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ABSTRACT
In this work, we introduce the new problem of finding time
series discords. Time series discords are subsequences of a 
longer time series that are maximally different to all the rest of 
the time series subsequences. They thus capture the sense of the 
most unusual subsequence within a time series. Time series 
discords have many uses for data mining, including improving 
the quality of clustering, data cleaning, summarization, and
anomaly detection. As we will show, discords are particularly
attractive as anomaly detectors because they only require one
intuitive parameter (the length of the subsequence) unlike most
anomaly detection algorithms that typically require many
parameters. We evaluate our work with a comprehensive set of 
experiments. In particular, we demonstrate the utility of discords 
with objective experiments on domains as diverse as Space
Shuttle telemetry monitoring, medicine, surveillance, and
industry, and we demonstrate the effectiveness of our discord 
discovery algorithm with more than one million experiments, on 
82 different datasets from diverse domains. 

Keywords
Time Series Data Mining, Anomaly Detection, Clustering. 

1. INTRODUCTION 
The previous decade has seen hundreds of papers on time series
similarity search, which is the task of finding a time series that
is most similar to a particular query sequence [5]. In this work, 
we pose the new problem of finding the sequence that is least
similar to all other sequences. We call such sequences time
series discords. Figure 1 gives a visual intuition of a time series 
discord found in a human electrocardiogram. 

Figure 1: The time series discord found in an excerpt of 
electrocardiogram qtdb/sel102 (marked in bold line). The
location of the discord exactly coincides with a premature
ventricular contraction

The fact that the discord in Figure 1 coincides with the location 
annotated by a cardiologist as containing an anomalous 
heartbeat hints at one possible use of discords. As we shall 
show, time series discords are superlative anomaly detectors, 
able to detect anomalies in domains as diverse as Space Shuttle
telemetry, industry, and medicine. One reason why discords are 
particularly suited for the increasingly important problem of 
anomaly detection is that they only require a single intuitive

parameter, the length of the subsequences to consider. In 
contrast, many other anomaly detection algorithms require 3 to 
7 unintuitive parameters [6]. With so many parameters to set, 
we need access to huge amounts of training data, even then,
avoiding overfitting remains a challenge. 

This paper makes two fundamental contributions in discovering 
unusual time series subsequences. First, while the idea of the 
“most unusual subsequence” is intuitive, great care must be 
taken in creating a workable definition, otherwise, we will be 
plagued with uninteresting pathological solutions. We introduce 
such a definition here and validate it in domains as diverse as
medicine, surveillance, and space telemetry. Second, the brute-
force algorithm to discover the most unusual subsequence 
requires a quadratic “all to all” comparison, which is untenable
for large real-world datasets. We introduce a simple algorithm
that can achieve 3 to 4 orders of magnitude speedup on real
problems.

The rest of the paper is organized as follows. In Section 2, we 
review related work and discuss some background material 
before introducing our formal definition of time series discords.
In Section 3, we consider the brute-force algorithm for finding
discords, and introduce a general framework for speeding up the
search based on admissible pruning and reordering the order in 
which the search examines the subsequences. Section 4 
introduces a particular reordering strategy based on examining a
symbolic version of the data.  We perform an extensive
empirical evaluation in Section 5 to demonstrate both the utility
of discords and our ability to find them quickly. Finally, Section 
6 offers some conclusions and suggestions for future work. 

2. RELATED WORK AND BACKGROUND
Our review of related work is exceptionally brief because we are 
considering a new problem. Most real valued time series
problems such as motif discovery [2], longest common 
subsequence matching, sequence averaging, segmentation,
indexing [5], etc. have approximate or exact analogues in the 
discrete world, and have been addressed by the text processing 
or bioinformatics communities. However, time series discords
do not appear to have a discrete version. Note that the
superficially similar sounding Furthest (Sub)String Problem
requires us to build a string, not to find one in the data [9].
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2.1 Notation 
For concreteness, we begin with a definition of our data type of 
interest, time series: 

Definition 1. Time Series: A time series T = t1,…,tm is an 
ordered set of m real-valued variables.

For data mining purposes, we are typically not interested in any
of the global properties of a time series; rather, we are interested 
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in local subsections of the time series, which are called
subsequences.

Definition 2. Subsequence: Given a time series T of length
m, a subsequence C of T is a sampling of length n m of 
contiguous position from p, that is, C = tp,…,tp+n-1 for 1  p 

m – n + 1. 

Since all subsequences may potentially be discords, any
algorithm will eventually have to extract all of them; this can be 
achieved by use of a sliding window. 

Definition 3. Sliding Window: Given a time series T of
length m, and a user-defined subsequence length of n, all 
possible subsequences can be extracted by sliding a window 
of size n across T and considering each subsequence Cp .

Since our task is to find the most distant subsequence under
some distance measure Dist(C,M), we will take the time to 
define distance. 

