadeh et al. 2004; Stix 2004; Abu-Khzam et al. 2005; Boginski et al. 2005;
Creamer et al. 2007; Zhang et al. 2008].

Although many practical algorithms have been proposed, these existing algorithms
all fall into the category of in-memory algorithms. The best existing in-memory algo-
rithms require space that is asymptotically linear in the size of the input graph. Un-
fortunately, many real-world networks have grown exceedingly large in recent years
and are continuing to grow at a steady rate. For example, the Web graph has over
1 trillion Web pages (by Google in 2008), most social networks (e.g., Facebook, MSN)
have millions to billions of users, many citation networks (e.g., DBLP, Citeseer) have
millions of publications, other networks such as phone-call networks, email networks,
stock-market networks, etc., are also massively large.

For processing such large graphs, external-memory algorithms offer a possible re-
course; however, designing such an algorithm is fraught with difficulties. Maximal
clique computation accesses vertices in a rather arbitrary manner. This potential ran-
dom access requirement makes it difficult to divide the graph and process it in main
memory in a part-by-part manner and perhaps suggests the reason for the current
prevalence in in-memory algorithms for tackling this problem.

In this article, we develop an External-Memory algorithm for Maximal Clique
Enumeration, called EmMCE. Our work focuses on the broad class of sparse graphs
and in particular, scale-free graphs [Newman 2003; Dorogovtsev and Mendesand 2003],
whose degree distribution follows a power law.

Since maximal clique computation requires random access to different parts of a
large graph, it is a great challenge to divide the graph into smaller parts and process
one part at a time, because either the result may be incorrect and incomplete, or it
incurs huge cost on merging the results from different parts. To this end, we propose
the notion of B∗-graph, which is a special subgraph that enables the computation of
maximal cliques locally while ensuring the global correctness of the result computed.
Our algorithm EmMCE recursively constructs the B∗-graph and computes the maximal
cliques from the B∗-graph. We prove both the correctness and the completeness of the
result computed by EmMCE. We further introduce a special version of B∗-graph, which

ACM Transactions on Database Systems, Vol. 36, No. 4, Article 21, Publication date: December 2011.

Finding Maximal Cliques in Massive Networks 21:3

is applied for efficient update maintenance of maximal cliques in dynamic graphs as
well as for computing the maximum clique from a large graph.

Extensive experiments verify that our algorithm efficiently enumerates maximal
cliques in large networks that are too expensive to be processed by the existing in-
memory algorithms, while achieving comparable performance as an in-memory algo-
rithm when memory is sufficient. The results also show that our algorithm is efficient
for update maintenance in dynamic networks. Finally, we show that our external-
memory algorithm for maximum clique computation is significantly more efficient than
its in-memory counterpart for both small and large networks.

Organization. The remaining part of this article is organized as follows. Section 2 for-
mally defines the problem and gives the basic notations. Section 3 describes the frame-
work of an in-memory algorithm and our solution framework. Section 4 introduces
the B∗-graph. Section 5 discusses in details the computation of the global maximal
cliques from the B∗-graph. Section 6 gives the overall algorithm. Section 7 discusses
the selection of the base vertex-set B. Section 8 discusses the update maintenance in
dynamic networks. Section 9 presents the algorithm for maximum clique computation.
Section 10 reports the experimental results. Section 11 discusses the related work.
Section 12 concludes.

2. NOTATIONS AND PROBLEM DEFINITION

Let G = (V, E) be an undirected and unlabeled graph. We define n = |V | and m = |E|.
Let b is the disk block size. In this article, we focus on sparse graphs, where m < (b · n).
For large sparse graphs, random disk access is prohibitively expensive since data
transfer from/to disk is in blocks, while the exact amount of data used for maximal
clique computation is much less than the amount of data transferred for each random
access.

We define the size of G, denoted as |G|, as |G| = m. Given a subset of vertices S ⊆ V , we
define the induced subgraph of G by S as GS = (VS = S, ES = {(u, v) : u, v ∈ S, (u, v) ∈
E}). We define the set of neighbors of a vertex v in G as nb(v) = {u : (u, v) ∈ E}, and the
degree of v in G as d(v) = |nb(v)|. Similarly, we define nb(v, GS) = {u : (u, v) ∈ ES} and
d(v, GS) = |nb(v, GS)|.

A clique in G is a subset of vertices, C ⊆ V , such that the induced subgraph of G by
C is a complete graph. C is called a maximal clique (max-clique for short) in G if there
exists no clique C ′ in G such that C ′ ⊃ C.

The problem of Maximal Clique Enumeration (MCE) is

given a graph G, find the set of all maximal cliques in G.

In this article, we solve the problem of MCE for large scale-free graphs, which is defined
as

given a large scale-free graph G, find the set of all maximal
cliques in G with bounded memory usage.

Table I shows the notations used throughout the article.

3. IN-MEMORY ALGORITHM AND OUR SOLUTION FRAMEWORK

We first briefly discuss a general framework of existing in-memory algorithms for max-
clique enumeration, explain the problem and challenge when the input graph is too
large to fit in main memory, and then outline the framework of our solution.

3.1. In-Memory Algorithm Framework

Algorithm 1 sketches an in-memory algorithm for max-clique enumeration. The al-
gorithm starts from a single vertex v ∈ V and grows into larger cliques by checking

ACM Transactions on Database Systems, Vol. 36, No. 4, Article 21, Publication date: December 2011.

21:4 J. Cheng et al.

Table I. Notations

Symbol Description
n Number of vertices in a graph G = (V, E)
m Number of edges in a graph G = (V, E)
b Disk block size

|G| Size of G, defined as |G| = |E| = m
GS Induced subgraph of G by a set of vertices S

nb(v); nb(v, GS) The set of neighbors of a vertex v in G / GS
d(v); d(v, GS) The degree of v in G / GS

M The set of maximal cliques in the whole graph G
B Base vertex-set; a set of base vertices

Bnb Neighbor vertex-set of B; Bnb = {v : v ∈ (nb(u) \ B), u ∈ B}
B+ Extension vertex-set of B; B+ = B∪ Bnb

GB ; GB+ B-graph / B+-graph; the induced subgraph of G by B / B+
GB∗ B∗-graph; GB∗ = (B+, EBB ∪ EBBnb)
MX The set of X-max-cliques in GX, X can be B∗, B+, or B
TB∗ B∗-max-clique tree; a prefix-tree to keep MB∗

C=(CB ∪ CBnb
) For a clique C in GB+ : CB=(C ∩ B); CBnb

=(C ∩ Bnb)
comNB(X) The set of common B-neighbors of the vertices in X,

where X is a clique in GB
maxCL(S) The set of all max-cliques in GS

M1, M2, M3 Three disjoint subsets of MB+ , defined in Lemmas 5.6-5.10
X A set of “B” parts used to form cliques in M3, see Eq. (1)

EXT(C) A set of B-neighbors used to extend C ∈ X , see Eq. (2)
hmax The h-index defined for a graph G

H The set of H-vertices of G; ∀v ∈ H, d(v) ≥ hmax

ALGORITHM 1: ImMCE
Input: a graph G = (V, E)
Output: the set of max-cliques, M, in G

1. M ← ∅;
2. for each vertex v ∈ V do
3. C ← {v};
4. S ← {u : u ∈ nb(v), u v}; /∗ u v: u is ordered after v ∗/
5. ImMCEstep(C, S);
6. return M;

whether v’s neighbors are interconnected. In line 4 we consider only a subset S of nb(v),
which are the neighbors of v that are ordered after v. This is because the neighbors
that are ordered before v have already been processed (we assume that in line 2 the
vertices in V are processed by an order, i.e., v is processed before u if u v). Then,
the algorithm invokes Procedure 2 to grow C, which is initialized as {v}, by checking
the interconnection of the vertices in S.

Procedure 2 first tests if S is empty. An empty S indicates that C cannot grow bigger;
we then check if C is indeed maximal before we include it in M. If S is not empty, the
algorithm (line 4) first checks if (C∪S), which is the largest clique that C can potentially
grow to, is maximal. The algorithm continues only if (C ∪ S) is maximal, and it grows
C by considering every vertex u ∈ S. The algorithm obtains Su, a subset of vertices
in S that are u’s neighbors (line 6). Essentially, Su contains the common neighbors of
the vertices in (C ∪ {u}). Then, the algorithm recursively invokes Procedure 2 to grow
C = (C ∪{u}) by checking the interconnection of the vertices in Su, until C can no longer
grow.

Algorithm 1 in effect constructs a search tree. Most existing algorithms [Bron and
Kerbosch 1973; Gouda and Zaki 2001; Koch 2001; Tomita et al. 2006; Cazals and

ACM Transactions on Database Systems, Vol. 36, No. 4, Article 21, Publication date: December 2011.

Finding Maximal Cliques in Massive Networks 21:5

Fig. 1. An example of random access to vertices.

PROCEDURE 2: ImMCEstep(C, S)
1. if(S = ∅)
2. if(C is maximal)
3. M ← M ∪ {C};
4. else if(C ∪ S is maximal)
5. for each u ∈ S do
6. Su ← (S ∩ nb(u));
7. C ← (C ∪ {u});
8. ImMCEstep(C, Su);
9. C ← (C\{u}));

Karande 2008; Modani and Dey 2008; Du et al. 2009; Schmidt et al. 2009] for computing
max-cliques essentially construct a search tree in a similar way as does Algorithm 1,
although different algorithms have their own ways of pruning unnecessary searches
and performing the maximality checking (lines 2 and 4 of Procedure 2).

As we can see in lines 5–6 of Procedure 2, the in-memory algorithm requires access
to the neighbor sets of the vertices in S (i.e., nb(u)), which may scatter in different
locations in the graph. When the input graph is too large to fit in main memory, this
random access of vertices can lead to extremely high I/O cost and severely degrade
the performance of the in-memory algorithm. We illustrate this problem using the
following example.

Example 3.1. Figure 1 gives an example graph G which contains 13 vertices and
25 edges. Assume that the vertices are ordered in the alphabetic order. Then, according
to Algorithm 1, the first max-clique to be enumerated is C = {a, b, c, w, x}. During the
enumeration, the algorithm needs to access nb(a), nb(b), nb(c), nb(w) and nb(x). If the
graph cannot fit in main memory and these neighbor sets are stored in different blocks
on disk, the algorithm requires many random accesses to retrieve the neighbor sets into
main memory. For example, if the graph is stored in its adjacency list representation
and the adjacency lists are stored on disk in the order of the vertices, then at least
nb(w) and nb(x) are not stored sequentially with nb(a), nb(b), and nb(c), and random
disk access is needed assuming that they are in different disk blocks. In a large graph,
vertices may have edge connection with vertices in arbitrary locations in the graph.
In this situation, the amount of random access in the entire process of max-clique
enumeration is huge.

3.2. Our Solution Framework

To avoid random access to arbitrary vertices in the graph, we design an algorithm that
recursively computes max-cliques in a subgraph of G that fits in main memory. We
outline the framework of our algorithm as follows.
—Each recursive step:

(1) Extract a subgraph G′ from G, such that |G′| < M (M is memory size);
(2) Compute the set of local max-cliques in G′;

ACM Transactions on Database Systems, Vol. 36, No. 4, Article 21, Publication date: December 2011.

21:6 J. Cheng et al.

(3) Obtain and output a subset of global max-cliques from the local max-cliques by
linking G′ to G;

(4) Remove G′ from G.
—Repeat the recursive step until G becomes empty.

The main idea of our algorithm is to recursively divide the graph and compute the
max-cliques in each local subgraph G′ separately. The concept is simple but there are
significant challenges in choosing an appropriate subgraph G′ and linking the compu-
tation from G′ to the other part of G, while ensuring the correctness and completeness
of the final result, and at the same time achieving low I/O complexity.

4. SEMI-EXTENSION SUBGRAPH

In this section, we introduce the concept of semi-extension subgraph, which serves as
the local subgraph G′ processed at each recursive step. This concept plays an essential
role in enabling max-clique computation with bounded memory usage.

We start by defining a set of base vertices, namely the base vertex-set.

Definition 4.1 (Base Vertex-Set). Given a graph G = (V, E), the base vertex-set,
denoted by B, is a subset of vertices selected from V , that is, B ⊆ V . The vertices in B
are called base vertices.

The base vertices are used in our algorithm as the seeds for max-clique enumeration
at each recursive step. A set of base vertices are first selected at each step. Based on
these seeds, we then obtain a subgraph, from which all max-cliques consisting of the
seeds are computed. In this way, we can recursively select disjoint sets of base vertices
for max-clique enumeration, until all vertices in V are selected. Thus, the use of the
base vertex-sets not only enables the local computation of max-cliques in main memory,
but also ensures the completeness of the final global result.

The base vertex-set B can be randomly selected from V or selected according to a
certain criterion. We delay the discussion on the selection of B to Section 7. For now,
let us assume that we are given a base vertex-set B. We now discuss how to obtain a
local subgraph from B for max-clique enumeration. We first define the neighbor and
extension of a base vertex-set.

Definition 4.2 (Neighbor and Extension Vertex-Sets). Given a graph G = (V, E) and
a base vertex-set B, we define the following two types of vertex-sets.

—The neighbor vertex-set of B, denoted by Bnb , is defined as Bnb = {v : v ∈ (nb(u)\B),
u ∈ B}.

—The extension vertex-set of B, denoted by B+, is defined as B+ = B∪ Bnb .

We also call a base vertex u ∈ B a B-vertex, and a vertex v ∈ Bnb a neighbor vertex or a
B-neighbor.

Intuitively, in Definition 4.2 we have a base vertex-set B, from which we extend to
their neighbors Bnb . Then, we obtain B+ as the union of B and Bnb , where we use the
“+” sign to indicate the extension from the B-vertices to the B-neighbors.

With these vertex-sets, we define their corresponding subgraphs as follows.

Definition 4.3 (Base, Extension, and Semi-Extension Subgraphs). Given a graph
G = (V, E) and a base vertex-set B, we define the following three types of subgraphs.

—The base subgraph, denoted by GB, is defined as the induced subgraph of G by B. We
also call GB the B-graph.

ACM Transactions on Database Systems, Vol. 36, No. 4, Article 21, Publication date: December 2011.

Finding Maximal Cliques in Massive Networks 21:7

Fig. 2. A semi-extension subgraph and related concepts.

—The extension subgraph, denoted by GB+ , is defined as the induced subgraph of G by
B+. We also call GB+ the B+-graph.

—The semi-extension subgraph, denoted by GB∗ , is defined as GB∗ = (B+, EBB ∪ EBBnb
),

where EBB = {(u, v) : u, v ∈ B, (u, v) ∈ E} and EBBnb
= {(u, v) : u ∈ B, v ∈ Bnb, (u, v) ∈

E}. We also call GB∗ the B∗-graph.

Intuitively, the B∗-graph is a graph that “lies” between the B-graph and the B+-
graph. The B∗-graph is the same as the B+-graph except that the B∗-graph does not
contain the edges between the B-neighbors. In other words, the B∗-graph contains only
those edges incident to at least one B-vertex. It is easy to see that GB ⊆ GB∗ ⊆ GB+ .
The first equality holds when Bnb = ∅ and the second equality holds when there is no
edge between the B-neighbors in G.

We use the following example to illustrate these basic concepts.

Example 4.4. Figure 2 gives an example graph G, which contains 13 vertices and
25 edges. Let B = {a, b, c, d, e} be the set of B-vertices selected from G. The set of B-
neighbors is thus Bnb = {r, s, w, x, y, z}, and we have B+ = {a, b, c, d, e, r, s, w, x, y, z}.
The two vertices q and t are not in B+ since they are not incident to any vertex in
B. The B-graph consists of the shaded vertices and bold edges in Figure 2, which is
the induced subgraph of G by B. The B+-graph contains all edges in G except for the
two edges incident to q and t. Finally, the B∗-graph contains all edges in the B+-graph
except for the edges between the B-neighbors, that is, (w, x), (s, y), and (r, z).

We have just introduced three types of subgraphs of a graph G with respect to a base
vertex-set B. In our work, we use the B∗-graph as the local subgraph processed at each
recursive step for max-clique enumeration. In the following, we analyze the suitability
of each of the three types of subgraphs for max-clique enumeration and explain why
we choose the B∗-graph.

4.1. Why Semi-Extension Subgraph?

First of all, we find that the B-graph GB is not suitable to be used for max-clique
enumeration at each recursive step of our algorithm. The main problem with GB is
that it only gives the edge connection among the vertices in B. However, the vertices
in B may form cliques with vertices in other parts of G rather than in GB alone. Thus,
max-clique enumeration based on GB, with respect to a chosen B, at each recursive step
may not only miss a large number of max-cliques but also output false max-cliques,
that is, nonmaximal cliques. For example, given GB in Figure 2, we compute two max-
cliques {a, b, c} and {b, c, d, e}. However, {a, b, c} is not maximal and we miss the real
max-cliques {a, b, c, w, x} and {a, c, y} since the B-vertices are not to be revisited after
we finish this step.

Next, we consider the B+-graph GB+ . We first define the notion of B+-max-cliques as
follows.

Definition 4.5 (B+-Max-Clique). A B+-max-clique is a max-clique in GB+ that con-
sists of at least one B-vertex. The set of all B+-max-cliques is denoted by MB+ .

ACM Transactions on Database Systems, Vol. 36, No. 4, Article 21, Publication date: December 2011.

21:8 J. Cheng et al.

The following lemma states that a B+-max-clique locally maximal in GB+ is also
globally maximal in G.

LEMMA 4.6. A B+-max-clique is also a max-clique in G.

PROOF. Proof by contradiction. Let C be a B+-max-clique and u be a B-vertex in C.
Suppose that C is not maximal in G, that is, there exists a max-clique C ′ in G such
that C ′ ⊃ C. Then, C ′ must contain some vertex v, where v /∈ B+ (otherwise C ′ must be
maximal in GB+ and C is not). However, v /∈ B+ implies that v is not connected with u,
which contradicts that C ′ is a clique. Therefore, C must be also maximal in G.

Unlike the case with the B-graph, Lemma 4.6 ensures that the B+-max-cliques
computed from the B+-graph are real max-cliques in G, although we still need to deal
with the completeness of the result. However, as we mentioned earlier, in this work we
use the B∗-graph instead of the B+-graph. There are a few disadvantages of using the
B+-graph related to both space and time efficiency as follows.

First, since the B+-graph GB+ keeps all connections among the vertices in B+, it is
often too large to be put in main memory, unless B is small. And if B is small, our
algorithm needs many recursions to complete the max-clique enumeration since each
recursive step can only process a small number of vertices. This would result in many
scans of the graph G from disk, which is very time consuming and I/O inefficient.

Compared with the B+-graph, the B∗-graph is much smaller and therefore we
can cover a much larger base vertex-set each time. The size of GB+ is bounded by
(
∑

v∈B+ d(v)), while the size of GB∗ is bounded by (
∑

v∈B d(v)). If B is randomly selected
from V , then the bound on |GB+| can be estimated as (|B|d2

avg) while the bound on
|GB∗ | is only (|B|davg), where davg is the average degree of the vertices in G. For many
real-world networks that are scale-free [Newman 2003; Dorogovtsev and Mendesand
2003], a more detailed analysis on |GB+| and |GB∗ | is given in Sections 7.2.2 and 7.2.3.
In short, the size of GB+ can be significantly larger than that of GB∗ .

Second, the B+-graph cannot be safely removed from the input graph without jeopar-
dizing the completeness of the final result. For example, removing the B+-graph from
the graph given in Example 4.4 will miss the max-clique {q, s} from the final result. On
the contrary, the B∗-graph can be safely removed from the input graph at each recur-
sive step to save the I/O cost for future max-clique computation, without compromising
the completeness of the final result. We discuss how to compute the max-cliques from
the B∗-graph, as well as proving the correctness and completeness of the result, in
Section 5.

Third, some edges in B+-graph may not be relevant to the computation of max-cliques
at the current recursive step. Thus, loading them into main memory incurs extra I/O
cost, while it may also lead to unnecessary computation and waste both CPU and
memory resources.

5. COMPUTATION OF MAXIMAL CLIQUES FROM A LOCAL SUBGRAPH

In this section, we discuss how we compute the set of maximal cliques from the extracted
subgraph GB∗ , which is the key step to our external-memory algorithm.

5.1. Local Max-Cliques: the B*-Max-Cliques

We start by first defining the notion of B∗-max-cliques, which are the local max-cliques
in the B∗-graph.

Definition 5.1 (B∗-Max-Clique). A B∗-max-clique is a max-clique in GB∗ . We denote
the set of all B∗-max-cliques by MB∗ .

The following lemma states two properties of B∗-max-cliques.

ACM Transactions on Database Systems, Vol. 36, No. 4, Article 21, Publication date: December 2011.

Finding Maximal Cliques in Massive Networks 21:9

LEMMA 5.2. The following statements of B∗-max-clique are true:

(1) A B∗-max-clique contains at least one B-vertex.
(2) A B∗-max-clique contains at most one B-neighbor.

PROOF. Since each B-neighbor in GB∗ is connected to at least one B-vertex and there is
no edge between any two B-neighbors in GB∗ , a B∗-max-clique containing a B-neighbor
must also contain at least an incident B-vertex, which proves the first statement. Note
that a single B-neighbor v cannot form a max-clique in GB∗ since there exists a larger
clique that consists of v and the B-vertex(es) v is connected to. The second statement
holds since there is no edge among the B-neighbors.

We next present a data structure that we use to keep the set of B∗-max-cliques. Since
two cliques may share common vertices, we define a prefix-tree structure to represent
common vertices in the cliques as common paths.

Definition 5.3 (B∗-max-clique tree). Given the B∗-graph GB∗ of a graph G, let ≺ be
a total order on B+, where ∀u ∈ B and ∀v ∈ Bnb , u ≺ v. The B∗-max-clique tree, TB∗ , of
GB∗ is a prefix tree defined as follows.

—The root of TB∗ is a virtual vertex λ, where ∀v ∈ B+, λ ≺ v.
—The children of a vertex in TB∗ are ordered by ≺.
—All vertices in a root-to-leaf path in TB∗ are ordered by ≺.
—The set of root-to-leaf paths in TB∗ has a one-to-one correspondence to the set of B∗-

max-cliques. A root-to-leaf path 〈λ, u, . . . , v〉 corresponds to a B∗-max-clique {u, . . . , v}.
We define ≺ by simply assigning each vertex a unique ID and ordering them by their

IDs, where the ID of a B-vertex is always smaller than that of a B-neighbor.
By Definition 5.3, we have the following lemma.

LEMMA 5.4. The following statements of TB∗ are true:

(1) A B-neighbor can only be a leaf in TB∗ .
(2) All children of λ are B-vertices.

PROOF. Lemma 5.2 states that a B∗-max-clique contains at most one B-neighbor. By
the definition of the order ≺ and the tree TB∗ , a B-neighbor can only be a leaf in TB∗ .

Similarly, all children of λ are B-vertices since a B∗-max-clique contains at least one
B-vertex as stated in Lemma 5.2 and all B-vertices are ordered before B-neighbors in
a root-to-leaf path in TB∗ .

Most existing in-memory algorithms for computing max-cliques can be modified with
small overhead to compute B∗-max-cliques from GB∗ by constructing a TB∗ . For example,
the search tree constructed by Algorithm 1 is almost a B∗-max-clique tree. We do not
go into the details of these existing algorithms, but highlight two improvements that
we can make by employing the unique properties of TB∗ .

Given a path p = 〈λ, u, . . . , v〉 in TB∗ , let S be the set of vertices that can be used to
potentially grow p from v. If S ⊆ Bnb , by Statement 1 of Lemma 5.4, we can directly
create S as the set of children of v. Second, unlike a normal prefix tree or a backtracking
search tree, by Statement 2 of Lemma 5.4, we only need to consider B-vertices when
creating the children of λ. These two improvements can be a huge save of unnecessary
checkings and comparisons since |B| � |Bnb | in most cases.

5.2. From B*-Max-Cliques to Global Max-Cliques

A B∗-max-clique C may not be a real max-clique in G; that is, C is maximal locally
in GB∗ but may not be maximal globally in G. In this subsection, we discuss how we
compute the global max-cliques from the B∗-max-cliques.

ACM Transactions on Database Systems, Vol. 36, No. 4, Article 21, Publication date: December 2011.

21:10 J. Cheng et al.

The key is to compute the set of B+-max-cliques, MB+ , from TB∗ . Our result is based
on the following theorem.

THEOREM 5.5. Let M be the set of max-cliques in G. Let M0 be the set of max-cliques
in G that consist of at least a B-vertex, that is, M0 = {C : C ∈ M, C ∩ B �= ∅}. Then,
MB+ = M0.

PROOF. First, Lemma 4.6 shows that MB+ ⊆ M0. Next, ∀C ∈ M0, there exists a
vertex u ∈ (C ∩ B). Since C is a clique, for any other vertex v in C such that v �= u, we
have v and u are connected. Since u ∈ B, we have either v ∈ B or v ∈ Bnb , meaning that
all vertices in C are in B+. Therefore, we have C ∈ MB+ and hence M0 ⊆ MB+ . Thus,
MB+ = M0.

Theorem 5.5 is important because it enables us to compute a subset of M separately
from a subgraph of G, output it, and move on to computing another subset of M for
another subgraph in the remaining part of G, and so on recursively until we finish the
whole graph.

5.2.1. Categorizing B+-Max-Cliques. We now move on to devise a way to compute the B+-
max-cliques from TB∗ . We first define some notation used in the subsequent discussions.

Given a clique C in GB+ , we define CB = (C ∩ B) and CBnb
= (C ∩ Bnb). Since C is a

clique in GB+ and B+ = (B ∪ Bnb), we have C = (CB ∪ CBnb
). Let MB be the set of all

max-cliques in GB. Given a clique X in GB, we define the set of common B-neighbors of
the vertices in X as comNB(X) = {v : v ∈ Bnb,∀u ∈ X, (u, v) ∈ E}. In particular, if CB is a
path in TB∗ , comNB(CB) defines the set of B-neighbor leaves sharing the same path CB.
Finally, given a set of vertices S, we define maxCL(S) to be the set of all max-cliques
in GS, where S ⊆ V and GS is the induced subgraph of G by S.

With the preceding notations, we identify three disjoint categories of B+-max-cliques
as follows. Let C = (CB ∪ CBnb

) be a B+-max-clique.

(1) “CBnb
= ∅”: the set of B+-max-cliques in this category is defined as M1

B+ = {C : C ∈
MB+ , CBnb

= ∅}.
(2) “CBnb

�= ∅ and CB ∈ MB”: the set of B+-max-cliques in this category is defined as
M2

B+ = {C : C ∈ MB+ , CBnb
�= ∅, CB ∈ MB}.

(3) “CBnb
�= ∅ and CB /∈ MB”: the set of B+-max-cliques in this category is defined as

M3
B+ = {C : C ∈ MB+ , CBnb

�= ∅, CB /∈ MB}.
Recall that our objective in this subsection is to obtain MB+ from TB∗ , or equivalently

from MB∗ . Therefore, in the remaining part of this subsection, we first define three sets
of cliques M1, M2, and M3 that can be obtained from MB∗ . We then prove that M1, M2,
and M3 are sound and complete with respect to the earlier-defined three categories of
B+-max-cliques, respectively. We further prove that M1, M2, and M3 give the complete
set of MB+ in Theorem 5.12. Finally, we show how MB+ can be computed from TB∗ in
Theorem 5.14.