Definition 4. Distance: Dist is a function that has C and M
as inputs and returns a nonnegative value R, which is said to 
be the distance from M to C. For subsequent definitions to 
work we require that the function Dist be symmetric, that is, 
Dist(C,M) = Dist(M,C).

While the definition of a distance is obvious and intuitive, we 
need it to exclude trivial matches. In general, the best matches 
to a subsequence (apart from itself) tend to be located one or
two points to the left or the right of the subsequence in question. 
Such matches have previously been called trivial matches [2].
As we shall see, it is critical when finding discords to exclude 
trivial matches; otherwise, almost all real datasets have 
degenerate and unintuitive solutions. We will therefore take the 
time to formally define a non-self match. 

Definition 5. Non-Self Match: Given a time series T,
containing a subsequence C of length n beginning at position 
p and a matching subsequence M beginning at q, we say that 
M is a non-self match to C at distance of Dist(M,C) if | p – q|

n.

We can most easily see the importance of non-self matches for 
the problem at hand if we consider the analogy of the problem
in the discrete world. Consider the following string: 

a b c a b c a b c a b c X X X a b c a b c a b a c a b c

The eye is immediately drawn to the subsequence of “X”, which 
surely forms the discord here. However, if we assume a sliding 
window length of 3, and that our distance measure is the 
hamming distance, then the subsequence that is farthest from its 
nearest neighbor (i.e. most similar) subsequence is “bac”.
Below, the string is annotated by subscripts that give the 
distance to the nearest neighbor for each subsequence of length 
3:

a0b0c0a0b0c0a0b0c0a0b1c1X1X1X1a0b0c0a0b0c0a1b2a1c0a b c

This unexpected and unintuitive result is caused by allowing
trivial matches. While the subsequence XXX may appear 
unusual, it is only 1 unit distance from the subsequence XXa,
which shares two elements simply shifted by one place. We can
see the difference this makes by annotating the string with the 
non-self match distance to its nearest neighbor subsequence.

a0b0c0a0b0c0a0b0c0a0b1c2X3X2X1a0b0c0a0b0c0a1b2a1c0a b c

Here the results are much more intuitive. While it is a simple
and contrived example on discrete data, as we shall see, 
identical remarks apply to real world, real valued data. Note that
the idea that one must exclude “partial self” comparisons in
order to create meaningful definitions is well known in the 

bioinformatics community and increasingly understood in the
time series data mining community [2][13]. We will therefore
use the definition of non-self matches to define time series 
discords:

Definition 6. Time Series Discord: Given a time series T, the 
subsequence D of length n beginning at position l is said to 
be the discord of T if D has the largest distance to its nearest
non-self match. That is,  subsequences C of T, non-self 
matches MD of D, and non-self matches MC of C,
min(Dist(D, MD)) > min(Dist(C, MC))

We will denote the location of the discord as D.l and the
distance to the nearest non-self matching neighbor as D.dist.
The length of the discord we denote as Dn.

We may be interested in examining the top K discords, which 
we define as:

Definition 7. Kth Time Series Discord: Given a time series T,
the subsequence D of length n beginning at position p is the
Kth-discord of T if D has the Kth largest distance to its nearest
non-self match, with no overlapping region to the ith discord 
beginning at position pi, for all 1 i < K. That is, | p – pi | n.

We have deliberately omitted naming a distance function up to
this point for generality. For concreteness, we will use the 
ubiquitous Euclidean distance measure throughout the rest of 
this paper [2][5].

Definition 8. Euclidean Distance: Given two time series Q
and C of length n, the Euclidean distance between them is
defined as:

n

i
ii cqCQDist

1

2,

Each time series subsequence is normalized to have mean zero 
and a standard deviation of one before calling the distance 
function, because it is well understood that in virtually all 
settings, it is meaningless to compare time series with different
offsets and amplitudes [5].

2.2 Some Properties of Time Series Discords
Here, we discuss some properties of time series discords to 
enhance the readers’ understanding of them and to discount
some possible research directions for finding algorithms for
quickly locating them.

2.2.1 Discords are not necessary found in sparse space
The idea of considering time series subsequences as points in 
space has long been exploited by dozens of indexing techniques 
[5], so one might imagine that such a representation would be
useful for the task at hand. We could simply project our time
series into n-dimensional space and use existing outlier
detection methods [7]. The problem with this idea is the 
unintuitive fact that discords do not necessarily live in sparse
areas of n-dimensional space (Conversely, repeated patterns do
not necessarily live in dense parts of the n-dimensional space
[2]). We content ourselves here with a visual example and a
brief explanation of this observation. In Figure 2, we consider a 
simple time series consisting of a slightly noisy sine wave. We 
introduce an “anomaly” of length 50 by shifting the entire 
second half of the time series. 
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Figure 2: (Top) A synthetic time series with an obvious anomaly.
(Middle) The local density of subsequences of length 50, 
measured by calculating the number of matching subsequences
within a range of 2. (Bottom). The non-self match to the nearest
neighbor for all subsequences of length 50

We can now extract all subsequences of length 50, project them 
into 50-dimensional space and measure the local density around
each subsequence. Surprisingly, the anomaly is not in the
sparsest (or in any other way remarkable) region of space.
However, note that the definition of non-self match that is at the 
heart of time series discords clearly identifies the anomaly.