We first define M1. Intuitively, M1 contains all max-cliques in MB∗ that are also in
MB+ .

LEMMA 5.6. Let M1 = MB ∩ MB∗ . Then, M1 = M1
B+ .

PROOF. The proof is given in the appendix.

Essentially, each C ∈ M1 corresponds to a root-to-leaf path in TB∗ , where the leaf is a
B-vertex. Thus, M1 can be readily obtained from TB∗ . We further illustrate the concept
by the following example.

ACM Transactions on Database Systems, Vol. 36, No. 4, Article 21, Publication date: December 2011.

Finding Maximal Cliques in Massive Networks 21:11

λ

Fig. 3. TB∗ of G in Figure 2.

Example 5.7. Figure 3 gives the B∗-max-clique tree TB∗ (with the B-vertices shaded)
computed from the GB∗ of the example graph G in Figure 2. Each root-to-leaf path in
TB∗ represents a B∗-max-clique and thus there are totally eight B∗-max-cliques. The
MB consists of only two cliques {a, b, c} and {b, c, d, e} (MB = {abc, bcde} for short),
which can be obtained from TB∗ too.

The set of B+-max-cliques obtained from the GB+ in Figure 2 is MB+ =
{abcwx, acy, bcde, cey, drz, esy}.

By Lemma 5.6, M1 = (MB ∩MB∗) = {bcde}, which is the only root-to-leaf path in TB∗

with a non-B-neighbor leaf.

We now define M2. Intuitively, for each clique C in M2, its B-vertices (i.e., CB) are
in MB; or equivalently, its B-vertices form a max-clique in GB.

LEMMA 5.8. Let M2 = {C1 ∪ C2 : C1 ∈ (MB\M1), C2 ∈ maxCL(comNB(C1))}. Then,
M2 = M2

B+ .

PROOF. The proof is given in the appendix.

Essentially, the CB of each C ∈ M2 is locally maximal in GB. According to Lemma 5.8,
we can compute M2 as follows. For each path in TB∗ that corresponds to each C1 ∈ MB
and has at least a B-neighbor leaf (since C1 ∈ (MB\M1)), compute maxCL(comNB(C1)),
and output C = (C1 ∪ C2) for each C2 ∈ maxCL(comNB(C1)). We will explain
how to check whether a path in TB∗ corresponds to a clique in MB later in this
section.

We further illustrate the concept by the following example.

Example 5.9. (Continued from Example 5.7) By Lemma 5.8, we have (MB\M1) =
{abc}. Therefore, the C1 in M2 can only be abc. Then comNB(abc) = {w, x}, which
are the common B-neighbor leaves of paths in TB∗ containing abc. Since w and x are
connected in G, we have maxCL(comNB(abc)) = {wx }. And thus M2 = {abcwx}.

Finally, we define M3. Intuitively, for each clique C in M3, its B-vertices form a
clique in GB but the clique is not maximal in GB. This set of B-vertices in C then forms
a max-clique in GB+ together with their common B-neighbors.

We first define two notations, X and EXT (·), which are used in the definition of M3.
The set X contains the candidate vertex-sets that are potentially the CB of some max-
cliques. We enumerate the proper subsets of a max-clique in MB that have at least one
common B-neighbor as

X = {C1 : C1 ⊂ C, C ∈ MB, C1 �= ∅, comNB(C1) �= ∅, and
�C ′

1⊆ C ′, C ′∈ MB, s.t. C1⊂ C ′
1, comNB(C1) = comNB(C ′

1)}. (1)

The last condition ensures that each C1 ∈ X is not subsumed by its proper superset
when forming a clique with the common B-neighbors. This avoids enumerating some
cliques that are not maximal.

ACM Transactions on Database Systems, Vol. 36, No. 4, Article 21, Publication date: December 2011.

21:12 J. Cheng et al.

Then, for each C1 ∈ X , we use EXT(C1) to denote the set of B-neighbors that can be
used to extend C1, that is, to be the CBnb

of some max-cliques. It is defined as

EXT(C1) = {C2 : C2 ∈ maxCL(comNB(C1)), and
�C ′ ∈ M2, s.t. C ′ ⊃ (C1 ∪ C2), and
�C ′′

1 ∈ X , s.t. C ′′
1 ⊃ C1, C2 ∈ EXT(C ′′

1)}. (2)

The last two conditions are for the maximality checking of (C1 ∪ C2) in M2 and X ,
respectively.

LEMMA 5.10. Let M3 = {C1 ∪ C2 : C1 ∈ X , C2 ∈ EXT(C1)}. Then, M3 = M3
B+ .

PROOF. The proof is given in the appendix.

Essentially, each C ∈ M3 differs from a clique in M1 or M2 in that CB is not maximal
in GB. This category of B+-max-cliques is not as straightforward to compute as the first
two categories. We discuss the details in Section 5.2.2.

We further illustrate the concept by the following example.

Example 5.11. (Continued from Examples 5.7 and 5.9) By Lemma 5.10, we have
X = {ac, ce, d, e}. A naive way is to enumerate all proper subsets of each clique in
MB. However, many of them are subsumed by their proper supersets in X or MB.
For example, a is subsumed by ac since comNB(a) = comNB(ac) = {w, x, y}. Then, for
each C1 ∈ X , we compute EXT(C1). For example, considering ac, maxCL(comNB(ac)) =
{wx, y} but EXT(ac) = {y}. Note that wx ∈ maxCL(comNB(ac)) is excluded from EXT(ac)
because acwx is checked to be nonmaximal with respect to abcwx ∈ M2. Similarly,
we have EXT(ce) = {y}, EXT(d) = {rz}, and EXT(e) = {sy}. Thus, by Lemma 5.10,
M3 = {acy, cey, drz, esy}.

We state the completeness and soundness of (M1 ∪ M2 ∪ M3) with respect to the
whole set MB+ in the following theorem.

THEOREM 5.12. MB+ = (M1 ∪ M2 ∪ M3), where M1, M2 and M3 are defined in
Lemmas 5.6–5.10.

PROOF. By the categorization, M1
B+ , M2

B+ and M3
B+ are disjoint and (M1

B+ ∪ M2
B+ ∪

M3
B+) gives exactly MB+ . By Lemmas 5.6–5.10, we have (M1 ∪ M2 ∪ M3) = MB+ .

As an example, it is easy to see from Examples 5.7–5.11 that (M1 ∪ M2 ∪ M3) gives
exactly MB+ .

Now we show that TB∗ (plus the knowledge of the edges between the B-neighbors)
is sufficient to compute MB+ . We only need partial GBnb

but do not keep GBnb
in main

memory. Before we discuss the computation of MB+ from TB∗ , we first show that MB
can be obtained from TB∗ by the following lemma.

LEMMA 5.13. ∀C ∈ MB, there exists a root-to-leaf path p ∈ TB∗ such that C is the set
of B-vertices on p.

PROOF. For each C ∈ MB, let C = {v1, . . . , vk} where v1 ≺ · · · ≺ vk. First, if
comNB(C) = ∅, then there must exist a root-to-leaf path p = 〈λ, v1, . . . vk〉 in TB∗

since C is maximal in GB and the vertices in C have no common B-neighbors. Next, if
comNB(C) �= ∅, that is, ∃u ∈ comNB(C), then p = 〈λ, v1, . . . , vk, u〉 must be a root-to-
leaf path in TB∗ since C is maximal in GB and a B∗-max-clique contains at most one
B-neighbor.

THEOREM 5.14. MB+ can be computed from TB∗ and GBnb
.

ACM Transactions on Database Systems, Vol. 36, No. 4, Article 21, Publication date: December 2011.

Finding Maximal Cliques in Massive Networks 21:13

PROOF. By Lemma 5.13, every C ∈ MB exists in TB∗ . Therefore, MB can be computed
from TB∗ by removing all B-neighbor leaves and checking the maximality of all remain-
ing paths (this can be incorporated into the maximality checking when constructing TB∗

without any extra cost). Thus, ∀C ∈ MB+ , CB can be obtained from TB∗ . On the other
hand, the set of common B-neighbors, comNB(CB), can be obtained from the B-neighbor
leaves in TB∗ . Since comNB(CB) ⊆ Bnb , the corresponding CBnb

can be computed from
the part of GBnb

that gives GcomNB(CB).

5.2.2. Computing B+-Max-Cliques from B*-Max-Cliques. We now discuss the algorithm to
compute M1, M2, and M3, as shown in Algorithm 3.

ALGORITHM 3: Compute-B+-Max-Cliques
Input: TB∗ (and partial GBnb

)
Output: MB+

1. Initialize M1 = M2 = M3 = ∅;
2. for each root-to-leaf path p = 〈λ, v1, . . . , vk〉 in TB∗ do
3. if (vk ∈ B)
4. M1 ← M1 ∪ {(v1, . . . , vk)}; /∗ by Lemma 5.6 ∗/
5. else
6. C1 ← (v1, . . . , vk−1);
7. if (C1 ∈ MB) /∗ by Lemma 5.8 ∗/
8. Compute maxCL(children(vk−1));
9. M2 ← M2 ∪ {C1 ∪ C2 : C2 ∈ maxCL(children(vk−1))};

10. Compute X ; /∗ see Eq. (1) ∗/
11. for each C1 ∈ X do /∗ by Lemma 5.10 ∗/
12. Compute EXT(C1); /∗ see Eq. (2) ∗/
13. M3 ← M3 ∪ {C1 ∪ C2 : C2 ∈ EXT(C1)};
14. return MB+ ← (M1 ∪ M2 ∪ M3);

It is straightforward to obtain both M1 and M2, by performing a Depth-First Search
(DFS) on TB∗ (lines 2–9). We do not store explicitly the set MB and search it to check
whether C1 ∈ MB (line 7). Instead, we mark each vertex u whose root-to-u path forms
a clique in MB when we construct TB∗ . Thus, we only need to check whether vk−1 is
marked in line 7. We explain how to compute maxCL(·) later.

To obtain M3, we first compute X in line 10 as follows. We enumerate all proper
subsets of each C1 ∈ MB in line 7, while checking the conditions defined in X (see
Eq. (1)) to prune the unqualified subsets. The checking of the last condition in X is
similar to the maximality checking when constructing TB∗ . Note that the set comNB(C)
of a clique C can be easily obtained from TB∗ as the set of B-neighbor leaves of the paths
containing C.

Given X , we then compute EXT(C1) for each C1 ∈ X (line 12). The maximality
checking defined in EXT(C1) (see Eq. (2)) is done in the same way as that in X . As for
the computation of maxCL(comNB(C1)), we use an existing in-memory MCE algorithm.
Since comNB(C1) consists of common B-neighbors of all vertices in C1, comNB(C1) is
small and thus it is efficient to compute maxCL(comNB(C1)).

However, in order to compute maxCL(comNB(C1)), we need to know the induced
subgraph GcomNB(C1). Note that once we get TB∗ , we remove GB∗ from main memory.
Thus, we now have more space to keep partial GBnb

. In order to avoid random access to
G in the disk, we do the following. For all B-neighbor leaves in TB∗ ordered by the DFS
traversal, we divide them into k partitions Pi (1 ≤ i ≤ k) such that the adjacency lists
of the B-neighbors in each Pi can fit into main memory. We then read G from the disk

ACM Transactions on Database Systems, Vol. 36, No. 4, Article 21, Publication date: December 2011.

21:14 J. Cheng et al.

ALGORITHM 4: EmMCE
Input: a graph G, recursive step k
Output: the set of max-cliques, M, in G

1. Select a set of base vertices, B, and extract (and remove) GB∗ from G;
2. Construct TB∗ from GB∗ by an existing in-memory MCE algorithm;
3. Delete GB∗ from memory;
4. Compute-B+-Max-Cliques (Alg. 3) from TB∗ ;
5. if (k = 1) /∗ B+-max-cliques are max-cliques by Theorem 5.5 ∗/
6. Store the B+-max-cliques in a hashtable X;
7. Output the B+-max-cliques;
8. else
9. Check the maximality of the B+-max-cliques using X;

10. Output the B+-max-cliques that are globally maximal;
11. Update X;
12. if (G is not empty)
13. EmMCE(G, k + 1);

sequentially and for each v ∈ Bnb, we write (nb(v)\B) into the partition(s) v is in. We
keep the first partition in main memory, while each of the other partitions is written
into consecutive disk pages. In this way, we read a partition (partial GBnb

) into main
memory each time when computing maxCL(comNB(C1)) and avoid random disk access.

6. OUR ALGORITHM: EMMCE

With the foundation established in Section 5, we now present our external-memory
algorithm for maximal clique enumeration, EmMCE, as given in Algorithm 4.

As outlined in Section 3, EmMCE is a recursive algorithm. For each recursive step,
the algorithm starts with the selection of a set of base vertices, B, and the extraction
of GB∗ from G (line 1). While we extract GB∗ from G, we also remove GB∗ from G at the
same time; that is, we remove all the B-vertices and all the edges connected to them
(note that the B-neighbors are still retained in G for the completeness of maximal
clique enumeration). We delay the discussion on how we select B to Section 7. But we
note that the selection of B and the extraction of GB∗ from G can be done in one scan of
G from disk and with linear CPU time complexity.

After extracting GB∗ , we construct TB∗ by an existing in-memory MCE algorithm
as discussed in Section 5.1 (line 2). After obtaining TB∗ , we delete GB∗ to release the
occupied memory (line 3). We then invoke Algorithm 3 to compute the set of B+-max-
cliques MB+ from TB∗ (line 4), as discussed in Section 5.

Now, MB+ is computed and outputted, and GB∗ and TB∗ are discarded. We are ready
to move on to the next recursion to process the remaining part of G. This process
continues until G becomes empty (lines 12–13).

To guarantee the maximality of the cliques, our algorithm performs the following
checking. Consider the first and the second recursive steps. Let B and L be the set of
base vertices at the first and the second recursive steps, respectively. If a clique C is
maximal in GL+ , then C may not be maximal globally in G. This is because there may
exist a clique C ′ ∈ MB+ such that C ′ ⊃ C and C ′

Bnb
= C. We remark that if a clique C ′

is maximal in GB+ , then C ′ is also maximal in G, because B only has connection with
Bnb . This may not be true for a clique C in GL+ though, because L may have connection
with both B and Lnb .

We address this problem as follows. First at the first recursive step, for each C ∈ MB+ ,
if |CBnb

| > 1, we keep CBnb
in a hashtable X (lines 5–7). Then for each of the following

recursive steps (lines 8–11), let C ′ be a B+-max-clique computed in the current recursive

ACM Transactions on Database Systems, Vol. 36, No. 4, Article 21, Publication date: December 2011.

Finding Maximal Cliques in Massive Networks 21:15

step. If |C ′| = 1, then C ′ = {v} is globally maximal if and only if v is an isolated vertex in
the original graph. If |C ′| > 1, we hash C ′ to check if C ′ exists in the hashtable. If C ′ is
not in the hashtable, then C ′ is globally maximal and we also add C ′

Lnb
(if |C ′

Lnb
| > 1) into

the hashtable for the maximality checking in subsequent recursive steps. Otherwise,
C ′ is not globally maximal and we also remove C ′ from the hashtable, since C ′ will not
be computed again in subsequent steps. We also control the number of cliques kept
in the hashtable as follows. At each recursive step except the first one, we delete any
record C currently in the hashtable if ∃v ∈ C such that v is a B-vertex selected at
the current recursive step, because all globally maximal cliques containing v must be
generated at the end of this step (according to Theorem 5.5).

Finally, the set of all max-cliques in an input graph G can be computed by invoking
EmMCE(G, 1). The following theorem proves the correctness of EmMCE.

THEOREM 6.1. The set of max-cliques outputted by EmMCE is sound and complete
with respect to the set of all max-cliques in G.

PROOF. We first prove the soundness. At the first recursive step, the set of B+-max-
cliques is computed in line 4 and outputted directly in line 7 of Algorithm 4. The B+-
max-cliques are proved to be maximal in G in Theorem 5.5. Next, at each subsequent
recursive step, the B+-max-cliques are computed in line 4, and the maximality of the
outputted B+-max-cliques is ensured by the checking in line 9 of Algorithm 4.

We now prove the completeness. At the first step, the set of B+-max-cliques is com-
plete with respect to the max-cliques in G that contain at least one vertex in B (by
Theorem 5.5). Let L be the set of base vertices at the second recursive step. The set of
L+-max-cliques are computed in the same way as at the first recursive step (line 7). This
means that the set of L+-max-cliques is complete with respect to the set of max-cliques
in (G\GB∗) that contain at least one vertex in L. Combining with the B+-max-cliques
(computed from GB∗ at the first step) that contain at least one vertex in L, it gives a
complete set of max-cliques in G that contain at least one vertex in L. Similarly by
recursion, a complete set of max-cliques in G that contain at least one vertex in the
corresponding L is given after each recursive step. Since the recursion terminates when
the graph G becomes empty (i.e., all vertices have been considered to form max-cliques),
the algorithm outputs a complete set of max-cliques in G.

Complexity. Our algorithm needs O(|G|/|GB∗ |) recursions, assuming that the size
of GB∗ selected at each step is approximately the same. At each recursion, we need
to scan G (sequentially) twice, once for selecting B and extracting GB∗ from G (line 1
of Algorithm 4) and once for reading the edges of GBnb

when computing the B+-max-
cliques (line 4 of Algorithm 4). For both scans of G, we require I/O operations as we
read the graph G from disk. Apart from this, we also require I/O operations to write the
B+-max-cliques to disk (lines 7 and 10 of Algorithm 4). The I/O operations are counted
as the number of blocks being read/written from/to disk. Thus, the algorithm requires
O((|G|/|GB∗ |)(|G|/b) + (|M|/b)) I/Os, where b is the block size and O(|M|/b) is the I/O
cost to write the result to disk. Note that the total cost to write/read the partial GBnb

for computing the B+-max-cliques is also bounded by O(|M|/b).
In line 1 of Algorithm 4, we also remove GB∗ from G. Removing GB∗ from G can

be performed at the same time during the sequential reading of G from disk when
we extract GB∗ . Meanwhile, we also need to write the newly updated G back to disk,
which in total requires O(|G|/b) I/Os for each recursion of Algorithm 4. Thus, this write
operation does not change the overall I/O complexity given before. We also note that
the graph G after each recursion becomes smaller after removing GB∗ .

The memory space complexity of EmMCE is O(|GB∗ | + |TB∗ |). For the CPU time
complexity, we compare EmMCE with an existing in-memory MCE algorithm A. Let

ACM Transactions on Database Systems, Vol. 36, No. 4, Article 21, Publication date: December 2011.

21:16 J. Cheng et al.

A(G) denote the algorithm Awhen it is applied directly to the whole graph G. If we only
consider the in-memory operations, the time required for the entire recursive steps in
EmMCE is comparable to that of A(G). This is because Algorithm 3 essentially expands
those paths in TB∗ that would be generated by A(G) as well, while the computation of
each maxCL(comNB(·)) corresponds to the construction of subtrees in the search tree
created by A(G).

7. SELECTION OF BASE VERTEX-SET

The discussions in Sections 5 and 6 assume that the base vertex-set is given. The base
vertex-set can be randomly selected or selected according to a certain criterion. In this
section, we give the details on the selection of the base vertex-set at each recursive
step.

We discuss two strategies of selecting the base vertex-set: one aiming at filling avail-
able main memory for maximal clique enumeration in static graphs, and the other
considering the update maintenance of the set of max-cliques in dynamic graphs.

7.1. Base Vertex Selection by Available Memory

In this selection scheme, we sequentially scan the input graph G to select a vertex v to
include in B, along with nb(v, G) to construct GB∗ , until the available memory assigned
for GB∗ is filled.

Sequentially scanning G to select B and extract GB∗ has the advantage that, for the
whole process of maximal clique enumeration, we only need to scan G once instead
of O(|G|/|GB∗ |) times. That is, we simply select the first k vertices in G as the set of
B-vertices, together with their adjacent list which is essentially GB∗ . The number k is
determined by the available memory. Then, we continue with the next batch of vertices
in G at the next recursion of Algorithm 4. In addition, by sequentially selecting B and
extracting GB∗ , we also do not need to remove GB∗ from G and write the newly updated
G to disk after removing GB∗ , as described in the complexity analysis in Section 6.

More importantly, this selection scheme also naturally allows parallel computation
of maximal clique enumeration. That is, we distribute a B∗-graph (instead of the entire
graph as do in the existing parallel algorithms [Du et al. 2009; Schmidt et al. 2009])
to each computing element for maximal clique enumeration, and yet guaranteeing the
completeness of result.

The size of GB∗ is known after we select B; however, the size of TB∗ requires estimation
since we do not have TB∗ constructed yet at the stage of base vertex selection. We
describe a method for estimating |TB∗ | as follows.

We devise an estimation strategy that borrows the concept of Knuth’s method [Knuth
1975] for estimating the size of a backtracking tree T . Let n(T) be the number of
vertices in T . The idea is to randomly probe a set of paths P in T and estimate n(T) =
AVG p∈P(n(p)), where n(p) is the size of a tree with the same root as p and using p as a
building path. Let p = 〈v1, v2, . . . , vk〉, then n(p) = (1+ f1 + f1 f2 +· · ·+ (f1 · · · fk−2 fk−1)),
where fi is the number of children of vi. In the simple case that T is a complete binary
tree, this method correctly estimates n(T) as (2k−1). It is shown that Knuth’s method
is unbiased and effective in practice [Kilby et al. 2006].

However, Knuth’s method assumes the presence of T so that one can perform random
probing of paths, while TB∗ in our case is not yet constructed. We propose a new method
of probing paths in TB∗ by utilizing its unique properties, without actually constructing
TB∗ . Each time we randomly choose a vertex u ∈ B. We consider u as a child of λ and
attempt to probe randomly a path p from u as follows: we randomly choose a vertex v
from the set of vertices that can be used to potentially grow p from u, and then continue
the process recursively from v until the path p cannot be expanded any more (i.e., p
corresponds to a B∗-max-clique). Since the vertices are ordered and nb(v) is available

ACM Transactions on Database Systems, Vol. 36, No. 4, Article 21, Publication date: December 2011.

Finding Maximal Cliques in Massive Networks 21:17

for every v ∈ B, we can virtually probe a path even though TB∗ does not exist. Thus,
we can compute n(p) as we move along p. To control the number of probing paths in
the process, we limit the total number of probing paths starting from u to be at most k.
Finally, we estimate n(TB∗) by averaging n(p) of all the paths probed.

Our method is simple and yet does not violate the principle of random probing
[Knuth 1975]. Our empirical study shows that it gives a good estimation in practice (see
Table III in Section 10.1).

In the case when the available main memory, M, is smaller than (n(TB∗) + |GB∗ |), we
remove (((n(TB∗)+|GB∗ |−M)/(n(TB∗)+|GB∗ |))|B|) vertices from B, together with their inci-
dent edges from GB∗ . We reestimate n(TB∗) for the smaller GB∗ until (n(TB∗)+|GB∗ |) ≤ M.

7.2. Base Vertex Selection: H-Vertices

In this selection scheme, we select the base vertices by introducing a novel concept of
H-vertices for real-world networks. The H∗-graph with respect to H-vertices is used
for designing an efficient update strategy for the set of max-cliques in dynamic graphs
(details in Section 8).

7.2.1. H-Vertices and H*-Graph. The concept of H-vertices is inspired by the concept of
h-index, which is commonly used to measure the publication quality and productivity
of a scientist, developed by Jorge E. Hirsch in 2005. The h-index is defined as the
maximum h for a scientist who has h publications with at least h citations. These h
publications with at least h citations are identified as the most representative and
important research work of a scientist.

Putting into the context of a graph, it is the maximum h for a graph that has h
vertices (corresponding to the h publications) with at least h edges (corresponding to
at least h citations). We define the “h-index” for a graph as follows.

Definition 7.1 (h-Index for a Graph). Given a graph G = (V, E), the h-index of G,
denoted as hmax, is defined as the maximum h for G that has h vertices with degree of
at least h. Formally, hmax = max{h : ∃S ⊆ V, s.t. |S| = h and ∀v ∈ S, d(v, G) ≥ h}}.

Analogous to the h-index for a scientist, it is easy to see that these hmax vertices with
degree at least hmax represent the most important vertices in G. We put these vertices
into a set H and call them H-vertices.

The set of H-vertices is formally defined as follows.

Definition 7.2 (H-Vertices). Given a graph G = (V, E), the set of H-vertices of G,
denoted as H, is defined as H = {v : v ∈ V, d(v, G) ≥ hmax} such that |H| = hmax, and
∀v ∈ (V \H), d(v, G) ≤ hmax.

Note that there may be multiple vertices that have a degree of hmax. In this case, the
tie is broken arbitrarily.

The following example explains the concept.

Example 7.3. Consider the example graph G given in Figure 2. We have hmax = 5
and the set of H-vertices is H = {a, b, c, d, e}. It can be easily checked in the figure that
all the 5 vertices in H (shaded vertices) have degree of at least 5 and all the remaining
vertices in G have degree of less than 5.

Since H contains the most important vertices in G, we set B = H for selection of the
base vertex-set. To indicate that H is used as the base vertex-set, we replace B by H
in our notations in the discussion of the remainder of this section. Thus, the H∗-graph
of G, that is, GH∗ , is essentially the B∗-graph GB∗ where B = H.

We now show that H and GH∗ can be computed by one scan of G. Algorithm 5
presents the algorithm for computing the set of H-vertices H, together with the set of

ACM Transactions on Database Systems, Vol. 36, No. 4, Article 21, Publication date: December 2011.

21:18 J. Cheng et al.

ALGORITHM 5: Compute-H∗-Graph
Input: G = (V, E).
Output: The set of H-vertices of G, H, and the set of their neighbors, NB H = {nb(v) : v ∈ H}.
1. Set h ← 0 and initialize an empty min-heap, Q;
2. Let (d(v), v,nb(v)) be an element in Q, where d(v) is the key;
3. Denote the minimum key of Q by min;
4. for each v ∈ V do
5. if (h = 0 or (d(v) > h and min > h))
6. insert (d(v), v,nb(v)) into Q;
7. h++;
8. else if (d(v) > h and min = h)
9. delete-min and insert (d(v), v,nb(v)) into Q;

10. return H ← {v : (d(v), v,nb(v)) ∈ Q}
and NB H ← {nb(v) : (d(v), v,nb(v)) ∈ Q};

their neighbors NB H . A min-heap Q is used to keep the H-vertices with their neighbors
using the vertex degree as the key. Lines 4–9 perform a scan on the vertices in the input
graph G to check whether a vertex can be added to Q as a potential H-vertex. A vertex
with degree larger than the current h is either directly inserted to Q in lines 5–7 (when
h can still grow since the min-degree in Q is larger than h) or replace the min-degree
vertex in Q in lines 8–9 (if h is incremented, the min-degree vertex no longer satisfies
the degree requirement and is thus discarded). Finally, the set of vertices kept in Q
is returned as H. After we obtain H and their neighbor sets NB H (i.e., the adjacency
lists), we essentially obtain the H∗-graph.