The explanation of this unintuitive finding harkens back to the
idea of trivial matches. Consider a subsequence C located at tp

that is “simple”, that is to say it has only one or two features
such as peaks or valleys. This simple subsequence is very close 
in n-dimensional space to the subsequences beginning at tp+1, tp-

1, tp+2, etc. In contrast, consider a subsequence M located at tq

that is “complex”, that is to say it has many features such as
peaks or valleys. This complex subsequence is relatively far 
from subsequences beginning at tq+1, tq-1, tq+2, etc.  In other 
words, simple (and smooth) shapes appear to be in dense 
neighborhoods because we over-count shifted versions of them.
This problem prevents us from using existing density based 
algorithms to find time series discords. Note that even if current 
density based algorithms could be adapted to consider non-self 
distance, most of them degrade to quadratic time complexity for 
high dimensionality data. 

2.2.2 Discords results are non combinable 
Several generic paradigms for solving problems rely on the 
ability to decompose a problem into smaller sub-problems,
which can be solved and admissibly recombined. Depending on
the exact definitions, such techniques are variously called 
dynamic programming, divide and conquer, bottom-up, etc [3].
Unfortunately, as we show below, such ideas are unlikely to 
help us efficiently find discords. 

Imagine that we break a time series T into two sections, A and B,
and that we find the discords for both sections, recording their 
locations as A.l, B.l and values as A.dist and B.dist, respectively.
Furthermore, imagine that we now concatenate A and B to 
reproduce the original time series T (for simplicity, let us 
assume that when the discord for T is discovered, it will not
span the end of A and the beginning of B). What can we now 
say about the discord for T? Surprisingly, the answer is very
little. We cannot assume that it will be either in location A.l or 
in location |A| + B.l, because both of the two previously
discovered discords may have good matches in the other 

section. All we can do is give weak bounds. The value of T.dist
is at most max(A.dist, B.dist). The lower bound of T.dist is a 
trivial zero (To see this, imagine A = B). As to the location of 
T.l, we can say nothing.
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If we consider the complementary situation, where we know the 
discord information T.l and T.dist for T, and we split into two
new time series A and B, we are similarly frustrated. Assume 
that the discord from T happened to fall into A. We can lower 
bound A.dist as being greater than or equal to T.dist, but we 
cannot provide an upper bound. In addition, we can say nothing 
about the location of A.l. As for B.dist and B.l, we can say
nothing.

The above results suggest that existing algorithms/paradigms are 
of little utility for finding discords. This motivates the 
introduction of an original algorithm in the next section.

3. FINDING TIME SERIES DISCORDS 
The brute force algorithm for finding discords is simple and
obvious. We simply take each possible subsequence and find the
distance to the nearest non-self match. The subsequence that has 
the greatest such value is the discord. This is achieved with 
nested loops, where the outer loop considers each possible 
candidate subsequence, and the inner loop is a linear scan to 
identify the candidate’s nearest non-self match. For clarity, the 
pseudo code is shown in Table 1. 

Table 1: Brute Force Discord Discovery.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Function  [dist, loc ]= Brute_Force(T, n)
 best_so_far_dist = 0 
 best_so_far_loc = NaN

For p = 1 tto |T | - n   + 1                                        // Begin Outer Loop
   nearest_neighbor_dist = infinity 

For q = 1 tto |T | - n   + 1                                    // Begin Inner Loop 
   IF | p – q |  n // non-self match?

IF Dist (tp,…,tp+n-1, tq,…,tq+n-1)  < nearest_neighbor_dist
           nearest_neighbor_dist = Dist (tp,…,tp+n-1, tq,…,tq+n-1)

End
     End // End non-self match test
  End // End Inner Loop

IF nearest_neighbor_dist > best_so_far_dist
       best_so_far_dist = nearest_neighbor_dist
       best_so_far_loc  = p

End
End // End Outer Loop
Return[ best_so_far_dist, best_so_far_loc ] 

Note that the algorithm requires exactly one parameter, the
length of subsequences to consider. The algorithm is easy to 
implement and produces exact results. However, it has one fatal
flaw for data mining. It has O(m2) time complexity which is 
simply untenable for even moderately large datasets.
The following two observations offer hope to improve the 
algorithm’s running time. 

Observation 1: In the inner loop, we don’t actually need to 
find the true nearest neighbor to the current candidate. As 
soon as we find any subsequence that is closer to the current 
candidate than the best_so_far_dist, we can abandon that
instance of the inner loop, safe in the knowledge that the 
current candidate could not be the time series discord. 

Observation 2:  The utility of the above optimization depends
on the order which the outer loop considers the candidates for 
the discord, and the order which the inner loop visits the other
subsequences in its attempt to find a sequence that will allow 
an early abandon of the inner loop. 
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While these are simple ideas and only minor modifications of 
the original algorithm, for concreteness, we will make them 
clear. The pseudo code is shown in Table 2.
Note that the input has been augmented by two heuristics, one to 
determine the order in which the outer loop visits the 
subsequences, and one to determine the order in which the inner 
loop visits the subsequences. Note that the heuristic for the outer 
loop is used once, but the heuristic for the inner loop takes the 
current candidate into account, and is thus invoked to produce a 
new ordering for every iteration of the outer loop. 
We have now reduced the discord discovery problem into a 
generic framework where all one needs to do is to specify the 
heuristics. Note that we should not attempt to “cheat” the 
algorithm. We could provide very good heuristic orderings if we 
are allowed to completely solve the brute force problem each 
time the heuristic functions are invoked! However this is simply 
hiding the time complexly in a different part of the 
implementation. We must therefore insist that the Outer
heuristic (invoked only once) takes at most O(m) to calculate 
and the Inner heuristic (invoked m-n times) takes O(1). Note 
that this requirement precludes the possibility of using R-trees, 
K-d trees or other classic indexing algorithms [5]. 

Table 2: Heuristic Discord Discovery. 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

Function  [dist, loc ]= Heuristic_Search(T, n, Outer, Inner ) 
 best_so_far_dist = 0 
 best_so_far_loc = NaN 

For Each p in T ordered by heuristic Outer // Begin Outer Loop 
     nearest_neighbor_dist = infinity
     For Each q in T ordered by heuristic Inner // Begin Inner Loop 

IF | p – q |  n // non-self match? 
IF Dist (tp,…,tp+n-1, tq,…,tq+n-1)  < best_so_far_dist 

Break                                              // Break out of Inner Loop
End
IF Dist (tp,…,tp+n-1, tq,…,tq+n-1)  < nearest_neighbor_dist 

                  nearest_neighbor_dist = Dist (tp,…,tp+n-1, tq,…,tq+n-1)
End

         End // End non-self match test
     End // End Inner Loop

IF nearest_neighbor_dist > best_so_far_dist 
          best_so_far_dist = nearest_neighbor_dist 
          best_so_far_loc  = p

End
End // End Outer Loop
Return[ best_so_far_dist, best_so_far_loc ] 

To gain some intuition into our new algorithm, and to hint at our 
eventual solution to this problem, let us consider 3 possible 
heuristic strategies: 

Random: We could simply have both the Outer and Inner
heuristics randomly order the subsequences to consider. It is 
difficult to analyze this strategy since its performance is 
bounded from below by O(m) and from above by O(m2)  (see 
below for explanation) and depends on the data. However, 
empirically it works reasonably well. The conditional test on 
line 9 of Table 2 is often true and the inner loop can be 
abandoned early, considerably speeding up the algorithm. 

Magic:  In this hypothetical situation, we imagine that a friendly 
oracle gives us the best possible orderings. These are as 
follows: For Outer, the subsequences are sorted by descending 
order of the non-self distance to their nearest neighbor, so that 
the true discord is the first object examined. For Inner, the 
subsequences are sorted in ascending order of distance to the 
current candidate. For the Magic heuristics, the first 
invocation of the inner loop will run to completion. 
Thereafter, all subsequent invocations of the inner loop will be 
abandoned during the very first iteration. The time complexity 

is thus one occurrence of m-n+1 steps for the first inner loop, 
and m-n occurrences of the O(1) step of each subsequent 
invocation of the inner loop, giving a total time complexity of 
O(m) + O(m) or just O(m). Note that we have m n.

Perverse: In this hypothetical situation, we imagine that a less 
than friendly oracle gives us the worst possible orderings. 
These are identical to the Magic orderings with 
ascending/descending orderings reversed. In this case, we are 
back to the original O(m2) time complexity, and we waste 
some time in the conditional tests on line 9 of Table 2. 

These results are something of a mixed bag for us. They suggest 
that a linear time algorithm is possible, but only with the aid of 
some very wishful thinking. The Magic heuristic requires a 
perfect ordering of subsequences in the inner loop, and any 
perfect ordering (i.e., sorting) requires at least O(mlogm).
Furthermore, the only known way to produce the perfect 
ordering of subsequences in the outer loop requires O(m2) work, 
but we are only allowed O(m) time. The following two 
observations, however, offer us some hope for a fast algorithm: 

Observation 3:  In the outer loop, we do not actually need to 
achieve a perfect ordering to achieve dramatic speedup. All we 
really require is that among the first few subsequences being 
examined, we have at least one that has a large distance to its 
nearest neighbor. This will give the best_so_far_dist variable a 
large value early on, which will make the conditional test on line 
9 of Table 2 be true more often, thus allowing more early 
terminations of the inner loop. 