We prove the correctness of Algorithm 5 as follows.

THEOREM 7.4. Algorithm 5 correctly computes H and GH∗ in O(hmax · log(hmax) + n)
time and O(|GH∗ |) space, and uses O(|G|/b) I/Os, where b is the block size.

PROOF. To prove the correctness, we need to show that: the h computed by Algorithm
5 is equal to hmax. Suppose to the contrary that h < hmax, which implies that there
are hmax vertices with a degree of at least hmax. However, according to Algorithm 5,
these hmax vertices must be inserted into Q at some point, since their degree is greater
than h and the value of h is never decreasing in Algorithm 5. Therefore, h computed
by Algorithm 5 should be at least hmax in this case. On the other hand, h cannot be
larger than hmax since each increment of h (line 7 of Algorithm 5) follows the definition
of H-vertex (line 5). Thus, we have h = hmax.

We have O(hmax) insertions/updates, each taking O(log(hmax)) time, plus n compar-
isons between hmax and d(v) for each v ∈ V . Space is needed to keep H-vertices and
their adjacency lists, which takes O(|GH∗ |) space.

Since each vertex v ∈ V is processed only once in the order of their occurrence in G,
we only need to read G sequentially in blocks from disk once, which requires O(|G|/b)
I/Os.

When we set B = H and GB∗ = GH∗ in Algorithm 4, we need to invoke Algorithm 5
in line 1 of Algorithm 4 at every recursive call of EmMCE. However, as shown in
Theorem 7.4, executing Algorithm 5 requires only one scan of G, or O(|G|/b) I/Os.
Thus, extracting GH∗ by Algorithm 5 has the same I/O complexity as extracting GB∗

as described in the complexity analysis in Section 6, while the CPU overhead incurred
by Algorithm 5 is small compared with the I/O cost. Removing GH∗ from G, however,
requires another scan of G and to write the newly updated G to disk, but the overall
I/O complexity still remains to be the same.

ACM Transactions on Database Systems, Vol. 36, No. 4, Article 21, Publication date: December 2011.

Finding Maximal Cliques in Massive Networks 21:19

In the remainder of this section, we analyze and explain why we use H and GH∗ .

7.2.2. Analysis of H*-Graph. We first examine two important factors: the size of H and
the size of GH∗ .

We first discuss the size of H. Faloutsos et al. [1999] show that for real-world net-
works following a power law degree-distribution, it holds that

d(v) = 1
nR (r(v))R. (3)

In Eq. (3), r(v) is the degree rank of a vertex v, that is, v is the (r(v))-th highest degree
vertex in G, and R is the rank exponent, where R < 0. By Definition 7.2, H is a set of
hmax vertices having degree at least hmax; in other words, the lowest-degree vertex v in
H has a rank of hmax and its degree is at least hmax. Thus, by substituting r(v) by hmax
in Eq. (3) and d(v) should be at least hmax, we have

d(v) = 1
nR hR

max ≥ hmax . (4)

Solving the inequality, we have

hmax ≤ n
R

R−1 . (5)

Faloutsos et al. [1999] show that R is a constant for most real-world networks, which
can be easily measured by plotting the degree distribution of the networks. The typical
value of R found by Faloutsos et al. [1999] is between −0.8 and −0.7. For a graph of
1 million vertices, we have hmax ≤ 464 and therefore |H| ≤ 464 when R = −0.8. The
value of hmax decreases to about 300 when R = −0.7. This shows that the number of
H-vertices in a large real-world network is small.

Next, we estimate the size of GH∗ . By Eq. (3), we have the following upper bound for
|GH∗ |.

|GH∗ | ≤
hmax∑
r=1

(r
n

)R
(6)

The right-hand side of Eq. (6) is the sum of degrees of all the H-vertices. Since the
edges connecting two H-vertices (if there is any) are counted twice, we have the “<”
sign in Eq. (6). The equality holds when there is no edge connecting two H-vertices; in
this case, the H∗-graph consists of hmax “stars”, each centered at an H-vertex.

We can also obtain a lower bound for |GH∗ | as follows.

|GH∗ | ≥
hmax∑
r=1

(r
n

)R
− hmax(hmax − 1)

2
(7)

The lower bound occurs when all H-vertices are pairwise connected. In this case, all
edges connecting two H-vertices are double counted and hence deducting the number
of these edges from the degree sum gives the lower bound of |GH∗ |.

Similarly, we also obtain the size of G, which is half of the degree sum of all vertices
in V , since all edges are counted twice.

|G| = 1
2

n∑
r=1

(r
n

)R
(8)

ACM Transactions on Database Systems, Vol. 36, No. 4, Article 21, Publication date: December 2011.

21:20 J. Cheng et al.

By Eqs. (6)–(8), we have

2
∑hmax

r=1 rR − nRhmax (hmax − 1)∑n
r=1 rR

≤ |GH∗ |
|G| ≤ 2

∑hmax

r=1 rR∑n
r=1 rR

. (9)

For a network with R = −0.7 and 1 million vertices, |GH∗ | is within [12%, 15%] of
the entire network, and the percentage lowers considerably when the network becomes
larger: the ratio is in the range of [8%, 10%] when n increases to 10 million.

With the result of Eq. (9), the amount of memory required for keeping GH∗ is rea-
sonable. Another desirable aspect of the H∗-graph is that the rank exponent in Eq. (5)
is a constant for most real-world networks. This property allows us to even estimate
the size of GH∗ when the network grows, so that we can predict the memory resource
required at a certain point in the future. For many real-world networks, it is possible
to predict the growth of the network based on its past growth pattern, and thus we can
prepare in advance the memory resource required for our computation in the future.

7.2.3. Why H*-Graph? The use of H∗-graph has the following three advantages.

Why not GH or GH+? We first analyze |GH | as follows.

0 ≤ |GH | ≤ hmax(hmax − 1)
2

. (10)

Eq. (10) gives the lower and upper bounds of |GH |. Since hmax is small, if we use
GH as the in-memory partition, it leads to too many recursive steps in the max-clique
computation and hence too many scans of G from the disk. In fact, the formulation of
GH is not applicable for max-clique computation.

As for |GH+|, let s = ∑hmax

r=1 (r
n)R, that is, the degree sum of H-vertices. |GH+| reaches

its maximum when: (1) the number of H-neighbors is maximized (i.e., |Hnb | = s);
(2) the degrees of H-neighbors rank top among non-H-vertices (i.e., the degree rank of
H-neighbors is from (hmax + 1) to (hmax + s) in G); and (3) all H-neighbors connect with
only vertices in H+ (i.e., all edges incident to H-neighbors are in GH+). Thus, the upper
bound of |GH+| is

|GH+| ≤ 1
2

(
s +

s∑
r=1

(
hmax + r

n

)R
)

= 1
2

hmax+s∑
r=1

(r
n

)R
. (11)

The lower bound of |GH+| is simply |GH∗ | since GH∗ ⊆ GH+ . Eq. (11) shows that GH+

is too large to be kept in main memory. For example, when R = −0.7 and n is 1 million,
GH+ can be as large as 65% of the graph G.

From the semantic point of view, GH only retains the very core of G and does not
reveal much global information, while GH+ may be giving too much general information
and making it not much different from G. On the contrary, GH∗ gives the core of G as
well as the relationship from the core to other parts of G. We examine empirically more
properties of GH∗ in Section 10.3.

Using GH∗ for updates in dynamic networks. Let M and MH∗ be the set of all max-
cliques in G and GH∗ , respectively. Real-world networks undergo frequent updates.
When the network G is updated, M also needs to be updated. However, a simple edge
insertion or deletion can cause a series of updates to the set of max-cliques, while
each update of a clique can easily lead to a cascade of updates in M. This is a very
costly operation because M is very large and needs to be kept on disk, while the

ACM Transactions on Database Systems, Vol. 36, No. 4, Article 21, Publication date: December 2011.

Finding Maximal Cliques in Massive Networks 21:21

updates require random disk accesses to read and write the cliques. For many dynamic
networks, update maintenance of M is simply infeasible.

Updating M is infeasible; however, computing M from scratch is also too expensive
for large networks. We propose a semi-dynamic update strategy: by updating MH∗ and
computing M from MH∗ on demand. This approach is feasible for the following reasons.
First, MH∗ is much smaller and can be kept in main memory of most commodity
computers, thus enabling in-memory dynamic updates. Second, GH∗ keeps the most
significant information of G and as a result, MH∗ also keeps the most essential part
of M.

Finally, we adopt GH∗ instead of GB∗ in the dynamic update framework because
the set of maximal cliques computed from GH∗ are those that consist of the most
important vertices in the graph (with respect to vertex degree). The subgraph consisting
of those high-degree vertices is also the densest and maximal clique enumeration in
this subgraph is more costly; thus updating from MH∗ can save this high cost of clique
enumeration. If we select B instead of H as in Section 7.1, the vertex set B can be
any vertices instead of the more important ones and hence the corresponding B∗-max-
cliques may not be important as well.

Why not top-k? Can we simply choose the top-k highest-degree vertices instead of
the H-vertices? The use of H-vertices is a good choice for the following reasons. First,
the H-vertices are essentially the top-hmax highest-degree vertices. Second, the value
of hmax is fixed for a given network, while it is difficult to choose the best k for different
networks. Moreover, an analysis based on the importance of the vertices leads k to hmax
as follows.

Let k be the number of vertices that have degree at least k′. A lower k′ leads to
a larger k, while a higher k′ leads to a smaller k. If the degree of a vertex indicates
its significance or quality in G (similar to “more citations indicate higher impact of a
publication”), then the values of k and k′ represent a trade-off between the quantity and
the quality of the set of vertices to be selected from G. A balance point in the trade-off
is k = k′ (as implied by h-index), which is exactly the definition of hmax.

In our framework, hmax also serves as a good balance point for another trade-off.
Suppose that more memory is available for us to choose k > hmax vertices. This will
reduce the number of recursive steps in our computation and hence is more time
efficient. However, a larger k also means a higher update maintenance cost, while
update maintenance is an important issue in today’s fast-growing networks. On the
other hand, a smaller k allows faster update but the resultant graph is also much
smaller and does not keep as rich information as GH∗ . It is also slower to compute the
whole set of max-cliques when k is small.

8. UPDATE IN DYNAMIC NETWORKS

In this section, we discuss an effective way of updating the set of max-cliques when
the input graph undergoes frequent updates. The effectiveness of our update approach
relies on the selection of the base vertex-set as H.

To indicate that H is used as the base vertex-set, we replace B by H in our notations
in this section. The update to G is to be reflected on the set of H∗-max-cliques MH∗

instead of the set of all max-cliques M. In other words, we first compute and keep MH∗

in memory, but we do not compute M (since M is often too large to be kept in memory
while updating M directly from disk is prohibitively expensive). When G is updated,
we only perform update to MH∗ in memory. On the other hand, we can compute M
periodically or on demand, which is done by invoking Algorithm 4 with MH∗ already
computed in the first recursion (our experiments show that computing M from MH∗ is
significantly faster than from scratch).

ACM Transactions on Database Systems, Vol. 36, No. 4, Article 21, Publication date: December 2011.

21:22 J. Cheng et al.

We consider two types of updates in G: edge insertion and edge deletion. Ver-
tex insertion/deletion can be considered as a series of edge insertions/deletions pre-
ceded/followed by the insertion/deletion of an isolated vertex, which is a rather trivial
operation.

8.1. Update of H-Vertices

Both the insertion and deletion of a single edge e may trigger a change in H: a vertex
v should be added to H or removed from H. We maintain the degree sequence of the
vertices in G; thus, it is easy to check whether H needs to be updated.

We first consider the case of adding v to H. We also need to update TH∗ accordingly.
There are two cases: v /∈ Hnb or v ∈ Hnb . First, if v /∈ Hnb , then we simply create v
as the rightmost child of λ and create each u ∈ nb(v) as a child of v. Second, if v ∈ Hnb ,
then v is a leaf in TH∗ . For every occurrence of v in TH∗ , let S be the set of siblings of v
that are H-neighbors. We reconnect (S\nb(v)) as right siblings of v and then (S ∩ nb(v))
as the set of children of v. Then, if ∃u ∈ (nb(v)\H) such that u is not a child of any
occurrence of v in TH∗ , then we also create v as the rightmost child of λ and create each
such u as a child of v.

Next, we consider the case of removing a vertex v from H. If v now becomes an H-
neighbor, then we reconnect v as leaves in TH∗ ; otherwise, we remove v from TH∗ . Then,
we need to check all affected paths in TH∗ to see if they still represent H∗-max-cliques
and perform further update of TH∗ accordingly. This operation can be costly. Thus, we
perform lazy updates instead. We simply retain v in H and TH∗ and perform no update.
Keeping v in TH∗ does not violate the definition of TH∗ as far as we consider that v is
still in H. We perform an active update periodically or only when TH∗ grows large.

The lazy update is feasible for the following reasons. First, according to the principle
of “the rich get richer” or the model of preferential attachment, for the update in most
real-world networks, the majority of H-vertices remain to be H-vertices. Second, since
v was in H, v has a high degree compared with the vertices that are not in H. Thus,
v is at the border even it is removed from H and it is possible that v may be qualified
to become an H-vertex again soon. Third, the removal of a vertex from H is far more
frequent when H shrinks, while H usually shrinks when G shrinks. However, most
real-world networks keep growing rather than shrinking.