Observation 4:  In the inner loop, we also do not actually need to 
achieve a perfect ordering to achieve dramatic speedup. All we 
really require is that among the first few subsequences being 
examined we have at least one that has a distance to the candidate 
sequence being considered that is less than the current value of 
the best_so_far_dist variable. This is a sufficient condition to 
allow early termination of the inner loop. 

We can imagine a full spectrum of algorithms, which only differ 
by how well they order subsequences relative to the Magic
ordering. This spectrum spans {Perverse…Random…Magic}.
Our goal then is to find the best possible approximation to the 
Magic ordering, which is the topic of the next section. 

At the risk of redundancy, we again emphasize that this search 
problem requires a specialized solution, and we cannot leverage 
off the huge literature on time series similarity search [5]. Kd-
Trees, R-trees and their many variants require O(log(m)) time 
per lookup, but we can spare only O(1) time. In any case, these 
search algorithms support nearest neighbor search, whereas all 
we require here is “near-enough” neighbor search, as noted in 
observation 4. 

4. APPROXIMATIONS TO MAGIC 
Before we introduce our techniques for approximating the 
perfect ordering returned by the hypothetical Magic heuristics, 
we must briefly review the Symbolic Aggregate ApproXimation 
(SAX) representation of time series introduced in [10]. While 
there are at least 200 different symbolic approximation of time 
series in the literature, SAX is unique in that it is the only one 
that allows both dimensionality reduction and lower bounding 
of Lp norms. Since its relatively recent introduction, SAX has 
become an important tool in the time series data mining toolbox. 
It has been used to find time series motifs [2], to mine rules in 
health data, for anomaly detection [6], to extract features from a 
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hepatitis database, for visualization [8][11], and a host of other 
data mining tasks. 

4.1 A Brief Review of SAX 
A time series C of length n can be represented in a w-
dimensional space by a vector 

wccC ,,1
. The ith element of

C is calculated by the following equation: 

i

ij
jn

w
i

w
n

w
n

cc
1)1(

In other words, to transform the time series from n dimensions 
to w dimensions, the data is divided into w equal sized “frames.”
The mean value of the data falling within a frame is calculated 
and a vector of these values becomes the dimensionality-
reduced representation. This simple representation is known as 
Piecewise Aggregate Approximation (PAA).

Having transformed a time series into the PAA representation, 
we can apply a further transformation to obtain a discrete 
representation. It is desirable to have a discretization technique 
that will produce symbols with equiprobability [2][6]. In 
empirical tests on more than 50 datasets, we noted that 
normalized subsequences have highly Gaussian distribution
[10], so we can simply determine the “breakpoints” that will 
produce equal-sized areas under Gaussian curve. 

Definition 9. Breakpoints: Breakpoints are a sorted list of 
numbers  = 1,…, a-1 such that the area under a N(0,1)
Gaussian curve from i to i+1 = 1/a ( 0 and a are defined 
as -  and , respectively).

These breakpoints may be determined by looking them up in a
statistical table. For example, Table 3 gives the breakpoints for 
values of a from 3 to 5. 

Table 3: A lookup table that contains the breakpoints
that divides a Gaussian distribution in an arbitrary
number (from 3 to 5) of equiprobable regions

i
a 3 4 5

1 -0.43 -0.67 -0.84

2  0.43  0 -0.25

3  0.67  0.25 

4  0.84 

Once the breakpoints have been obtained we can discretize a
time series in the following manner. We first obtain a PAA of
the time series. All PAA coefficients that are below the smallest
breakpoint are mapped to the symbol “a”, all coefficients
greater than or equal to the smallest breakpoint and less than the 
second smallest breakpoint are mapped to the symbol “b”, etc. 
Figure 3 illustrates the idea. 

Figure 3: A time series (thin black line) is discretized by first 
obtaining a PAA approximation (heavy gray line) and then
using predetermined breakpoints to map the PAA coefficients
into symbols (bold letters). In the example above, with n = 128,
w = 8 and a = 3, the time series is mapped to the word cbccbaab

Note that in this example, the 3 symbols, “a”, “b” and “c” are 
approximately equiprobable as we desired. We call the 
concatenation of symbols that represent a subsequence a word.

Definition 10. Word: A subsequence C of length n can be 
represented as a word

w1
as follows. Let j denote 

the jth element of the alphabet, i.e., 1 = a and 2 = b. Then 
the mapping from a PAA approximation 

ccC ˆ,,ˆˆ

C  to a word C  is 
obtained as follows:

ˆ

jijji ciffc 1ˆ

We have now completely defined SAX representation. Note that 
our observation that normalized subsequences have highly
Gaussian distribution [10], is not critical to correctness of any of 
the algorithms that use SAX, including the ones in this work. A 
pathological dataset that violates this assumption will only
affect the efficiency of the algorithms.

4.2 Approximating the Magic Outer Loop 
We begin by creating two data structures to support our 
heuristics. We are given n, the length of the discords in advance, 
and we must choose two parameters, the cardinality of the SAX 
alphabet size , and the SAX word size w. We defer a 
discussion of how to set these parameters until later in this 
section, but note that the values of  and w only affect the 
efficiency of our algorithm, not the final result, which depends
only on the user supplied length of the discord.

We begin by creating a SAX representation of the entire time 
series, by sliding a window of length n across time series T,
extracting subsequences, converting them to SAX words, and 
placing them in an array where the index refers back to the 
original sequence. Figure 4 gives a visual intuition of this,
where both  and w are set to 3. 
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Figure 4: The two data structures used to support the Inner and 
Outer heuristics.  (left) An array of SAX words, where the last 
column contains a count of how often each word occurs in the 
array. (right) An excerpt of an trie with leaves that contain a list
of all array indices that map to that terminal node

Note that the index goes from 1 to (m – n) + 1, because the right 
edge of n-length sliding window “bumps” against end of the m-
length time series.

Once we have this ordered list of SAX words, we can imbed
them into an augmented trie where the leaf nodes contain a 
linked list index of all word occurrences that map there. The
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count of the number of occurrences of each word can be mapped 
back to the rightmost column of the array. For example, in 
Figure 4, if we are interested in the word caa, we visit the trie to 
discover that it occurs in locations 1, 3, and 731. If we are 
interested in the word that occurs at a particular location, let’s 
say (m – n) - 1, we can visit that index in the array and discover 
that the word cbb is mapped there. Furthermore, we can see by 
examining the rightmost column that there are a total of 2 
occurrences of that particular word (including the one we are 
currently visiting). However, if we want to know the location of 
the other occurrence, we must visit the trie. 
Surprisingly, both data structures can be created in time and 
space linear in the length of T [1]. In fact, if we take advantage 
of the fact that we only need log2( )  bits for each SAX 
symbol, then both data structures are significantly smaller than 
the raw time series data they were derived from. 
We can now state our Outer heuristic; we scan the rightmost 
column of the array to find the smallest count mincount (its 
value is virtually always 1). The indices of all SAX words that 
occur mincount times are recorded, and are given to the outer 
loop to search over first. After the outer loop has exhausted this 
set, the rest of the candidates are visited in random order. 
The intuition behind our Outer heuristic is simple. Unusual 
subsequences are very likely to map to unique or rare SAX 
words. By considering the candidate sequences that map to 
unique or rare SAX words early in the outer loop, we have an 
excellent chance of giving a large value to the best_so_far_dist
variable early on, which (as noted in observation 3) will make 
the conditional test on line 9 of Table 2 be true more often, thus 
allowing more early terminations of the inner loop. 

4.3 Approximating the Magic Inner Loop 
Our Inner heuristic also leverages off the two data structures 
shown in Figure 4. When candidate i is first considered in the 
outer loop, we look up the SAX word that it maps to, by 
examining the ith word in the array. We then visit the trie and 
order the first items in the inner loop in the order of the elements 
in the linked list index found at the terminal nodes. For example, 
imagine we are working on the problem shown in Figure 4. If 
we were examining the candidate C731 in the outer loop, we 
would visit the array at location 731. Here we would find the 
SAX word caa. We could use the SAX values to traverse the 
trie to discover that subsequences 1, 3, 731 map here. These 3 
subsequences are visited first in the inner loop (note that line 8 of 
Table 1 prevents 731 from being compared to itself). After this 
step, the rest of the subsequences are visited in random order. 
Because our algorithm works by using heuristics to order SAX 
sequences, we call it HOT SAX, short for Heuristically 
Ordered Time series using Symbolic Aggregate
ApproXimation 

4.4 Minor Optimizations and Parameter Setting 
There are several minor optimizations we can apply to the 
heuristic search algorithm. For example, imagine we are 
considering candidate Ci in the outer loop, and as we traverse 
through the inner loop, we find that subsequence Cj is close 
enough to it to allow early abandonment. In addition to saving 
time with the early termination, we can also delete Cj from the 
list of candidates in outer loop (if it has not already been 
visited). The key observation is that since we are assuming a 
symmetric distance measure, if nearness to Cj disqualifies
candidate Ci from being the discord, then the same nearness to 
Ci would also disqualify candidate Cj from being the discord. 
Empirically, this simple optimization gives a speed-up factor of 

approximately 2. In addition, there are several well-known 
optimizations to the Euclidean distance that we can use [5]. 
As noted above, we must choose two parameters, the cardinality 
of the SAX alphabet size , and the SAX word size w. Recall 
what it is we want to optimize. We would like the distribution of 
the SAX words to be highly skewed, so that the discord will 
map to a SAX word that is unique or rare, and all the other 
subsequences will map to SAX words that are very frequent. 
This is the best situation for both our heuristics. If we choose 
very large values of  and/or w, almost all subsequences will 
map to unique words; if we choose very small values of 
and/or w, all subsequences will map to just a small handful of 
words. Either of these situations is bad for our heuristics.
The good news is that there is little freedom for the a parameter; 
extensive experiments carried out by the current authors [2] 
[8][10][11] and dozens of other researchers worldwide [13] 
suggest that a value of either 3 or 4 is best for virtually any task 
on any dataset. After empirically confirming this on the current 
problem with experiments on more than 50 datasets, we will 
simply hardcode  = 3 for the rest of this work. Having fixed ,
we performed an exhaustive empirical examination of the role 
of the w parameter. The best value for this parameter depends 
on the data. In general, relatively smooth and slowly changing 
datasets favor a smaller value of w, whereas more complex time 
series favor a larger value of w. The following observations 
mitigate the problem of parameter setting: 