8.2. Update of H*-Max-Cliques

We first consider the insertion of a new edge e = (u, v) and the possible updates to
H∗-max-cliques. First, if u, v /∈ H, we do not need to update H or TH∗ , unless u and/or
v now becomes an H-vertex, which is handled in Section 8.1. Next, if u ∈ H and/or
v ∈ H, inserting e creates new H∗-max-clique(s). Let NBuv = nb(u) ∩ nb(v) denote the
set of common neighbors of u and v. We find the cliques that can form larger cliques
with {u, v} as S = {C : C ⊆ (C ′ ∩NBuv), C ′ ∈ MH∗ , C �= ∅}, which can be obtained easily
by traversing TH∗ . To ensure the maximality, we take away nonmaximal cliques in S
and get SM = {C : C ∈ S, �C ′ ∈ S such that C ′ ⊃ C}. Then, for each C ∈ SM, we insert
(C ∪ {u, v}) into TH∗ . We also remove (C ∪ {u}) and/or (C ∪ {v}) from TH∗ if they are
originally in the tree. Note that if S = ∅, then {u, v} is maximal and we simply insert
{u, v} into TH∗ .

We now consider deleting an edge e = (u, v). If u, v /∈ H, there is no update needed
for H and TH∗ . If u ∈ H and/or v ∈ H, we need to remove from TH∗ all H∗-max-cliques
containing both u and v. Thus, we need to find S ′ = {C : u, v ∈ C, C ∈ MH∗ }. Assume
that u ≺ v, we can obtain S ′ by finding all occurrences of v in the subtree rooted at each
occurrence of u in TH∗ , and collecting the H∗-max-cliques containing both u and v by
traversing the corresponding paths. We remove each C ∈ S ′ from TH∗ . We also insert
(C\{u}) and/or (C\{v}) if they now become maximal.

ACM Transactions on Database Systems, Vol. 36, No. 4, Article 21, Publication date: December 2011.

Finding Maximal Cliques in Massive Networks 21:23

ALGORITHM 6: Maximum
Input: a graph G
Output: the maximum clique Cmax

1. Cmax ← ∅;
2. return subMaximum(Cmax, G);

8.3. Complexity Analysis

We first analyze the cost of individual updates and then give an analysis on the fre-
quency of the updates.

When a vertex v becomes an H-vertex: if v was not in Hnb , we need O(nb(v)) time to
insert v and the set of v’s children nb(v) into TH∗ ; if v was in Hnb , we need O(N(v, TH∗)∗
(nb(v)∩ Hnb)) time to reconnect v and v’s siblings in (nb(v)∩ Hnb) in TH∗ , where N(v, TH∗)
is the number of occurrences of v in TH∗ . Second, the cost of the lazy update is at most
the cost of reconstructing TH∗ , but the update is rare and can be performed at idle time.

On edge insertion, the cost is O(|TH∗ | + |S|2 +∑
C∈SM

(|C ∪ {u, v}| log favg)) time, where
favg is the average number of children of a node in TH∗ . Computing S takes O(|TH∗ |)
time. Computing SM takes time less than |S|2 since we do not need to compare cliques
with the same size, or those largest cliques in S. In most cases, |S| is small because
otherwise it implies that u and v are very closely related and hence the edge (u, v) is
likely to already exist. Finally, inserting each (C ∪ {u, v}) takes at most O(log favg) time
at each level of TH∗ . On edge deletion, it takes O(|TH∗ | + ∑

C∈S ′ (|C| log favg)) time to
obtain S ′ and delete C (as well as to insert (C\{u}) and/or (C\{v}) if they are maximal).

Now we examine how frequently these updates are performed. Since we only perform
updates related to the H∗-max-cliques, there is no update for the insertion or deletion
of an edge (u, v), where u, v /∈ H. As shown in Section 7.2.2, the size of H, that is, hmax,
is usually very small compared to the total number of vertices in G. Therefore, the
percentage of the updates in G that can “hit” an H-vertex and thus trigger an update
in H∗-max-cliques is very low, which is also verified in our experimental studies.

9. FINDING MAXIMUM CLIQUE IN A MASSIVE NETWORK

In this section, we discuss an application of our EmMCE algorithm framework to find
the maximum clique in a massive network. A maximum clique of a graph G is a clique in
G with the largest number of vertices. Finding the maximum clique in a graph is also
a long-standing problem in graph theory and has numerous important applications
[Bomze et al. 1999]. Most existing algorithms on maximum clique finding are also
in-memory ones and unable to handle massive networks.

Our EmMCE algorithm framework provides a general framework for designing an
external-memory algorithm for maximum clique computation in large graphs. However,
it is not efficient enough if we use a general B∗-graph in the framework, since it requires
to enumerate all maximal cliques in order to find the one with the largest size. In the
following, we show that with the help of the special version of the B∗-graph, H∗-graph,
we are able to find the maximum clique in a more effective way.

We give our algorithm in Algorithm 6. The algorithm recursively invokes Procedure 7
to compute the H∗-graph GH∗ at each time. Then, we first check if the value of hmax
computed from the current input graph G is smaller than the size of the maximum
clique Cmax computed so far. If this is the case, then Cmax must be the maximum clique
globally, because the size of the maximum clique in the current input graph is at most
(hmax + 1) (see Lemma 9.1). Otherwise, the algorithm computes the maximum clique
C ′

max from GH∗ as follows (lines 4–7 of Procedure 7).

ACM Transactions on Database Systems, Vol. 36, No. 4, Article 21, Publication date: December 2011.

21:24 J. Cheng et al.

PROCEDURE 7: subMaximum(Cmax, G)
1. Compute GH∗ from G;
2. if(hmax < |Cmax|)
3. return Cmax;
4. else
5. Construct TB∗ from GH∗ by an existing in-memory MCE algorithm;
6. Remove GH∗ from G;
7. Compute the maximum clique C ′

max from TB∗ in a similar way as Algorithm 3
but apply pruning by branch-and-bound;

8. if(|C ′
max| > |Cmax|)

9. return subMaximum(C ′
max, G);

10. else
11. return subMaximum(Cmax, G);

The algorithm first constructs TB∗ from GH∗ by an existing in-memory MCE algo-
rithm. Then, we compute the H∗-max-cliques from TB∗ in a similar way as described
in Algorithm 3. However, during the process, we apply pruning by branch-and-bound.
That is, for any H∗-max-clique to be computed, if the size of its candidate set is not
larger than |Cmax| or the maximum clique C ′

max computed at the current recursive step,
then by the definition of the maximum clique we can safely prune the whole branch to
be explored.

Finally, we continue the search in the remaining part of the graph after removing
GH∗ , by passing the maximum clique we obtain so far to the next recursive step (lines
8–11 of Procedure 7).

In the following lemma we show the connection between the H∗-graph of a graph
and the maximum clique in the graph.

LEMMA 9.1. Given a graph G, let GH∗ be the H∗-graph of G and Cmax be the maximum
clique in G. Then, |Cmax| ≤ (hmax + 1).

PROOF. Suppose on the contrary that |Cmax| > (hmax + 1). Since the complete graph
induced by Cmax consists of at least (hmax + 2) vertices that have a degree of at least
(hmax + 1), we have |H| ≥ (hmax + 1) which contradicts to the fact that |H| = hmax
according to the definition of GH∗ . Therefore, we have |Cmax| ≤ (h + 1).

With Lemma 9.1, we prove the correctness of Algorithm 6 as follows.

THEOREM 9.2. Given a graph G, Algorithm 6 correctly computes the maximum clique
Cmax in G.

PROOF. First, according to Lemma 9.1, the size of the maximum clique in the current
input graph (i.e., the input graph at the current recursive step) is at most (hmax + 1).
Since the value of hmax with respect to the H∗-graph at the current recursive step is
never greater than those at the previous recursive steps, the maximum clique Cmax
computed previously must be the maximum clique globally in the original input graph
if |Cmax| > hmax as tested in line 2 of Procedure 7.

Next, lines 5–7 of Procedure 7 compute the maximum clique C ′
max at the current

recursive step. Then, lines 8–11 of Procedure 7 pass the larger clique to the next
recursive step. Thus, the clique used for test in line 2 of Procedure 7 is ensured to be
the maximum clique computed so far. Therefore, Algorithm 6 computes the maximum
clique correctly.

ACM Transactions on Database Systems, Vol. 36, No. 4, Article 21, Publication date: December 2011.

Finding Maximal Cliques in Massive Networks 21:25

Table II. Datasets (K = 1,000 and M = 1,000,000)

protein blogs LJ Web
n = |V | 20K 1M 4.8M 52.9M
m = |E| 40K 6.5M 43M 274.8M
Storage size (MB) 1 186 1310 5004

1

10

100

1k

10k

protein blogs LJ Web

R
un

ni
ng

 T
im

e
(m

in
)

best-time
EmMCE
in-mem

streaming

(a) running time

256
512

1024

2048

4096

5120

protein blogs LJ Web

M
em

or
y

C
on

su
m

pt
io

n
(M

B
) best-time

EmMCE
in-mem

streaming

(b) memory consumption

Fig. 4. Performance comparison with existing algorithms.

10. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of our algorithm. We compare with the
state-of-the-art in-memory algorithm [Tomita et al. 2006] for maximal clique enumer-
ation, and the only existing streaming algorithm for maximal clique enumeration in
dynamic networks [Stix 2004], which are denoted as in-mem and streaming in our ex-
periments, respectively. We ran all experiments on a machine with an Intel Xeon 2.67
GHz CPU and 5GB RAM, running CentOS 5.4 (Linux).

Datasets. We use the following four datasets: protein, blogs, LiveJournal (LJ), and
Web. Protein is a human protein interaction network from the Human Protein Database
(www.hprd.org), in which vertices are proteins and edges are protein-protein interac-
tions. The blogs network is collected from the top-15 popular queries published by
Technorati (technorati.com) every three hours from Nov 2006 to Mar 2008. For each
query, the top-50 results are retrieved. In the blogs network, vertices are blogs and
edges indicate that two blogs appear in the search result of the same query. LJ is the
free online community called LiveJournal, where vertices are members and edges rep-
resent friendship between members. LJ is the current largest network available from
snap.stanford.edu. The Web graph is obtained from the YAHOO Web spam dataset
(barcelona.research.yahoo.net/webspam), where vertices are Web pages and edges are
hyperlinks. We give the details of each dataset (number of vertices and edges, physical
storage size) in Table II.

Among the four datasets, protein and blogs are small graphs, while LJ and Web are
two larger graphs. We use the smaller graphs to mainly assess how much CPU time
our algorithm takes when comparing with an in-memory algorithm, while we use the
larger graphs to evaluate the performance of our algorithm under different settings
when memory is insufficient to hold the input graph.

10.1. Performance Comparison with Existing Algorithms

We first compare EmMCE with in-mem and streaming. We limit the available mem-
ory to 1GB to test the performance of the different algorithms with limited memory
resource. For EmMCE, we select the base vertex-set B such that the corresponding
B∗-graph fills the available memory as discussed in Section 7.1. Figure 4 reports the

ACM Transactions on Database Systems, Vol. 36, No. 4, Article 21, Publication date: December 2011.

21:26 J. Cheng et al.

 1000

 2000

 3000

 4000

 5000

 6000

256MB 512MB 1GB 2GB 4GB

R
un

ni
ng

 T
im

e
(m

in
)

B*-graph
H*-graph
B+-graph

(a) running time

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

256MB 512MB 1GB 2GB 4GB

I/O
 T

im
e

(m
in

)

B*-graph
H*-graph
B+-graph

(b) I/O time

Fig. 5. Performance on different memory size and algorithm variation.

Table III. Size Estimation for |TB∗ |
protein blogs LJ Web

(estimated |TB∗ |)/|TB∗ | 1.00 1.01 0.93 0.97

total running time (wall-clock time) and peak memory consumption of finding the set
of all max-cliques using EmMCE, in-mem, and streaming, respectively.

To fully assess whether EmMCE is indeed time efficient, we also report the best
running time that we can obtain using any of the three algorithms, by allocating
sufficient memory to hold the entire input graph in memory. This result is denoted by
best-time in the figures.

First, on the smaller networks protein and blogs, EmMCE is as fast as in-mem and
uses similar amount of memory. The result verifies our assertion in Section 6 that the
complexity of EmMCE when running in memory is indeed comparable to that of an
in-memory algorithm for maximal clique enumeration.

On the larger networks, the advantage of EmMCE over in-mem is immediately seen.
As shown in Figure 4(a), in-mem is at least two orders of magnitude slower than
EmMCE for computing max-cliques from the network LJ, when in-mem needs more
than 1GB of memory. For the larger Web graph, we are not able to obtain the result for
in-mem.

On the contrary, EmMCE computes the result for all the datasets with a bounded
memory consumption. When the size of the available memory is larger than the size
of the input graph, as in the case of protein and blogs, EmMCE only uses as much
memory as the in-memory algorithm. When the input graph is larger than the size of
the available memory, as in the case of LJ and Web, EmMCE uses all available memory
and achieves competitive running time. For the LJ graph, the running time of EmMCE
is comparable to that of best-time. For the Web graph, the running time of EmMCE is
about twice that of best-time, but it uses only 1GB of memory while best-time uses 5GB
of memory, and we note that the I/O time accounts for about 60% of the total time (see
Figure 5).

We are only able to obtain the result of streaming for the smallest network, protein,
which already takes many orders of magnitude more time to complete. The poor per-
formance of streaming is mainly because it reads an edge at a time and updates the
current set of max-cliques for each edge. We report this result to demonstrate that
although streaming reads the graph only once, the time complexity of such a streaming
algorithm for max-clique computation is extremely high.

Finally, Table III reports the result of our method of estimating |TB∗ |, as discussed
in Section 7.1. We set k = 100, which is used to limit the total number of probing paths

ACM Transactions on Database Systems, Vol. 36, No. 4, Article 21, Publication date: December 2011.