The speedup does not critically depend on w parameter. 
After empirically finding the best value on a particular data 
we found we could vary the value of w in the range of 60% 
to 150% with less than a 12% decrease in speedup. 
Once we learn a good setting on a particular data type, say 
ECGs, that setting will also work well on other datasets of 
the same type (assuming the sampling rate is the same). 

5. EMPIRICAL EVAUALTION 
We begin by showing the utility of time series discords for a 
host of domains, then go on to show that our algorithm is able to 
find discords very efficiently. 

5.1 The Utility of Time Series Discords  
In this paper, we will only demonstrate the utility of discords as 
anomaly detectors. We have done extensive successful 
experiments in other tasks, such as improving the quality of 
clustering and summarization; however, anomaly detection is 
unique in that it allows immediate and intuitive visual 
confirmation. The additional experiments for other tasks, 
together with many extra anomaly detection experiments can be 
found here [4]. We encourage the interested reader to consult 
this site for additional examples and larger and more detailed 
figures of the experiments show below. 
After much reflection, we have decided not to include 
comparisons to other approaches here1. We simply could not 
make the other approaches work well, and we do not wish to 
seem to be badgering fellow researchers. To be fair to the other 
approaches, it is very difficult to make meaningful comparisons 
between our method, which requires only one intuitive 
parameter, and some of the rival methods that require 3 to 7 
parameters [6], including some parameters for which we may 
have poor intuition, such as Embedding dimension, Kernel
function, SOM topology or number of Parzen windows.

                                                                
1 We have conducted such experiments and we have made them 

available here [4].
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5.1.1 Anomaly Detection in Space Telemetry 
We consider the problem of finding anomalies in sensor time 
series. In Figure 5, we see an example of a Space Shuttle
Marotta Valve time series that was annotated as normal by a 
NASA engineer.

Figure 5: An example of a Space Shuttle Marotta Valve time
series that was annotated as normal

The engineer further annotated several other traces of the same
sensor that have several kinds of faults. We first consider an
easy problem; in Figure 6, the expert annotated the last in a
series of 5 energize/deenergize cycles as “Poppet pulled 
significantly out of the solenoid before energizing”.  The 
problem is immediately obvious to even the untrained eye, and 
the discord128 completely spans the offending section. 

Figure 6: An example of an annotated Marotta Valve time
series. The discord discovered (highlighted in bold) exactly 
corresponds with the expert’s annotation

In Figure 7, we consider a much more subtle problem; once 
again we find the discord128, and once again its location exactly
coincides with the expert’s annotation.

Figure 7: Another example of an annotated Marotta Valve time
series.  While the discord discovered (highlighted in bold)
exactly corresponds with the expert’s annotation, it is difficult to 
see why at this scale

At the scale shown, it is impossible to see what the expert saw
to justify her decision; however, in Figure 8, we can see that the
discord has a “double hump”, whereas the corresponding section 
of the other four cycles have a single hump.

Figure 8: (Left) A subsection of Figure 7 showing the discord 
found. (Right) A Zoom-in of the discord, and the four 
corresponding sections form the normal cycles explains the fault

5.1.2 Anomaly Detection in Electrocardiograms 
We have already considered the utility of discords in an 
Electrocardiogram (ECG) in Figure 1. That was a very simple
and “clean” example for clarity; however, it is remarkable how
varied and complex normal healthy ECGs can be. For example,
Figure 9 shows a very complicated signal with remarkable
variability Surprisingly, this ECG contains only one small
anomaly, which is easily discovered by a discord. 

In Figure 10, we consider an ECG that has several different
types of anomalies. Here, the first 3 discords exactly line up
with the cardiologist’s annotations. 

0 5 00 0 1 00 0 0 1 5 0 0 0

B ID M C  C on g es tiv e H ea rt F a ilu re D a ta b a s e: R ec ord  1 5

r
0 5 00 0 1 00 0 0 1 5 0 0 0

B ID M C  C on g es tiv e H ea rt F a ilu re D a ta b a s e: R ec ord  1 5

r

0 100 200 300 400 500 600 700 800 900 1000

Energizing
Phase

De-Energizing Phase

Space Shuttle M arotta
Valve: N ormal cycle

0 100 200 300 400 500 600 700 800 900 1000

Energizing
Phase

De-Energizing Phase

Space Shuttle M arotta
Valve: N ormal cycle Figure 9: An ECG that has been annotated by a cardiologist

(bottom bar) as containing one premature ventricular 
contraction. The discord256 (bold line) exactly coincides with the
heart anomaly

In this figure we could perhaps spot the anomalies by eye;
however, the full time series is much longer, and impossible to 
scrutinize without a scrollbar and much patience. 
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Figure 10: An excerpt of an ECG that has been annotated by a 
cardiologist (bottom bar) as containing 3 various anomalies.  The 
first 3 discord600 (bold lines) exactly coincides with the anomalies
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In the above cases, we simply set the length of the discords to be 
approximately one full heartbeat (note that the two datasets have
different sampling rates). Although we found that we could 
double or half the parameters without affecting the quality of
results, on just a handful of the dozens of ECG datasets we 
examined, the discords had a harder time finding the anomalous 
heartbeats. We conferred with cardiologist, Dr. Helga Van Herle 
M.D., who informed us that heart irregularities can sometimes
manifest themselves at scales significantly shorter than a single
heartbeat. Armed with this knowledge, we searched for discords 
at approximately ¼ the length of a single heartbeat. In Figure
11, we show the results of such a search.
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Figure 11: An ECG that has been annotated by a cardiologist
(bottom bar) as containing one premature ventricular 
contraction. The discord40 (bold line) exactly coincides with the 
heart anomaly

While the result is satisfying in that it immediately locates the 
anomaly, it is not obvious from the figure that the discord is 
actually different for the other heartbeats. In Figure 12 (left) we 
see a zoom-in of the subsequence surrounding the discord, and
we can see that the discord falls over the ST wave. In Figure 12 
(right), we manually extracted 4 ST waves from the 
subsequence in Figure 11 and clustered them together with the 
discord. This makes the source of the anomaly apparent.
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Figure 12: (left) A zoom-in of a section of Figure 11.  The first
heartbeat has been annotated with the classic notation. (right)
Five ST waves from Figure 11 (including the discord)
hierarchically clustered
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5.2 The Utility of HOT SAX 
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It is increasingly recognized that comparing algorithms
performance by examining wall clock or CPU time invites the
possibility of implementation bias [5], which in turn invites the
possibility of irreproducible “improvements.” Instead, we
measure here the number of times that the distance function is
called on line 9 in Table 1 and Table 2. A simple analysis of the 
pseudocode (confirmed with a profiler) tells us that this single
line of code accounts for more than 99% of the running time for 
both algorithms.

The above metric does not include the time it takes to build the
data structures discussed in Section 4.2; however, we note that 
this is a O(m), one time cost. For datasets of a reasonable size
(i.e., the datasets shown in Figures 11 or 12), this overhead takes 
much less than 0.1% of the total time. Furthermore, as the 
datasets get larger, it takes an even smaller percentage of time.

In Figure 13, we compare the brute force algorithm to the HOT 
SAX algorithm in terms of the number of times the Euclidean 
distance function on line 9 is called. For the HOT SAX we 
averaged the results for each setting of dataset/length over 100
runs on different subsets of the data.

Figure 13: The number of calls to the distance function required 
by brute force and heuristic search for discord128 over a range of
data sizes for 5 representative datasets

Note that as the data sizes increase, the differences get larger. 
For a time series of length 64,000, HOT SAX is almost three
thousand times faster than brute force for all datasets. This 
experiment is actually pessimistic in that we made sure that the
test data did not have any obvious anomalies or unusual 
patterns. In general, if there are truly unusual patterns in the 
time series, the HOT SAX is even faster.

In general, these results strongly suggest that we can reasonably
expect at least 3 orders of magnitude of a speedup for most 
problems. To concretely ground these numbers, consider the 
following. While our current implementation is in relatively
lethargic Matlab, the experiments shown in Figures 10, 11, and
12 take a few seconds using heuristic search, but several hours 
using brute force search.

To make sure that the above results were not the result of a
happy coincidence of “easy” datasets and the right setting of the 
single parameter, we repeated the experiment for every dataset
in the UCR Time Series Data Mining Archive over a range of
values for n. We tested all datasets that have a length of at least 
16,000; there are currently 82 such datasets from a diverse set of 
domains. Figure 14 shows the results.

6. CONCLUSIONS AND FUTURE WORK 
In this work, we have defined time series discords, a new
primitive for time series data mining. We introduced the HOT 
SAX algorithm to efficiently find discords and demonstrated 

Figure 14: The speed obtained over brute force search for 
various discord lengths and database sizes, averaged over 82
diverse datasets 

its utility of a host of domains. Many future directions suggest
themselves; most obvious among them are extensions to 
multidimensional time series, to streaming data, and to other 
distance measures. In addition, for truly massive datasets, even 
the large speedups obtained may be insufficient for real time
interaction. We therefore plan to investigate an anytime version
of our algorithm. 
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