Finding Maximal Cliques in Massive Networks 21:27

Table IV. Running Time and Memory Consumption of Extracting GH∗

protein blogs LJ Web
Running time (sec) 0.222 1.29 2.48 29
Memory consumption (MB) 1.2 8.5 27 388

starting from each randomly selected B-vertex. The number of probing paths for this k
is about 18% of the total number of paths in TB∗ for the protein dataset (because its TB∗

is too small), but only 0.5% for the other datasets. The result shows that our method of
estimating |TB∗ | is highly accurate. This result, together with the memory consumption
of EmMCE for larger datasets, shows that our base vertex selection method is effective
and EmMCE is able to fully utilize the available memory.

10.2. Performance on Different Memory Size and Algorithm Variation

In this experiment, we assess whether our external-memory algorithm is truly effective
by testing the algorithm under a range of memory limits. We set the available memory
to 256MB, 512MB, 1GB, 2GB, and 4GB, respectively. We use the largest Web dataset
in this experiment.

We also test whether using the B∗-graph by filling the available memory (as discussed
in Section 7.1) is indeed more effective for maximal clique enumeration on static graphs
than using the H∗-graph and the B+-graph, respectively. Note that by adopting the H∗-
graph instead of the B∗-graph, the algorithm is essentially ExtMCE proposed in Cheng
et al. [2010], which is a special case of EmMCE. Thus, in Figure 5(a) and Figure 5(b),
the labels “B∗-graph” and “H∗-graph” represent EmMCE and ExtMCE [Cheng et al.
2010], respectively.

Figure 5(a) reports the total running time (wall-clock time) of the three variations
of the algorithm under the different available memory settings. The result shows that
with all the available memory settings, using the B∗-graph is approximately three
times faster than using the H∗-graph, and is more than an order of magnitude faster
than using the B+-graph.

Figure 5(b) reports the total I/O time of the three variations of the algorithm. The
result shows that when we reduce the size of the available memory, the I/O time
increases significantly. When the available memory size is only 256MB, the I/O time is
about 60% of the total running time using the B∗-graph; however, when the available
memory size increases to 4GB, the I/O time is only 12% of the total running time.
The result also shows that using the H∗-graph and the B+-graph takes significantly
more I/O time than using the B∗-graph, which explains why they are much slower than
using the B∗-graph. Using the H∗-graph uses more I/Os mainly because it underutilizes
memory at the recursive steps. Using the B+-graph uses more I/Os because a small
portion of B-vertices are processed at each recursive step and hence a significantly
greater number of scans of the graph is needed, as discussed in Section 4.1.

In summary, this result not only shows that our current algorithm has significantly
improved the first and only external-memory algorithm for max-clique enumeration
[Cheng et al. 2010], but also demonstrates that the effectiveness of using the B∗-graph
rather than the B+-graph in our framework.

10.3. Evaluation of the H*-Graph

Before we evaluate the performance of update in dynamic networks using the H∗-
graph, we first evaluate the quality of the H∗-graph. We set the available memory as
1GB for this set of experiments.

Table IV shows that it is very efficient to extract GH∗ from G. The memory consump-
tion is also low.

ACM Transactions on Database Systems, Vol. 36, No. 4, Article 21, Publication date: December 2011.

21:28 J. Cheng et al.

Table V. Sizes of H, Hnb , GH , GH∗ and GH+

protein blogs LJ Web
|H| 77 718 987 3447
|Hnb | 4K 192K 441K 5.6M
|GH | 0.5K (1%) 37K (0.6%) 25K (0.06%) 22K (0.01%)
|GH∗ | 8.6K (22%) 840K (13%) 1.7M (4%) 15M (5.5%)
|GH+ | 21K (54%) 4M (64%) 11M (25%) 28M (10.1%)

Table VI. Closeness, Reachability, and Number of Max-Cliques

protein blogs LJ Web
closeness (H-vertices) 3.1 3.4 4.3 6.6
reachability (H-vertices) 47% 56% 100% 37%
Number of max-cliques 25K 1.1M 173M 205M
(contain H-vertices) 239 4K 69K 3.0M
(contain H-neighbors) 12K 510K 43M 186M

Table V reports the sizes of H, Hnb , GH , GH∗ , and GH+ . We also give a better percep-
tion on the sizes of GH , GH∗ , and GH+ as their ratio to G (given in parentheses in the
table). For all datasets, H is small but it extends to a much larger H-neighbor set Hnb .
As a result, GH is too small, thus requiring many disk scans for MCE computation,
while GH+ is too large, thus demanding too much memory. On the contrary, GH∗ is
much smaller than GH+ but is significantly greater than GH , thus allowing efficient
dynamic update with reasonable memory usage.

Table VI shows the average closeness of the H-vertices, the percentage of vertices in
G that are reachable from the H-vertices (reachability), the number of max-cliques. The
closeness of an H-vertex u is defined as AVGv∈V,dist(u,v)�=∞(dist(u, v)), where dist(u, v) is
the length of the shortest path from u to v in G.

The closeness shows that from the H-vertices, we can reach other vertices in G
within a few steps and we are able to reach the majority of the vertices in G. This
result demonstrates that GH∗ represents a significant portion of G and that GH∗ also
has a close relationship with the rest part of G.

Table VI also reports the number of all max-cliques, the number of those max-
cliques containing H-vertices and H-neighbors. The result shows that the number
of max-cliques containing H-vertices is significantly smaller than the number of all
max-cliques. The result justifies the feasibility of our update strategy based on a much
smaller set of cliques containing H-vertices since it is much more efficient. From the
H-vertices we can extend to the H-neighbors, while the result shows that the set
of max-cliques containing H-neighbors represents a large portion of the whole set of
max-cliques.

10.4. Performance on Update in Dynamic Network

Table VII reports the results on the performance of update using the H∗-graph in
dynamic graphs. We use the blogs network, for which we are able to obtain a timestamp
for its edges. The initial network was created in Nov 2006 and the network grows from
347K edges to 6.5M edges over 12 months. We average the results for every two-month
period, as represented by P1-P6 in Table VII. We set the available memory as 1GB for
this set of experiments.

Table VII shows that the average time of processing an edge insertion that triggers
an update in TH∗ , shown as “Avg. update time”, is only slightly more than 1 millisecond.
Although P1 requires 3 milliseconds, this is because the initial network is not large
enough and hence TH∗ changes considerably during P1, which is also reflected by the
rapid increase in the number of H-vertices from P1 to P2.

ACM Transactions on Database Systems, Vol. 36, No. 4, Article 21, Publication date: December 2011.

Finding Maximal Cliques in Massive Networks 21:29

Table VII. Performance on Update in Dynamic Network

P1 P2 P3 P4 P5 P6
Avg. update time (msec) 3.0 1.4 1.4 1.2 1.5 1.6
Number of updates in GH∗ 3K 11K 19K 25K 28K 28K
Number of updates in G 385K 457K 550K 461K 526K 670K
Number of H-vertices 294 425 508 566 614 696
% of H-vertices retained 92 92 95 96 94 96
Memory Consumption (MB) 418 427 436 443 451 463
MCE time w/ TH∗ (sec) 7.3 13.4 27.4 41.5 52.4 69.5
MCE time w/o TH∗ (sec) 22 37.6 63.6 86.6 107.8 137.9

Table VIII. Performance on Update Using TH∗ and TB∗

P1 P2 P3 P4 P5 P6
Avg. update time w/ TH∗ (msec) 3.0 1.4 1.4 1.2 1.5 1.6
Avg. update time w/ TB∗ (msec) 4.7 5.4 8.8 7.3 4.2 5.4
MCE time w/ TH∗ (sec) 7.3 13.4 27.4 41.5 52.4 69.5
MCE time w/ TB∗ (sec) 14.7 19.2 69.8 70.6 75.6 75.7

Table VII also shows “Number of updates in GH∗”, which is the number of edge
insertions that trigger an update in TH∗ , and “Number of updates in G”, which is the
number of all edges inserted into the network. On average, the percentage of edges
that trigger an update in TH∗ is only 3.8%, which is a very small portion of the total
updates. Thus, updating only TH∗ is a feasible solution to handle frequent updates.

Among the existing algorithms, streaming is the only one that updates the set of
max-cliques upon each edge insertion. However, streaming is three orders of magnitude
slower than our algorithm on average. We do not report the result for streaming because
it takes too long to complete all updates (it takes 190 hours to update only 40K edges).

The number of H-vertices increases stably as the network increases, except the
initial network which is relatively small and thus unstable. We also show % of H-
vertices retained, that is, the percentage of H-vertices in Pi that are also in Pi+1. The
result shows that the majority of the H-vertices remains to be H-vertices.

We also show the memory consumption, which increases as the network grows. The
last two rows of Table VII report the time to compute the set of all max-cliques from
the dynamically maintained TH∗ (“Time w/ TH∗”) and from scratch (“Time w/o TH∗”),
respectively. The result shows that it is much more efficient to compute the set of all
max-cliques from the dynamically maintained TH∗ than from scratch from the network,
thus demonstrating the benefit of update maintenance as well as the feasibility of
maintaining MH∗ (i.e., TH∗) for M.

Table VIII shows the performance on update if we adopt B (as discussed in
Section 7.1) instead of H in the update framework. The result shows that the up-
date time of using TB∗ is up to 6.4 times (average 4 times over P1-P6) longer than
using TH∗ , because the update is now performed over a large scattered set of B-vertices
rather than a small concentrated set of high-degree H-vertices. The result also shows
that computing the set of all max-cliques from TB∗ is on average 1.7 times slower than
from TH∗ . Thus, for update in dynamic networks, using TH∗ is preferred to using TB∗ .

10.5. Performance on Maximum Clique Computation

In this subsection, we report the performance of our algorithm on maximum clique
computation. We name our algorithm as EM-maximum and compare with its in-
memory counterpart, named as IM-maximum, which is a typical branch-and-bound
algorithm for maximum clique computation [Tomita and Seki 2003]. We report the total

ACM Transactions on Database Systems, Vol. 36, No. 4, Article 21, Publication date: December 2011.

21:30 J. Cheng et al.

1

10

100

1k

protein blogs LJ Web

R
un

ni
ng

 T
im

e
(m

in
)

IM-maximum
EM-maximum

(a) running time

256

512

1024

protein blogs LJ Web

M
em

or
y

C
on

su
m

pt
io

n
(M

B
) IM-maximum

EM-maximum

(b) memory consumption

Fig. 6. Performance on maximum clique computation.

Table IX. Size of Maximum Clique

protein blogs LJ Web
Maximum clique size 11 49 13 478

running time (wall-clock time) and peak memory consumption of the two algorithms in
Figure 6.

As shown in Figure 6, EM-maximum is at least two times faster than IM-maximum
on the smaller networks protein and blogs, with only half of the memory consumption
as that of IM-maximum. On the larger network LJ, EM-maximum is approximately
20 times faster than IM-maximum (note that Figure 6(a) is in log scale) and consumes
significantly less memory. On the Web graph, we are not able to obtain the result
for IM-maximum due to its high memory consumption, while EM-maximum finds the
maximum clique efficiently using only 388MB of memory. This result demonstrates
the effectiveness of our algorithm framework for finding even the maximum clique, in
addition to the set of all maximal cliques.

Finally, we also report the size of the maximum clique in each graph in Table IX for
reference.

11. RELATED WORK

There is a large literature on maximal clique enumeration. We discuss the more promi-
nent and recent ones, while comprehensive reviews can be found in Bomze et al. [1999]
and Cazals and Karande [2008]. The review on the problem of finding the maximum
clique, including its applications, can also be found in Bomze et al. [1999].

The first significant improvement on maximal clique enumeration was the algorithms
[Akkoyunlu 1973; Bron and Kerbosch 1973] that use the backtracking method. They
takeO(n2) memory space. Further improvements [Koch 2001; Tomita et al. 2006; Cazals
and Karande 2008] were made by selecting good pivots to prune the backtracking search
tree. The optimal worst-case time of backtracking-based maximal clique computation
was shown to be O(3n/3) [Tomita et al. 2006]. Recently, parallel algorithms [Du et al.
2009; Schmidt et al. 2009] were proposed to compute maximal cliques from different
points of the search tree in parallel. However, all these studies did not focus on reducing
the memory complexity and require O(m+n) memory space in the best case. Algorithm
for output-sensitive maximal clique enumeration was also introduced [Tsukiyama et al.
1977] which is based on reverse search, and recent work [Makino and Uno 2004] used
matrix multiplication to reduce the time delay to O(d4

max) for sparse graphs (but with
O(nm) preprocessing time), where dmax is the maximum degree of a graph. Other

ACM Transactions on Database Systems, Vol. 36, No. 4, Article 21, Publication date: December 2011.

Finding Maximal Cliques in Massive Networks 21:31

algorithms, such as obtaining a k-clique by joining two (k − 1)-cliques [Kose et al.
2001], by making use of triangles [Wan et al. 2006], by limiting the minimum size
[Modani and Dey 2008], were also proposed. However, all these algorithms require
memory space at least �(m+ n). Stix [2004] proposed an algorithm that updates the
set of max-cliques upon each edge insertion, and the graph is read only once.

Apart from the aforementioned in-memory algorithms, the first external-memory
algorithm was proposed recently by Cheng et al. [2010]. However, the algorithm in
Cheng et al. [2010] only allows the H∗-graph to be the subgraph being processed at each
recursive step. In this article, on the contrary, we propose a new general framework that
allows the flexibility of selecting the subgraph for the local max-clique computation.
Thus, within our general framework, we can consider the H∗-graph as a special version
of the B∗-graph, which is specifically applied to design an efficient update strategy for
maintaining maximal cliques in dynamic graphs. However, in addition to the scheme
for processing dynamic graphs, with the general framework we also devise a scheme
to select a subgraph that fully utilizes the available memory at each recursive step,
in order to minimize the I/O cost for computing maximal cliques in static graphs.
Consequently, the new general framework allows us to incorporate the work of Cheng
et al. [2010] and the work in this article to handle both the cases of static graphs
and dynamic graphs. More extensive experimental results on larger graphs also show
that our new algorithm achieves better performance. Furthermore, this article also
applies the general framework, with the adoption of the H∗-graph, to design the first
external-memory algorithm for computing the maximum clique in a large graph, an
equally important problem with numerous applications [Bomze et al. 1999]. Finally, the
proposal of a general algorithm framework has the potential to be adopted for designing
external-memory algorithms for solving other related problems such as independent
set and matching on massive graphs.

12. CONCLUSIONS

We present an external-memory algorithm, EmMCE, for maximal clique enumeration
in large graphs. We evaluate the performance of EmMCE on large real networks of size
up to 52.9 million vertices and 274.8 million edges, by comparing with the state-of-the-
art in-memory algorithms. Our results demonstrate the effectiveness of our framework
in the following four aspects. First, for maximal clique enumeration, EmMCE achieves
comparable performance with the in-memory algorithm when the input graph can fit in
memory, and proves to be highly efficient when the input graph cannot fit in memory
and is too expensive to be processed by the in-memory algorithm. Second, EmMCE
is I/O-efficient under different bounds on the available memory size and significantly
outperforms the algorithm in Cheng et al. [2010]. Third, dynamic maintenance using
the H∗-graph, a special version of the B∗-graph, is efficient in dynamic networks. Lastly,
our external-memory algorithm for maximum clique computation is significantly more
efficient than the in-memory counterpart, whether or not the input graph can fit in
memory.

With the result in our article, we are able to process MCE even for very large networks
that cannot be processed in most commodity PCs using the conventional in-memory
algorithms. Moreover, our algorithm naturally allows parallel computation of MCE,
which is useful for processing MCE in modern computing environments such as the
cloud.

APPENDIX

This appendix gives the proofs to Lemmas 5.6, 5.8, and 5.10, which are introduced in
Section 5.2.1.

ACM Transactions on Database Systems, Vol. 36, No. 4, Article 21, Publication date: December 2011.

21:32 J. Cheng et al.

LEMMA 5.6. Let M1 = MB ∩ MB∗ . Then, M1 = M1
B+ .

PROOF. (Prove M1 ⊆ M1
B+). Let C be a clique in M1. Since C ∈ (MB ∩ MB∗), C

contains only B-vertices and is maximal in GB∗ , which means that the vertices in C
do not have any common B-neighbors (i.e., comNB(C) = ∅ and thus CBnb

= ∅). Since
B+ = (B∪ Bnb), C is also maximal in GB+ . Since CBnb

= ∅, we have C ∈ M1
B+ .

(Prove M1
B+ ⊆ M1). ∀C ∈ M1

B+ , we have CBnb
= ∅, which implies that C = CB and

C ∈ MB. We have C ∈ MB∗ as well since CBnb
= ∅. Thus C ∈ (MB ∩ MB∗) = M1.

LEMMA 5.8. Let M2 = {C1 ∪ C2 : C1 ∈ (MB\M1), C2 ∈ maxCL(comNB(C1))}. Then,
M2 = M2

B+ .

PROOF. It is obvious that all elements inM2 are cliques by the definitions of comNB(·)
and maxCL(·).

(Prove M2 ⊆ M2
B+). ∀C = (C1 ∪ C2) ∈ M2, we have CB = C1 and CBnb

= C2. Since
CB ∈ MB, CB is maximal in GB. Since CBnb

∈ maxCL(comNB(CB)), CBnb
is also maximal

in GcomNB(CB), which defines the B-neighborhood shared by all vertices in CB. Thus, C is
maximal in GB+ , that is, C ∈ MB+ . Since CB /∈ M1, we have comNB(CB) �= ∅ and thus
CBnb

�= ∅. Since C ∈ MB+ , CB ∈ MB, and CBnb
�= ∅, we have C ∈ M2

B+ .
(Prove M2

B+ ⊆ M2). ∀C ∈ M2
B+ , CBnb

�= ∅ and CB ∈ MB. Thus CB ∈ (MB\M1).
Since C is maximal in GB+ , CBnb

must be maximal in GcomNB(CB), that is, CBnb
∈

maxCL(comNB(CB)). Let C1 = CB and C2 = CBnb
, we have C = (C1 ∪ C2) ∈ M2.

LEMMA 5.10. Let M3 = {C1 ∪ C2 : C1 ∈ X , C2 ∈ EXT(C1)}. Then, M3 = M3
B+ .

PROOF. By the definitions of X and EXT(C1), an element C ∈ M3 must be a clique.
(Prove M3 ⊆ M3

B+). We first prove M3 ⊆ MB+ by contradiction. Suppose ∃C =
(C1 ∪ C2) ∈ M3 such that C /∈ MB+ , that is, ∃C ′ = (C ′

B ∪ C ′
Bnb

) ∈ MB+ such that C ′ ⊃ C.
We have C ′

B ⊇ CB = C1 and C ′
Bnb

⊇ CBnb
= C2. Assume that C ′

B = CB, then C ′
Bnb

= CBnb

since CBnb
is maximal in GcomNB(CB)(= GcomNB(C ′

B)) as defined in EXT(CB). This implies
that C ′ = C and contradicts to C ′ ⊃ C. Thus, we are left with the option that C ′

B ⊃ CB,
which implies that comNB(C ′

B) ⊆ comNB(CB). Since C ′
Bnb

⊇ CBnb
and they are maximal

respectively in GcomNB(C ′
B) and GcomNB(CB), but comNB(C ′

B) ⊆ comNB(CB), we have C ′
Bnb

=
CBnb

and comNB(C ′
B) = comNB(CB). Since C ′

B ⊃ CB and comNB(C ′
B) = comNB(CB), we

have C ′
B /∈ X (otherwise, CB = C1 /∈ X since CB is subsumed by C ′

B, but C1 ∈ X by
the definition of M3). Therefore, C ′

B can only be in MB. Since C ′
Bnb

= CBnb
�= ∅, we

have C ′ ∈ M2. This contradicts CBnb
∈ EXT(CB) since there exists C ′ ∈ M2 such that

C ′
B ⊃ CB and C ′

Bnb
= CBnb

, that is, C ′ ⊃ (CB ∪ CBnb
). Thus, we prove M3 ⊆ MB+ . Finally,

∀C ∈ M3, we have CBnb
�= ∅ since ∅ /∈ EXT (CB), and CB /∈ MB since CB ∈ X and CB is

a proper subset of some C ′′ ∈ MB. Thus we further have M3 ⊆ M3
B+ .

(Prove M3
B+ ⊆ M3). ∀C ∈ M3

B+ , CB /∈ MB and CBnb
�= ∅. First, CB must be a proper

subset of some C ′ ∈ MB. Assume that CB /∈ X , then there must exist some C ′
B ∈ X such

that C ′
B ⊃ CB and comNB(C ′

B) = comNB(CB), which leads to the formation of a clique
that is a proper superset of C and contradicts to the maximality of C. Thus CB ∈ X . We
further have CBnb

∈ EXT(CB) since CBnb
is maximal in GcomNB(CB) by the maximality

requirement of C. Thus C ∈ M3.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their constructive comments.

ACM Transactions on Database Systems, Vol. 36, No. 4, Article 21, Publication date: December 2011.

Finding Maximal Cliques in Massive Networks 21:33

REFERENCES

ABU-KHZAM, F. N., BALDWIN, N. E., LANGSTON, M. A., AND SAMATOVA, N. F. 2005. On the relative efficiency of
maximal clique enumeration algorithms, with applications to high-throughput computational biology.
In Proceedings of the International Conference on Research Trends in Science and Technology.

AKKOYUNLU, E. A. 1973. The enumeration of maximal cliques of large graphs. SIAM J. Comput. 2, 1, 1–6.
BERNARD, H. R., KILLWORTH, P. D., AND SAILER, L. 1979. Informant accuracy in social network data iv:

a comparison of clique-level structure in behavioral and cognitive network data. Social Netw. 2, 3,
191–218.

BERRY, N. M., KO, T. H., MOY, T., SMRCKA, J., TURNLEY, J., AND WU, B. 2004. Emergent clique formation in
terrorist recruitment. In Proceedings of the AAAI-04 Workshop on Agent Organizations: Theory and
Practice.

BOGINSKI, V., BUTENKO, S., AND PARDALOS, P. M. 2005. Statistical analysis of financial networks. Comput. Statist.
Data Anal. 48, 2, 431–443.

BOMZE, I. M., BUDINICH, M., PARDALOS, P. M., AND PELILLO, M. 1999. The maximum clique problem. In Handbook
of Combinatorial Optimization. Kluwer Academic Publishers, 1–74.

BRON, C. AND KERBOSCH, J. 1973. Algorithm 457: finding all cliques of an undirected graph. Comm. ACM 16, 9,
575–577.

BYSKOV, J. M. 2003. Algorithms for k-colouring and finding maximal independent sets. In Proceedings of the
Symposium on Discrete Algorithms (SODA). 456–457.

CAZALS, F. AND KARANDE, C. 2008. A note on the problem of reporting maximal cliques. Theor. Comput.
Sci. 407, 1-3, 564–568.

CHENG, J., KE, Y., FU, A. W.-C., YU, J. X., AND ZHU, L. 2010. Finding maximal cliques in massive net-
works by h*-graph. In Proceedings of the SIGMOD International Conference on Management of Data.
447–458.

CREAMER, G., ROWE, R., HERSHKOP, S., AND STOLFO, S. J. 2007. Segmentation and automated social hierarchy
detection through email network analysis. In Proceedings of WebKDD/SNA-KDD. 40–58.

DOROGOVTSEV, S. N. AND MENDESAND, J. F. F. 2003. Evolution of Networks: From Biological Nets to the Internet
and www. Oxford University Press.

DU, N., WU, B., XU, L., WANG, B., AND XIN, P. 2009. Parallel algorithm for enumerating maximal cliques in
complex network. In Mining Complex Data, 207–221.

FALOUTSOS, M., FALOUTSOS, P., AND FALOUTSOS, C. 1999. On power-law relationships of the internet topology. In
Proceedings of the ACM SIGCOMM Conference on Applications, Technologies, Architectures and Protocols
for Computer Communications (SIGCOMM). 251–262.

FAUST, K. AND WASSERMAN, S. 1995. Social Network Analysis: Methods and Applications. Cambridge University
Press.

GOUDA, K. AND ZAKI, M. J. 2001. Efficiently mining maximal frequent itemsets. In Proceedings of the Interna-
tional Conference on Data Mining (ICDM). 163–170.

KILBY, P., SLANEY, J. K., THIÉBAUX, S., AND WALSH, T. 2006. Estimating search tree size. In Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI).

KNUTH, D. E. 1975. Estimating the efficiency of backtrack programs. Math. Comput. 29, 129, 121–136.
KOCH, I. 2001. Enumerating all connected maximal common subgraphs in two graphs. Theor. Comput.

Sci. 250, 1-2, 1–30.
KOSE, F., WECKWERTH, W., LINKE, T., AND FIEHN, O. 2001. Visualizing plant metabolomic correlation networks

using clique-metabolite matrices. Bioinf. 17, 12, 1198–1208.
MAKINO, K. AND UNO, T. 2004. New algorithms for enumerating all maximal cliques. In Proceedings of the

Scandinavian Workshop on Algorithms Theory (SWAT). 260–272.
MODANI, N. AND DEY, K. 2008. Large maximal cliques enumeration in sparse graphs. In Proceedings of the

International Conference on Information and Knowledge Management (CIKM). 1377–1378.
MOHSENI-ZADEH, S., BRÉZELLEC, P., AND RISLER, J.-L. 2004. Cluster-c, an algorithm for the large-scale clus-

tering of protein sequences based on the extraction of maximal cliques. Comput. Biol. Chemist. 28, 3,
211–218.

NEWMAN, M. E. J. 2003. The structure and function of complex networks. SIAM Rev. 45, 167–256.
SCHMIDT, M. C., SAMATOVA, N. F., THOMAS, K., AND PARK, B.-H. 2009. A scalable, parallel algorithm for maximal

clique enumeration. J. Parall. Distrib. Comput. 69, 4, 417–428.
STIX, V. 2004. Finding all maximal cliques in dynamic graphs. Comput. Optimiz. Appl. 27, 173–186.
TOMITA, E. AND SEKI, T. 2003. An efficient branch-and-bound algorithm for finding a maximum clique. Discr.

Math. Theoret. Comput. Sci. 2731, 278–289.

ACM Transactions on Database Systems, Vol. 36, No. 4, Article 21, Publication date: December 2011.

21:34 J. Cheng et al.

TOMITA, E., TANAKA, A., AND TAKAHASHI, H. 2006. The worst-case time complexity for generating all maximal
cliques and computational experiments. Theor. Comput. Sci. 363, 1, 28–42.

TSUKIYAMA, S., IDE, M., ARIYOSHI, H., AND SHIRAKAWA, I. 1977. A new algorithm for generating all the maximal
independent sets. SIAM J. Comput. 6, 3, 505–517.

WAN, L., WU, B., DU, N., YE, Q., AND CHEN, P. 2006. A new algorithm for enumerating all maximal cliques
in complex network. In Proceedings of the International Conference on Advanced Data Mining and
Applications (ADMA). 606–617.

ZHANG, B., PARK, B.-H., KARPINETS, T. V., AND SAMATOVA, N. F. 2008. From pull-down data to protein interaction
networks and complexes with biological relevance. Bioinf. 24, 7, 979–986.

Received October 2010; revised February 2011; accepted April 2011

ACM Transactions on Database Systems, Vol. 36, No. 4, Article 21, Publication date: December 2011.

